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Abstract
Organophosphate esters (OPEs) are synthetic chemicals widely used as e.g., flame retardants and plasticisers in various 
consumer products. Due to the toxicity of OPEs in aquatic ecosystems, exposure of fauna and flora to these compounds is of 
potential concern. In this study, the concentrations, profiles, sources, and ecological risk of eight OPEs were investigated in 
the sediments from the two major rivers in southwest Nigeria. Concentrations of ∑OPEs in surface sediments were in the 
range 13.1 – 2110 ng/g dry weight (dw) (median: 378 ng/g dw) in the Ogun River and 24.7—589 ng/g dw (median: 174 ng/g 
dw) in the Osun River. These concentrations are broadly within the range of those reported in surface sediment in previous 
studies conducted in other locations around the world. Tris (2-butoxyethyl) phosphate (TBOEP) was the dominant OPE in 
the sediment samples with a median concentration of 337 and 126 ng/g dw for the Ogun and Osun Rivers respectively, while 
tri-n-butyl phosphate (TnBP) was not detected in any sample. Excluding TBOEP, the chlorinated organophosphate esters: 
tris(2-chloroethyl) phosphate (TCEP), tris(2-chloro-propyl) phosphate (TCIPP), and tris(1,3-dichloro-2-propyl) phosphate 
(TDCIPP) were the dominant OPEs in the Osun River, while the aryl-OPEs: triphenyl phosphate (TPHP), 2-ethylhexyl 
diphenyl phosphate (EHDPP), and tri-m-tolyl phosphate (TMTP) were dominant in the Ogun River. Under a median expo-
sure scenario, moderate ecological risk was predicted from exposure to TCIPP in the Osun River. In contrast, under a high 
exposure scenario, concentrations of TDCIPP (risk quotient, RQ = 5.33—5.37) constituted a high ecological risk in both 
rivers, with moderate risks observed for TBOEP (RQ = 0.022—0.18) and TCIPP (RQ = 0.097 – 0.16). Therefore, the risk to 
aquatic organisms from concomitant exposure to mixtures of OPEs in freshwater ecosystems requires further investigation.

Keywords Organophosphate esters · Sediments · Nigeria · Toxicity · Risk quotient

Introduction

Organophosphate esters (OPEs) are additive high produc-
tion volume chemicals widely used in applications such as 
plasticisers and flame retardants in a variety of consumer 
and industrial products, including textiles, plastics, elec-
tronics, furniture, varnishes, nail polishes, building materi-
als, and hydraulic fluids (Van der Veen and de Boer 2012; 
Schmidt et al. 2020; Zhang et al. 2021a; Al-Omran et al. 
2021). OPEs are additive chemicals that may be emitted 
from products into various environmental compartments, 
leading to wildlife and humans exposure (Xu et al. 2016; 
Brommer and Harrad 2015; Hou et al. 2016; Gbadamosi 
et al. 2023a,b). The potential increased application of OPEs 
in various consumer products because of bans on the pro-
duction and use of brominated flame retardants (Zhou et al. 

Responsible Editor: Ester Heath

 * Muideen Remilekun Gbadamosi 
 mrg809@alumni.bham.ac.uk

1 Faculty of Health and Life Sciences, Coventry University, 
Coventry CV1 5FB, UK

2 Department of Chemical Sciences, Tai Solarin University 
of Education, Ijebu-Ode, Ogun State, Nigeria

3 Chemistry Unit, Department of Basic Science, Babcock 
University, Ilishan-Remo, Ogun State, Nigeria

4 School of Geography, Earth, and Environmental Sciences, 
University of Birmingham, Birmingham B15 2TT, UK

http://orcid.org/0000-0002-9069-4688
http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-023-31125-z&domain=pdf


