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Sequent Calculi for Intuitionistic Gödel-Löb Logic

Iris van der Giessen and Rosalie Iemhoff

Abstract This paper provides a study of sequent calculi for intuitionistic
Gödel-Löb logic (iGL), which is the intuitionistic version of the classical modal
logic GL, known as Gödel-Löb logic. We present two different sequent calculi,
one of which we proved to be the terminating version of the other. We study
those systems from a proof-theoretic point of view. One of our main results is a
syntactic proof for the cut-admissibility result for those systems. In the end, we
apply this to prove Craig interpolation for intuitionistic Gödel-Löb logic.

1 Introduction

Intuitionistic Gödel-Löb logic (iGL) is an interesting logic for various different rea-
sons. It is the intuitionistic variant of one of the most well-known classical modal
logics GL, which is the provability logic of Peano Arithmetic. This logic is obtained
by adding Gödel-Löb’s axiom �(�A → A)→ �A to the standard Hilbert calcu-
lus for classical propositional normal modal logic K. In this logic, we read �A as
‘A is provable in Peano Arithmetic’. Completeness of GL with respect to Peano
Arithmetic augmented with the provability predicate is shown in Solovay’s famous
completeness theorems [16]. For more information about GL and Peano Arithmetic
see [4].

Logic iGL is the intuitionistic variant of GL, meaning that it consists of the stan-
dard Hilbert calculus for intuitionistic normal modal logic K together with the Gödel-
Löb axiom. Therefore one might expect that iGL would be the provability logic for
Heyting Arithmetic, where �A means ‘A is provable in Heyting Arithmetic’. How-
ever, iGL is only sound with respect to the provability part of Heyting Arithmetic,
but completeness fails. That is, there are principles of the provability logic of Heyt-
ing Arithmetic which are not provable in iGL [12]. What the provability logic for
Heyting Arithmetic is, is a long standing open question. Recently, Ardeshir and Mo-
jtahedi found the Σ1-provability logic for Heyting Arithmetic [1]. A key element in
their study is logic iCGL which is an extension of iGL by the so-called completeness
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2 I. van der Giessen and R. Iemhoff

axiom A→ �A. This logic is also known as strong Löb logic iSL and is complete
with respect to an arithmetical theory based on what is called slow provability [21].
It is certainly conceivable that iGL has a provability interpretation as well for some
nonstandard provability predicate.

Logic iGL is also interesting because of its natural semantic framework. Ursini
is the first who devoted a paper to this logic (he denotes it as ID) in which he treats
both a relational and an algebraic semantics [19]. He shows the existence of a char-
acteristic model and frame, the finite model property, finite frame property and de-
cidability. The Kripke semantics for iGL is a natural combination of intuitionistic
and modal logic where the modal relation has the classical GL properties: transitive
and conversely well-founded. An overview of semantic results for iGL and other in-
tuitionistic modal logics can be found in [13]. Ursini’s paper is marked by I◦ and
he announced that ‘two succeeding papers (II◦, III◦) with the same title could fol-
low, devoted to a certain related double modal calculus and to the syntax of ID in the
style of natural deduction’. To the best of our knowledge, these papers have never
appeared. The current paper continues Ursini’s line of research because it provides
proof theory for iGL, based on the sequent calculus for GL developed by Avron [2].

In this paper we give a proof-theoretic analysis for two different sequent calculi
for iGL, one of which is terminating. We call the systems GL3i and GL4i. We study
these calculi in the same line of research done for intuitionistic modal logics iK and
iKD from [10]. The proof for termination of GL4i is interesting, because it uses a
nonstandard induction, based on Bílková [3]. The aim of this paper is to establish
the cut-admissibility result for both systems.

We present a nontrivial syntactic proof for the cut-admissibility in GL3i based
on results of Valentini [20] and Goré and Ramanayake [8]. They prove the cut-
elimination theorem for sequent calculi for classical modal logic GL. The cut-
elimination for sequent calculi for GL has an interesting history, nicely described
in [8]. In short, Valentini presented a proof for sequents built from sets, a proof
in which many steps remained implicit and therefore difficult to check. It is often
assumed that set-based proofs for cut-elimination can easily be adopted to multiset-
based calculi. For GL this is not obvious and let to the search of new cut-elimination
proofs for GL. However, Goré and Ramanayake prove the cut-elimination theorem
for multiset sequents, placing Valentini’s argument in a formal setting.

The cut-admissibility theorem implies several results, such as the subformula
property and consistency. It also implies that those sequent calculi, indeed, repre-
sent iGL. By the subformula property, we can conclude that intuitionistic Gödel-Löb
logic is conservative over IPC, which means that no new propositional tautologies
can be derived. In the last section we use our results to prove the Craig interpolation
property for iGL.

The study of those systems are technically challenging because it combines the
difficulties of GL, with its highly nontrivial proofs of cut-elimination, with the al-
ready complicated framework of intuitionistic modal logics. In addition, termination
proofs for sequent calculi for GL require rather complicated methods, because of the
behavior of the so-called GLR rule. In this paper, we will adopt several methods
used in the study of sequent calculi for GL and apply those in such a way that we can
use them in our intuitionistic framework.

The paper is structured in the following way. Section 2 gives the preliminaries of
both sequent systems for iGL. We present the syntactic cut-admissibility result for
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our non-terminating calculus GL3i in Section 3. In Section 4 we give the terminat-
ing result for GL4i. Section 5 states the equivalence between GL3i and GL4i which
immediately implies the cut-admissibility for GL4i. The last two sections cover the
Craig interpolation property for iGL and future work.

2 Intuitionistic Gödel-Löb Logic

We consider the modal language with constant ⊥, propositional variables p,q, . . . ,
connectives ∧ (conjunction), ∨ (disjunction),→ (implication) and the modal opera-
tor �. Note that we do not include ♦. In contrast to classical modal logic, ♦ is not
interdefinable via �. Formulas are denoted by A,B,C, . . . . If A is a formula, ¬A is
defined as A→⊥. We call formulas of the form �A boxed formulas.

Definition 2.1 Intuitionistic Gödel-Löb logic iGL is given by the Hilbert system
containing:

1. intuitionistic propositional tautologies,
2. K-axiom: �(A→ B)→�A→�B,
3. Gödel-Löb’s axiom: �(�A→ A)→�A,
4. closed under modus ponens: if A and A→ B in iGL, then also B in iGL,
5. closed under necessitation: if A is in iGL then also �A in iGL.

We want to examine multiset sequent calculi for iGL. We use multisets of formulas
that are denoted by Greek letters Γ,∆, . . . . For two multisets Γ,∆, we denote by Γ∪∆

the multiset that contains only formulas A that belong to Γ and ∆ and the number of
occurrences of A is the sum of the occurrences in Γ and ∆. Let Γ be a multiset, we
define �Γ to be the multiset {�A | A ∈ Γ} and �Γ to be the multiset Γ∪�Γ.

We consider single-conclusion sequents, which are expressions of the form
Γ⇒C, where Γ is a finite multiset of formulas and C is a formula. In a sequent nota-
tion, Γ,∆ denotes Γ∪∆ and Γ,A denotes Γ∪{A}. So Γ,∆⇒C reads as (Γ∪∆)⇒C.
In a sequent Γ⇒C, we call Γ the antecedent and C the succedent, which is standard
terminology also for multi-conclusion sequents. We sometimes denote a sequent by
S.

We study two calculi for intuitionistic Gödel-Löb logic. One is a terminating
version of the other. The most important rule is the GLR rule which is

�Γ,�A⇒ A
GLR

Π,�Γ⇒�A
This rule has two flavours: in GL4i multiset Π cannot contain boxed formulas, while
in GL3i there is no restriction on Π. Table 1 presents the rules for GL3i which is
the propositional intuitionistic calculus G3ip from [18] together with the modal rule
GLR. To stress again, Π is here an arbitrary multiset of formulas, so it may contain
boxed formulas. Table 2 presents system GL4i, which contains the rules for the ter-
minating calculus G4ip from [6] together with the modal rule GLR and an additional
left implication rule for box. So we have five left implication rules. Recall, that in
contrast to GL3i, we put a restriction on multiset Π in the rules GLR and L�→ in
GL4i: Π does not contain boxed formulas. This is necessary to guarantee termination
(see Section 4).

