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b
 Department of Mechanical Engineering, School of Engineering, University of 
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Abstract. It is well acknowledged that DfAM requires a comprehensive 
understanding of materials, processes and parameters, and the associated geometric 

opportunities and limitations. The holistic knowledge required for efficient DfAM 

poses a major challenge to the progression of industrial applications of additive 
manufacturing (AM). Whilst AM offers enhanced geometric freedom during the 

design process, the psychological inertia of long-standing subtractive approaches is 

retained in the design thinking of the engineering community and inherent in 
computer aided design (CAD). To create an axisymmetric form about a curved axis 

defined in 3D-space, the traditional method enabled by CAD is to define a centreline 

and/or a series of cross-sections. However, this process is constrained by the planar 
nature of the sketch function and can be highly time-consuming. This paper 

proposes a novel approach, using a mathematical framework that has proved useful 

in the modelling of living tissue, to enable the parametric design of axisymmetric 
forms. The mathematical methodologies will be presented as follows: a length-

polar-projection description of the centreline and specification of the axisymmetric 

cross-sections. This transdisciplinary approach was developed between the 
disciplines of mathematics, biology and engineering. As such, it offers a completely 

novel, more efficient and insightful process than current commercial approaches. 

The results of this study offer two contributions to research knowledge: time-
efficient, parametric generation of complex axisymmetric geometries defined in 3D 

and a process by which to upskill knowledge of the design engineer. 

Keywords. Additive Manufacturing, Digital Design, Transdisciplinary Engineering 

1. Introduction 

Additive manufacturing (AM) is key to the realisation of Industry 4.0 [1, 2], and is 

highlighted as a promising technology to reach global sustainability goals [3, 4]. Yet 

there are some well-acknowledged barriers to releasing the potential socioeconomic 

impact. Of these, design for additive manufacturing (DfAM), remains a persistent and 

ever-evolving challenge. Engineering design is a very broad discipline; it encompasses 

everything involved in the lifecycle of a product, from mechanical validation and 

materials through to the disposal. AM, as opposed to traditional manufacturing 

technologies such as machining, introduces even more parameters to an already complex 

design process. AM creates the material during manufacturing, and as such the geometric 

constraints during manufacture and mechanical properties are dependent on the AM 

technique, platform, material and the processing parameters. Combined with the rapid 

development of AM technologies, DfAM poses a significant and continual problem in 

the increased adoption of AM in industry. This issue is extensively reviewed in academic 
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literature, where many challenges have been identified or approached: fragmented 

software, psychological inertia in design thinking, propagation of the knowledge of 

capabilities and limitations, designing for specific advances such as multiple materials, 

and complex, computationally heavy geometry such as lattices. Essentially, whilst 

manufacturing technology proceeds at a rapid pace, the required advancements in theory, 

frameworks and software to support their implementation in industry lag behind.  

Computer-aided design (CAD) is the lynchpin of mechanical design. The software, 

which has been commercialised by several different companies, is very well-established 

in industry and engineering education. The approach is founded on the concept of 

extruding a form and then subtracting from it; synonymous with subtracting material 

from a stock of material. The functionalities enabled by CAD entrenches the concept of 

extruding and subtracting material into the digital interface which is central to the design 

process. AM, the process of fusing material into a 3D object point by point or layer by 

layer, is completely opposite to machining technologies. AM optimisation techniques 

(discussed in section 2.1) enable the design of organic shapes, which are associated with 

structures seen in nature. Further to this, Thomas-Seale et al. (2019) propose that the 

process of AM is analogous to growth [5]. This study seeks to implement the analogy, 

and outlines a novel method to define curve-based geometry, the manufacturing of which 

is enabled by AM. 

To fundamentally change how a form is created through a digital interface requires 

considering how the data of the geometry is represented. CAD represents geometry in a 

parametric manner, which means that it can be changed with respect to a parameter such 

as the length of an edge. The parametric representation of geometry is approached 

through mathematical equations. A transdisciplinary perspective was taken to implement 

the analogy between AM and growth, by fusing methodologies found in mathematical 

biology and engineering design. This research presents an adaptation of the mathematical 

equations of plant growth to represent axisymmetric forms in Euclidean space, to enable 

a more efficient, intuitive and user-informed approach to DfAM.  

