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Abstract

Epstein-Barr virus (EBV) is best known for infection of B cells, in which it usually establishes

an asymptomatic lifelong infection, but is also associated with the development of multiple B

cell lymphomas. EBV also infects epithelial cells and is associated with all cases of undiffer-

entiated nasopharyngeal carcinoma (NPC). EBV is etiologically linked with at least 8% of

gastric cancer (EBVaGC) that comprises a genetically and epigenetically distinct subset of

GC. Although we have a very good understanding of B cell entry and lymphomagenesis, the

sequence of events leading to EBVaGC remains poorly understood. Recently, ephrin recep-

tor A2 (EPHA2) was proposed as the epithelial cell receptor on human cancer cell lines.

Although we confirm some of these results, we demonstrate that EBV does not infect

healthy adult stem cell-derived gastric organoids. In matched pairs of normal and cancer-

derived organoids from the same patient, EBV only reproducibly infected the cancer orga-

noids. While there was no clear pattern of differential expression between normal and can-

cer organoids for EPHA2 at the RNA and protein level, the subcellular location of the protein

differed markedly. Confocal microscopy showed EPHA2 localization at the cell-cell junctions

in primary cells, but not in cancer cell lines. Furthermore, histologic analysis of patient tissue

revealed the absence of EBV in healthy epithelium and presence of EBV in epithelial cells

from inflamed tissue. These data suggest that the EPHA2 receptor is not accessible to EBV

on healthy gastric epithelial cells with intact cell-cell contacts, but either this or another, yet

to be identified receptor may become accessible following cellular changes induced by

inflammation or transformation, rendering changes in the cellular architecture an essential

prerequisite to EBV infection.
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K, Niklas C, Kayisoglu Ö, et al. (2021) Ephrin

receptor A2, the epithelial receptor for Epstein-Barr

virus entry, is not available for efficient infection in

human gastric organoids. PLoS Pathog 17(2):

e1009210. https://doi.org/10.1371/journal.

ppat.1009210

Editor: Zhen Lin, Tulane University School of

Medicine, UNITED STATES

Received: July 17, 2020

Accepted: December 2, 2020

Published: February 17, 2021

Copyright: © 2021 Wallaschek et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files.

Funding: This study was funded by the University

of Wuerzburg ZINF Young Investigator group to S.

B., the Deutsche Forschungsgemeinschaft (DFG

GRK 2157); 3D Tissue Models for Studying

Microbial Infections by Human Pathogens, Project

10, to S.B.); by a fellowship by the Peter und Traudl

Engelhorn Stiftung to N.W., an EMBO Short term

https://orcid.org/0000-0003-1296-730X
https://orcid.org/0000-0002-0946-1941
https://orcid.org/0000-0002-5491-6394
https://orcid.org/0000-0001-7777-0909
https://orcid.org/0000-0002-7689-0631
https://orcid.org/0000-0003-2493-8282
https://doi.org/10.1371/journal.ppat.1009210
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1009210&domain=pdf&date_stamp=2021-03-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1009210&domain=pdf&date_stamp=2021-03-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1009210&domain=pdf&date_stamp=2021-03-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1009210&domain=pdf&date_stamp=2021-03-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1009210&domain=pdf&date_stamp=2021-03-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1009210&domain=pdf&date_stamp=2021-03-05
https://doi.org/10.1371/journal.ppat.1009210
https://doi.org/10.1371/journal.ppat.1009210
http://creativecommons.org/licenses/by/4.0/


Author summary

Epstein-Barr virus (EBV) is associated with malignancies of lymphoid and epithelial cell

lineages, including gastric cancer (GC). Although EBV is only associated with up to 10%

of GC, this unique subset is genetically and epigenetically distinct from other forms of

GC. However, the sequence of events leading to EBV-associated GC (EBVaGC) remains

unclear.

Ephrin receptor A2 (EPHA2) was identified as a receptor for EBV entry into epithelial

cancer cell lines, yet the physiological relevance of its role in infection of healthy gastric

epithelium was not explored. Using human adult healthy stem cell-derived gastric orga-

noids, microscopy showed the EPHA2 receptor was strictly localized to cell-cell junctions

and therefore inaccessible to EBV, resulting in poor infection. In contrast, EPHA2 expres-

sion was not confined to cell-cell junctions in cancer-derived organoids, rendering it

accessible to EBV. Correspondingly, these organoids were more readily infected.

Although EBV was not detected in healthy gastric epithelial tissue, immunohistochemical

analysis identified EBV in inflamed epithelium. These results suggest viral entry requires

initial changes to the gastric epithelium, likely induced by inflammation, to expose the

virus receptor and enable efficient infection.

Introduction

Epstein-Barr virus (EBV) is a gammaherpesvirus that infects more than 90% of the world’s

population. While the virus is particularly well-known to infect B cells, causing infectious

mononucleosis, Burkitt and Hodgkin lymphoma [1], it also infects epithelial cells and is associ-

ated with nasopharyngeal carcinoma and gastric cancer (GC) [2].