Both systems do not contain structural rules explicitly, but weakening and con-
traction are admissible. We use the non-terminating system GL3i to present a proof-
theoretic proof for cut-admissibility based on the work of Valentini [20] and Goré
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At, p atomic
Γ, p⇒ p L⊥

Γ,⊥⇒C

Γ⇒ A Γ⇒ B R∧
Γ⇒ A∧B

Γ,A,B⇒C
L∧

Γ,A∧B⇒C

Γ⇒ A R∨1
Γ⇒ A∨B

Γ⇒ B R∨2
Γ⇒ A∨B

Γ,A⇒C Γ,B⇒C
L∨

Γ,A∨B⇒C

Γ,A⇒ B
R→

Γ⇒ A→ B
Γ,A→ B⇒ A Γ,B⇒C

L→
Γ,A→ B⇒C

�Γ,�A⇒ A
GLR

Π,�Γ⇒�A
Table 1 Sequent calculus GL3i

At, p atomic
Γ, p⇒ p L⊥

Γ,⊥⇒C

Γ⇒ A Γ⇒ B R∧
Γ⇒ A∧B

Γ,A,B⇒C
L∧

Γ,A∧B⇒C

Γ⇒ A R∨1
Γ⇒ A∨B

Γ⇒ B R∨2
Γ⇒ A∨B

Γ,A⇒C Γ,B⇒C
L∨

Γ,A∨B⇒C

Γ,A⇒ B
R→

Γ⇒ A→ B
Γ, p,A⇒C

Lp→, p atomic
Γ, p, p→ A⇒C

Γ,A→ (B→C)⇒ D
L∧→

Γ,A∧B→C⇒ D
Γ,B→C⇒ A→ B Γ,C⇒ D

L→→
Γ,(A→ B)→C⇒ D

Γ,A→C,B→C⇒ D
L∨→

Γ,A∨B→C⇒ D
�Γ,�A⇒ A Π,�Γ,B⇒C

L�→
Π,�Γ,�A→ B⇒C

�Γ,�A⇒ A
GLR

Π,�Γ⇒�A
In GLR and L�→, no boxed formulas in Π.

Table 2 Sequent calculus GL4i

and Ramanayake [8] who proved cut-elimination for sequent calculi for classical GL.
This approach is not applicable to GL4i because of the restriction in the GLR rule.
However, equivalence of GL3i and GL4i immediately implies the cut-admissibility
result for GL4i. Furthermore, the cut-admissibility results for both GL3i and GL4i
imply equivalences between the systems iGL, GL3i and GL4i, which shows that all
those systems express intuitionistic Gödel-Löb logic.

We fix some terminology. The sequents At and L⊥ are called initial sequents or
axioms. The GLR rules are called modal rules and all rules except for GLR are called
logical rules. In the axioms and logical rules, the principal formula of an occurrence
is defined as usual. In the GLR rule, all formulas in �Γ as well as �A are principal.
Formula �A on the right hand side of the conclusion in the GLR rule is called the
diagonal formula. We also call �A in the principal formula of L�→ the diagonal
formula. A derivation in GL3i (in GL4i) is a tree built up from the rules in GL3i (GL4i)
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whose leaves are initial sequents. We use the same for GL4i. We use the letter Σ to
denote derivations. The height of a derivation is the greatest number of successive
applications of rules in it. We use standard notation `GL3i Γ⇒C for derivability of
sequent Γ⇒C in GL3i. We do the same for GL4i. The notation `GL3i,n Γ⇒C means
that sequent Γ⇒C is derivable in GL3i with a height of derivation at most n.

In the following, and at later points, we will write S1 . . .Sk/S as short notation for
the rules

S1
S

S1 S2
S

for k = 1,2 respectively. The following definition is useful in both systems.

Definition 2.2 A rule S1 . . .Sk/S is invertible in GL3i (GL4i) if whenever ` S we
have ` Si for all i. That is, S/Si is admissible in the calculus. A rule is is height-
preserving invertible if whenever `n S we have `n Si for all i.

3 A Syntactic Proof for Cut-admissibility

This section provides an analysis of the system GL3i. A substantial part is devoted
to a syntactic proof of cut-admissibility. Immediate corollaries of the admissibility
of cut are the subformula property, consistency and conservativity over IPC. At the
end of this section we will see the correspondence between GL3i and the Hilbert
system for intuitionistic Gödel-Löb logic. This means that formula A is provable in
iGL if and only if sequent (⇒ A) is provable in GL3i. First we look at basic concepts.
We define the degree d(A) of a formula A inductively by d(⊥) = 0, d(p) = 1 and
d(A∧B) = d(A∨B) = d(A→ B) = d(A)+d(B)+1. We start with a useful lemma.

Lemma 3.1 (GL3i weakening, contraction, inversion) For each n, we have the
following in GL3i.

1. Extended axiom rule: ` Γ,C⇒C for every formula C.
2. Falsum rule: `n Γ⇒⊥ implies `n Γ⇒C.
3. Weakening: `n Γ⇒C implies `n Γ,A⇒C.
4. Inversion: rules R∧, L∧, L∨ and R→ are height-preserving

invertible.
5. Inversion L→: if `n Γ,A→ B⇒C, then `n Γ,B⇒C.
6. Contraction: `n Γ,D,D⇒C implies `n Γ,D⇒C.

Proof Statement 1. is proved by induction on the degree of formula C. All others
are proved by induction on height n. Weakening is needed in the proofs for inversion
and inversion is used in the proof of contraction.

Now we turn to the proof of cut-admissibility in GL3i. The proof is based on the
works of Valentini [20] and Goré and Ramanayake [8]. Both prove cut-elimination
for sequent calculi for classical GL in which, in contrast to our system, the structural
rules are explicitly contained. Valentini considers sequents built from sets, whereas
Goré and Ramanayake adapted his proof to multisets. The use of multisets instead of
sets means that we have to take into account contraction. Goré and Ramanayake have
formalized ideas of Valentini in order to give a robust proof for a multiset sequent
calculus for GL. We will see that Valentini’s proof idea can also be applied to GL3i, a
system without explicit weakening and contraction, which are admissible in it. Since
weakening and contraction are admissible, we do not need all the elements of the
machinery used in [8], but we use these elements relevant for iGL.
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A well-known method to establish the cut-admissibility theorem is to transform
topmost cuts of the form

Γ⇒ D D,∆⇒C
cut

Γ,∆⇒C
into cut-free derivations with the same end-sequent. Standard is to use a double
induction (d,h), where d is the degree of the cut-formula and h is the height of the
cut, where the cut-height is defined as the height of its left premise derivation plus
the height of its right premise derivation.

However, for provability logic, this is not sufficient. Therefore Valentini intro-
duces a third induction parameter called width which is computed ‘globally’. A third
parameter is necessary when we encounter the following problem: consider a cut
where both premises are derived from the GLR rule and the cut-formula is principal
in both sides:

Σl

�Γ,�B⇒ B
GLR

Πl ,�Γ⇒�B

Σr

�B,B,�∆,�C⇒C
GLR

Πr,�B,�∆⇒�C
cut(�B)

Πl ,Πr,�Γ,�∆⇒�C

A reasonable thing to do is the following, where we use the admissibility of contrac-
tion:

Σl

�Γ,�B⇒ B
�Γ⇒�B

Σl

�Γ,�B⇒ B
cut1�Γ,�Γ⇒ B

contraction
�Γ⇒ B

Σl

�Γ,�B⇒ B
�Γ⇒�B

Σr

�B,B,�∆,�C⇒C
cut2B,�Γ,�∆,�C⇒C

cut3
�Γ,�Γ,�∆,�C⇒C

contraction
�Γ,�∆,�C⇒C

GLR
Πl ,Πr,�Γ,�∆⇒�C

But here, it is not possible to eliminate cut1, when using the standard induction on
(d,h). Although the cut-formula in cut1 is the same as in cut(�B), which means that
the degree d remains the same. The cut-height h of cut1 is not necessarily smaller
than the cut-height of cut(�B). The reason is that the cut-height of cut1 is defined in
terms of the height of Σl , but the cut-height of cut(�B) also depends on Σr. So we
cannot compare both cuts in terms of (d,h).

The width circumvents the problem, because it enables us to define a derivation of
�Γ⇒ B in which each application of the cut rule is eliminable. Informally, the width
is the number of GLR rules in the left premise of the cut in which the cut-formula
is not introduced by weakening. We will now adopt Valentini’s method to see that it
works for GL3i.

Definition 3.2 Consider the rules in Table 1. We say that a formula A is introduced
by weakening in rule ρ if ρ is an axiom rule and A∈Γ or ρ is the GLR rule and A∈Π.