 Environmental Science and Pollution Research

1 3

2021) has likely contributed to the ubiquitous presence of 
OPEs in various environmental matrices (Gbadamosi et al. 
2021a;2022; Brommer and Harrad 2015). Several toxico-
logical studies have reported OPEs to elicit various adverse 
effects in humans and other animals. For example, tris(2-
chloroethyl) phosphate (TCEP), tris (1-chloro-2-propyl) 
phosphate (TCIPP), and tris(1,3-dichloro-2-propyl) phos-
phate (TDCIPP) are neurotoxic and carcinogenic (Wei et al. 
2015; van den Veen and de Boer 2012), while TCEP, TCIPP, 
TDCIPP, and triphenyl phosphate (TPHP) have been linked 
with oestrogen disruption and thyroid hormone (Zhang et al. 
2016). Moreover, tributoxyethyl phosphate (TBOEP) has 
been found to decrease red blood cell cholinesterase activ-
ity, while tri-n-butyl phosphate (TnBP), trimethyl phosphate 
(TMP), and triethyl phosphate (TEP) were found to disrupt 
thyroid hormones through activation of nuclear receptors 
(Zhang et al. 2016; Wei et al. 2015; Wang et al. 2014). With 
respect to epidemiological studies, exposure to OPEs has 
been associated with altered hormone levels and semen 
quality (Meeker and Stapleton 2010), adverse reproductive 
outcomes (Ingle et al. 2018; Carignan et al. 2017), allergic 
symptoms, adverse reproductive impact, increased oxidative 
stress (Araki et al. 2018; Ingle et al. 2018; Carignan et al. 
2017; Bamai et al. 2019).

Both aryl-OPEs, e.g., 2-ethylhexyl diphenyl phosphate 
(EHDPP) and alkyl-OPEs e.g., tris(2-ethylhexyl) phos-
phate (TEHP), are highly hydrophobic, with high log  KOW 
values (> 5), and consequently high bioaccumulation and 
biomagnification potential in aquatic food webs (Wu et al. 
2022; Bekele et al. 2019; Wang et al. 2019). Moreover, the 
chlorinated OPEs (Cl-OPEs) are highly persistent (half-lives 
exceeding 1,000 h) and moderately water-soluble chemicals 
(log  KOW < 4), that are discharged into the aquatic environ-
ment through activities such as sewage treatment (Wu et al. 
2022). Aquatic ecosystems provide important reservoirs for 
various persistent organic pollutants (Chen et al. 2021; Wang 
et al. 2021) and specifically, OPEs can exist both in the dis-
solved phase and sorbed to both suspended and surficial 
sediment (Zhong et al. 2018). Sediment is considered as a 
‘’source’’ and ‘’sink’’ of anthropogenic pollutants an aquatic 
ecosystem (Liang et al. 2021; Hu et al. 2020; Gbadamosi 
et al. 2021b). OPEs in coastal environment undergo complex 
transport processes and accumulated in the various aquatic 
flora and fauna; alternately, sediment can act as a secondary 
source of hydrophobic contaminants in aquatic environment 
(Zeng et al. 2005; Liang et al. 2021). Given these considera-
tions, it is important to understand better the levels and fate 
of OPEs in aquatic environments.

Recently, there have been several reports of the concen-
trations of ∑OPEs in river sediment (Liang et al. 2021; 
Chokwe and Okonkwo 2019; Ji et al. 2022; Yadav et al. 
2018; Cristale et al. 2013). The highest reported concentra-
tions of ∑OPEs ranging between 983 – 7450 ng/g and 17 

– 4400 ng/g, were obtained in Bagmati River, in Nepal and 
urban river sediment from Guangzhou, South China (Yadav 
et al. 2018; Liang et al. 2021). However, despite reports of 
the presence of OPEs in the aquatic environment in various 
locations, to date, only one study has documented the pres-
ence of OPEs in river sediment from Africa, specifically 
from the Vaal River catchment in South Africa (∑OPEs 
range: 67.8 – 278 ng/g dw; median: 120 ng/g dw) (Chokwe 
and Okonkwo 2019). Given this paucity of data on OPEs in 
African sediments, the current study was designed to pro-
vide a broad and reliable evaluation of the occurrence, fate, 
and ecological risk of eight OPEs in the sediment of two 
major rivers (the Ogun and Osun) in southwest Nigeria.

The choice of the Ogun and Osun Rivers for this study 
is because they represent the major source of water supply 
and livelihood for fishermen in both Ogun and Osun states 
in Nigeria. Nevertheless, both rivers received discharges 
from residential areas. However, the Ogun River was more 
severely impacted by industrial discharges, urban sewage 
and waste discharges, pollution from abattoir waste, agricul-
tural activities, and from an e-waste dismantling site nearby. 
As highlighted above, very scant information is available on 
the contamination of the aquatic environment with OPEs 
in Africa, and to the best of our knowledge, this is the first 
study to report the concentrations, and associated ecological 
risk of OPEs in riverine sediment in Nigeria and only the 
second in Africa. Hence, this study aims to: (a) determine 
the levels and distribution of OPEs in the Ogun and Osun 
Rivers, (b) examine the potential sources of OPEs in the two 
rivers and (c) evaluate the ecological risk of the observed 
OPE contamination to aquatic organisms.