EBV-associated gastric cancer (EBVaGC) represents 8–10% of all GC cases worldwide,

accounting for up to 80,000 cases per year [3,4]. EBVaGC was classified as one of four molecu-

larly defined subtypes of GC, characterized by excessive cellular genome hypermethylation,

frequent presence of PIK3CA mutations, overexpression of PD-L1/-L2 and CDKN2A silencing

[3]. A causal role of EBV in this particular subtype of GC is expected due to the presence and

clonality of the latent EBV episome in every cancer cell but not in surrounding tissue [5–10].

However, the exact sequence of events leading to EBVaGC is still a conundrum. Specifically, it

is unclear whether viral entry into healthy cells initiates the pathogenic changes, or whether

host cell modifications must precede the infection.

Virus entry into the main target cells is mediated by independent mechanisms; B cell infec-

tion requires the initial binding of the viral glycoproteins gp350 and gp42 to the B cell surface

CD21 and HLA class II respectively (reviewed in [11]), followed by fusion mediated by viral

envelope glycoproteins gH/gL and gB. In contrast, epithelial cell entry does not require gp350

or gp42. Instead, binding and fusion is directly mediated by gH/gL and gB and requires several

entry receptors expressed on the epithelial cell surface, most prominently the ephrin receptor

A2 (EPHA2) [11–13]. As members of the superfamily of transmembrane receptor tyrosine

kinases, EPH receptors mediate short-distance cell-cell communication between neighboring

cells upon binding of their ephrin ligands. EPH receptor-ephrin signaling plays a pivotal role

during development but also in other cellular processes like adult stem cells niches, synaptic

plasticity or bone homeostasis (reviewed in [14]). In primary epithelial cells, the location of

EPH receptors is highly organized and restricted to cell-cell contacts [15,16]. It is unclear

whether the receptor, tightly engaged in the junctions under homeostasis, is available for infec-

tion in healthy epithelium. Experimental studies of such questions have, however, been
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hampered due to the lack of a suitable primary cell model. Since the virus is strictly species-

specific, there is no animal model [17] and most of the available studies have been performed

on cancer cell lines. However, cancer cell lines markedly differ from in vivo tissue because they

have accumulated mutations which alter cell organization, cell-cell contacts and signaling

pathways. Here we use gastric adult stem cell-derived organoids [18,19] to analyze EBV infec-

tion of primary epithelial cells. In this culture system, human tissue-resident adult stem cells

are seeded in an extracellular matrix and supplied with a mixture of growth factors. Stem cells

proliferate and daughter cells differentiate to form 3-dimensional (3D) cell cultures, the orga-

noids. To date, organoids can be grown from a vast variety of organs including the small intes-

tine, liver, brain, prostate and stomach–each resembling the primary tissue they are derived

from. They allow the study of a range of in vivo biological processes, including studies on viral

and bacterial infection [20]. Of note, organoids have allowed the study of previously uncultur-

able norovirus [21,22].

Our results support a role for EPHA2 in EBV entry into conventional cancer cell lines, as

demonstrated previously. In contrast, organoids from normal, non-transformed tissue, are

protected from viral infection, despite the expression of EPHA2. Subcellular localization analy-

sis suggests that in normal organoids, EPHA2 is restricted to the cell-cell junctions which likely

renders the protein inaccessible for the virus. Taken together, our results support the theory

that cellular changes, probably in the cell architecture, are one prerequisite for infection.

Results

Upregulated EPHA2 expression results in more efficient EBV infection in

epithelial cell lines

Recent reports demonstrated the importance of EPHA2 expression for EBV infection in con-

ventional cancer cell lines [12,13]. To enable a comparison of infection in organoids and cell

lines, we first validated the infection in cell lines. Cell lines derived from the lymphocyte line-

age—Akata, Raji and Elijah—hardly expressed EPHA2, whereas three epithelial cell lines

tested– 293, AdAH and AGS–highly expressed the receptor on RNA and protein level (Fig 1A

and 1B), confirming published data [12]. Using B cell-mediated transfer infection with Akata

B cells containing a GFP-expressing EBV [23], the infection efficiency of the cell lines ranged

from 6–26%, with highest infection rates in AdAH cells (Fig 1C). EPHA2 expression increased

approximately three-fold after addition of 10 ng/ml epidermal growth factor (EGF) for 24 h

and could not be further enhanced with excess of EGF (Fig 1D). The percentage of EBV-

infected epithelial cells was doubled in EGF-pretreated AdAH cells compared to control cells

(Fig 1E and 1F), corroborating previous results [13]. EPHA2 overexpression (Fig 1G and 1H)

resulted in ~two-fold higher EBV infection efficiency of AdAH cells (Fig 1I and 1J). Blocking

of EPHA2 receptor either with EPHA2 ligand or an antibody reduced, but did not abolish the

infection (Fig 1K and 1L).