Note that formulas introduced by weakening are exactly the non-principal formu-
las of the corresponding rule. So one can ask why we redefine such formulas. We do
this in order to be consistent with the terminology as in Valentini [20] where weak-
ening is an explicit rule. It also gives an intuitive insight in the role of a particular
formula in a GLR rule.
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Definition 3.3 Let Σ be a derivation with end-sequent Γ⇒C. An instance ρ of the
GLR rule appearing in Σ is n-ary (over Γ⇒C) if the segment between the conclusion
of ρ and end-sequent Γ⇒C contains exactly n−1 applications of the GLR rule.

For a cut-free derivation Σ with end-sequent Γ⇒ C, let GLR(2,Σ) denote the
number of GLR rules ρ in Σ satisfying the following.

1. ρ is 2-ary over Γ⇒C,
2. C is the diagonal formula of the 1-ary GLR rule in Σ below ρ ,
3. C is not introduced by weakening in ρ .

Remark 3.4 The number GLR(2,Σ) may be different from 0, but only if C is a
boxed formula, due to clause 2.

In the following we write Σ/Γ⇒ D to denote the derivation
Σ

Γ⇒ D
Definition 3.5 (width) Consider a top-most cut as shown below.

Σl

Γ⇒ D
Σr

D,∆⇒C
cut0

Γ,∆⇒C
The width of cut0 is defined as w(cut0) = GLR(2,Σl/Γ⇒ D).

Remark 3.6 The width is defined on the basis of the left premise (and Σl) of the
cut and is independent of the right premise (and Σr). The width has only been defined
for topmost cuts as this restriction is sufficient for our purpose.

Example 3.7 Let us calculate the width w(cut(�⊥)) in the following:

�⊥,⊥,�D⇒ D
ρ

�(�D→⊥),�⊥⇒�D �⊥,�(�D→⊥),⊥⇒⊥
L→

�(�D→⊥),�⊥⇒⊥
GLR

�(�D→⊥)⇒�⊥
�⊥,⊥,�D⇒ D
�⊥⇒�D

cut(�⊥)
�(�D→⊥)⇒�D

There is one 2-ary GLR rule over the left premise of the cut, which is rule ρ . Formula
�⊥ is not introduced by weakening in ρ , so w(cut(�⊥)) = 1.

The width is used as induction parameter in the cut-elimination proof. In partic-
ular, the induction value for a top-most cut is (d,w,h) where d is the degree of the
cut-formula, w is the width of the cut and h is the cut-height. The idea of reduc-
ing the width is to transform a 2-ary GLR rule ρ over the left premise of the cut
Γ⇒ D satisfying requirements 1.-3. from Definition 3.3 into a GLR rule where D
is introduced by weakening. Important to note is that this only works because we
allow boxed formulas in Π in the definition of the GLR rule in the rules of GL3i (see
Table 1). This is not possible in the terminating system GL4i.

Before proving the cut-elimination theorem using the width we introduce some
derivation transformations that are useful in the proof. Some transformations are
based on parts of a derivation. To this end, it is useful to look at stub-derivations,
which are more general than derivations. Stub-derivation are introduced by Goré
and Ramanayake in [8]. Informally, stub-derivations can be obtained by deleting a
proper subderivation from a derivation thereby obtaining a derivation with a ‘gap’.

Definition 3.8 A stub-derivation in GL3i is defined recursively as follows.
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1. Initial sequents p,Γ⇒ p and ⊥,Γ⇒C are stub-derivations,
2. for any sequent S and stub-derivation Θ, each of

(a) stub
S (b) stub Θ

S (c) Θ stub
S

is a stub-derivation,
3. an application of a logical or GLR rule to stub-derivation(s) that end with its

premise(s) results in a stub-derivation,
4. an application of the cut-rule to stub-derivations concluding its premises re-

sults in a stub-derivation.

If no cut-rule is used in a stub-derivation Θ, we say that Θ is a cut-free stub-
derivation. A stub-derivation with one occurrence of ‘stub’ is called a single stub-
derivation, also introduced in [8]. In the rest, we only consider those single stub-
derivations. For a single stub-derivation Θ we sometimes write Θ[stub] to indicate
the stub occurrence.

Definition 3.9 Let Σ be a derivation and let Θ[stub] be a single stub-derivation
with an occurrence of one of the following:

(a) stub
S (b) stub Σ′

S
(c) Σ′ stub

S
where Σ′ is a derivation and suppose that

(a) Σ
β

S (b) Σ Σ′
β

S
(c) Σ′ Σ

β
S

are correct derivations in GL3i for some rule β . We say that single stub-derivation Θ

and derivation Σ are compatible with binding rule β and we obtain a correct deriva-
tion by replacing the ‘stub’ in Θ by Σ, denoted by Θ[Σ].

Example 3.10 This example is taken from [8]. The left single stub-derivation and
the derivation on the right are compatible with binding rule L∨.

Θ = stub
Σ1

A→ B⇒ A→ B
B∨ (A→ B)⇒ A→ B

Σ =

Σ2

A,B⇒ B
R→B⇒ A→ B

We have

Θ[Σ] =

Σ2

A,B⇒ B
R→B⇒ A→ B

Σ1

A→ B⇒ A→ B L∨
B∨ (A→ B)⇒ A→ B

Definition 3.11 Let Θ be a cut-free stub-derivation. Let ∆ be a (non-empty) mul-
tiset of formulas. We define Θ∆ by recursion as follows. Intuitively, Θ∆ is obtained
from Θ by weakening with ∆.

1. axiom
(a) atom: (Γ, p⇒ p)∆ = (Γ, p,∆⇒ p)
(b) ⊥: (Γ,⊥⇒C)∆ = (Γ,⊥,∆⇒C)

2. stub-instance
(a) (stub/Γ⇒C)∆ = (stub/Γ,∆⇒C)
(b) (stub Θ/Γ⇒C)∆ = (stub Θ∆/Γ,∆⇒C)
(c) (Θ stub/Γ⇒C)∆ = (Θ∆ stub/Γ,∆⇒C)

3. unary connective rule: (Θ′/Γ⇒C)∆ = (Θ′∆/Γ,∆⇒C)
4. binary connective rule: (Θ1 Θ2/Γ⇒C)∆ = (Θ∆

1 Θ∆
2/Γ,∆⇒C)

5. GLR rule: (Θ′/Γ⇒C)∆ = (Θ′/Γ,∆⇒C)
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Notice that the recursion terminates at an axiom rule, stub-instance (a) or a GLR
rule. For a sequent S = (Γ⇒C), we write S∆ = (Γ,∆⇒C).

Lemma 3.12 Let Θ be a cut-free stub-derivation and ∆ a multiset of formulas.
Then Θ∆ is also a cut-free stub-derivation.

Proof By inspection of the recursion in Definition 3.11.

Example 3.13 We continue with Example 3.10. If ∆ is a (non-empty) formula
multiset then the single stub-derivation obtained from Θ by weakening with ∆ is:

Θ∆ = stub

Σ∆
1

A→ B,∆⇒ A→ B
B∨ (A→ B),∆⇒ A→ B

We also see that the following is a correct derivation.

Θ∆[Σ∆] =

Σ∆
2

A,B,∆⇒ B
R→

B,∆⇒ A→ B

Σ∆
1

A→ B,∆⇒ A→ B
L∨

B∨ (A→ B),∆⇒ A→ B

Lemma 3.14 Let Θ be a cut-free single stub-derivation and let Σ be a cut-free
derivation with end-sequent Γ⇒C such that Θ and Σ are compatible with binding
rule β yielding correct derivation Θ[Σ]. For any multiset ∆ we have:

1. if there is an application of the GLR rule in the segment from β to the end-
sequent in Θ[Σ], then Θ∆[Σ′] is a correct derivation for any cut-free derivation
Σ′ with end-sequent Γ⇒C. In particular, Θ∆[Σ] is a correct derivation.

2. if there is no application of the GLR rule in the segment from β to the end-
sequent in Θ[Σ], then Θ∆[Σ′] is a correct derivation for any cut-free derivation
Σ′ with end-sequent Γ,∆⇒C. In particular, Θ∆[Σ∆] is a correct derivation.

Proof From Lemma 3.12, we know that Θ∆ is a correct cut-free single stub-
derivation. So for both 1. and 2. we only have to show that the end-sequent of Σ′ is
a correct premise regarding binding rule β and Θ∆.