Materials and methods

Standards and reagents

Detailed information about the target OPEs are provided in 
Table S1. Information about the reagents and standards used 
in this study are provided in “Introduction” section of the 
supplementary information (SI).

Study areas and sampling

A total of 80 surface sediment samples were collected 
between September to October 2021. Sixty sediment sam-
ples were collected from three locations on the Ogun River 
as it flows from Abeokuta before emptying to the Lagos 
Lagoon. These were: Arakanga in Abeokuta, (n = 20), Iro 
(n = 20), and Kara (n = 20). The remaining 20 sediments 
were collected from the following locations on the Osun 
River: Gbodofan/Isale Osun (n = 5), Capital/Halleluyah 
(n = 5), Aerodrome/Ido Osun (n = 5), and Ede area (n = 5). 
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Sampling locations are indicated on Fig. 1. Our sampling 
points on the Ogun, especially Kara and Arakanga are 
highly urbanised and populated, receiving emissions from 
industrial and/or domestic sources while sampling points on 
the River Osun have lower population and mainly received 
domestic discharges.

Sediment samples were collected using a stainless-steel 
corer pre-washed with dichloromethane before using. After 
collection, samples were transferred into the aluminium 
foil and polythene zip lock bag, and stored at -20 °C. The 
samples were carefully conveyed to the laboratory at the 
University of Birmingham, where they were freeze dried, 
ground, and stored in a centrifuge tube prior to extraction 
and analysis.

Sample pretreatment and instrumental analysis

Extraction of OPEs from sediment was conducted via ultra-
sonic assisted extraction (UAE) using a method developed 
at the University of Birmingham for indoor dust by Brom-
mer et al. (2012) with slight modification. One g of freeze-
dried and homogenised sediment was spiked with 50 ng 
of internal (surrogate) standard mixture (TnBP-d27 and 
TPHP-d15) and 1 g of activated copper powder was added 
to remove elemental sulfur. Samples were extracted in three 

cycle by sonication with 5 mL of hexane: acetone (1:1, v/v) 
for 10 min at 40 °C, before centrifugation of the combined 
extracts at 3500 rpm for 3 min. Following this, extracts were 
reduced to ~ 1 mL in a clean tube under a gentle stream of 
high-purity nitrogen. The extract was then passed through a 
Hypersep Florisil® cartridge conditioned with 2 × 3 mL of 
hexane, and washed with 10 mL of hexane before elution 
of target OPEs with 8 mL of ethyl acetate. The eluate was 
then collected in a clean dry tube, concentrated to incipi-
ent dryness under a gentle nitrogen flow and the residue 
re-dissolved with 100 µL of iso-octane containing 250 pg/
µL of PCB-62 as a recovery determination standard (RDS). 
The final extracts was transferred into a brown vial, stored 
at -20 °C before injection into GC-EIMS. Retention times 
and qualification ions are provided as supplementary infor-
mation (Table S2), with further detailed information on the 
instrumental analysis described elsewhere (Gbadamosi et al. 
2022;Gbadamosi et al. 2023a).

Quality assurance/quality control (QA/QC)

Appropriate measures were put in place to avoid cross 
contamination as all used glassware was washed, rinsed 
with distilled Milli-Q water, baked at 450 °C for 6 h, 
before rinsing with acetone and dichloromethane before 

