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Abstract: Environmental adversities can severely impact the performance of human-robot
teams, potentially even leading to task failure. If the operator and the robot automation are not
equally affected, adjusting the degree of automation to shift control authority between them
is a means of maintaining the performance of the human-robot team. The robot vitals and
robot health framework is a recent approach to quantifying runtime performance degradation
in robots. This framework can serve as a methodological foundation for the adjustment of the
degree of automation based on the human-robot system’s state. In this paper, we contribute two
model predictive adaptive automation systems that can adjust either the level or the degree of
automation of a robot. These systems optimize robot health to ensure optimal performance of
the human-robot team when exposed to adversities. Feasibility studies in simulation showcase
the ability of our systems to manage the level and degree of automation, thus allowing for an
optimal task execution by the human-robot team.

Keywords: Adaptive automation, Shared control, Cooperation, Degree of automation, Levels
of autonomy, Levels of automation, Mixed initiative control.

1. INTRODUCTION

Robots are becoming increasingly capable of carrying out a
wide variety of tasks autonomously. Remaining limitations
in their autonomous capabilities, runtime performance
degradation and other problematic situations during task
execution can be addressed through remote human opera-
tor (i.e., tele-operator) assistance. Particularly during nav-
igation tasks in extreme environments, a tele-operator can
switch a Fully Autonomous (FA) robot to Manual Control
(MC) to assist it with task execution. If the tele-operator
is occupied elsewhere, or assistance is no longer required,
the robot can be switched back to FA. Assisting robots
by changing the extent of control an operator has over
their actions, is called Level of Autonomy (LOA) Switching
(Sheridan and Verplank (1978)). When describing such
systems in existing literature, the words Autonomy and
Automation are used interchangeably in this paper.

Shared control or input blending (Abbink et al. (2018))
can also be used to enable operator assistance for robots.
In shared control, the robot’s behaviour is determined
by a ratio of control inputs from the tele-operator and
the robot’s onboard intelligence. For example, an operator
can give the robot a general heading direction, and the
robot’s autonomy can ensure obstacles are avoided during
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navigation (Pappas et al. (2020)). Similarly, in mobile
manipulation tasks, shared control can help mimic an
operators actions while avoiding collisions and singularity
positions (Rakita et al. (2019)).

LOA switching is employed if a robot occasionally requires
assistance when they encounter problematic situations
(Beer et al. (2014)). When continuous operator assistance
or guidance is required for task execution, shared control
is preferable (Udupa et al. (2021)). Combining both these
control paradigms would yield a robust system that can
find applications in a wider variety of tasks. In such
a system, the ratio of control inputs (say α) could be
varied based on the state of the human-robot system. If
α = 0, the robot would operate in MC. Increasing the
value of α would allow different levels of shared control
and α = 1 would result in a FA robot. The ability
to vary the extent of operator control over a robot’s
actions across the entire continuum between MC and FA
is referred to as Degree of Autonomy (DOA) regulation
(Wei et al. (1998)). Regulating a robot’s LOA or DOA
online during its runtime is cognitively demanding for a
tele-operator (Delmerico et al. (2019)). Hence, a module
to automatically regulate a robot’s LOA or DOA during
task execution would be useful.

In our paper, we contribute designs for modules that can
assist a human operator with LOA or DOA regulation.
Using the Robot Vitals and Robot Health framework
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(Ramesh et al. (2022)) for quantifying runtime perfor-
mance degradation, we derive a model-predictive adap-
tive automation system that can automatically regulate
a robot’s autonomy to mitigate the effect of problematic
situations during task execution. Finally, we present re-
sults from preliminary feasibility studies on this system.

2. LITERATURE REVIEW

Human-robot teams where the extent of operator engage-
ment with the robot can be varied during runtime are
called variable autonomy systems (Chiou et al. (2016)).
Such systems are also known as adaptive autonomy
(Cabrall et al. (2018)) or adjustable autonomy (Mostafa
et al. (2019)) systems. Shared control (Musić and Hirche
(2017)), Mixed Initiative (MI) Level of Autonomy switch-
ing (Chiou et al. (2021a); Jiang and Arkin (2015); Rothfuss
et al. (2022)) and policy switching (Rigter et al. (2020))
are some implementations of variable autonomy systems.
When applied to mobile robot navigation tasks, variable
autonomy systems have demonstrated the potential to
reduce total obstacle collisions (Pappas et al. (2020)) and
cognitive workload (Chiou et al. (2021a)), improve task
performance (Ruff et al. (2018)) and ease of use (Cabrall
et al. (2018)). Evidence also suggests that variable auton-
omy systems can improve operator safety (Cabrall et al.
(2018)), trust and transparency (Chiou et al. (2021b)).