EPHA2 is expressed heterogeneously in primary gastric epithelial cells

To evaluate, whether EPHA2 could also allow infection of EBV into primary cells, we exam-

ined expression of EPHA2 in organoids. Total RNA sequencing of six human gastric organoid

lines [24] showed prominent expression of EPHA2 and other EPHA receptors (Fig 2A). RT-

qPCR of several different organoid lines demonstrated that EPHA2 expression levels varied in

a patient-dependent manner but overall resided in the same range as for epithelial cell lines

(Fig 2B). Organoid cultures grow under culture conditions that require 50 ng/ml EGF in the

medium. Addition of higher EGF concentrations did not influence EPHA2 expression

PLOS PATHOGENS Importance of EPHA2 receptor localization for EBV infection efficiency
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Fig 1. Increased EPHA2 expression leads to higher EBV infection efficiency in cell lines. (A and B) EPHA2 mRNA was measured by RT-qPCR (A)

and protein quantified by flow cytometry (B). (C) At 4 dpi, EBV transfer-infected cells were stained with CD45-APC antibody and analyzed by flow

cytometry. (D-J) After EGF treatment or lentiviral overexpression of EPHA2 in AdAH cells, EPHA2 expression was measured by RT-qPCR (D and G)

or flow cytometry (H) and EBV transfer-infection efficiency was evaluated by fluorescence microscopy (E and J) and flow cytometry (F and I). (K and

L) AdAH cells were incubated with EPHA2 ligand ephrinA1 or anti-EPHA2 antibody, infected by transfer infection and infected epithelial cells were

measured by flow cytometry (K) and fluorescence microscopy (L). (A), (C), (D), (F), (G), (I) and (K) represent means with SD from three independent

experiments. RT-qPCR results in (A), (D) and (G) were normalized to GAPDH expression and then to Akata B cells, sample without EGF or native

cells, respectively. (E), (J), (L) show representative images from three independent experiments. Scale in E and L: 400 μm. Scale in J: 200 μm.

https://doi.org/10.1371/journal.ppat.1009210.g001
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(Fig 2C). Taken together, EPHA2 is expressed in primary gastric epithelial cells at a compara-

ble level as in cell lines.

EPHA2 expression is not sufficient for EBV infection of human gastric

organoids

Since the epithelial entry receptor EPHA2 is expressed in organoids, we assessed EBV infection

efficiency in cells from human gastric organoids. For infection, cells from organoids were

seeded in monolayers and infected via B cell-mediated transfer as described above for AdAH

cells (Fig 3A). At 4–6 dpi fluorescence microscopy displayed a number of GFP-positive cells

(Fig 3B). However, control staining of CD45, a lymphocyte marker, showed that most GFP-

positive (= EBV-positive) cells observed were remaining donor B cells (Fig 3C lower panel)

and only single CD45-negative, GFP-positive epithelial cells could be detected (Fig 3C upper

panel). To quantify EBV infection efficiency, we performed flow cytometry analysis from

infected organoid-derived monolayers (Fig 3D). Staining with an anti-CD45 antibody con-

firmed that most GFP-positive cells were donor B cells (Quadrant 3) and less than 0.2% of cells

could be detected in Quadrant 4, displaying newly infected epithelial cells (Fig 3E). Infection

with cell-free virus yielded even lower numbers of infected cells (S1A Fig). To address the pos-

sibility that infection may be influenced by growth of the cells in 2D versus 3D, or infection via

the apical versus the basolateral surface, we also performed microinjection of either cell-free

virus, or donor B cells either to the apical or the basolateral side of the 3D organoids. Similar

to that observed in 2D, neither parameter resulted in increased infection efficiency (S1B and

S1C Fig). In summary, our data suggests that in organoids, expression of EPHA2 is not suffi-

cient for EBV infection.

Efficient EBV infection of human gastric cancer organoids

Organoids can also be generated from gastric cancer tissue, enabling paired culturing of nor-

mal and cancer organoids from the same patient [19]. Notably, cancer organoids also display

the cellular diversity of the patients’ tumor [25] and biobanks of gastric cancer organoids

Fig 2. EPHA2 is highly expressed in human gastric organoids. (A) Normalized gene counts of EPHA receptors are presented as means of six

independent patient-derived organoids with SD. Data were obtained from total RNA-sequencing analysis, n = 3. (B) EPHA2 expression of different

patient-derived organoid lines was measured by RT-qPCR. Results were normalized to GAPDH expression and then to #1 organoids. #1–61 refers to

patient IDs. (C) After EGF treatment of organoids, EPHA2 expression was measured by RT-qPCR. Results represent means with SD from three

independent experiments. Results were normalized to GAPDH expression and then to 50 ng/ml EGF.

https://doi.org/10.1371/journal.ppat.1009210.g002
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contain all subtypes of cancers [26–28]. To explore the possibility to infect cancer organoids,

we tested three EBV-negative cancer organoid lines (Fig 4A).