2. Background 

2.1. Design for Additive Manufacturing 

The discipline of DfAM is so all encompassing that there are research studies aimed at 

categorising this knowledge. Wiberg et al. propose the overhead categories of system, 

part and process design [6]. The system focusses on the context of the application, the 

part encompasses geometry including optimisation, constraints and validation, and the 

process is the interface with physical manufacturing [6]. Studies that have analysed 

DfAM from an industrial perspective conclude that whilst AM presents opportunities, 

knowledge is derived from experience, with a focus on “printability” [7], which leads to 

fragmented knowledge [8]. Taborda et al., through analysis of review-based literature, 

also conclude a lack of exhaustivity in methodologies, and innovation in the products 

developed with them [9].  

Focussing on approaches that have developed through to end-use software; some 

academic endeavours have targeted very specific opportunities enabled by AM. Notable 

examples include Foundry [10] and voxel-based design [11], which utilise the multi-

material capabilities enabled by AM. Topology optimisation, a generalised term which 

describes the optimisation of a structure to a function(s) (e.g., weight or stiffness), 
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underpins various commercial software. Another prominent commercial technique is 

Generative Design (Autodesk Inc., San Francisco, CA, USA) [12], which uses artificial 

intelligence to create a broad range of solutions to satisfy a defined mechanical system 

[13]. Whilst these commercial software techniques offer increased efficiency, the 

increase in design space or creativity is enabled through automated methodologies (either 

through optimisation to a function(s), or artificial intelligence), the user’s involvement 

remains isolated to defining the inputs of the mechanical system. The creativity of the 

engineer is not utilised and so the knowledge of the engineer is not upskilled in “how” 

to DfAM. This constrains the efficient and creative application of DfAM to the 

accessibility of such automated software, which poses a socioeconomic barrier in terms 

of cost.  

2.2. A Transdisciplinary Approach  

The term “transdisciplinary”, whilst becoming more prevalent in academic literature, is 

still evolving in terms of definition, when compared to terms such as “interdisciplinary”. 

Research aimed at defining the term has focussed on presentations given at conferences 

[14, 15], concluding that the transcendence, integration and fusion of disciplines are key 

characteristics of transdisciplinary approaches. More specifically, this transcendence of 

disciplines is viewed as crucial to solving complex engineering problems, particularly in 

the context of digital manufacturing [16].   

To overcome the mirage of barriers that exist in progressing the efficiency and 

efficacy of DfAM, one of the biggest challenges is to change how engineers approach 

design and how they “think”. This psychological inertia, to think or problem-solve in the 

same way that you have been trained to [17], is compounded further by the nature of 

traditional CAD. To overcome such a multi-faceted problem, which bridges human 

perception and processing with respect to digital representation, a radically different 

approach is required. 

Bio-inspired design, whilst well-established from an engineering perspective for 

product design and materials [18, 19], is far less prevalent in manufacturing. Literature 

has highlighted the potential offered by mirroring biological processes in manufacturing 

[20], particularly in the context of the accelerated technologies of Industry 4.0. Yet, bio-

inspired manufacturing is an emerging area, which has seen relatively few applications. 

When considering replicating a biological process or function, there is a significant 

increase in complexity of implementation, when compared to replicating the geometry 

of a biological structure.  

This study utilises a transdisciplinary approach to transcend the barrier of 

implementation between a biological analogy and manufacturing. AM is defined as a 

process of joining material, usually layer upon layer [21], as such, it is analogous to the 

cell-by-cell process of growth [5]. Prior to any digital considerations, the representation 

of geometry is founded by the discipline of mathematics. To unlock the potential offered 

by this biological analogy, implementation was sought through the fundamental 

equations which define geometry. When modelling the growth of axisymmetric plant 

organs such as the root, a coordinate system known as body-fitted coordinates is far more 

useful than conventional systems such as the Cartesian or polar [22, 23]. Body-fitted 

coordinates generalise cylindrical polar coordinates: instead of a straight z-axis extending 

vertically, there is a curved �-axis fitted to the centreline of a solid body. At any particular 

value of �, the plane perpendicular to the centreline contains two more coordinates, 

similar to the radial and angular coordinates in the cylindrical polar system.  
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The approach presented in this study will adopt the same framework, to address 

some of the shortcomings of traditional CAD as discussed in Section 1. To define an 

axisymmetric structure in 3D, one first specifies a centreline which is generally curved, 

then any axisymmetric structure can be mathematically described using body-fitted 

coordinates. This approach synthesises mathematical biology and engineering design, 

highlighting the analogy between AM and plant growth; it also simplifies the geometric 

specification and analysis of parts while offering the engineer greater control, thereby 

representing an opportunity for upskilling.  