Single stub-derivation Θ has one of the following stub-instances (which are sub-
stub-derivations of Θ∆):

(a) stub
S (b) stub Θ′

S
(c) Θ′ stub

S

By assumption, Θ and Σ are compatible, so the following are correct instances of
binding rule β , where Γ⇒C is the end-sequent of Σ and Send(Θ′) is the end-sequent
in Θ′:

(a) Γ⇒C
β

S (b)
Γ⇒C Send(Θ′)

β
S

(c)
Send(Θ′) Γ⇒C

β
S

For case 1. we distinguish two easy cases. If some rule below β is a GLR rule,
we know, by inspection of Definition 3.11, that sequent S remains the same in Θ∆,
so the stub-instances in Θ∆ remain the same as in Θ. This immediately implies the
desired result.

If no rule below β is a GLR rule, but β itself is, we know, by inspection of
Definition 3.11, that the antecedent of sequent S becomes enlarged with ∆ in Θ∆, so
the following is the stub-instance in Θ∆ in which the right presents a correct instance
of GLR rule β .
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stub
S∆

Γ⇒C
β

S∆

So every cut-free derivation Σ′ with end-sequent Γ⇒C is compatible with Θ∆.
For case 2. in which rule β and all rules below β are not a GLR rule, we know,

by inspection of Definition 3.11, that the following is a correct stub-instance of Θ∆.

(a)
stub
S∆

(b) stub Θ′∆

S∆
(c) Θ′∆ stub

S∆

Since β is not a GLR rule, we have correct instance of β where Send(Θ′∆) is the end-
sequent in Θ′∆:

(a)
Γ,∆⇒C

β
S∆

(b)
Γ,∆⇒C Send(Θ′∆)

β
S∆

(c)
Send(Θ′∆) Γ,∆⇒C

β
S∆

So every cut-free derivation Σ′ with end-sequent Γ,∆⇒ C is compatible with Θ∆.

We examine one more transformation of derivations, also used in [20, 8].

Definition 3.15 Let Σ be a cut-free derivation with end-sequent of the form
Γ,�B⇒C, where an occurrence of �B is introduced by weakening in every 1-ary
GLR rule over Γ,�B⇒ C. Let ∆ be a multiset of formulas. We define Σ∆ �B by
recursion as follows, by replacing occurrence �B by ∆.

1. axiom
(a) atom: (Γ, p,�B⇒ p)∆ �B = (Γ, p,∆⇒ p)
(b) ⊥: (Γ,⊥,�B⇒C)∆ �B = (Γ,⊥,∆⇒C)

2. unary connective rule: (Σ′/Γ,�B⇒C)∆ �B = (Σ′∆ �B/Γ,∆⇒C)
3. binary connective rule: (Σ1 Σ2/Γ,�B⇒C)∆ �B =(Σ∆ �B

1 Σ∆ �B
2 /Γ,∆⇒C)

4. GLR rule: (Σ′/Γ,�B⇒C)∆ �B = (Σ′/Γ,∆⇒C)

Lemma 3.16 Let Σ be a cut-free derivation with end-sequent of the form
Γ,�B ⇒ C, where an occurrence of �B is introduced by weakening in every 1-
ary GLR rule over Γ,�B⇒ C. Let ∆ be a multiset of formulas. Then Σ∆ �B is a
well-defined cut-free derivation.

Proof We use induction on the height n of derivation Σ. For n = 0, Σ is an initial
sequent of the form (Γ, p,�B⇒ p) or (Γ,⊥,�B⇒C). Then also (Γ, p,∆⇒ p) and
(Γ,⊥,∆⇒C) are initial sequents, since �B is not an atom or ⊥.

Suppose `n Γ,�B⇒ C and the last rule applied is a logical rule. Formula �B
cannot be a principal formula, therefore the premise(s) have the form Γ′,�B⇒ C′

for some Γ′ and C′. By induction hypothesis, Γ′,∆⇒C′ are derivable. Applying the
logical rule again we get `n Γ,∆⇒C.

Now suppose the last rule applied is the GLR rule. We use the fact that �B
is introduced by weakening in any 1-ary GLR rule, therefore introducing ∆ with
weakening gives also a correct application of the GLR rule. This gives us a correct
derivation.

Note that cut-freeness is guaranteed by the fact that Σ is cut-free.

Theorem 3.17 (Cut-admissibility) Let
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Σl

Γ⇒ D
Σr

D,∆⇒C
cut(D)

Γ,∆⇒C
be a topmost cut. This can be transformed into a cut-free derivation with the same
end-sequent.

Proof Let (d,w,h) be the induction value of cut(D), where d is the degree of the
cut-formula D, w is the width of cut(D) and h is the cut-height. We have four cases:

(a) at least one of the premises is an axiom,
(b) both premises are not axioms and the cut formula D is not principal in the left

premise,
(c) both premises are not axioms and D is principal in the left premise only,
(d) D is principal in both the left and right premise.

Case (a)
For case (a) we refer to [15].

Case (b)
In case (b), we assume that D is not principal in the left premise of the cut. This
means that an L-rule is applied to the left premise (so no GLR rule). Here we look at
the L∧ rule. Derivation

Σ

A,B,Γ′⇒ D
L∧

A∧B,Γ′⇒ D D,∆⇒C
cut(D)

A∧B,Γ′,∆⇒C

with Γ = A∧B,Γ′ is transformed into the following derivation with one cut with
degree d.

Σ

A,B,Γ′⇒ D D,∆⇒C
cut1

A,B,Γ′,∆⇒C
L∧

A∧B,Γ′,∆⇒C

We have w(cut(D)) = w(cut1), because the 2-ary GLR rules in the left premise of
cut1 remain the same as those in the left premise of cut(D). And we see that the
cut-height of cut1 is h−1. So by induction we can remove cut1.

For L∨ and L→ we refer to [15]. Note that the presence of the new parameter w
does not affect the correctness of the proofs in a similar way as for L∧.

Case (c)
For case (c), we assume that D is not principal in the right premise of the cut and
principal in the left. In this case we only have to focus on the last rule applied in the
right premise. For proofs of non-modal R- and L-rules, see [15]. Here we provide
the details for case L→ to see that the introduction of the width does not affect the
proof. Derivation

Γ⇒ D
D,A→ B,∆′⇒ A D,B,∆′⇒C

L→
D,A→ B,∆′⇒C

cut(D)
Γ,A→ B,∆′⇒C
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with ∆ = A→ B,∆′ is transformed into the following derivation with two cuts of
degree d.

Γ⇒ D D,A→ B,∆′⇒ A
cut1

Γ,A→ B,∆′⇒ A
Γ⇒ D D,B,∆′⇒C

cut2
Γ,B,∆′⇒C

L→
Γ,A→ B,∆′⇒C

We have w(cut1) = w(cut2) = w(cut(D)), since the width is defined solely on the
basis of the left premise of the cut which is not changed in the transformation. The
cut-height of both cuts are reduced to a height ≤ h−1.

For case (c) we are left with one more possibility which is the case that the right
premise ends with a GLR rule. Note that we are in the case that D is not principal.
We can get rid of cut(D) as follows:

Γ⇒ D
�∆′,�A⇒ A

GLR
D,Π,�∆′⇒�A

cut(D)
Γ,Π,�∆′⇒�A

 
�∆′,�A⇒ A

GLR
Γ,Π,�∆′⇒�A

Case (d)
Now we turn to case (d) where formula D is principal in both the left and right
premise. If D is not boxed, then again we refer to [15]. We work out the case that
D = A→ B to see that the width does not change the proof. Derivation

A,Γ⇒ B
R→

Γ⇒ A→ B
A→ B,∆⇒ A B,∆⇒C

L→
A→ B,∆⇒C

cut(A→ B)
Γ,∆⇒C

can be transformed into a derivation with three cuts
A,Γ⇒ B

R→
Γ⇒ A→ B A→ B,∆⇒ A

cut1
Γ,∆⇒ A

A,Γ⇒ B B,∆⇒C
cut2A,Γ,∆⇒C

cut3
Γ,∆,Γ,∆⇒C

contraction
Γ,∆⇒C

In cut1 the degree and width remain d and w, but its cut-height reduces to ≤ h− 1.
Both in cut2 and cut3 the degree of the cut-formula is lower than d. So in these cases
it does not matter what happens with the width or height. So we have a cut-free
derivation for Γ,∆,Γ,∆⇒C. Contraction gives us a cut-free derivation for Γ,∆⇒C.