Flow cytometry quantification demonstrated 1–9% of infected cells in the cancer organoids

and an up to 70-fold increase of infection comparing normal organoids and cancer organoids

(Fig 4B). Immunofluorescence using control staining for CD45 to exclude remaining B-cells

also confirmed infection in epithelial cells (Fig 4C). Cancer organoids were also susceptible to

infection with cell-free virus, although the efficiency was lower than with B-cell transfer, as

expected (S2 Fig). Sorted GFP/EBV-positive cancer organoid cells could be selected using a

previously introduced neomycin resistance cassette in the EBV bacterial artificial chromosome

Fig 3. Despite comparable EPHA2 expression levels in organoids vs. epithelial cell lines there is no efficient EBV infection in human gastric

organoids. (A) Scheme depicting B cell-mediated transfer infection of organoid-derived monolayers. (B) EBV transfer-infected organoid-derived

monolayers were checked at 6 dpi by fluorescence microscopy. Scale: 200 μm. Representative image of at least three independent experiments. (C) At 6

dpi immunofluorescence was performed on EBV transfer-infected organoid-derived monolayers for epithelial marker Occludin, GFP-expressing EBV

and lymphocyte marker CD45. DNA was counterstained with Hoechst. (I) depicts close-up of infected primary epithelial/organoid cell (GFP+,

Occludin+ and CD45-). (II) depicts close-up of infected remaining B cells (GFP+, CD45+). Scale: 200 μm. Representative images of three independent

experiments. (D) Flow cytometry gating strategy for evaluation of EBV infection efficiency. Left plot depicts FSC/SSC with gated cell population in P1.

Middle plot depicts FSC/PI with gated viable cells in R1. Right plot depicts CD45-APC/EBV-GFP displaying localization of different cell populations.

Q1: CD45+/GFP- = uninfected B cells, Q2: CD45+/GFP+ = infected B cells, Q3: CD45-/GFP- = uninfected epithelial cells and Q4: CD45-/GFP+ =

infected epithelial cells. (E) At 4–6 dpi, EBV transfer-infected organoid-derived monolayers from different donors were analyzed for EBV infection rate

by flow cytometry. Results are shown as means of three independent experiments with SD. #1 and 42 refers to patient IDs.

https://doi.org/10.1371/journal.ppat.1009210.g003
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Fig 4. EBV can infect gastric cancer organoids. (A) Brightfield microscopy of normal and cancer organoids. #1–72 refers to patient IDs. Scale:

1000 μm. (B) At 6 dpi, EBV transfer-infected organoid-derived monolayers (normal and GC) were analyzed for EBV infection rate by flow cytometry.

Results are shown as means of three independent experiments with SD. (C) At 4–6 dpi immunofluorescence was performed on EBV transfer-infected

organoid-derived monolayers for epithelial marker Cytokeratin, GFP-expressing EBV and lymphocyte marker CD45. DNA was counterstained with

Hoechst. Scale: 25 μm. Representative images of three independent experiments. (D) EBV transfer-infected #30 cancer organoid cells were FACS-

sorted, clonally expanded and monitored by fluorescence microscopy. Scale: 1000 μm. (E) EBER in situ hybridization, detecting small non-coding RNA

of EBV was performed on embedded clonal EBV+ or EBV- cancer organoids. (F) PCR analysis for the presence of EBV DNA (EBER2, EBNA1, gp220
and LMP1) in clonal EBV+ or EBV- cancer organoids. APOB was used as eukaryotic control gene. (G) RT-qPCR was performed on RNA extracted

PLOS PATHOGENS Importance of EPHA2 receptor localization for EBV infection efficiency
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[29]. After sort and 14 d expansion, cells were selected for 7 d in neomycin, picked and thereaf-

ter grown without selection pressure for over 6 months. In contrast to previous models using

ex vivo cell lines or primary cells where the virus genome was lost over time [30–32], we

obtained persistent infection (Fig 4D). EBER in situ hybridization initially confirmed the pres-

ence of the EBV small non-coding RNAs (EBERs) in this clonal line (Fig 4E). Conventional

PCR was used to detect different EBV genes (Fig 4F). RT-qPCR confirmed EBV had estab-

lished latent gene expression. This experimentally infected cancer organoid line exhibited

mRNA expression of the virus maintenance protein EBNA1 together with expression of the

latent membrane proteins LMP1 and 2a. However, the cells did not express the viral EBNA2,

3a, 3b or 3c mRNA, or indeed significant levels of mRNA of any viral lytic proteins, including

BZLF1 (Fig 4G). These data are consistent with the infected cells having a latency II phenotype.

Taken together, in contrast to normal organoids, the cancer-derived organoids were able to

maintain the viral genome and establish a long-term latent infection.

Distinct localization pattern of EPHA2 in normal organoids versus cell

lines and cancer organoids

Blocking of EPHA2 either by ligand ephrinA1 or anti-EPHA2 antibodies reduced the infection

in cancer organoids similar to that observed in cancer cell lines (Fig 5A, compare with Fig 1K),

supporting a role for EPHA2 in EBV infection. Therefore, to analyze the molecular mechanism

of the observed differences in EBV infection efficiency between non-transformed and trans-

formed cells, we turned again to EPHA2. The differences in the EPHA2 mRNA expression and

EPHA2 surface protein level were heterogeneous (Fig 5B and 5C). All normal organoid lines

expressed about half of mRNA levels detected in the AdAH cell line. Cancer organoid lines

expressed either similar, about 7-fold lower, or 2- to 3-fold higher mRNA levels as AdAH. We

reasoned that if expression levels alone would influence infection, all cancer organoids would

have higher expression. Because this was not the case, we searched for an alternative explanation.