3. Mathematical Methods 

3.1. Length-Polar-Projection  

In this section, we define curves in 3D space as generic mathematical objects and 

describe the geometrical properties of the class of curves suitable to be centrelines of 

AM objects. We demonstrate a novel method for specifying such centrelines using 

mathematical functions, requiring one fewer functional inputs than traditional CAD 

methods.  

Every point on a curve has three spatial coordinates, �, � and �, in some unit of 

length such as mm. At the same time, to every point on the curve we may associate a 

dimensionless arclength parameter, �, normalised to the interval between 0 and 1. This 

means that � = 0 and � = 1 label the two end-points of the curve respectively, and as 

the label varies continuously from 0 to 1, the corresponding point moves along the curve. 

For any given curve with an arclength parameter, we may write the spatial coordinates 

of any point on the curve as �(�), �(�) and �(�). The notation �(�) denotes that � is a 

function of � : it takes an �  value between 0 and 1 as an input, and outputs the � 

coordinate of the point on the curve with label � . Conversely, any three given 

(continuous) functions �(�) , �(�)  and �(�) , where �  takes values between 0 and 1, 

determine a curve, by specifying the spatial coordinates of every point along it. Thus, 

specifying a curve in 3D space amounts to nothing more or less than specifying three 

functions of the unit interval between 0 and 1. For example, the triplet of functions, 

 ��(�), �(�), �(�)� =  (� − 0.5, 0, 0.25 − (� − 0.5)�),  (1) 

 

specifies a finite section of a parabola in the (�, �) plane, starting at the point (−0.5,0,0) 

and ending at (0.5,0,0). Figure 1 shows the curve in the (�, �) plane. 

For our purposes, a centreline suitable for construction is any curve in 3D space 

whose tangent at every point makes an acute angle from the positive �-axis. The standard 

CAD description of a such a curve involves three functions, which may be the Cartesian 

�(�), �(�), �(�)  as described above, 	(�), 
(�), �(�)  in cylindrical coordinates, 

�(�), �(�), 
(�) in spherical polar coordinates, or another triplet of functions in some 

other coordinate system. We describe here a simpler description of the curve which 

involves only two functions and a scalar quantity.  
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Figure 1. The finite curve described mathematically by Equation 1. 

We denote by 
�, 
� and 
� the unit vectors pointing along the positive �, � and � axes, 

respectively, and let �(�) be the unit tangent vector to the curve at �, measured along 

increasing �. Let ��(�) be the angle from 
� to �(�), so that 

 0 ≤ ��(�) < �/2.  (2) 

 

Let ��(�) be the angle from 
� to the �-� projection of �(�), unless ��(�) = 0 for some 

�, in which case we define ��(�) = 0. Thus,  

 0 ≤ ��(�) < 2�.  (3) 

 

We call ��(�) and ��(�) the polar angle and projection angle, respectively, of the curve 

at �. By definition of the angles, the tangent vector �(�) has the following components 

in the 
�, 
� and 
� directions. 

 �(�) = sin ��(�) cos ��(�) 
� + sin ��(�) sin ��(�) 
� + cos ��(�) 
�.  (4) 

 

From Equation (4), one may verify that �(�) is the unit tangent vector, meaning it has 

length 1. It is a central theorem in Differential Geometry that any curve parametrised by 

arclength has a unit tangent vector given by the derivative of the curve, 

 �(�) = �
� ���

�� 
� + ��
�� 
� + ��

�� 
��,  (5) 

 

where � is the length of the curve. Equating coefficients in Equations (4) and (5), and 

assuming that the curve begins at (�, �, �) = (0,0,0), yields the following formulae for 

converting the functions �� and �� into the standard Cartesian coordinates of points on 

the curve.  