Discretising the continuum between MC and FA into mul-
tiple LOAs can result in the loss of crucial information
(Miller (2018)). Shared control can avoid this problem, by
allowing autonomy regulation within a window of feasi-
ble options (referred to as ζ by Braun et al. (2019)). ζ
can be chosen to prevent collisions during remote robot
navigation (Pappas et al. (2020)), ensure safety and com-
fort while navigating unstructured environments (Udupa
et al. (2021)), and even task specific motion assistance
(Gao et al. (2014)). In our study we propose autonomy
regulation systems for mobile robots LOAs or DOAs.

Regulation modules to adjust a robots DOA can be rule-
based Chiou et al. (2021a), analytical (Braun et al. (2019))
or even machine learning based (Doroodgar et al. (2014)).
Machine learning models require high fidelity simulations
and large data sets to train. While rule-based models
are relatively easier to design and deploy, such models
are limited by the scope of rules generated. Therefore
in our paper, we derive and contribute model predictive
architectures for DOA and LOA regulation. Our model
estimates the state of the robot, the environment and
control inputs provided by the operator, and chooses the
optimal DOA for the robot.

Automatically regulating autonomy has received some
attention in the existing literature. A robot’s LOA can
be adjusted to maintain operator trust (Nikolaidis et al.
(2017)), to tailor to operator expertise (Milliken and
Hollinger (2017)), detect operator intention (Petousakis
et al. (2020)) or context of operation (Gao et al. (2014))
and mitigate the effect of communication delays etc (Pap-
pas et al. (2020)) etc. The literature suggests little agree-
ment on the state estimation parameters or metrics used
for assessing the right LOA, as these are highly contin-
gent upon the application domain. Several studies have
used metrics or formal methods to detect performance

degradation in a human-robot system (Valero-Gomez et al.
(2011); Zieba et al. (2011); Xiao et al. (2020)). However,
these do not explicitly provide a single robot metric that
can indicate the total performance degradation a robot is
facing. In Ramesh et al. (2022), a set of metrics indicative
of runtime performance degradation called ’robot vitals’
are used to calculate the ’robot health’ for mobile robots.
The authors then demonstrate that robot health is a scalar
estimate of the performance degradation a robot faces
during runtime. Due to the robustness and scalability of
this approach, we use it in our study.

3. PROBLEM STATEMENT

Fig. 1 illustrates the structure of the human-robot system
considered in this work. Both the operator and the robot’s
controller provide their respective control inputs to the
robot based on their observations of the system states.
The ’Arbitration’ module merges these control inputs and
applies them to the robot. The ratio α of the control inputs
is determined by the ’LOA / DOA Regulation’ module
based on robot health (Ramesh et al. (2022)).

The total probability of suffering of a robot Psuf can
be calculated during runtime given the vitals vi. The
probability of suffering can then be used to compute the
robot health. The LOA and DOA regulation modules use
this information to adjust the value of α during runtime.
Hence, we design the LOA and DOA regulation systems
by optimising robot health H : RNv → R<0. This is
accomplished by adjusting α so that the Nv resultant
robot vitals vi compute to a higher value of robot health:

α∗ = argmax
α

H (Psuf (v1 (x (α) ,α) , . . . )) (1)

Please note that throughout this work time-dependencies
of all variables are omitted for better readability. As this
study is the first step towards DOA regulation using robot
health, (1) is treated as a parameter optimisation problem
instead of an optimal control problem.

Following Broggi et al. (2015), we model the considered
robot with the following unicycle dynamics:

ẋ =



ẋ
ẏ

θ̇


 =


cos (θ) 0
sin (θ) 0

0 1


u (2)

Here, x denotes the robot’s states with x and y represent-
ing its position in the two-dimensional coordinate frame
and θ denoting its heading. The robot can be controlled

via the inputs u = (β, ω)
⊤

where β is the robot’s velocity
in the direction of the heading and ω is its angular velocity.