Previous studies suggested that the localization of EPHA2 protein varies between epithelial

cell lines and primary cells [15], pointing to the possibility that although expressed at similar

levels, the protein may not be accessible for infection in primary cells compared to trans-

formed cells. To test this hypothesis, we performed immunofluorescence (IF) analysis for

EPHA2. In primary cells EPHA2 was located exclusively at sites of cell-cell contact (Fig 5D)

and co-localized with the adherens junction marker E-cadherin but not apical actin filaments

(S3 Fig). Similarly, in healthy tissue and 3D organoids EPHA2 was localized predominantly at

the cell-cell junctions (S4 Fig).

In contrast, in cancer-derived organoids as well as cell lines, EPHA2 was not restricted to

cell-cell contacts but also present at apical and basal sides of the cells, implying that this could

possibly be an entry site (Fig 5E). These results support the hypothesis that if EPHA2 is an

entry receptor, EBV might be unable to access it in non-transformed cells due to its seques-

tered localization (Fig 5F).

Number of EBV-positive cells in vivo is dependent on inflammation status

of epithelium

To evaluate EBV infection in vivo in gastric tissue, we performed EBER in situ hybridization.

Results illustrated that hardly any EBV-positive cells could be found in healthy gastric

from the infected #30 cancer organoid line. The viral gene expression profile included expression of EBNA1, LMP1 and LMP2a plus the non-coding

EBERs.

https://doi.org/10.1371/journal.ppat.1009210.g004
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Fig 5. Localization of EPHA2 in GC organoid-derived monolayers resembles cancer cell lines and is different to normal organoid-derived

monolayers. (A) Organoid-derived monolayers of two patients were incubated with EPHA2 ligand ephrinA1 or anti-EPHA2 antibody, infected by

transfer infection and infected epithelial cells were measured by flow cytometry. (B) EPHA2 expression of cell lines, normal organoids and GC

organoids was measured by RT-qPCR. Results are shown as means with SD from three independent experiments. Results were normalized to GAPDH
expression and then to the #1 normal organoids as control. #1–72 refers to patient IDs. (C) EPHA2 surface protein expression was measured by flow

cytometry. Plots are representative of three independent experiments. (D) and (E) Immunofluorescence was performed for EPHA2. DNA was

PLOS PATHOGENS Importance of EPHA2 receptor localization for EBV infection efficiency
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epithelium. However, EBV-positive epithelial cells were abundantly present in inflamed gastric

tissue. As expected and corroborating previous reports, in EBVaGC, every cell stained positive

for EBV (Fig 6A). Taken together, we conclude that healthy gastric epithelium is unlikely to be

infected with EBV, despite the presence of EPHA2. Our data suggests that prior changes in the

epithelium could be necessary to render EPHA2 receptor accessible or to promote other cellu-

lar changes to allow EBV to infect primary gastric epithelial cells (Fig 6B).

Discussion

EBVaGC accounts for over 8% of all GC cases [3]. The presence of a monoclonal virus genome

in gastric epithelium from patients with GC as well as pre-malignant disease stages including

chronic atrophic gastritis, but not healthy tissue [33], implies a causal role for EBV in the path-

ogenesis of gastric carcinoma. Yet, our understanding of how EBV initially accesses the gastric

epithelium and establishes a persistent infection to drive the malignant changes in these cells

remains poor.

In 2018, two independent papers determined EPHA2 as the EBV entry receptor in a variety

of cancer cell lines including the gastric adenocarcinoma epithelial cell line AGS [12] and

the nasopharyngeal carcinoma cell lines CNE1, CNE2 and HNE1 [13]. In these cells, EBV

counterstained with Hoechst. Orthogonal view of the respective picture is depicted on the right. For separate channels, see S1 Fig Scale: 25 μm. (F)

Scheme depicting localization and accessibility of EPHA2 for EBV entry in normal versus cancer human gastric organoid-derived monolayers.

https://doi.org/10.1371/journal.ppat.1009210.g005

Fig 6. Efficient EBV infection requires “pre-damaged” epithelium. (A) EBER in situ hybridization was performed in embedded tissue detecting small

non-coding RNA of EBV. Additional H&E staining was performed. Enlarged images on the right. (B) Working model for EBVaGC development.