Fig. 1  Map of the study area and sampling points



 Environmental Science and Pollution Research

1 3

use. A procedural blank was run for each five samples 
(one batch) and only one compound (TCEP) consist-
ently detected in all procedural blanks at an average 
concentration of 0.29 ± 0.14 ng/g (Table S3). Where 
this represented between 5 and 20% of the concentra-
tions detected in samples, blank-correction of con-
centrations in samples was carried out. The relative 
response factors (RRFs) for all the target OPEs in the 
calibration standards (50 – 750 pg/µL) gave the relative 
standard deviation (RSD) that were < ± 8%. The lin-
ear correlation coefficients  (r2) of the calibration plots 
were all ˃ 0.99. Average ± standard deviation recover-
ies of the internal (surrogate) standards in all samples 
were 80.6 ± 6.0% and 89.5 ± 10.5% for  d15-TPHP and 
 d27-TnBP respectively (Table S3). In addition, recover-
ies of individual native OPEs were evaluated by spik-
ing sodium sulfate with known amounts of each target 
OPE and analysing this as a sample. Average ± standard 
deviation recoveries of all the target OPEs in these 
spiked sodium sulfate blanks (n = 5) ranged from 
82.4 ± 7.2% to 101.1 ± 12.3% (Table S3). The instru-
mental limit of detection (iLOD) and the instrumental 
limit of quantification (iLOQ) were calculated based 
on ten injections of the lowest concentration stand-
ards (50 pg/µL), as those concentrations that yielded 
signal–noise ratios (S/N) of 3:1 and 10:1 respectively 
(Table S3). For the purposes of statistical evaluation, 
concentration values where OPEs were not detected in 
samples, were assigned as the average of the quantifi-
cation limits (< LOQ = 0.5 × LOQ). OPEs with detec-
tion frequencies < 40% were excluded from the statisti-
cal analysis.

Statistical analysis

Descriptive (mean, median, standard deviation, minimum, 
maximum, and  95th percentile) and multivariate statistics 
(correlational analysis (CA), principal component analy-
sis (PCA) and hierarchical cluster analysis (HCA) and 
analysis of variance (ANOVA)) were performed using 
Microsoft excel 365 and IBM SPSS Statistics 28 (USA) 
for Windows. PCA was used to apportion and distinguish 
the sources of OPEs in our samples and conditions such as 
sampling adequacy and sphericity were satisfy (Table S4). 
The three principal components (PCs) with eigenvalues ˃ 
1 were extracted and retained as the most significant fac-
tors. The linear relationships between different variables 
were investigated using Pearson correlation. Statistical 
differences were evaluated using t-tests and ANOVA as 
appropriate, with statistical significance defined as p < 
0.05. Cluster analysis was used for grouping of variables 
with similar characteristics to a new group.

Ecological risk

Risk quotient (RQ) values were calculated to investigate the 
individual and combined ecological risk of OPEs using the 
following equations (Eq. 1 and 2) (Ji et al. 2022; Xing et al. 
2018). The RQ is defined as the ratio of the measured envi-
ronmental concentration (MEC) to the predicted no-effect 
concentration (PNEC) (Wang et al. 2020a).

where i represents individual OPEs (for which DF ˃ 40%), 
f is the assessment factor (European Commission 2003) 
and L(E)C50 refers to as 50% lethal/effective concentration 
of OPEs which is an expression of the toxicity of OPEs to 
algae, zebra fish, crustaceans etc. obtained from the liter-
ature (Wang et al. 2020a; Yadav et al. 2018). The PNEC 
values for all target OPEs are those reported elsewhere (Ji 
et al. 2022; Wang et al. 2020a). The L(E)C50 for OPEs were 
obtained from (Yadav et al. 2018; Verbruggen et al. 2005) 
and an assessment factor of  103 was used (Yadav et al. 
2018; EC 2003). The potential ecological risk was classi-
fied as falling into one of the following three levels: low risk 
(0.01 ≤ RQ ≤ 0.1), moderate/medium risk: (0.1 ≤ RQ ≤ 1.0) 
and high risk: (RQ ≥ 1.0) respectively (Ji et al. 2022).

Results and discussion

Concentrations and profiles of OPEs in surface 
sediments

The summary of the statistics for the concentrations of the 
OPEs divided into: Cl-OPEs (TCEP, TCIPP, and TDCIPP), 
aryl-OPEs (EHDPP, TPHP and TMTP) and alkyl-OPEs: 
TBOEP and TnBP) is presented in Table 1. Detection fre-
quencies varied from 42—100% for Cl-OPEs, 48 – 100% for 
aryl-OPEs, and for TBOEP from 80 – 92%. TnBP was not 
detected in any sample. The median and range of concentra-
tions of ∑8OPEs in the Ogun River (median: 660; range: 
13.1 – 2110 ng/g dw) exceeded those in the Osun River 
(median: 169; range: 24.7 – 589 ng/g dw) (Table 1; Fig. 2). 
The high level of urbanization is a likely major source of the 
higher OPE concentrations in the Ogun River compared to 
the Osun River. Specifically, samples from the Kara portion 
of the Ogun River tend to be more polluted than those from 
other regions due to the fact that this sampling site received 
effluents from wastewater treatment from both industrial and 

