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Pulsar Timing Array experiments probe the presence of possible scalar or pseudoscalar ultralight dark
matter particles through decade-long timing of an ensemble of galactic millisecond radio pulsars. With the
second data release of the European Pulsar Timing Array, we focus on the most robust scenario, in which
dark matter interacts only gravitationally with ordinary baryonic matter. Our results show that ultralight
particles with masses 10−24.0 eV≲m ≲ 10−23.3 eV cannot constitute 100% of the measured local dark
matter density, but can have at most local density ρ≲ 0.3 GeV=cm3.

DOI: 10.1103/PhysRevLett.131.171001

Introduction.—The nature of dark matter (DM) is argu-
ably one of the most fascinating and mysterious questions
that we are struggling to answer. Galaxy rotation curves
[1,2], the peculiar motion of clusters [3,4], the bullet cluster
system [5], measurements of cosmological abundances
from cosmic microwave background (CMB) and baryonic
acoustic oscillation (BAO) observations [6,7] all point to
the existence of a hitherto-unseen type of matter, constitut-
ing roughly 26% of the current energy density of the
Universe and interacting mostly gravitationally with the
standard model of particle physics. The standard cold dark
matter (CDM) paradigm describes successfully many
aspects of the large-scale structure of the Universe, but
struggles to predict what we observe at scales smaller than
the ∼kpc. For instance, observations favor a constant
density profile in the inner part of galaxies, while CDM
predicts a steep power-law-like behavior (cusp-core prob-
lem) [8–10]. Furthermore, well-known issues are associated
with the discrepancy between the observed and expected
number of Milky Way (MW) satellites (missing satellite
problem) [11,12] and with ΛCDM simulations showing
that the most massive subhaloes of the MW would be too
dense to host any of its bright satellites (too-big-to-fail
problem) [13]. Moreover, recent anomalies in gravitation-
ally lensed images [14] seem to disfavor the long-standing
weakly interacting massive particles (WIMPs) hypothesis
for CDM. While some of these issues might be alleviated
by invoking baryonic feedback mechanisms [15], e.g.,
active galactic nuclei (AGN) [16] and/or supernova feed-
back [17–22], it is still unclear how the flat density profile
of dwarf galaxies (e.g., Fornax [23]), with almost no
baryonic activity in the center, can be explained without
invoking a novel mechanism. An intriguing alternative is to
consider the possibility that DM is fuzzy, i.e., an ultralight
scalar field (mϕ ∼ 10−22 eV) or axionlike particle, whose
wavelike nature suppresses structure formation on scales
smaller than the de Broglie wavelength, while maintaining
all the achievements of the CDM paradigm on large scales.
Moreover, the existence of ultralight scalars can also be
motivated on a more theoretical ground: in particular,
axionlike particles generically arise in string theory

compactifications as Kaluza-Klein zero modes of antisym-
metric tensor fields [24–26].
A wealth of studies have been carried out to probe the

existence of ultralight dark matter (ULDM), ranging from
CMB observables to Lyman-α and stellar kinematics.
Specifically, the integrated Sachs-Wolfe effect on CMB
anisotropies rules out masses mϕ ≲ 10−24 eV [27], while
Lyman-α gives a lower boundmϕ ≳ 10−21 eV for ultralight
candidates constituting more than ∼30% of DM [28–33].
Stellar orbit kinematics in ultra-faint dwarf (UFD) galaxies
might even be able to bound the scalar field mass to be
mϕ ≳ 10−19 eV, although this is still under debate [34,35].
However, the sensitivity of non-CMB constraints to
uncertainties in the modeling of small scale structure
properties [36,37] makes it compelling to rely on comple-
mentary and independent probes. It was shown by
Khmelnitsky and Rubakov [38] that the presence of
ULDM induces an oscillating gravitational potential that
affects the light travel time of radio pulses emitted by
pulsars. Therefore, Pulsar Timing Arrays (PTAs) stand out
as promising experiments to test the presence of ULDM
particles in the MW. Previous PTA searches placed
95% upper limits on the local energy density of ULDM
at 3×10−24 eV to ≲ 1 GeV=cm3 [39–41].
In this Letter, which is complementary to the European

Pulsar Timing Array (EPTA) interpretation effort [42],
we focus on a specific range of ULDM masses and
constrain the local ULDM density to values below the
observed local DM density. We do so by analyzing the
effect of ULDM on the times of arrival (TOAs) of pulsar
radio beams. Therefore, if ULDM particles exist in the
mass range that we consider, they cannot constitute all of
the observed DM.
Models.—As we only have gravitational evidence of