Now we look at the most interesting case, where D is a boxed formula, say
D = �B. Cut-formula �B is principal in both the left and right premise, so the
cut is as follows:

Σl

�Γ,�B⇒ B
GLR

Πl ,�Γ⇒�B

Σr

�B,B,�∆,�C⇒C
GLR

Πr,�B,�∆⇒�C
cut(�B)

Πl ,Πr,�Γ,�∆⇒�C

The reduction is divided into two cases:
(i) w = w(cut(�B)) = 0. This means that in any 1-ary GLR rule ρ over

�Γ,�B ⇒ B, we have that �B is introduced by weakening in ρ . This means
that we can apply Definition 3.15 and Lemma 3.16 to obtain cut-free derivation
Σ�Γ �B

l . (Strictly speaking, if �Γ,�B⇒ B is the conclusion of a GLR rule, we
have that �Γ,�Γ⇒ B can be derived from Σl). So the reduction is the following
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Σ�Γ �B
l

�Γ,�Γ⇒ B
contraction

�Γ⇒ B

Σl

�Γ,�B⇒ B
�Γ⇒�B

Σr

�B,B,�∆,�C⇒C
cut1B,�Γ,�∆,�C⇒C

cut2
�Γ,�Γ,�∆,�C⇒C

contraction
�Γ,�∆,�C⇒C

GLR
Πl ,Πr,�Γ,�∆⇒�C

Since Σ�Γ �B
l is a well-defined cut-free derivation of �Γ,�Γ⇒ B, we are allowed

to apply contraction to get a cut-free derivation of �Γ⇒ B. We can eliminate cut1
since its degree and width are d and w and its height is h−1. We can eliminate cut2
because its degree is less than d.

(ii) For w=w(cut(�B))> 0, first note that, by inspection of the rules, in the back-
ward direction of the proof tree, boxed formulas do not disappear in the antecedent
of the sequents. We have that Σl is of the form

Σl =

Σ′l

�Γ′,�B,�Λ,�A⇒ A
ρ

Π,�Π′,�Γ′,�B,�Λ⇒�A
Θl

where Θl is a single stub-derivation compatible with sequent Π,�Π′,�Γ′,�B,�Λ⇒�A.
So the topmost cut is:

Σ′l

�Γ′,�B,�Λ,�A⇒ A
ρ

Π,�Π′,�Γ′,�B,�Λ⇒�A
Θl

�Γ,�B⇒ B
GLR

Πl ,�Γ⇒�B

Σr

�B,�∆,�C⇒C
GLR

Πr,�B,�∆⇒�C
cut(�B)

Πl ,Πr,�Γ,�∆⇒�C

where ρ is 2-ary GLR rule over the left premise Πl ,�Γ⇒ �B and �B is not in-
troduced by weakening in ρ (so �B /∈ Π,�Π′). We write �Γ = �Π′,�Γ′ in the
conclusion of ρ . The goal is to eliminate cut(�B).

Rule ρ is a 1-ary GLR rule over �Γ,�B⇒ B, so there is no GLR rule in the
segment between ρ and GLR. We can apply part 2. of Lemma 3.14 to conclude that
the following is a correct derivation.

cut-free
�A,A,�A⇒ A

ρ ′
�A,A,Π,�Γ,�B,�Λ⇒�A

Θ
�A,A
l

�A,A,�Γ,�B⇒ B
GLR

�A,�Γ⇒�B
Σl

�Γ,�B⇒ B
cut1�A,�Γ,�Γ⇒ B

cut-free
�A,A,�A⇒ A

ρ ′
A,Π,�Γ,�B,�Λ,�A⇒�A

Θ
�A,A
l

�A,A,�Γ,�B⇒ B
GLR

�A,�Γ⇒�B

Σ′l
�B,B,�Λ,�A⇒ A

cut2
�A,�Γ,B,�Λ,�A⇒ A

cut3
�A,�A,�A,�Γ,�Γ,�Γ,�Λ⇒ A

contraction
�A,�Γ,�Λ⇒ A
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We first look at cut1 and cut2. We have d(cut1) = d(cut2) = d. When comparing
the width of cut1 and cut2 to the width of cut(�B), we see that 2-ary rule ρ over
the left premise in cut(�B) is replaced by 2-ary GLR rules ρ ′ in cut1 and cut2. In
the GLR applications ρ ′, �B is derived by weakening, so ρ ′ does not contribute
to the width in cut1 and cut2. Therefore w(cut1) = w(cut2) ≤ w− 1. In particular,
the width becomes w− 1 or 0, where w(cut1) = w(cut2) = 0 in case A = �B or
�A =�B, because then �B is also introduced by weakening in all other 2-ary GLR
rules in Θ�A,A. Therefore, we can eliminate cut1 and cut2. Also cut3 is eliminable
because the degree of the cut-formula is d−1. So we can apply contraction to get a
cut-free proof Σ for �A,�Γ,�Λ⇒ A.

Now consider:
Σ

�A,�Γ,�Λ⇒ A
ρ ′′

Π,�B,�Γ,�Λ⇒�A
Θl

�Γ,�B⇒ B
GLR

�Γ⇒�B
Σl

�Γ,�B⇒ B
cut4�Γ,�Γ⇒ B

contraction
�Γ⇒ B

We can get rid of cut4, because w(cut4) = w− 1, since �B is introduced by weak-
ening in GLR rule ρ ′′. So there is a cut-free proof with end-sequent �Γ,�Γ⇒ B.
Applying contraction gives us a cut-free proof Σ′ with conclusion �Γ⇒ B. Now we
can conclude the proof with the following derivation:

Σ′

�Γ⇒ B

Σl

�Γ,�B⇒ B
�Γ⇒�B

Σr

�B,B,�∆,�C⇒C
cut5B,�Γ,�∆,�C⇒C

cut6
�Γ,�Γ,�∆,�C⇒C

contraction
�Γ,�∆,�C⇒C

GLR
Πl ,Πr,�Γ,�∆⇒�C

In this reduction, cut5 and cut6 are eliminable as in case (i) above yielding a cut-free
proof of �Γ,�Γ,�∆�C⇒C. Applying contraction gives us a cut-free proof.

The elimination of cut4 deserves more attention. We can remove the cut because the
width reduces. Note that the cut-free derivation Σ does not have any effect on the
calculation of the width of cut4. This means that the elimination of cut1,cut2 and
cut3 do not affect the width of cuts lower in the tree. In [8], it is said that cut4 is
‘shielded’ by the GLR instance ρ ′′. This shielding is crucial.

The reduction in the proof of the theorem is quite complex and blows up the proof
complexity enormously. See Overview 3.18 to see the cut-elimination of case d (ii)
in one proof tree.
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Overview 3.18 This is an overview of the cut-elimination reduction of the proof of Theorem 3.17 for a cut with cut-formula �B with
w(cut(�B))> 0. Double lines indicate contraction.

Σ′l

�Γ′,�B,B,�Λ,�A⇒ A
ρ

Π,�Γ,�B,�Λ⇒�A
Θl

�Γ,�B⇒ B
GLR

Πl ,�Γ⇒�B

Σr

�B,B,�∆,�C⇒C
GLR

Πr,�B,�∆⇒�C
cut(�B)

Πl ,Πr,�Γ,�∆⇒�C

reduces to cut-free derivation

cut-free
�A,A,�A⇒ A

GLR’
A,Π,�Γ,�B,�Λ,�A⇒�A

Θ
�A,A
l

�A,A,�Γ,�B⇒ B
GLR

�A,�Γ⇒�B
Σl

�Γ,�B⇒ B
cut1�A,�Γ,�Γ⇒ B

cut-free
�A,A,�A⇒ A

GLR’
A,Π,�Γ,�B,�Λ,�A⇒�A

Θ
�A,A
l

�A,A,�Γ,�B⇒ B
GLR

�A,�Γ⇒�B

Σ′l
�B,B,�Λ,�A⇒ A

cut2
�A,�Γ,B,�Λ,�A⇒ A

cut3
�A,�A,�A,�Γ,�Γ,�Γ,�Λ⇒ A

�A,�Γ,�Λ⇒ A
GLR

Π,�B,�Γ,�Λ⇒�A
Θl

�Γ,�B⇒ B
GLR

�Γ⇒�B
Σl

�Γ,�B⇒ B
cut4�Γ,�Γ⇒ B

�Γ⇒ B

Σl

�Γ,�B⇒ B
�Γ⇒�B

Σr

�B,B,�∆,�C⇒C
cut5B,�Γ,�∆,�C⇒C

cut6
�Γ,�Γ,�∆,�C⇒C

�Γ,�∆,�C⇒C
GLR

Πl ,Πr,�Γ,�∆⇒�C
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Sometimes it is easier to find cut-free proofs in a direct way. We illustrate this in
the following example.