(1)RQ =
MEC

PNEC
=

MEC

L(E)C50
∕f

(2)RQ∑

OPEs =
�total

i

MEC
1

PNEC
1
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domestic sources, from the nearby abbatoir and from e-waste 
dismantling points in Lagos State. These are likely potential 
sources of elevated OPE input to the Ogun River.

Generally, median concentrations of aryl-OPEs: TPHP, 
EHDPP and TMTP in the Ogun River (10.4, 13.8 and 
0.40 ng/g dw) exceeded the median concentrations of 0.56, 
2.11 and 0.40 ng/g dw obtained in the Osun River. The 
higher concentrations of aryl-OPEs in the Ogun River may 
be attributed to the proximity of one of the sampling sites 
to an e-waste dismantling site in Lagos. This may be as a 
results of the wide application of aryl OPEs such as plas-
ticizer additives in electronic products, baby products and 
polyvinyl chloride (PVC) (Lu et al. 2017; van der Veen and 
de Boer 2012). However, for the Cl-OPEs (TCEP, TCIPP 
and TDCIPP), the median concentrations of 2.64, 12.4, and 
0.57 ng/g dw obtained in the Ogun River were between 
2 – 8 times lower than the median concentrations of 20.5, 
23.4 and 0.57 ng/g dw obtained from the Osun (Table 1; 
Fig. 2). The higher concentrations of Cl-OPEs in the Osun 
River may be related to their wide application in various 
household products such as textile, furniture and floor cov-
ering etc. (Wei et al. 2015) and discharges from domestic 

waste such as paint (Wei et al. 2015). For the alkyl-OPEs, 
the highest range and median concentrations was obtained 
in the Ogun River (range: <LOQ – 1567; median: 337 ng/g 
dw) than in the Osun (range: <LOQ – 245; median: 
126 ng/g dw) (Table 1; Fig. 2). TBOEP (median: 337 ng/g 
dw) was the most abundant OPE measured in the Ogun 
River, followed by EHDPP (median: 13.8 ng/g dw), TCIPP 
(median: 12.4 ng/g dw), TPHP (10.4 ng/g dw) and TCEP 
(median: 2.64 ng/g dw). Meanwhile, in the Osun River, the 
relative order is: TBOEP (126 ng/g dw) followed by TCIPP 
(23.4 ng/g dw), TCEP (20.5 ng/g dw), EHDPP (2.11 ng/g 
dw) and TPHP (0.56 ng/g dw) respectively (Table 1). A 
paired t-test revealed a statitistical significant difference 
between the mean concentrations of ∑8OPEs in Ogun river 
(mean: 660 ng/g dw) and Osun River (mean: 169 ng/g dw) 
sediments (p < 0.05) (Table 1; Fig. 2). Higher OPE concen-
trations in the Ogun River may arise from both domestic 
and industrial discharges as well as releases from e-waste 
dismantling sites. Moreover, t-test comparison revealed 
statistically significant differences (p < 0.05) in the con-
centrations of all individual OPEs, with the exception of 
TDCIPP and TnBP.

Fig. 2  Box plots comparing the 
concentrations of individual 
OPE in surface sediment from 
Ogun River (OgR) and Osun 
River (OsR). The top and bot-
tom of the central box respec-
tively represent the  25th and  75th 
percentile concentrations, the 
middle bold line represents the 
median, while the top and bot-
tom whiskers respectively repre-
sent maximum and minimum 
concentrations
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Global comparison of OPEs concentrations 
in sediments

Concentrations of ∑8OPEs in the sediments from the Ogun 
River (median: 378 ng/g dw; range: 13.1 – 2110 ng/g dw) 
and the Osun River (median: 174 ng/g dw; range: 24.7 
– 587 ng/g dw) were compared with those reported in stud-
ies conducted elsewhere in the world (Table 1 and Table S5). 
This comparison revealed the concentrations detected in the 
two rivers in this study fall within the overall range reported 
for all other studies (Pintado-Herrera et al. 2017; Yadav et al. 
2018; Cristale et al. 2013; Liu et al. 2016; Hu et al. 2017; 
Sutton et al. 2019; Sibiya et al. 2019; Dou et al. 2022; Ji 
et al. 2022; Choi et al. 2020; Chen et al. 2019; Chokwe and 
Okonkwo 2019; Peverly et al. 2015; Lee et al. 2018; Alkan 
et al. 2021) (Table S5; Fig. 3).