DM, we focus on an ultralight scalar field with negligible
self-interactions and no couplings with the standard model.
The action for this field can be written as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μϕ∂νϕ −

1

2
m2

ϕϕ
2

�
: ð1Þ
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Because of its high occupation number and nonrelativistic
nature, the ULDM scalar field can be thought as a classical
wave [38]:

ϕðx⃗; tÞ ¼
ffiffiffiffiffiffiffiffi
2ρϕ

p
mϕ

ϕ̂ðx⃗Þ cos ðmϕtþ γðx⃗ÞÞ; ð2Þ

where mϕ is the mass of the scalar field, γðx⃗Þ is a space-
dependent phase, and ϕ̂ðx⃗Þ accounts for the pattern of
interference in the proximity of x⃗ caused by the wavelike
nature of ULDM. The scalar field density ρϕ is conven-
iently normalized to the local DM density ρDM, which can
be determined, e.g., by fitting the MW rotation curve or, in
a more refined way, by studying the vertical oscillations of
disc stars [43–46]. In the following, we assume a fiducial
value ρDM ≈ 0.4 GeV=cm3. The oscillating nature of
ULDM induces an oscillating gravitational potential lead-
ing to a periodic displacement δtDM in the TOAs of radio
pulses emitted by pulsars, which can be written as [38,40]

δtDM¼Ψcðx⃗Þ
2mϕ

h
ϕ̂2
E sinð2mϕþ γEÞ− ϕ̂2

P sinð2mϕþ γPÞ
i
; ð3Þ

where

Ψcðx⃗Þ
10−18

≈ 6.52

�
10−22 eV

mϕ

�
2
�

ρϕ
0.4 GeV=cm3

�
; ð4Þ

and γP ≡ 2γðxp!Þ − 2mϕdp=c (γE ≡ 2γðxe!Þ) are related to
the phases of Eq. (2) evaluated at the pulsar (Earth)
location, with dp standing for the pulsar-Earth distance.
The amplitude in Eq. (4) is computed assuming a constant
DM density background and possible deviations caused by
the wavelike nature of the ultralight scalar field are para-
metrized in terms of the pulsar (Earth) dependent phase
factors ϕ̂2ðxp!Þ≡ ϕ̂2

P (ϕ̂2ðxe!Þ≡ ϕ̂2
E). The approximation of

constant DM density across pulsars is sufficient, as their
distances from Earth are all ∼kpc and subject to large
measurement uncertainties [40]. Notice that accurate mea-
surements of pulsar-Earth distances might help to reduce
the number of free parameters in the limit in which
γðxp!Þ ¼ γðxe!Þ. Moreover, precise determination of pulsar
positions could provide us with more information about the
dark matter density in its surroundings. On scales smaller
than the de Broglie wavelength, the ULDM scalar field
oscillates coherently, with the same amplitude ϕ̂ [see
Eq. (2)]. Since the typical ULDM velocity is expected to
be vϕ ∼ 10−3, the coherence length is approximately

lc ≈
2π

mϕvϕ
≈ 0.4 kpc

�
10−22 eV

mϕ

�
: ð5Þ

Therefore, ϕ̂2
E and ϕ̂2

P are (i) uncorrelated if the coherence
length of ULDM is less than the average interpulsar and
pulsar-Earth separation. In this case, ϕ̂2

E and ϕ̂
2
P will thus be

separate parameters; (ii) correlated if the coherence length
of ULDM is larger than the interpulsar and pulsar-Earth
separations and encloses the typical Galacto-centric region
tested by the most precise MW rotation curves measure-
ments (roughly the inner ∼20 kpc [47]). In this case, ϕ̂2

E ¼
ϕ̂2
P for all the pulsars. Moreover, rotation curves also

sample from the same coherence patch, and thus measure
the local abundance ρDM of DM. Therefore, the stochastic
parameter ϕ̂2 can be safely absorbed in a redefinition ofΨc.
(iii) pulsar correlated if the coherence length of ULDM is
larger than the interpulsar and pulsar-Earth separations, but
smaller than the typical Galacto-centric radius sampled by
rotation curves. In this case, ϕ̂2

E ¼ ϕ̂2
P for all the pulsars.