In this work, LOA and DOA regulation are studied on
the action level of human-robot interaction. However, the
principles developed in this work can be applied to other
use cases, too. To implement different DOAs, we use linear
policy blending Γ : R2 × R2 × [0, 1]

2 → R2 to arbitrate
the human input uH and machine input uA (Dragan and
S.Srinivasa (2013)):

u = Γ (uA,uH,α) (3)

Γpb (uA,uH,α) =


α1uA,1 + (1− α1)uH,1

α2uA,2 + (1− α2)uH,2


(4)

Here, individual DOAs α1 and α2 are considered for the
two dimensions of the input allowing for control authority
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Fig. 1. Structure of the considered adaptive automation system.

shifts ranging from MC (αi = 0), over to shared control
(αi ∈ (0, 1)) to a FA robot operation (αi = 1) in each of the
two dimensions. LOAs with NL levels can be implemented
by setting α to a certain value from a countable set
Λ = {α1, . . . ,αNL

}. This allows for the definition of the
two problems considered in this work:

Problem 1. Adaptive Automation for LOA. Design a LOA
regulation module optimizing (1) s.t. (2), (4) and models
of uH (x) and uA (x) considering α ∈ Λ.

Problem 2. Adaptive Automation for DOA. Design a DOA
regulation module optimizing (1) s.t. (2), (4) and models

of uH (x) and uA (x) considering α ∈ [0, 1]
2
.

4. MODEL PREDICTIVE ADAPTIVE AUTOMATION

The LOA and DOA regulation modules presented in this
paper operate in a model predictive fashion. This is done
to accommodate for robot health evaluating time spans
(Ramesh et al. (2022)), and to utilize the model knowledge
about the human-robot system contained in Problems 1
and 2. Both regulation modules predict the evolution robot
health over a time horizon of length Tp to compute α∗. The
optimal α∗ is then used for Ts < Tp.

4.1 LOA Model Predictive Adaptive Automation

Since the set Λ is countable, Problem 1 reduces to cal-
culating robot health (Hi) NL times for all αi ∈ Λ and
then comparing the resulting Hi. The αi leading to the
highest Hi is subsequently applied to the human-robot
system. Fig. 2 shows the structure of the resulting Model
Predictive Adaptive Automation for the LOA case (LOA-
MPAA). Omitting potential model errors (i.e. assuming
perfect models), this system is guaranteed to find the
globally optimal solution. As the simulations of each of
the human-robot system models are independent of each
other, they can easily be executed in parallel. In practice,
NL is usually limited to less than ten levels (Vagia et al.
(2016)) to make the system comprehensible for the human
operator, which makes a parallel evaluation of all necessary
simulations at once possible for modern desktop CPUs.

4.2 DOA Model Predictive Adaptive Automation

In the DOA case, the optimization domain [0, 1]
2
is un-

countable. Since an infinite amount ofH evaluations would
be required, the LOA-MPAA cannot be extended to this
case. As (1) is a nonlinear constrained optimization prob-
lem, the Karush-Khun-Tucker conditions (KKTC) are nec-
essary conditions for optimality. We consider the derivative
of the robot health using chain rule, as the gradient of
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the objective function forms the core of the KKTC. As H
results from the probability of suffering Psuf of the robot,
the derivative of Psuf wrt. α plays a major role:

d

dα
H (Psuf (v1 (x (α) ,α) , . . . , vNv

(x (α) ,α))) (5)

=
d

dα

∫ t0+TH

t0

1− Psufdt (6)

=

∫ t0+TH

t0

−dPsuf

dα
dt (7)

Due to the sum structure of Psuf , the overall derivative is
a sum of the derivatives of the individual probabilities of
suffering for each vital P (s|vi):

dPsuf

dα
=

d

dα
η

Nv∑
i=0

P (s|vi) = η

Nv∑
i=0

dP (s|vi)
dα

(8)

P (s|vi) are usually nonlinear, hence we have:

dP (s|vi)
dα

=
dP (s|vi)

dvi

dvi
dα

(9)

In all of the original vitals presented in Ramesh et al.
(2022), α influences the vitals through the states:

dvi
dα

=
dvi
dx

dx

dα
(10)

The influence on x stems from the influence on the inputs:

dx

dα
=

d

dα

(∫ t0+T1

t0

ẋdt+ x0

)
=

∫ t0+T1

t0

dẋ

du

du

dα
dt (11)

Finally, the inputs result from the arbitration which is
parameterized by α:

du

dα
=

dΓ (uA,uH,α)

dα
(12)

Thus, (5) results from the combination of (7) to (12). The
concrete form of the gradient is application-specific and
depends on the used arbitration, robot dynamics and the

(Ramesh et al. (2022)) for quantifying runtime perfor-
mance degradation, we derive a model-predictive adap-
tive automation system that can automatically regulate
a robot’s autonomy to mitigate the effect of problematic
situations during task execution. Finally, we present re-
sults from preliminary feasibility studies on this system.