There was a marked difference in the OPE patten 
between the Ogun and Osun Rivers. In the Osun River, 
Cl-OPEs (median, TCEP: 20.5 ng/g dw; TCIPP: 23.4 ng/g 
dw; and TDCIPP: 0.57 ng/g dw) were the most abundant 
OPEs after TBOEP (126 ng/g dw). By comparison, in the 
Ogun River, aryl-OPEs (TPHP: 10.4 ng/g dw; EHDPP: 
13.8 ng/g dw were dominant after TBOEP (337 ng/g dw). 
The median concentrations of the Cl-OPEs: TCEP (2.64 
and 20.5 ng/g dw), TCIPP (12.4 and 23.4 ng/g dw), and 

TDCIPP (0.57 ng/g dw) in the Ogun and Osun Rivers were 
comparable to, but tending towards the lower range of values 
reported in studies elsewhere (Yadav et al. 2018; Liu et al. 
2016, Lee et al. 2018; Sibiya et al. 2019; Peverly et al. 2015; 
Ji et al. 2022; Luo et al. 2020; Mo et al. 2019) (Table S5; 
Fig. 3). These differences in OPE distribution pattern are 
likely a result of the different sources impacting the Ogun 
River compared to the Osun River. The concentrations of 
TCIPP obtained in this present study were about two order of 
magnitide lower than those reported in river sediments from 
Norway (63 – 16,000 ng/g) (Green et al. 2008). The median 
concentrations of aryl-OPEs: TPHP, EHDPP and TMTP 
from Ogun River (10.4, 13.8 and 0.40 ng/g dw) exceeded 
those in the Osun River (0.56, 2.11 and 0.40 ng/g dw). These 
were comparable to those reported in sediment from Lake 
Gerencuo (You et al. 2022), below the value reported from 
sediment in Kathmandu Valley (median TPHP: 20.0 and 
EHDPP: 131 ng/g dw) (Yadav et al. 2018), Shihwa creeks 
(TPHP: 59.4 ± 83.0; EHDPP: 10.3 ± 14.8) (Lee et al. 2018), 
as well as in the Chicago sanitary and ship canal (TPHP: 
18 – 170; EHDPP: 28 – 690 ng/g dw) (Peverly et al. 2015) 
(Table S5; Fig. 3). Concentrations of the aryl-OPEs obtained 
in Osun River sediment samples exceeded those reported 
in previous studies (Liao et al. 2020; Ji et al. 2022; Fang 
et al. 2022; Luo et al. 2020; Giulivo et al. 2017; Zhang et al. 

Fig. 3  Global comparison of concentrations of OPEs (ng/g dw) in river sediment [NB: * Concentrations reported in median. ⁂ Present study]
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2021a; Wang et al. 2020a). For the alkyl-OPEs, TBOEP was 
the dominant OPE in the two rivers, while TnBP was not 
detected in any sample in this study. The median and range 
of TBOEP concentrations in the Ogun River (median: 337; 
range: <LOQ – 1567 ng/g dw) were higher than in the Osun 
River (median: 126; <LOQ – 245 ng/g dw) (Table 1). The 
median and range of concentrations fall within the range of 
values reported in previous studies (Peverly et al. 2015; Xing 
et al. 2018; Ji et al. 2022; Luo et al. 2020; Liao et al. 2020) 
(Table S5; Fig. 3).