Genetic mutations and/or chronic inflammation, for example caused by chronic infection with the gastric pathogen Helicobacter pylori (H. pylori), pre-

damage the normal gastric epithelium, which thus allows for more efficient EBV infection mediated by infiltrating infected B cells and subsequent cell

transformation resulting in carcinogenesis.

https://doi.org/10.1371/journal.ppat.1009210.g006
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internalization and fusion was shown to be triggered by an interplay between EPHA2 and the

viral entry glycoproteins gH/gL and gB. Interestingly, EPHA2 had likewise been demonstrated

to function as an entry receptor into epithelial and endothelial cells for the Kaposi’s sarcoma-

associated herpesvirus (KSHV), the second human γ-herpesvirus besides EBV [34]. Again,

entry is mediated by the highly conserved herpesvirus glycoproteins gH/gL and their interac-

tion triggers EPHA2 phosphorylation and endocytosis of KSHV [35–37].

Using a similar set of epithelial cell lines, we confirmed that increased EPHA2 expression

resulted in increased EBV infection, and correspondingly decreased EPHA2 accessibility due

to ligand binding or blocking antibodies to EPHA2 resulted in decreased EBV infection. The

range of effects that we observed (about 50% reduction of infection by blocking) matched the

effects seen with these specific reagents in the published experiments. More efficient reagents

may further increase the observed effects as published [12,13].

Also, although previously published experiments used cell-free virus, we used infection

mediated by transfer from lytic B cells. It is possible that the dependence on EPHA2 may be

reduced when virus is directly transferred in this manner, implying transfer infection may

require additional receptors, such as integrins [38]. This alludes to the physiological relevance

of transfer infection of epithelial cells. EPHA2 receptor is upregulated by inflammatory cyto-

kines [39] and has also been shown to play a role in the recruitment of leukocytes to the site of

inflammation [39–41]. Similarly, certain integrins are activated by inflammatory cytokines

and also aid the recruitment of leukocytes. This suggests EBV-infected B cells (or lytic plasma

cells) may themselves be recruited to sites of inflammation, aided by EPHA2 whilst making

use of its expression to enter the epithelial cells. Indeed, such B cells are readily found in

regions of intestinal inflammation such as inflammatory bowel disease and ulcerative colitis

[42,43]. It has also been suggested that chronic inflammation could render epithelial cells sen-

sitive to EBV infection (reviewed in [44–46]). Correspondingly, we identified EBV-infected

epithelial cells in inflamed gastric tissue. Together, our data supports a function for EPHA2,

but also points to the requirement for another receptor(s), such as integrins or another, yet

unidentified receptor.

Our results in organoids indicate that in healthy gastric epithelial cells EPHA2 is located

predominantly within the cell-cell junctions. This suggests that other events must precede the

infection to allow accessibility of EPHA2 such as chronic inflammation or tissue damage

which is known to alter the localization/expression of cellular receptors. However, our results

do highlight that EBV infection of healthy gastric epithelial cells is likely to be an extremely

rare event, which is unlikely to result in the establishment of a persistent latent infection.

Generally, EPHA2 is highly expressed in epithelial cells [47]. The role of the EPH system in

cancer is complex. Up- as well as down-regulation of EPH expression had been reported in the

literature (reviewed in [48,49]). Because the results from cancer cell lines indicated that expres-

sion levels of EPHA2 influenced infection—a two-fold to five-fold increase of expression

resulted in double the numbers of infected cells—we compared the expression levels in cancer

cell lines and organoids. Cancer organoids were infected with strikingly higher efficiency than

the normal lines. In line with this, EBER in situ hybridization studies showed a lack of EBV

infection of non-malignant epithelial cells [6,48–50]. However, comparing cancer organoid

lines from three patients, expression levels of EPHA2 did not fully mirror infectivity, and one

cancer organoid line with very low expression level of EPHA2 was also infectable. This indi-

cates, that additional factors other than mere expression of EPHA2 may be affecting EBV

entry into epithelium.

One of the major differences between normal and transformed epithelium is the changes in

cell-cell junctions triggered by epithelial to mesenchymal transition, whereby E-cadherin

expression, amongst other junctional proteins, is downregulated resulting in a loss of polarity.
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Indeed, downregulation of E-cadherin has been observed in tumors of epithelial origin

(reviewed in [6,50–52]), EBV-infected NPC [53], GC [54] and EBVaGC in particular [55]. E-

cadherin and its associated complex dictates both the polarity and the motility of epithelial

cells [56] and importantly, E-cadherin regulates the function and localization of EPHA2

[15,57]. Thus, a downregulation in E-cadherin expression might be expected to result in an

altered localization of EPHA2. Indeed, EPHA2 exhibited a striking alteration in its localization

on the cancer organoids and cell lines, exhibiting diffuse expression rather than being

restricted to cell-cell junctions, as previously reported for transformed cells [15,57,58].

In contrast to the transformed cells, our normal organoids exhibited EPHA2 localization

predominantly to cell-cell junctions [59,60] and EPHA2 co-localized with the prominent adhe-

rens junction marker E-cadherin [61,62], confirming earlier publications [15,16]. These results

indicate that under physiologic conditions EBV infection of normal healthy epithelium may be

limited by the inaccessibility of the entry receptor located within the cell-cell junctions. Other

viruses such as adenovirus, coxsackie B virus or herpes simplex virus likewise use receptors in

cell-cell junctions. The receptors were shown to be inaccessible to the virus unless junctions

were disrupted (reviewed in [63]). Thus, we propose inflammation or pre-neoplastic changes

as a prerequisite to render gastric epithelial cells susceptible to infection with EBV.