2. LITERATURE REVIEW

Human-robot teams where the extent of operator engage-
ment with the robot can be varied during runtime are
called variable autonomy systems (Chiou et al. (2016)).
Such systems are also known as adaptive autonomy
(Cabrall et al. (2018)) or adjustable autonomy (Mostafa
et al. (2019)) systems. Shared control (Musić and Hirche
(2017)), Mixed Initiative (MI) Level of Autonomy switch-
ing (Chiou et al. (2021a); Jiang and Arkin (2015); Rothfuss
et al. (2022)) and policy switching (Rigter et al. (2020))
are some implementations of variable autonomy systems.
When applied to mobile robot navigation tasks, variable
autonomy systems have demonstrated the potential to
reduce total obstacle collisions (Pappas et al. (2020)) and
cognitive workload (Chiou et al. (2021a)), improve task
performance (Ruff et al. (2018)) and ease of use (Cabrall
et al. (2018)). Evidence also suggests that variable auton-
omy systems can improve operator safety (Cabrall et al.
(2018)), trust and transparency (Chiou et al. (2021b)).

Discretising the continuum between MC and FA into mul-
tiple LOAs can result in the loss of crucial information
(Miller (2018)). Shared control can avoid this problem, by
allowing autonomy regulation within a window of feasi-
ble options (referred to as ζ by Braun et al. (2019)). ζ
can be chosen to prevent collisions during remote robot
navigation (Pappas et al. (2020)), ensure safety and com-
fort while navigating unstructured environments (Udupa
et al. (2021)), and even task specific motion assistance
(Gao et al. (2014)). In our study we propose autonomy
regulation systems for mobile robots LOAs or DOAs.

Regulation modules to adjust a robots DOA can be rule-
based Chiou et al. (2021a), analytical (Braun et al. (2019))
or even machine learning based (Doroodgar et al. (2014)).
Machine learning models require high fidelity simulations
and large data sets to train. While rule-based models
are relatively easier to design and deploy, such models
are limited by the scope of rules generated. Therefore
in our paper, we derive and contribute model predictive
architectures for DOA and LOA regulation. Our model
estimates the state of the robot, the environment and
control inputs provided by the operator, and chooses the
optimal DOA for the robot.

Automatically regulating autonomy has received some
attention in the existing literature. A robot’s LOA can
be adjusted to maintain operator trust (Nikolaidis et al.
(2017)), to tailor to operator expertise (Milliken and
Hollinger (2017)), detect operator intention (Petousakis
et al. (2020)) or context of operation (Gao et al. (2014))
and mitigate the effect of communication delays etc (Pap-
pas et al. (2020)) etc. The literature suggests little agree-
ment on the state estimation parameters or metrics used
for assessing the right LOA, as these are highly contin-
gent upon the application domain. Several studies have
used metrics or formal methods to detect performance

degradation in a human-robot system (Valero-Gomez et al.
(2011); Zieba et al. (2011); Xiao et al. (2020)). However,
these do not explicitly provide a single robot metric that
can indicate the total performance degradation a robot is
facing. In Ramesh et al. (2022), a set of metrics indicative
of runtime performance degradation called ’robot vitals’
are used to calculate the ’robot health’ for mobile robots.
The authors then demonstrate that robot health is a scalar
estimate of the performance degradation a robot faces
during runtime. Due to the robustness and scalability of
this approach, we use it in our study.

3. PROBLEM STATEMENT

Fig. 1 illustrates the structure of the human-robot system
considered in this work. Both the operator and the robot’s
controller provide their respective control inputs to the
robot based on their observations of the system states.
The ’Arbitration’ module merges these control inputs and
applies them to the robot. The ratio α of the control inputs
is determined by the ’LOA / DOA Regulation’ module
based on robot health (Ramesh et al. (2022)).