Potential sources of OPEs in the two rivers

Concentrations of individual OPEs in samples were used 
to try and identify OPEs with common sources in our sedi-
ment samples (Table S8a and S8b). The correlation results 
from Ogun River sediment showed a significant positive 
correlation between TCEP and both TCIPP and TPHP 
(r = 0.850 and 0.696; p < 0.01) (Table S8a). A significant 
positive correlation was also obtained between TCIPP and 
TPHP (r = 0.581; p < 0.01) (Table S78a). By comparison, 
for Osun River sediment, only TCEP and TCIPP show a sig-
nificant positive correlation with each other (r = 0.790; p < 
0.01) (Table S8b). Such positive correlations between these 
OPEs suggest a common contamination source or sources 
and/or similar environmental fate and behaviour of these 
compounds. These findings were supported by the results 
of a principal component analysis (PCA) (Fig. 4a-b). For 
the Ogun River, the initial dimension of all the data set pro-
duces four components which account for 82% of the total 
variation (Table S9a; Fig. 4a) and three components which 

explained 78% of the total variation for Osun River sediment 
respectively (Table S9b; Fig. 4b). The loadings, eigenvalues, 
variance, and the cumulative variance of all the extracted 
components are listed in Table S9a-b. For the Ogun River, 
the first principal component (PC-1) accounted for 34.7% of 
the total variation and was driven mainly by TCEP (0.950), 
TCIPP (0.909) and TPHP (0.829) (Table S9a). This corrobo-
rates the results from the correlation analysis where a posi-
tive significant correlation existed between these compounds 
and the same trends was obtained for the Osun River, where 
PC-1 explained 30.9% of the whole variation with high load-
ing value on TCIPP (0.926) and TCEP (0.887).

TCEP, TCIPP and TPHP are widely used in the produc-
tion of polyurethane foam, plastics for cables and other 
construction materials (Boor et al. 2010; van der Veen and 
de Boer 2012; You et al. 2022), as well as anticorrosion 
coatings for wood (Ingerowski et al. 2001). This indicates 
factor 1 arises from mixed pollution sources such as indus-
trial discharges and atmospheric deposition, emissions from 
the e-waste dismanting site in the Ogun River and from 
domestic sources in the Osun River (Han et al. 2022; Meng 
et al. 2020; Wang et al. 2020b; You et al. 2022; Zhang et al. 
2021b).

The second principal component (PC-2) from both the 
Ogun and Osun Rivers respectively explained 17.4 and 
26.7% of the total variation of the dataset and was mainly 
loaded heavily mainly on the aryl-OPEs: Ogun River: TMTP 
(0.792) and EHDPP (0.721); Osun River: TMTP (0.838), 
TPHP (0.642) and EHDPP (0.640) (Fig. 4a-b; Table S9a-b). 
This factor suggests that Ogun and Osun river receives OPE 
inputs from emission from electronics and textile production 

Fig. 4  Graphical illustrations of principal components for (a) the Ogun River and (b) the Osun River
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companies in this areas (Zhang et al. 2022; van der Veen 
and de Boer 2012). The third component (PC-3) accounted 
for 15.1 and 20.3% of the total variance in the data for the 
Ogun and Osun River sediments respectively and was loaded 
significantly on TBOEP (0.937) for the Ogun River, and 
TDCIPP (0.842) and TBOEP (0.762) for the Osun River sed-
iment (Fig. 4a-b; Table S9a-b). TBOEP is commonly used as 
a plasticizer in polyvinyl chloride (PVC) and as floor finish 
(Brandsma et al. 2014; Gbadamosi et al. 2023b). Therefore 
this factor may indicate diffuse urban inputs from the built 
environment in which PVC and floor finishes are widely 
used. The last PC-4 accounts for 14.7% of the total variance 
and heavily loaded on TDCIPP (0.97) for the Ogun River 
(Table S9a, Fig. 4a), suggesting a distinct source of TDCIPP 
to the Ogun River.

We also examined the similarity between sediment con-
tamination with the target OPEs using cluster analysis. The 
results obtained from the cluster analysis (Fig. S1a-b) shows 
three distinctive clusters with varied minor-major similari-
ties between the OPEs for both Rivers. In the Ogun River, 
the first cluster (Cluster-I) consisted of TCIPP and TPHP 
with major similarity with EHDPP and slightly higher simi-
larity with TCEP (Fig. S1a). Cluster-II consisted of TDCIPP 
with major differences to TBOEP and TMTP in Cluster-III. 
The same trends were obtained for the Osun River, where 
clusters I and II consisted of the Cl-OPEs: (TCEP, TCIPP, 
and TDCIPP) and aryl-OPEs: (TPHP, EHDPP, and TMTP) 
with major differences from the alkyl-OPE TBOEP. This 
showed that the Cl-OPEs and the aryl-OPEs considered 
in this study shared mixed and overlapping contamination 
sources in the sediment samples and that only TBOEP has a 
distinct contamination source, likely to its use in floor finish-
ing products or as PVC.