Example 3.19 We look at an example for w(cut(�B)) > 0. Take B = ⊥. Con-
sider the following derivation where �⊥ is principal in the 2-ary GLR rule ρ over
�(�D→⊥)⇒�⊥.

�⊥,⊥,�D⇒ D
ρ

�(�D→⊥),�⊥⇒�D �⊥,�(�D→⊥),⊥⇒⊥
L→

�⊥,�(�D→⊥)⇒⊥
GLR

�(�D→⊥)⇒�⊥
�⊥,⊥,�D⇒ D
�⊥⇒�D

cut(�⊥)
�(�D→⊥)⇒�D

It is possible to reduce this derivation to a cut-free derivation using the reduc-
tions in Theorem 3.17. But the following gives a shorter cut-free derivation of
�(�D→⊥)⇒ D.

�(�D→⊥),�D⇒�D �(�D→⊥),�D,⊥⇒ D
L→

�(�D→⊥),�D⇒ D
GLR

�(�D→⊥)⇒�D

The admissibility of cut implies the subformula property, consistency and conser-
vativity over IPC. The following corollary states the equivalence between the Hilbert
calculus and our sequent calculus GL3i.

Corollary 3.20 Formula
∧

Γ→C is provable in iGL if and only if sequent Γ⇒C
is derivable in GL3i.

Proof For the proof from left to right we prove that `iGL A implies `GL3i (⇒ A).
We show that the axioms and rules in the Hilbert system are derivable in GL3i. The
intuitionistic tautologies are evident. For the K-axiom we have:

�(A→ B),�A,A,�B⇒ A �(A→ B),�A,�B,B⇒ B
L→

�(A→ B),�A,�B→ B
GLR

�(A→ B),�A⇒�B
R→⇒�(A→ B)→�A→�B

The other axioms are left for the reader. The cut rule is used in the proof for modus
ponens.

The direction from right to left is done by induction on the height of the derivation
of Γ⇒C.

4 Termination

In this section we turn to the terminating sequent calculus GL4i. There are vari-
ous concepts of termination. We are interested in strong termination: there is a
well-founded ordering on sequents such that for all the rules in the calculus the
premises are smaller in this ordering than the conclusion. Strictly speaking, GL4i is
not strongly terminating, but it has a property very close to it, which we call termina-
tion modulo extended axioms. We will see that all sequents of the form Γ,C⇒C are
provable in GL4i. Including these in the system yields strong termination. Termina-
tion modulo extended axioms is a key ingredient in the syntactic proof of equivalence
between GL3i and GL4i (Section 5). We prove termination modulo extended axioms
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for GL4i based on a loop-preventing proof search for a sequent calculus for GL from
Bílková [3].

Calculus GL4i is an extension of the terminating calculus G4ip discovered inde-
pendently by Dyckhoff and Hudelmaier [6, 9]. The extension is analogous to the
extensions of G4ip to calculi for iK and iKD as developed in Iemhoff [10]. The
propositional system G3ip is not strongly terminating, because in the standard or-
dering on sequents the left premise of the left implication rule L→ does not de-
crease in complexity. However, it is weakly terminating, i.e. there is a terminat-
ing process of deciding the derivability of a sequent involving a global check in
the proof search [18]. Dyckhoff and Hudelmaier replaced L→ by four left impli-
cation rules, corresponding to the outermost connective in A for principal formula
A→ B. Dyckhoff and Hudelmaier defined an ordering on sequents to show that G4ip
strongly terminates. To do so, define the degree d of formulas as d(⊥) = d(p) = 1,
d(A∨B) = d(A→ B) = d(A)+d(B)+1 and d(A∧B) = d(A)+d(B)+2. In addi-
tion, we have to deal with the modality and define d(�A) = d(A)+1. This is slightly
different from the standard degree which we use for GL3i. Dyckhoff’s ordering ex-
tends to multisets in the following way as in [5] : Γ0 � Γ1 if and only if Γ0 is the
result of replacing one or more formulas in Γ1 by zero or more formulas of lower
degree. Extend this to sequents: (Γ1⇒C1)� (Γ2⇒C2) if Γ1,C1� Γ2,C2.

Terminating calculi for iK and iKD from [10] strongly terminate in this ordering.
This is not the case for GL4i, because the premise of the GLR rule is not lower than
the conclusion with respect to�. Recall the rule:

�Γ,�A⇒ A
GLR

Π,�Γ⇒�A
where Π does not contain any boxed formulas. The premise of the rule is not neces-
sarily lower than the conclusion with respect to the ordering�. Intuitively, the size
of the sequent in the premise is ‘doubled’ compared to the sequent in its conclusion,
because Γ is ‘duplicated’. The same problem arises in the left premise of L�→.
This means that the degree alone does not suffices to act as induction parameter on
sequents to ensure termination. We define the appropriate ordering in the proof of
Theorem 4.2. Similar problems are discussed for termination of tableau systems for
GL in [7].

We need the following lemma for GL4i. Compare this lemma to Lemma 3.1.

Lemma 4.1 (GL4i weakening, contraction, inversion) For all n, we have the fol-
lowing in GL4i.

1. Falsum rule: `n Γ⇒⊥ implies `n Γ⇒C.
2. Weakening: `n Γ⇒C implies `n Γ,A⇒C.
3. Inversion: R∧, L∧, L∨, R→, Lp→, L∧→, L∨→ are height-pre-

serving invertible.
4. Inversion L→→: if `n Γ,(A→ B)→C⇒ D, then `n Γ,C⇒ D.
5. Inversion L�→: if `n Π,�Γ,(�A→ B)⇒C, then `n Π,�Γ,B⇒C.
6. Extended axiom: ` Γ,C⇒C for every formula C.
7. Contraction: `n Γ,D,D⇒C implies `n Γ,D⇒C.

Proof Statements 1-5 and 7 are proved by induction on height n. Weakening is
used in proofs for inversion. Inversion is used in the proof for contraction. Statement
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6 is proved by induction on Dyckhoff’s degree of formula C using inversion of R→.

The reason that we need extended axioms is due to the form of the GLR rule and
L�→. Infinite branches can occur by repeated GLR and L�→ inferences. In the
following tree we have a loop where we can apply L�→ with diagonal formula �A
infinitely many times, indicated by the vertical dots.

... L�→
�(�A→⊥),�A→⊥,�C,�A,�A,A⇒ A Γ′,⊥⇒ A

L�→
�(�A→⊥),�A→⊥,�C,�A⇒ A Γ,⊥⇒C

L�→
�(�A→⊥),�A→⊥,�C⇒C

GLR
�(�A→⊥)⇒�C

However, we see that we create an infinite branch for the provable sequent

�(�A→⊥),�A→⊥,�C,�A,�A,A⇒ A,

where formula A occurs in both the antecedent and the conclusion of the sequent. In
fact, we will see in the proof of termination that infinite branches always contain se-
quents of the form Γ,C⇒C. The reason is that there is a finite number of boxed sub-
formulas in the end-sequent. For the GLR rule we observe that each boxed formula
may appear at most once in a conclusion of a sequent in a single branch, because it
moves into the antecedent and stays there. For a second application of the GLR rule
with the same boxed formula �A we obtain an extended axiom Γ,�A⇒�A, which
is provable. In the proof we will also take into account the left premise of L�→
which may end in a provable sequent of the form Γ,A⇒ A as in the example above.
This makes it possible to stop the proof search at that point in the tree and cutting off
the infinite branch.

Theorem 4.2 Proof search in GL4i is terminating modulo extended axioms.

Proof Consider a proof search for sequent Γ⇒ C. Let c be the number of all
boxed subformulas in Γ⇒ C counted as a set. We have at most c different boxed
formulas in an antecedent of a sequent in the proof search counted as a set. We
use c to define the induction parameter. For a sequent (∆⇒ D) in the proof search,
define b(∆⇒D) to be the number of boxed formulas in ∆ counted as a set. We have
c−b(∆⇒D)> 0. We prove the theorem by induction on

(
c−b(∆⇒D),�) ordered

in a lexicographical way. Note that the first entry ranges over natural numbers with
the standard ordering and the second entry ranges over sequents with ordering�.

If a sequent is of the form Γ,C ⇒ C we are done by definition of termination
modulo extended axioms. So suppose it is not an extended axiom.

If we backwards apply a logical rule different from L�→, then c− b decreases
or c−b stays the same and the premises are lower with respect to�. Therefore we
can apply the induction hypothesis to conclude that the proof search terminates.