The total probability of suffering of a robot Psuf can
be calculated during runtime given the vitals vi. The
probability of suffering can then be used to compute the
robot health. The LOA and DOA regulation modules use
this information to adjust the value of α during runtime.
Hence, we design the LOA and DOA regulation systems
by optimising robot health H : RNv → R<0. This is
accomplished by adjusting α so that the Nv resultant
robot vitals vi compute to a higher value of robot health:

α∗ = argmax
α

H (Psuf (v1 (x (α) ,α) , . . . )) (1)

Please note that throughout this work time-dependencies
of all variables are omitted for better readability. As this
study is the first step towards DOA regulation using robot
health, (1) is treated as a parameter optimisation problem
instead of an optimal control problem.

Following Broggi et al. (2015), we model the considered
robot with the following unicycle dynamics:

ẋ =



ẋ
ẏ

θ̇


 =


cos (θ) 0
sin (θ) 0

0 1


u (2)

Here, x denotes the robot’s states with x and y represent-
ing its position in the two-dimensional coordinate frame
and θ denoting its heading. The robot can be controlled

via the inputs u = (β, ω)
⊤

where β is the robot’s velocity
in the direction of the heading and ω is its angular velocity.

In this work, LOA and DOA regulation are studied on
the action level of human-robot interaction. However, the
principles developed in this work can be applied to other
use cases, too. To implement different DOAs, we use linear
policy blending Γ : R2 × R2 × [0, 1]

2 → R2 to arbitrate
the human input uH and machine input uA (Dragan and
S.Srinivasa (2013)):

u = Γ (uA,uH,α) (3)

Γpb (uA,uH,α) =


α1uA,1 + (1− α1)uH,1

α2uA,2 + (1− α2)uH,2


(4)

Here, individual DOAs α1 and α2 are considered for the
two dimensions of the input allowing for control authority
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choice of robot vitals. Four different solutions are possible
for Problem 2 depending on the features of the gradient:

Reduction of the problem Considering linear input
blending, the following derivatives result with (4):

dΓ (uA,uH,α)

dα
=

(
uA,1 − uH,1 0

0 uA,2 − uH,2

)
(13)

The result in (13) is interesting for two reasons: First, it
states that in a case where the human and the automation
behave identically, robot health cannot be influenced by
adjusting the DOA, hence the choice of DOA is arbitrary
considering the information contained in the model pre-
sented above. Second, (13) is independent of α. Hence,
given linear blending and a case where no expressions
that are nonlinear in α occur in H, the maximum of (1)
will always be located on the boundaries of α. Therefore,
traded control is the optimal solution to such a case and
due to the countable set of possible DOAs, Problem 2 can
be solved using the approach of Subsection 4.1.

Analytical solution If the overall gradient does depend
on α and the KKTC can be solved for α, candidate
points for the optimal solution can be achieved this way.
If more than one candidate point results, the optimum
can be determined using a function evaluation similar to
the procedure in Subsection 4.1. If feasible, this is a very
computationally efficient solution.

Iterative, gradient-based solution If the gradient can
be computed but solving the KKTC for α is hard or
infeasible, gradient-based iterative solvers can be used.
This way, locally optimal solutions may result.

Iterative, gradient-free solution If the gradient cannot be
computed e.g. in the case of piecewise-defined functions,
gradient-free iterative solvers can be applied. While they
may also generate locally optimal solutions and are often
less computationally efficient compared to the gradient-
based approaches, they are the most generally applicable
solution to Problem (2) as they do not rely on a specific
form of the optimization problem.

Hence, we chose to examine gradient-free solutions in this
work. The resulting Model Predictive Adaptive Automa-
tion for the DOA case (DOA-MPAA) is shown in Fig. 3.

5. SIMULATION RESULTS

To evaluate the applicability of LOA-MPAA and DOA-
MPAA, a proof-of-concept study was conducted in simula-
tion. Both proposed systems were used for a collaborative
tele-operation of a mobile robot in the scenario depicted in

Fig. 4. The initial robot position is marked with a triangle
indicating its heading, the goal point is marked with a
large cross and the intermediate way-points are labeled as
1 to 6. While traversing towards the goal point, the robot
faced four kinds of adverse conditions: 1) In the grey area,
severe noise affected the laser scanner data, forcing the
automation to reduce its range of commanded velocities
to 20% of their magnitude during normal operations. 2)
In the pink area, the operator got distracted and reduced
their range of commanded velocities to 20% of their normal
range. The laser scanners were still affected by noise in
this area. However, the noise was less severe than in the
grey area and the automation was able to use up to 60%
of its normal input range. 3) While all other areas were
flat, the orange area featured uneven terrain. The automa-
tion did not have information about the terrain. However,
the human and the adaptive autonomy systems had this
information a priori. For this reason, the human would
add a conservative intermediate way-point between way-
points 4 and 5 to avoid the orange area as indicated by the
dashed line. 4) While traversing the blue area, unexpected
behavior was induced into the robot’s controller. Its input
range was reduced to 20% without any environmental
influences causing this. All other areas colored in white
were not affected by performance degrading factors.