 �(�) = � ∫ sin ��(�) cos ��(�)�
� d�,  (6) 

 �(�) = � ∫ sin ��(�) sin ��(�)�
� d�,  (7) 

 �(�) = � ∫ cos ��(�)�
� d�.  (8) 

 

Therefore, to describe any centreline, one needs to specify exactly the following: the total 

length � of the curve, the polar angle ��(�) and projection angle ��(�) where 0 ≤ � ≤ 1. 

We shall call this the “length-polar-projection” (LPP) description of the centreline. In 
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LPP, the number of functions one needs to specify is one fewer than in the Cartesian 

description, making LPP a simpler description. 

Another useful property of the LPP description of centrelines is that the local 

curvature can be expressed by a simple formula. By definition, the curvature at � is 

defined as  

 �(�) = ���(�)
�� �.  (9) 

 

Using Equation (4) to calculate the derivative of �(�) one finds, after some lengthy 

algebra,  

 �(�) = !��"#(�)
�� �� + ��"$(�)

�� �� sin� ��(�).  (10) 

 

Note that �(�) = 0 if and only if either 

 ��(�) = 0 and �"#(�)
�� = 0,  (11) 

 

or,  

 ��(�) > 0 and �"#(�)
�� = �"$(�)

�� = 0.  (12) 

 

In particular, Equation (11) represents any point where the curve is instantaneously 

vertical, and Equation (12) represents any point where the curve is non-vertical and 

changing from concave to convex or vice versa.  

 

3.2. Axisymmetric Cross-Sections 

      Once a centreline has been determined, one can mathematically describe any 

axisymmetric structure around the line. To do so, one chooses a number of equidistant 

construction points along the line and with each point as the centre, defines a circle of 

radius %  using the equations & = % cos 
  and ' = % sin 
 , where &  and '  are 

coordinates in the plane perpendicular to the centreline and 
 is the polar angle in that 

plane. All the circles can then be joined together point by point, using lines relative to 

the centreline, to form the surface of an axisymmetric structure.  

       Figure 2 shows an example of a centreline easily specified using the LPP system:  

� = 10 cm,  (13) 

��(�) = *�
-  radians,  (14) 

��(�) = 2�� radians,  (15) 

where � varies from 0 to 1. The same curve in the standard Cartesian system has a much 

more complex mathematical description, which is obtainable using Equations 6-8: 
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�(�) = ��
�34* �39 cos ��*�

- − 33 cos �4*�
- − 6�  cm,  (16) 

�(�) = ��
�34* �39 sin ��*�

- − 33 sin �4*�
- �  cm,  (17) 

�(�) = -�
* sin �*�

- �  cm.  (18) 

This example illustrates the advantage of the LPP system over conventional descriptions 

of curves such as the Cartesian. Figure 3 shows an axisymmetric structure defined around 

the centreline, featuring circles of decreasing radii (from bottom to top), each centred at 

a point on the centreline and perpendicular to the line.  

 

Figure 2. The centreline described mathematically 
by the LPP system using Equations 13-15. The 

curve twists around the �-axis by one full 

revolution while increasingly bending towards the 

(�, �) plane. Six equally spaced construction 

points are chosen along the line, to be used in 

defining an axisymmetric structure around the line. 
The LPP description is significantly simpler than 

the Cartesian description of the same curve, which 

are Equations 16-18. 

 

Figure 3. Six equally spaced construction points 
are chosen along the centreline from Figure 2. 

Circles of radii 0.35, 0.3, 0.25, 0.2, 0.15 and 0.1cm 

(from bottom to top) are drawn, centred at those 
construction points. Each circle is perpendicular to 

the centreline. An axisymmetric structure is 

formed by joining the circles together.  
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4. Discussion 

In mathematical modelling, finding the most convenient coordinate system with which 

to describe the geometry of the problem is often half the battle. In creating a new 

paradigm for DfAM which improves upon traditional CAD, the “battle” is to build a 

framework that allows full control over the shape of a designed part, within the 

mathematical capacity/knowledge of the engineer. This study has demonstrated that 

when the part is axisymmetric with a curved centreline, the novel length-polar-projection 