Potential ecological risk assessment

We evaluated the potential ecological risks posed by our tar-
get OPEs in sediment from the Ogun and Osun rivers based 
on risk quotient (RQ) values calculated under median and 
high-end concentration scenarios  (95th percentile) (Table 2; 
Table S10). Under the median concentration scenario, RQ 

values showed no risk for aquatic organisms for TCEP 
(4.3 ×  10–4 and 3.3 ×  10–3), low risk for TPHP (1.9 ×  10–2 and 
1.0 ×  10–3), EHDPP (2.7 ×  10–2 and 4.2 ×  10–3), and TBOEP 
(4.2 ×  10–2 and 1.6 ×  10–2) in Ogun and Osun River (Table 2). 
Interestingly, the Osun River has a moderate risk for TCIPP 
(0.11) whereas the Ogun River has a low risk for TCIPP 
(5.7 ×  10–2) (Table 2; Table S10). The calculated values of 
RQ under the high concentration scenario, revealed a high 
risk for TDCIPP (5.37 and 5.33) in both rivers, as well as 
a moderate risk for TBOEP (0.18) in the Ogun River and 
for TCIPP (0.16) in the Osun River (Table 2; Table S10). 
This showed that the ecological risk to aquatic organisms to 
OPEs in the sediment from the two rivers varies from low 
to moderate risk.

Conclusion

In this study, the concentrations, relative abundance, and 
potential ecological risk of OPEs in surface sediments from 
two major rivers in southwest Nigeria were investigated. 
Seven target OPEs were frequently detected in the sediments 
from both rivers with concentrations of ∑8OPEs ranging 
from 13.1 to 2110 ng/g dw (median: 378 ng/g dw) in the 
Ogun River and between 24.7 and 589 ng/g dw (median: 
174 ng/g dw) in the Osun River (including TnBP that was 
not detected in any of the samples). These concentrations 
were comparable to and at the lower end of the range of 
those reported in previous studies elsewhere. Median con-
centrations of ∑OPEs detected in the Ogun River were about 
twice those in the Osun. However, the OPE profile varied 
between the two rivers. Specifically, the concentrations of 
TCEP, TCIPP, and TDCIPP were higher in the Osun River; 
while concentrations of TPHP, EHDPP, and TMTP were 
higher in the Ogun River. For TBOEP, concentrations in the 
Ogun River exceeded those in the Osun. An ecological risk 
assessment showed that the  95th percentile concentrations of 
TDCIPP posed high risk to the aquatic organisms in the two 
rivers, while both median and  95th percentile concentrations 
of TCIPP and the  95th percentile concentration of TBOEP 
posed moderate ecological risk. Continued monitoring of the 

Table 2  Risk quotient values of OPEs in surface sediments from the Ogun and Osun rivers

a  RQ values for TMTP not calculated as concentrations in all samples < LOQ
High risk (RQ > 1) and moderate risk (0.1 > RQ < 1) instances in red and yellow respectively

Location Concentration 
Scenario

TCEP TCIPP TDCIPP TPHP EHDPP TBOEP TMTPa

Ogun river sediments (n = 60) Median 4.3 ×  10–4 5.7 ×  10–2 6.1 ×  10–2 1.9 ×  10–2 2.7 ×  10–2 4.2 ×  10–2 -
High 1.0 ×  10–3 9.7 ×  10–2 5.37 3.9 ×  10–2 5.6 ×  10–2 0.18 -

Osun river sediments (n = 20) Median 3.3 ×  10–3 0.11 6.1 ×  10–2 1.0 ×  10–3 4.2 ×  10–3 1.6 ×  10–2 -
High 5.5 ×  10–3 0.16 5.33 4.3 ×  10–3 7.0 ×  10–3 2.2 ×  10–2 -
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presence of OPEs in these and similar waterways is recom-
mended, given continued reports of the potential adverse 
environmental impacts of such contaminants.
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