From the robot vitals presented in Ramesh et al. (2022),
we included the three vitals most important for our study:
The vital assessing the rate of change of distance from the
navigational goal (ROCODO), the vital capturing the jerk
along the z-axis of the robot, and the vital addressing the
laser scanner noise. The rate of change ḋg of the ROCODO
vital was computed as

ḋg =
1

∥dg∥2
d⊤
g

(
β cos (θ)
β sin (θ)

)
with dg =

(
xg,i − x
yg,i − y

)
. (14)

Here, (xg,i, yg,i) denotes the coordinates of the currently
active way-point. The structure the vitals is chosen as in
Ramesh et al. (2022) and the parameters of the mappings
were fine-tuned to the scenario considered in this paper.

The robot dynamics were modeled as in (2), human be-
havior models both for the simulation model as well as the
prediction models were based on extensive tele-operation
experiments during the ARCHES project (Wedler et al.
(2021)): When told to pursue a goal via way-points as
described above, the operators usually first turned the
robot until the correct heading had been reached and then

×

2

3
4

5

6

1

Fig. 4. Map of the considered scenario.
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commanded velocities subsequently. This behavior was im-
plemented by switching between a proportional controller
for θ and a proportional controller for dg using the inputs
ω and β. Apart from the different types of performance
degradation, the model of the automation was identical
to the one of the human as this structure was also used
successfully in Wedler et al. (2021). Based on these models
we set α = α1 = α2 in (4) as neither the operator nor the
automation influenced both inputs at the same time. All
results were achieved with Tp = 5 s and Ts = 0.25 s.

5.1 LOA-MPAA

Applying LOA-MPAA in an exemplary traded control case
with Λ = {0, 1}, the trajectory depicted in Fig. 5a and the
evolution of α depicted in Fig. 5c result. As Fig. 5a shows,
the operator, automation and LOA-MPAA successfully
manage to traverse through the white, grey, pink and blue
areas reaching the goal position while avoiding the orange
area. If human and automation performance predictions
are equal, the automation is given control which happens
in the white areas at the beginning and the end of the
scenario as well as directly after passing the pink area.
LOA-MPAA correctly assigns control to the human or
the automation based on who is less impaired by the
environmental influences in the grey, pink and blue area.
Between way-point 4 and 5 a shift of control authority
is performed to successfully leverage both the skill of the
human to avoid the orange area as well as the skill of the
automation to take the shortest path to way-point 5.

5.2 DOA-MPAA

DOA-MPAA is implemented using a patternsearch algo-
rithm resulting in the plots presented in Fig. 5b and Fig.
5d. Like LOA-MPAA, it is able to coordinate the HMS to
reach the goal successfully while also avoiding the orange
area. Similar to LOA-MPAA, it assigns the control task
to the automation if both the human and the automation
are expected to perform equally (beginning, end and after
pink area), slightly to the human in the grey and blue area
and mostly to the automation in the pink area. Between
the areas, smooth shifts of DOA result. During the traverse
from way-point 4 to 5, a sharing of control spanning the
whole range of DOAs occurs to trade off between avoiding
the orange area and pursuing way-point 5.

Fig. 6 shows the evolution of the resulting predicted robot
healths for MC, FA and the optimal solution α∗ of the
DOA-MPAA. It shows that neither a static operation in

MC nor a static operation FA results in optimal health, but
that regulating α during runtime both with LOA-MPAA
and DOA-MPAA improves robot health. Due to the more
granular adjustment, DOA-MPAA surpasses LOA-MPAA
as α∗ sometimes outperforms both options of LOA-MPAA.