Taken together, we propose that the presence of EPHA2 on primary gastric epithelial cells

in itself is not sufficient for efficient EBV infection. Other key drivers such as inflammation or

somatic mutations likely changing the cell architecture are required to enable EBV infection,

persistence and establishment of latency. The conceivable underlying mechanism might be a

shift in the localization and hence accessibility of EPHA2 or another–yet to be identified—

receptor. Subsequently, oncogenic hits induced by the virus could cooperate with previous

events to accomplish malignant transformation towards EBVaGC.

Materials and methods

A detailed description of further materials and methods can be found in the online S1

Methods.

Ethics statement

Our study was reviewed by the ethical committee of the University Clinic, Wuerzburg,

approval # 16/36. Human gastric tissue for the University of Birmingham study were obtained

from the Human Biomaterials Resource Centre, Human Tissue Authority License number

12358, under the Research Tissue Bank ethical approval 20/NW/0001.

Cell lines

B cell (EBV+ Akata [29], Raji [64,65] and Elijah [66,67]) and epithelial cell lines (AdAH [23],

AGS (ATCC CRL 1739) and 293) were grown in RPMI 1640 (Sigma-Aldrich, R8758) supple-

mented with 10% fetal calf serum (FCS) (Merck Millipore, S0615/1109D) and 1% penicillin-

streptomycin (P/S) (Thermo Fisher Scientific, 15140122). For lentivirus production, 293FT

cells (Thermofisher Scientific, R70007) were cultured in DMEM high glucose (Gibco,

B1966021) with 10% FCS, 1% P/S, 2 mM L-glutamine (Gibco, 25030081) and 1 X MEM non-

essential aminoacid solution (Gibco, 11140050). EBV+ Akata cells contain the latent EBV bac-

terial artificial chromosome harboring a GFP and a neomycin resistance gene for selection

purposes [29]. Akata cells as well as 293FT cells were selected with 167 μg/ml and 500 μg/ml

G418 (Sigma-Aldrich, A1720), respectively. All cell lines were maintained in 5% CO2 at 37˚C

and were split twice a week.
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Patient-derived human gastric organoids from normal and cancer tissue

S1 Table contains a list of patient information. Human gastric organoids were generated from

isolated gastric glands to be maintained in culture as described previously [19,28] and kept at

37˚C, 5% CO2 in a humidified incubator. The medium (S2 Table) was changed every 2–3 d

and organoids were passaged 1:8 every 7–14 d.

For 2D cultures, organoids were mechanically disrupted and seeded as pieces or single cells

on conventional plastic (24- or 48-well plates) for infections or 8-well μ-slides for confocal

microscopy (IBIDI, 80826). Single cell suspension was generated by treating mechanically dis-

rupted organoids for 10 min with TrypLE Express (Gibco, 12605028) at 37˚C.

EBV B cell-mediated transfer infection

For B cell-mediated transfer infection, EBV+ Akata cells [29] were induced to activate the

virus lytic cycle using 10 mg/ml human immunoglobulin (IgG) (MP Biomedicals, 0855049)

for three days. In standard assays, 106 donor cells (induced Akata) were added to a ~ 80%-con-

fluent well of a 24-well plate that had been seeded 24 h before with 0.5–3.0 × 105 acceptor cells

in the case of cell lines. Organoids seeded in 2D monolayers were usually cultured for 7–14 d

until near-confluency before EBV transfer infection. After co-culturing for 24 h, donor cells

were removed from acceptor cells by vigorous washing; transfer infection rate was assayed 72–

96 h after the initiation of co-culture via fluorescence microscopy (Evos FL Imaging system)

and flow cytometry (BD Accuri™ C6 Flow Cytometer) via the incorporated green fluorescence

protein (GFP) gene in the EBV BAC. To differentiate between donor B cells and acceptor

epithelial cells, additional staining with an APC-labelled CD45 antibody (Invitrogen,

MHCD4505) was performed. Propidium iodide (PI) (Sigma Aldrich, P4864) staining was used

to exclude dead cells.

Immunofluorescence (IF)

For IF of 3D organoids, organoids in Matrigel were resuspended in 500 μl cell recovery solu-

tion (Thermo Fisher Scientific, 12648–010) with a widened pipette, transferred to falcon tube

and incubated for 45 min on ice until Matrigel was dissolved. For IF in 2D, dissociated gastric

organoids were seeded onto 8 well μ-slides (IBIDI, 80826) to form 2D monolayers for immu-

nofluorescence staining. Cells were grown for 7–14 d to reach approximately 90% confluency.