However, DM density estimates from rotation curves
average over different patches. We therefore keep ϕ̂2 as
a free parameter and consistently marginalize over it. In this
way, the limits on ρDM obtained from pulsars will constrain
the same quantity measured by rotation curves. We perform
the analysis in the three limits above, noting that the fully
correlated limit has not been considered in the previous
studies [48,49]. From Eq. (5), recalling that the pulsar-
Earth distance is OðkpcÞ for the observed systems, it
follows that the correlated regime is an excellent approxi-
mation for masses lower than mϕ ∼ 2 × 10−24 eV; the
pulsar-correlated regime holds for 2 × 10−24 eV≲mϕ ≲
5 × 10−23 eV, and the uncorrelated regime is valid
for mϕ ≳ 5 × 10−23 eV.
Dataset and methodology.—The EPTA monitors 42 ms

radio pulsars with five telescopes located in France,
Germany, Italy, the Netherlands, and the United Kingdom.
The second data release (DR2) of the EPTA contains
24.7 years of observations of pulse arrival times of 25
pulsars, surveyed with an approximate cadence of once
every 3 weeks [50], which translates into a Nyquist
frequency of approximately 3 × 10−7 Hz. TOAs are mea-
sured at the position of the Solar System barycenter, and are
primarily described by pulsar-specific deterministic timing
models accounting for the position of each pulsar in the sky,
spin down, proper motion, the presence of a binary
companion, etc. The timing models are provided with
the dataset. Deviations between the TOAs predicted by
these models and the measured TOAs are referred to as the
timing residuals, δt. The residuals contain contributions
from various sources of noise, from variations in the
dispersion measure to irregularities in pulsar rotation, but
they may also contain signals of astrophysical interest. The
sources of noise are identified as part of the noise analysis
of the EPTA DR2 [51]. The DR2 dataset also hints at
growing evidence for the stochastic gravitational-wave
background, which manifests itself as a temporally corre-
lated stochastic process with a hallmark interpulsar corre-
lation signature of general relativity [52]. Our work is
complementary to the EPTA-wide interpretation effort of
the spatial and temporal correlations in DR2 [42].
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We use Bayesian inference techniques to search for the
ULDM signal while simultaneously fitting timing model
parameters and all known sources of noise to the data, to
correctly marginalize over the associated uncertainties. The
likelihood of the timing residuals, LðδtjθÞ, given the
parameters of the models, θ, is [53–57]

lnLðδtjθÞ ∝ −
1

2
ðδt − μÞTC−1ðδt − μÞ: ð6Þ

This is a time-domainGaussian likelihood,multivariatewith
respect to a number of observations, i.e., δt has dimension
equal to the number of observations. The contribution of
ULDM from Eq. (3) is added to μ, which also contains
contributions from the timing model [50] and noise proc-
esses, according to the noise analysis of Ref. [51]. The
diagonal part of the covariance matrix C contains TOA
measurement uncertainties that include temporally uncorre-
lated “white” noise. Contributions from temporally corre-
lated “red” noise may be added as off-diagonal elements in
C. However, for computational efficiency, red noise con-
tributions are modeled in μ [54,55]. The priors πðθÞ are set
based on Table I, see Ref. [48] for further details. To obtain a
sufficient amount of posterior samples across the mass-
frequency parameter space, the search is effectively per-
formed across equally spaced segments of πðmϕÞ, which we
refer to as bins. The measurements of parameters are
obtained as posterior distributions, PðθjdÞ ∝ LðδtjθÞπðθÞ.
The posteriors are evaluated using the parallel-tempering-
Markov-chain Monte Carlo sampler [58] implemented in
ENTERPRISE [56] and ENTERPRISE_EXTENSIONS [57]. The
conclusion about the presence or absence of the ULDM

signal in the data is based on the Bayesian odds ratio. In our
case, that is equal to the Bayes factor, becausewe assume the
prior odds of both scenarios to be equal. We evaluate Bayes
factors, B, using the Savage-Dickey density ratio [59]. In
particular, finding lnB ≳ 5 would indicate robust evidence
for the ULDM signal.
There is strong evidence for a temporally correlated red

signal in EPTA DR2, characterized by the same Fourier
spectrum of δt in all pulsars [52]. This signal may contain
contributions from the stochastic gravitational-wave back-
ground [60]. Because in the 24.7-yr dataset this signal does
not show significant evidence for interpulsar correlations
(unlike in the 10.3-yr dataset [42,50–52]), we model it as a
spatially uncorrelated red noise process. Individual Fourier
components of this broadband signal may contaminate
frequencies at which the presence of ULDM is evaluated.
Thus, this common red noise signal is included in the null
hypothesis, ∅, along with the pulsar-intrinsic noise. The
signal hypothesis is based on adding ULDM to the null
hypothesis.
Results.—We carry out the search for ULDM in the