6. CONCLUSION

In this paper, we contribute two model predictive adaptive
automation systems using the robot health framework
to quantify runtime performance degradation and adjust
control authority to minimise the probability of task
failure. While the first adaptive automation system shifts
control between discrete, fixed Levels of Automation, the
second system varies the Degree of Automation across the
entire continuum thereby enabling granular adjustments.
Simulation results indicate that the proposed systems are
able to mitigate the effects of environmental adversities.
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choice of robot vitals. Four different solutions are possible
for Problem 2 depending on the features of the gradient:

Reduction of the problem Considering linear input
blending, the following derivatives result with (4):

dΓ (uA,uH,α)

dα
=

(
uA,1 − uH,1 0

0 uA,2 − uH,2

)
(13)

The result in (13) is interesting for two reasons: First, it
states that in a case where the human and the automation
behave identically, robot health cannot be influenced by
adjusting the DOA, hence the choice of DOA is arbitrary
considering the information contained in the model pre-
sented above. Second, (13) is independent of α. Hence,
given linear blending and a case where no expressions
that are nonlinear in α occur in H, the maximum of (1)
will always be located on the boundaries of α. Therefore,
traded control is the optimal solution to such a case and
due to the countable set of possible DOAs, Problem 2 can
be solved using the approach of Subsection 4.1.

Analytical solution If the overall gradient does depend
on α and the KKTC can be solved for α, candidate
points for the optimal solution can be achieved this way.
If more than one candidate point results, the optimum
can be determined using a function evaluation similar to
the procedure in Subsection 4.1. If feasible, this is a very
computationally efficient solution.

Iterative, gradient-based solution If the gradient can
be computed but solving the KKTC for α is hard or
infeasible, gradient-based iterative solvers can be used.
This way, locally optimal solutions may result.

Iterative, gradient-free solution If the gradient cannot be
computed e.g. in the case of piecewise-defined functions,
gradient-free iterative solvers can be applied. While they
may also generate locally optimal solutions and are often
less computationally efficient compared to the gradient-
based approaches, they are the most generally applicable
solution to Problem (2) as they do not rely on a specific
form of the optimization problem.

Hence, we chose to examine gradient-free solutions in this
work. The resulting Model Predictive Adaptive Automa-
tion for the DOA case (DOA-MPAA) is shown in Fig. 3.

5. SIMULATION RESULTS

To evaluate the applicability of LOA-MPAA and DOA-
MPAA, a proof-of-concept study was conducted in simula-
tion. Both proposed systems were used for a collaborative
tele-operation of a mobile robot in the scenario depicted in

Fig. 4. The initial robot position is marked with a triangle
indicating its heading, the goal point is marked with a
large cross and the intermediate way-points are labeled as
1 to 6. While traversing towards the goal point, the robot
faced four kinds of adverse conditions: 1) In the grey area,
severe noise affected the laser scanner data, forcing the
automation to reduce its range of commanded velocities
to 20% of their magnitude during normal operations. 2)
In the pink area, the operator got distracted and reduced
their range of commanded velocities to 20% of their normal
range. The laser scanners were still affected by noise in
this area. However, the noise was less severe than in the
grey area and the automation was able to use up to 60%
of its normal input range. 3) While all other areas were
flat, the orange area featured uneven terrain. The automa-
tion did not have information about the terrain. However,
the human and the adaptive autonomy systems had this
information a priori. For this reason, the human would
add a conservative intermediate way-point between way-
points 4 and 5 to avoid the orange area as indicated by the
dashed line. 4) While traversing the blue area, unexpected
behavior was induced into the robot’s controller. Its input
range was reduced to 20% without any environmental
influences causing this. All other areas colored in white
were not affected by performance degrading factors.

From the robot vitals presented in Ramesh et al. (2022),
we included the three vitals most important for our study:
The vital assessing the rate of change of distance from the
navigational goal (ROCODO), the vital capturing the jerk
along the z-axis of the robot, and the vital addressing the
laser scanner noise. The rate of change ḋg of the ROCODO
vital was computed as

ḋg =
1

∥dg∥2
d⊤
g

(
β cos (θ)
β sin (θ)

)
with dg =

(
xg,i − x
yg,i − y

)
. (14)

Here, (xg,i, yg,i) denotes the coordinates of the currently
active way-point. The structure the vitals is chosen as in
Ramesh et al. (2022) and the parameters of the mappings
were fine-tuned to the scenario considered in this paper.

The robot dynamics were modeled as in (2), human be-
havior models both for the simulation model as well as the
prediction models were based on extensive tele-operation
experiments during the ARCHES project (Wedler et al.
(2021)): When told to pursue a goal via way-points as
described above, the operators usually first turned the
robot until the correct heading had been reached and then
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Fig. 4. Map of the considered scenario.
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Fig. 6. Predicted robot health for different DOAs.
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