Fixation was performed with 4% PFA for 20 min at room temperature, washed three times

with PBS and permeabilized in 1 X PBS supplemented with 0.3% Triton-X, 1% DMSO and 1%

fresh BSA for 1 h. Stainings were performed with primary antibodies (Occludin: Santa Cruz

Biotechnology, sc-133256; CD45: Santa Cruz Biotechnology, sc-1178; EPHA2: Cell Signaling,

6997S; Pan-cytokeratin: Santa Cruz Biotechnology, sc-8018; E-cadherin: BD Bioscience,

610182) in 1 X PBS supplemented with 5% goat serum (Thermo Fisher Scientific, 31872) over-

night at 4˚C followed by Alexa Fluor (AF) 488 or AF647-conjugated secondary antibodies

(Cell Signaling) in 1 X PBS supplemented with 5% goat serum for 3 h at room temperature.

Actin filaments were stained with Phalloidin (Thermo Fisher Scientific, A22283) and DNA

was stained with Hoechst 33342. After washing three times with PBS, stained cells were visual-

ized using a confocal microscope (Leica, TC5 SP5 X).

RT-qPCR for EBV gene expression

Absolute quantification of EBV gene transcripts by RT-qPCR was performed as previously

described [68] and detailed in S1 Methods. All primer sequences are listed in S3 Table.
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Supporting information

S1 Methods. A detailed description of further materials and methods.

(PDF)

S1 Fig. EBV infects healthy gastric epithelial cells very inefficiently. (A) Organoid-derived

monolayers were infected with cell-free virus or by transfer infection. 1 dpi, EBV infection effi-

ciency was evaluated by flow cytometry. Bars represent means with SD of 16 experiments in

organoids derived from 6 patients. (B and C) Organoids were microinjected with EBV-posi-

tive, lytically induced Akata B cells or cell-free virus at the apical or basolateral side. (B) Illus-

tration and representative image of microinjected organoids. (C) At 4 dpi, EBV infection

efficiency was evaluated by flow cytometry. Data represent means with SD from two indepen-

dent experiments.

(PDF)

S2 Fig. B cell-mediated transfer infection more efficient than cell-free virus infection in

cell lines as well as organoids. At 4 dpi, EBV infection efficiency was evaluated by flow cytom-

etry (A) and fluorescence microscopy (B). (A) Data represent means with SD from two inde-

pendent experiments. (B) Representative images from two independent experiments. Scale:

400 μm. #30 and 72 refer to patient IDs.

(PDF)

S3 Fig. In normal but not cancer organoid-derived monolayers, EPHA2 co-localizes with

E-cadherin in cell-cell junctions. (A) Immunofluorescence was performed for EPHA2 and E-

cadherin. DNA was counterstained with Hoechst. Scale: 25 μm. (B) Co-localization analysis

for EPHA2 and E-cadherin was performed using ImageJ. Mander’s coefficients M1 and M2

with SD were calculated from four individual images (1). (C) Scheme depicting localization of

EPHA2 and E-cadherin in adherens junctions of normal human gastric organoids. AJ: adhe-

rens junction, TJ: tight junction. (D) Immunofluorescence was performed for EPHA2. DNA

was counterstained with Hoechst. Scale: 25 μm. (E) Immunofluorescence was performed for

EPHA2. Actin filaments were stained with Phalloidin, DNA was counterstained with Hoechst.

#1, 30, 71, 72 refers to patient IDs. Scale: 25 μm. Images in A and D are identical with images

shown in Fig 5C and 5D in the main manuscript. The separate display was chosen for space

reasons: The main manuscript contains the overlay of EPHA2 and DNA and the supplement

contains full display of separate channels.

(PDF)

S4 Fig. EPHA2 localizes to cell-cell junctions in normal 3D organoids as well as in gastric

tissue. (A) Immunofluorescence was performed for EPHA2 and cell-cell contact marker E-

cadherin. DNA and actin filament counterstaining with Hoechst and phalloidin respectively

indicate the orientation of the cells with the apical side facing the lumen of the organoid.

Images were taken on a confocal microscope and the 3D reconstruction was built by LAS soft-

ware (Leica). (B) Images of paraffin sections of healthy gastric mucosa or cancer tissue stained

for EPHA2. Scale: (A) 20 μm, (B) 10 μm.

(PDF)

S1 Table. Patient information for the organoid lines used in this study.

(PDF)

S2 Table. Organoid medium composition for human gastric organoids. ROCK inhibitor

was added only after the initial seeding and passaging of the organoids. For basal medium

(AD++), Advanced Dulbecco’s modified Eagle medium (DMEM)/F12 supplemented with 10
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mmol/l HEPES and GlutaMAX 1 X was used. CM: conditioned medium; inh.: inhibitor;

N-Ac: N-acetylcysteine; EGF: epidermal growth factor; FGF-10: fibroblast growth factor-10;

TGF-β: transforming growth factor-β; ROCK: Rho-associated coiled-coil forming protein

serine/threonine kinase.

(PDF)

S3 Table. Primer sequences.

(PDF)

S1 Data. Original data: Excel file with values behind means and standard deviation used to

build graphs.

(XLSX)

S2 Data. Original data: Image of the full gel shown in 4F.

(JPG)
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