If we backwards apply L�→, say to a sequent of the form Π,�Γ,�A→ B⇒C,
then for the right premise we have the same reasoning as above. For the left premise
we have two cases. If �A is not contained in �Γ ,then c− b decreases, because Π

contains no boxed formulas. If�A is in�Γ, say�Γ=�Γ′,�A, then the left premise
is of the form�Γ′,�A,�A,A⇒ A and we close the branch, because it is an extended
axiom. So we can apply the induction hypothesis to conclude that it terminates.
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If we backwards apply the GLR rule, say to a sequent of the form Π,�Γ⇒ �A,
then c− b decreases since �A is assumed not to be in �Γ, and Π in the GLR is
assumed to not contain boxed formulas. Again we apply the induction hypothesis to
conclude termination modulo extended axioms.

Note that the induction pair depends on the end-sequent. So this ordering cannot
easily be used in general for GL4i for all sequents. In the proof it only works for
sequents in the particular proof search tree. This makes it difficult to compare se-
quents from different proofs. However, for every c, this ordering easily extends to an
ordering on sequents that have less than c boxed subformulas counted as a set.

Remark 4.3 In the proof we distinguish two cases when dealing with L�→. An-
other way to deal with these cases is to replace L�→ by the following rules in the
system GL4i:

Π,�Γ,B⇒C
L�→1

Π,�Γ,�A,�A→ B⇒C
�Γ,�A⇒ A Π,�Γ,B⇒C

L�→2
Π,�Γ,�A→ B⇒C

where �A is not contained in �Γ in rule L�→2. In this new system, termination
can be proved using the same induction parameter.

5 Equivalence GL3i and GL4i

We use the method from Dyckhoff [6] and Iemhoff [10] to prove the equivalence
between GL3i and GL4i in the sense that both derive the same sequents. This
equivalence and the cut-admissibility result for GL3i immediately implies the cut-
admissibility in GL4i.

Definition 5.1 A multiset is irreducible if it has no element that is a disjunction,
conjunction or ⊥, and there is no atom p and formula A such that p and p→ A are
both contained in it. A sequent Γ⇒C is irreducible if its antecedent Γ is.

Definition 5.2 A proof in GL3i is sensible if the following holds: if the last infer-
ence is L→, then its principal formula is not of the form p→ A for some atom p and
formula A.

Definition 5.3 A proof in GL3i is strict if the following holds: if the last inference
is L→ with principal formula of the form�A→ B, then the left premise is an axiom
or the conclusion of the GLR rule.

Lemma 5.4 Every irreducible sequent provable in GL3i has a sensible strict proof.

Proof For a contradiction, assume there are irreducible provable sequents that have
no sensible strict proof. Consider, among all proofs of all such sequents, the proof
Σ with the shortest leftmost branch. Since Σ is not sensible or not strict, Σ is of the
form

Σl

Γ,A→ B⇒ A
Σr

Γ,B⇒C
L→

Γ,A→ B⇒C

with principal formula A → B where A is atomic or A is boxed. Since the end-
sequent is irreducible, we know that ⊥ /∈ Γ and if A is atomic, A /∈ Γ. Therefore the
left premise cannot be an axiom, but is derived from a rule, say ρ . Formula A is
atomic or boxed, so ρ is a left rule or the GLR rule. However, ρ cannot be the GLR
rule, because the proof would then be strict and sensible.
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So suppose ρ is a left rule. Sequent (Γ,A→ B⇒ A) is irreducible and has a
shorter leftmost branch in its proof than Σ. By the assumption, it has a strict and
sensible proof Σ0. Note that Σ0 is not necessarily the same as Σl . In addition, since
sequent (Γ,A→ B⇒ A) is irreducible, ρ is an instance of L→. Let A′→ B′ be its
principal formula. Since Σ0 is sensible, A′ is not atomic. So we have a proof of the
following form:

Σ′0

Γ′,A→ B,A′→ B′⇒ A′
Σ′′0

Γ′,A→ B,B′⇒ A
ρ

Γ′,A→ B,A′→ B′⇒ A

Σr

Γ′,A′→ B′,B⇒C
L→

Γ′,A→ B,A′→ B′⇒C

Now consider the following proof with the same end-sequent,

Σ′0

Γ′,A→ B,A′→ B′⇒ A′

Σ′′0

Γ′,A→ B,B′⇒ A

Σ1

Γ′,B,B′⇒C
Γ′,A→ B,B′⇒C

Γ′,A→ B,A′→ B′⇒C

where the existence of Σ1 is justified by applying inversion from Lemma 3.1 to Σr.
This proof is sensible, because A′ is not atomic. In case A′ is not boxed, we imme-
diately see that the proof is also strict. If A′ is boxed, the proof is strict since Σ0 is
strict.

Lemma 5.5 In GL3i we have `Γ,(A→B)→C⇒A→B iff `Γ,B→C⇒A→B.

Proof Observe that (A→ B)→ C⇒ B→ C and B→ C,A⇒ (A→ B)→ C are
provable sequents in GL3i. The admissibility of cut, contraction and inversion of
R→ imply the desired result.

Theorem 5.6 The calculi GL3i and GL4i are equivalent, that is, `GL3i S if and
only if `GL4i S.

Proof The proof from right to left is straightforward using the admissibility of cut,
weakening and contraction in GL3i. The proof is done by induction on the height of
the proof of sequent S in GL4i. We write down the two interesting cases where the
last inferences are L→→ and L�→.

If L→→ is the last rule, then S is of the form Γ,(A→ B)→ C ⇒ D derived
from premises Γ,B → C ⇒ A → B and Γ,C ⇒ D. By induction hypothesis, we
know that those premises are also derivable in GL3i. By Lemma 5.5 we have
`GL3i Γ,(A→ B)→ C⇒ A→ B. Applying L→ to this sequent and Γ,C⇒ D we
conclude `GL3i Γ,(A→ B)→C⇒ D.

If L�→ is the last rule, then S is of the form Π,�Γ,�A→ B⇒C derived from
premises�Γ,�A⇒ A and Π,�Γ,B⇒C where Π does not contain a boxed formula.
By induction hypothesis, we have that those premises are also derivable in GL3i.
Applying the GLR rule from GL3i to �Γ,�A⇒ A we have `GL3i Π,�Γ⇒ �A.
Weakening gives us a GL3i proof of Π,�Γ,�A→ B⇒�A. An application of L→
to this sequent and Π,�Γ,B⇒C shows that S is provable in GL3i.

The other direction is done by induction on the ordering of sequents similar de-
fined as in the terminating proof for GL4i as follows. Let S be provable in GL3i.
Let c be the number of different boxed subformulas in S. So c is a constant. We
fix the ordering on sequents containing c or less than c different boxed subformulas.
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For such a sequent S′ let b(S′) be the number of different boxed formulas in its an-
tecedent counted as a set. We know that c−b(S′) > 0. We do induction on the pair
(c−b(S′),�).

The case that S is an axiom is trivial, since both calculi have the same axioms.
Also, for S of the form Γ,A⇒ A we are done. So assume that this is not the case. We
distinguish between S being irreducible or not. If S is not irreducible its antecedent
contains a disjunction, conjunction or both p and p→ A. For those cases we can
backwards apply the rules L∨, L∧ and L→ respectively. The premises of those
rules decrease in the ordering (c− b,�), where for L→ we only need to consider
the right premise since the left premise is of the form Γ, p→ A, p⇒ p. By inversion
in GL3i (Lemma 3.1), those premises are derivable in GL3i. So we can apply the
induction hypothesis to see that those premises are derivable in GL4i. Using the
rules in GL4i gives the desired result. See [10] for the details.

Now suppose S is irreducible. By Lemma 5.4, we may assume that the proof of S
is sensible and strict. The last rule ρ applied is a right rule, GLR or L→. If ρ is a
right rule, we inductively have a proof in GL4i, since the premises of those rules are
lower in the ordering (c−b,�) and the right rule ρ belongs to both calculi. When
ρ is a GLR application we have in GL3i

�Γ,�A⇒ A
GLR

S = (�Π,Π′,�Γ⇒�A)

where Π′ does not contain boxed formulas. By weakening, `GL3i �Π,�Γ,�A⇒ A.
This sequent has c or less than c different boxed subformulas, so we can compare
it to S in the ordering. Our assumption is that �A does not appear in �Π or �Γ,
therefore it is smaller than S in the ordering. So we apply the induction hypothesis
to conclude `GL4i �Π,�Γ,�A⇒ A. Using GLR in GL4i gives us `GL4i S.