(LPP) system for describing the centreline is significantly simple compared to 

conventional descriptions such as Cartesian. A centreline that requires three complicated 

functions to specify in Cartesian, for example Equations 16-18, can be specified using 

one number and two simple functions in LPP, as per Equations 13-15. Even if the 

centreline is geometrically simple, for example a 10cm-long straight-line segment 

slanted at angle 8 radians from the � axis, with a simple Cartesian description: 

 �(�) = 10� cos 8  cm,    �(�) = 0 cm,    �(�) = 10� sin 8  cm,   (19) 

 

the corresponding LPP description is simpler still, featuring a number � and two constant 

functions �� and ��:  

 � = 10 cm,    ��(�) = *
� − 8 radians,    ��(�) = 0 radians.  (20) 

 

This relative simplicity ultimately stems from the fact that LPP closely follows an 

intuitive perspective of curves in space, contrary to Cartesian and other conventional 

systems. When visualising a curve and verbally describing it, language is used in terms 

of the curve’s length and angles relative to certain reference directions. For the slanted 

line segment example, the description, “10cm-long, slanted at angle 8”, would be used, 

which directly translates into the LPP system (Equation 20). The verbal description of 

the form is not, “A curve whose � coordinate is linear in � with coefficient 10 cos 8 and 

whose � coordinate is linear in � with coefficient 10 sin 8”, because such a description 

has no groundings in human intuition.  

For the more complicated example in Figure 2, a verbal description would be, “The 

curve twists around the �-axis by one full revolution while increasingly bending towards 

the (�, �) plane.” Here, “twisting around the �-axis by one full revolution” translates 

directly into Equation 15 while “increasingly bending towards the (�, �) plane” becomes 

Equation 14, where bending increases from 0 to 30 degrees. It is unclear how the 

corresponding Cartesian description given by Equations 16-18 stems from, or gives rise 

to, any visual or verbal intuition. The route to using the LPP system is therefore a 

straightforward one: begin by visualising a curve in one’s mind, then describe it verbally 

using natural language about the length, slant and twist of the curve, and finally translate 

that language directly into the three corresponding mathematical expressions. In terms 

of implementation, the framework can be coded through any programming language, for 

example MATLAB or C++. Figure 3 was generated using MATLAB 2021a (Mathworks, 

Natick, MA, USA). 

The inspiration behind the framework presented in this paper is the mathematical 

modelling of plant growth, where body-fitted coordinates have been the system of choice 

in such modelling efforts [22, 23]. Once a centreline has been specified, for example 

using the novel LPP system described above, body-fitted coordinates enable design 
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engineers to specify geometry around the centreline, in the same way that plant modellers 

can specify the shape of a plant organ such as the root relative to its centreline. The plant 

root is typically modelled as axisymmetric, meaning every cross-section perpendicular 

to the centreline is circular; but body-fitted coordinates are a generic system and not 

restricted to specifying circular cross-sections. As such, the next step will be to generalise 

the framework presented here, allowing non-circular cross-sectional shapes to be 

designed. 

This study has demonstrated the level of innovation that may be attained using a 

transdisciplinary synthesis. We have presented a novel approach to DfAM that 

transcends and integrates the disciplines of mathematics, biology and engineering. As 

such, it supplements and improves traditional CAD and has the potential to shift the 

paradigm of DfAM. This transdisciplinary research was conceptualised and the 

implemented across disciplines, during which significant resources were invested to 

upskill the knowledge of the associated researchers. To develop this approach into a 

transdiscipline would require significant investment to cross-train mathematician and 

engineer researchers, in the context of bioinspired manufacturing. 

5. Conclusions  

Exploiting the analogy between AM and growth, the new framework adopts the 

mathematical principles behind plant growth modelling, particularly with regard to 

describing the geometry of axisymmetric parts. An intuitive and simple system was 

introduced, called length-polar-projection (LPP), for defining curves in 3D to serve as 

centrelines for design parts, and the superiority of this system compared to conventional 

ones such as Cartesian was demonstrated through examples. Building around a user-

defined centreline, the new framework then allows for the custom definition of any 

axisymmetric part using body-fitted coordinates, a method popular with mathematical 

modellers. This framework improves the connection between a design engineer’s 

workflow and their intuition for AM, whilst also representing an opportunity to upskill 

the user. 
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