correlated, pulsar-correlated, and uncorrelated limit for ϕ̂2
E

and ϕ̂2
P with the parameters in Table I. The factors ϕ̂2

E

and ϕ̂2
P are drawn from an exponential prior, to correctly

model the stochastic nature of the ULDM field [61,62]. We
find no evidence for a signal in the mass range
mϕ ∼ ½10−24 eV; 10−22 eV�. The largest lnB we find across
frequency-mass bins is < 1, i.e., the null hypothesis is
favored. Therefore, we calculate the 95% upper limits on
the signal amplitude Ψc and, through Eq. (4), on the scalar
field density ρϕ. The results are shown in Fig. 1.

TABLE I. Parameters employed for the search along with their respective priors. In the correlated limit, the parameters ϕ̂2
E, ϕ̂

2
P are

accounted for by a redefinition of Ψc, while in the pulsar-correlated regime ϕ̂2
E ¼ ϕ̂2

P ¼ ϕ̂2 is a free parameter.

Parameter Description Prior Occurrence

White noise ðσ ¼ E2
f σ

2
TOA þ E2

qÞ
Ef EFAC per receiver-backend system Uniform [0, 10] 1 per pulsar
Eq EQUAD per receiver-backend system Log10-Uniform ½−10;−5� 1 per pulsar

Red noise

Ared Red noise power-law amplitude Log10-Uniform ½−20;−6� 1 per pulsar
γred Red noise power-law spectral index Uniform [0, 10] 1 per pulsar

ULDM

Ψc ULDM signal amplitude Log10-Uniform ½−20;−12� 1 per PTA
mϕ [eV] ULDM mass Log10-Uniform ½−24;−22� 1 per PTA

ϕ̂2
E Earth factor e−x 1 per PTA

ϕ̂2
P Pulsar factor e−x 1 per pulsar

γE Earth signal phase Uniform ½0; 2π� 1 per PTA
γP Pulsar signal phase Uniform ½0; 2π� 1 per pulsar

Common spatially uncorrelated red noise (CURN)

AGWB Common process strain amplitude Log10-Uniform ½−20;−6� 1 per PTA
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A highlight of our study is that not only does EPTA
DR2 yield more stringent constraints than previous
results [39,40], but it also rules out that particles with
masses mϕ ∼ ½10−24 eV; 10−23.3 eV� can be 100% of the
observed local DM density. In particular, the scalar field
density is ρϕ ≲ 0.15 GeV=cm3 in the mass range mϕ ∼
½10−24 eV; 10−23.7 eV�, while it is constrained to ρϕ ≲
0.30 GeV=cm3 between mϕ ∼ ½10−23.7 eV; 10−23.4 eV�.
Furthermore, the correlated limit in Fig. 1 confirms
Lyman-α bounds, which exclude ULDM in this mass
range unless it constitutes less than 30% of DM [31]. It
is worth noticing that the low-frequency end of Fig. 1
extends below the näive expectation f ¼ 1.3 nHz corre-
sponding to the inverse of the observation time
Tobs ¼ 24.7 yr. In fact, while an ULDM candidate in this
mass region does not complete an oscillation cycle during
the observation timescale, the signal can still be approxi-
mated by a polynomial expansion in ðmϕtÞ [48]. The
sensitivity in this region is limited by the simultaneous
fitting to pulsar spin frequency derivatives [63,64]. PTAs
are only sensitive to the ðmϕtÞ3 term, as the first terms in the
expansion are degenerate with the timing model [65].
However, since the expected amplitude Ψc of an ULDM
candidate increases as its mass decreases, we can still
obtain competitive constraints at low frequency. While, in
principle, our analysis could be pushed to even lower
masses [66], we choose to focus on the region mϕ ≳
10−24 eV to comply with the aforementioned CMB
bounds. We find that the significant improvement in
sensitivity to ULDM at low frequencies arises thanks to