For L→, suppose that A→ B is the principal formula and S = (Γ,A→ B⇒C).
Since the proof of S is sensible A is not atomic. We continue with the different forms
of A.

If A = A1 → A2, then S = (Γ,(A1 → A2)→ B⇒ C) is derivable in GL3i with
premises Γ,(A1→ A2)→ B⇒ A1→ A2 and Γ,B⇒C. By Lemma 5.5 we have that
Γ,A2→ B⇒ A1→ A2 is derivable in GL3i. This sequent has c or less than c boxed
subformulas and we see that it is smaller than S in our ordering. The same holds for
Γ,B⇒ C. Hence we can apply the induction hypothesis to conclude that those are
derivable in GL4i. Applying L→→ gives `GL4i S.

The cases where A is a conjunction, disjunction or ⊥ are treated in a similar way.
If A =�A1, the fact that the proof is strict implies that the left premise in L→ is the
conclusion of GLR. So we have in GL3i:

�Γ,�A1⇒ A1 GLR
�Π,Π′,�Γ,�A1→ B⇒�A1 �Π,Π′,�Γ,B⇒C

L→
S = (�Π,Π′,�Γ,�A1→ B⇒C)

with Π′ not containing boxed formulas. Weakening implies `GL3i�Π,�Γ,�A1⇒A1.
This sequent and the right premise are smaller than S. The induction hypothesis and
an application of L�→ results in `GL4i S.

From the previous theorem and the cut-admissibility of GL3i in Theorem 3.17, we
obtain the following.
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Corollary 5.7 The cut rule is admissible in GL4i.

6 An Application: Craig Interpolation

We can use the admissibility of cut in GL3i in order to prove the Craig interpolation
property for intuitionistic Gödel-Löb logic. The Craig interpolation property for a
logic L is the statement that if `L A→ B, then there exists a formula I having only
propositional variables shared by A and B such that `L A→ I and `L I→ B. Such a
formula I is called the interpolant of A and B. There are several generalizations of
Craig interpolation for sequent calculi, see Mints [14]. Here we use the following
characterization. We write Var(Γ) to mean all the atoms occurring in formulas from
Γ.

Lemma 6.1 Let Γ1,Γ2⇒C be provable in GL3i (Γ1 and Γ2 may be empty). Then
there exists a formula I (interpolant) such that

1. Γ1⇒ I and Γ2, I⇒C,
2. Var(I)⊆ Var(Γ1)∩Var(Γ2,C).

Before we prove the lemma we show how this implies the Craig interpolation
property for intuitionistic Gödel-Löb logic.

Theorem 6.2 (Craig interpolation) If `iGL A→ B, then there exists a formula I
(interpolant) such that

1. `iGL A→ I and `iGL I→ B,
2. Var(I)⊆ Var(A)∩Var(B).

Proof Suppose `iGL A→ B. By the interpretation of formulas in the sequent cal-
culus GL3i we have `GL3i A⇒ B. By Lemma 6.1, we can find a formula I such that
`GL3i A⇒ I and `GL3i I⇒ B and Var(I) ⊆ Var(A)∩Var(B). Again by the interpre-
tation, we conclude that `iGL A→ I and `iGL I→ B. Note that we immediately have
the second requirement.

Lemma 6.1 is proved by induction on the proof-height of Γ1,Γ2 ⇒ C. This is a
well-known strategy when proving Craig interpolation, see for instance [17].

Proof of Lemma 6.1 We proceed by induction on the proof-height k of Γ1,Γ2⇒C.
At each stage there are several cases to consider. We deal with some examples only.

1. k = 0 and Γ1,Γ2 ⇒ C is derived by the At-rule, that is, Γ1,Γ2 ⇒ C has the
form Γ, p⇒ p for some p. There are two cases, p ∈ Γ1 or p ∈ Γ2. Take I = p
and I =⊥→⊥ respectively.

2. k = 0 and Γ1,Γ2 ⇒ C is derived by L⊥. There are two cases, ⊥ ∈ Γ1 or
⊥ ∈ Γ2. Take I =C and I =⊥→⊥ respectively.

3. k > 0 and the last rule applied is R∧:
Γ1,Γ2⇒ A Γ1,Γ2⇒ B

R∧
Γ1,Γ2⇒ A∧B

Applying the induction hypothesis to both premises we have that:
• there exists an interpolant I1 such that Γ1 ⇒ I1 and Γ2, I1 ⇒ A with

Var(I1)⊆ Var(Γ1)∩Var(Γ2,A),
• there exists an interpolant I2 such that Γ1 ⇒ I2 and Γ2, I2 ⇒ B with

Var(I2)⊆ Var(Γ1)∩Var(Γ2,B).
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Take I = I1 ∧ I2 as the required interpolant. The cases for L∧,R∨,L∨ are
proved in a similar way.

4. k > 0 and the last rule applied is L→. We have two cases, A→ B ∈ Γ1 or
A→ B∈ Γ2. We look at the first case. This case is somehow distinct from the
other steps, in the sense that we apply the induction hypotheses to sequents
where Γ1 and Γ2 are ‘reversed’. Write Γ1 = Γ′1,A→ B. We have

Γ′1,A→ B,Γ2⇒ A Γ′1,B,Γ2⇒C
L→

Γ′1,A→ B,Γ2⇒C

We now apply the induction hypothesis on the left premise in the following
way:

• there exists an interpolant I1 such that Γ2 ⇒ I1 and Γ′1,A→ B, I1 ⇒ A
with Var(I1)⊆ Var(Γ2)∩Var(Γ′1,A→ B,A).

For the second premise we get that
• there exists an interpolant I2 for which Γ′1,B⇒ I2 and Γ2, I2 ⇒ C with

Var(I2)⊆ Var(Γ′1,B)∩Var(Γ2,C).
Take I = I1→ I2. It is easily shown that the second requirement of the lemma
is fulfilled. For the first requirement we have to show that Γ′1,A→ B⇒ I and
Γ2, I⇒C are derivable. This is shown in the following derivation trees using
the observations made before. Double lines indicate weakening.

Γ′1,A→ B, I1⇒ A

Γ′1,B⇒ I2

Γ′1,B, I1⇒ I2
L→

Γ′1,A→ B, I1⇒ I2
R→

Γ′1,A→ B⇒ I1→ I2

Γ2⇒ I1

Γ2, I1→ I2⇒ I1 Γ2, I2⇒C
L→

Γ2, I1→ I2⇒C

5. k > 0 and the last rule applied is GLR:
�Γ1,�Γ2,�B⇒ B

GLR
Π1,�Γ1,Π2,�Γ2⇒�B

We apply the induction hypothesis to the premise to obtain an interpolant I′

such that�Γ1⇒ I′,�Γ2,�B, I′⇒ B and Var(I′)⊆Var(�Γ1)∩Var(�Γ2,B).
Take I = �I′. Weakening of both sequents with �I′ results in sequents
�Γ1,�I′ ⇒ I′ and �Γ2,�B, I′,�I′ ⇒ B. Now apply the GLR rule to both
to obtain the desired result, i.e., Π1,�Γ1 ⇒ I and Π2,�Γ2, I ⇒ �B with
Var(I)⊆ Var(Π1,�Γ1)∩Var(Π2,�Γ2,�B).

7 Conclusion and Future Research

This paper consists of a proof-theoretic study of intuitionistic Gödel-Löb logic, with
a focus on the single-conclusion sequent calculi GL3i and GL4i. The main results
are the syntactic cut-admissibility proof and the termination proof for GL4i. What is
especially interesting is that our cut-admissibility proof for GL3i highly depends on
the structure of the calculus. The small difference in the definition of the GLR rule
in GL4i compared to GL3i makes this proof strategy fail for GL4i. This example is
one among others that asks for general syntactic treatments of cut-admissibility.

At the end of the paper, we proved Craig interpolation for iGL using the cut-free
system GL3i. We conjecture that iGL also admits uniform interpolation. In [11],
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Iemhoff provides a uniform modular method to prove uniform interpolation for sev-
eral intuitionistic modal logics using terminating calculi. It would be interesting to
know whether this method can be extended to GL4i to prove uniform interpolation
for iGL.

As mentioned in the introduction, their is a variety of semantic frameworks for
iGL. We chose not to include a semantic study of iGL in this paper. However we ex-
pect that the completeness result for the terminating calculus GL4i can also be proved
by a counter-model construction as the one Avron provides for the completeness re-
sult for GL [2].
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