the larger data span of EPTA DR2, in accordance with the
theoretical sensitivity scaling proposed in Eq. (13) of
Ref. [66]. In particular, because of the longer data span,
we expect EPTA DR2 limits to be better than NANOGrav
[67] ones by a factor of roughly ∼3.6, which is in agree-
ment with what observed. At high frequencies, we find that
the advantage of the long timing baseline compared to
NANOGrav diminishes, also in accordance with the scal-
ing, as pulsar white noise levels become more important.
We also performed an identical analysis of the 10-year
subset of EPTA DR2 [50,52], as well as of the MeerTime
data [68], which yield less stringent upper limits in agree-
ment with the scaling. For comparison, the bounds in both
the correlated and uncorrelated limit for the 10-year subset
of the EPTA, shown in Fig. 22 in Ref. [42], appear at the
level of the pulsar-correlated limit in Fig. 1 of this Letter.
In the following, we clarify some specific aspects of our

results. First, we notice that a similar analysis has been
done by the North American Nanohertz Observatory for
Gravitational Waves (NANOGrav) Collaboration [67].
There, the upper limits provided in the correlated and
uncorrelated scenarios differ at low frequency. This can be
understood by noticing that the correlated limit of
NANOGrav corresponds to our pulsar-correlated limit.
However, in the low mass limit of Fig. 1, the pulsars,
the Earth and the stellar and gaseous tracers used for
rotation curves estimates lie well within the area spanned
by the coherence length; thus, one can only measure the
combination Ψ0

c ¼ Ψcϕ̂
2, which represents the realization

of DM in our Galaxy. Therefore, we remove the ϕ̂2
E ¼

ϕ̂2
P ≡ ϕ̂2 parameter in the correlated limit, as it can be

FIG. 1. Upper limits on ULDM, and, namely, on the dimensionless amplitude (Ψc, left panel) and the ULDM fraction of the local
DM density ρDM ¼ 0.4 GeV=cm3 (ρϕ=ρDM, right panel), at 95% credibility. The bottom horizontal axes show the ULDM particle
mass, whereas the top horizontal axes show the equivalent oscillation frequency of the scalar field. The upper limits from previous
searches [39,40] are shown for comparison. As a reference, we highlight the frequency T−1

obs. In the right panel, we zoom in on the
excluded ULDM masses. The horizontal dotted line represents the value of ρϕ that would saturate the local DM density. Notice that
based on our results ULDM particles with mass −24.0 < log10ðmϕ=eVÞ < −23.7 can only make up at most 30%–40% of the total DM
energy density, while particles with mass −23.7 < log10ðmϕ=eVÞ < −23.3 can contribute at most up to ∼70%.
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accounted for by a redefinition of Ψc. Fitting for Ψc and ϕ̂
2

separately, instead, introduces an additional uncertainty,
which leads our pulsar-correlated analysis to produce a
similar mismatch as the one found in Ref. [67], as shown in
Fig. 1. Second, Fig. 1 hints at a steep increase in the upper
limits atmϕ ≳ 10−23.2 eV. In fact, we report the presence of
excess signal power on top of the common red noise
process, corresponding to a mass of mϕ ≃ 10−23 eV and an
amplitude of Ψc ≃ 6 × 10−14 or, equivalently, a density of
ρϕ ¼ 90 GeV=cm3. At face value, this excess is not
compatible with an ULDM candidate, as the corresponding
density is outside the local DM measurement uncertainties
[43–46]. Moreover, such a mass would be in tension with
astrophysical bounds, as extensively discussed in the
introduction [27,29–35]. Anyway, the Bayesian odds ratio
suggests that it is still consistent with noise (lnB ∼ 0.1). We
find a similar excess in the analysis of 10-yr subset of the
EPTA DR2 [42]. Moreover, the boson mass corresponding
to the excess also matches the frequency of the continuous
gravitational wave (CGW) candidate studied in [69]. This
motivates further investigations as part of the International
Pulsar Timing Array [70].
Conclusions.—ULDM is a theoretically motivated para-

digm that may alleviate the small-scale crisis of structure
formation. Here, we focused on the most robust scenario, in
which ULDM features only gravitational interactions.
These interactions produce a periodic oscillation in the
TOAs of the radio beams emitted by pulsars, which can
then be collected in PTA telescopes. PTAs stand out as
excellent laboratories to test the effects of ULDM in the
mass range mϕ ∼ ½10−24 eV; 10−22 eV�. In this work, we
showed that PTAs constrain the presence of ULDM below a
few tenths of the observed DM abundance in the mass
range mϕ∼ ½10−24 eV;10−23.3 eV�. Therefore, in this range,
ULDM cannot constitute 100% of the observed DM.
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