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ABSTRACT: Optical trapping enables the real-time manipulation and observa-
tion of morphological evolution of individual particles during reaction chemistry.
Here, optical trapping was used in combination with Raman spectroscopy to
conduct airborne assembly and kinetic experiments. Micro-droplets of alkoxysilane
were levitated in air prior to undergoing either acid- or base-catalyzed sol−gel
reaction chemistry to form silica particles. The evolution of the reaction was
monitored in real-time; Raman and Mie spectroscopies confirmed the in situ
formation of silica particles from alkoxysilane droplets as the product of successive
hydrolysis and condensation reactions, with faster reaction kinetics in acid
catalysis. Hydrolysis and condensation were accompanied by a reduction in droplet
volume and silica formation. Two airborne particles undergoing solidification could be assembled into unique 3D structures such as
dumb-bell shapes by manipulating a controlled collision. Our results provide a pipeline combining spectroscopy with optical
microscopy and nanoscale FIB−SEM imaging to enable chemical and structural insights, with the opportunity to apply this
methodology to probe structure formation during reactive inkjet printing.
KEYWORDS: sol−gel, silica, Raman spectroscopy, Mie spectroscopy, FIB−SEM, aerosol, optical trapping, droplet deposition

■ INTRODUCTION
In recent years, additive manufacturing (AM), otherwise
known as three-dimensional printing (3DP), has experienced
rapid interest and development, in particular, in high-value
manufacturing. Implants and scaffolds for tissue engineering,
regenerative medicine, in vitro disease modeling, and drug
development are a few examples of areas that have, and are,
benefiting from the strong potential of AM for biomedical
applications.1,2 Inkjet printing is one of the frontrunners due to
its high resolution (sub-micron) and speed.3−6 Advances in
droplet delivery and fabrication have enabled reactive and
micro-reactive inkjet printing of multi-material complex
structures.7,8

Inkjet printing requires an ink with a viscosity in the range of
3.5−30 mPa s−15,9 to undergo sol−gel transition upon ejection
or to rapidly cure on the platform. Thus, a large proportion of
biomedical materials are not suitable for inkjet printing.
Exploiting the sol−gel transition of alkoxysilanes within inkjet
printing10−13 provides a huge potential for biomaterial
applications, as low viscosity sols can be reacted in situ to
form highly condensed structures alone or together with
biopolymers to result in highly porous materials.14−16

However, insights on the in-air reactivity of alkoxysilanes are
scarce due to technical difficulties in performing real-time
spectroscopic measurements on droplets that are suspended
for a long period of time. Exposure of tetraethyl orthosilicate
(TEOS), the most commonly used alkoxysilane in sol−gel
processing, to an acidic/basic environment will also result in

sol−gel transition, yielding a stable and highly elastic silica-
based gel.17 These materials have good potential for reactive
jetting printing; however, clogging of colloidal particles can
present as a problem during printing, and research has
suggested that silica sols with a pH of 3.1 provide optimal
printing behavior.18 Consideration of the complex reaction
mechanisms and kinetics is required, as these are influenced by
the catalyst used, for example, an acid or a base. How this
choice of catalyst impacts the evolution of silica structures
during jetting needs to be characterized and compared to
conventional bulk reactions.
Optical trapping using laser beams has been previously used

to manipulate aerosol droplets and study reaction behav-
ior.19,20 Here, the aim was to investigate the reactivity of
optically trapped TEOS droplets and to assess whether the
reacted droplets could be structured into novel morphologies
through controlled collision using multiple optical traps to
imitate the jetting process. To achieve this aim, it was
necessary to study sol−gel reactions within individual aerosol
droplets, focusing on acidic and basic catalyses, the time taken
for gelation to occur under specific catalytic conditions, and
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the changes in the droplet volume as the sol−gel reaction
proceeds. The reaction chemistry was followed with Raman
spectroscopy and Mie scattering within the Raman signal.21

The resulting particles were deposited on a substrate for
further imaging of nanoscale structures by focused ion-beam−
scanning electron microscopy (FIB−SEM).

■ EXPERIMENTAL SECTION
Optical Trapping of Single TEOS Droplets. An ultrasonic

nebulizer was used to produce aerosol droplets of TEOS. These were
delivered through 6 mm PTFE tubing to an aluminum sample
chamber (Figure 1a) and trapped using an infrared laser beam (1064

nm) that was focused through opposing objective lenses to form a
stable optical trap.22,23 To ensure efficient delivery of a concentrated
catalytic vapor to the sample chamber, nitrogen gas was passed
through a bubbler containing 2 M hydrochloric acid or 1 M ammonia
for acidic or basic catalysis, respectively. The 2 M HCl and 1 M
NH4OH aqueous solutions had partial pressures of 2.0 × 10−4 and 5.2
× 10−2 kPa, respectively.24 Flowing nitrogen through the aqueous
catalysts in this way resulted in gaseous concentrations of 4.7 × 1013
and 1.2 × 1016 molecules cm−3 for the acidic and basic catalytic
vapors, respectively,25 and ensured that the sample chamber
environment was saturated with the gaseous catalytic vapor. Sol−gel
reactions were measured in real-time with Raman spectroscopy using
a co-axial Ar-ion laser beam (514.5 nm) focused through the lower
objective lens, and the backscattered Raman scattering was collected
through the same objective lens (Figure 1b). The experimental
method is detailed fully in the Supporting Information.
Dual-Particle Analysis and Deposition. An acousto-optic

deflector was placed in the optical path of each trapping laser to
produce two time-shared optical traps at the sample plane, with a
modulation time of several milliseconds. The separation of the two
optical traps was calibrated and controlled externally using LabVIEW
software. Two TEOS droplets were trapped simultaneously at a large
separation (schematically shown in Figure 2), reacted in situ, and then
brought together slowly until contact, leading to hard sphere-on-
sphere contact, coalescence, or novel fused dumb-bell structures with
nanoscale necking from partial merging of the droplets. The
experimental outcomes of deposition displayed in Figure 2 are as
follows: (2i) the single droplet remains liquid and spreads onto the
glass slide. (2ii) The single droplet reacts to form a solid and remains
a hard sphere after deposition. (2iii) Two liquid droplets coalesce to
form a larger droplet, which spreads onto the coverslip upon
deposition. (2iv) Partial reaction of two droplets forms a partially
merged structure. (2v/2vi) Two solidified spheres collide and no

coalescence occurs, leading to a two-sphere structure which remains
horizontal or rotates in the optical trap to a vertical alignment.
Particles and merged structures were collected by raising the

sample cell to the levitated droplet until surface contact. The collected
particles were 1−2 μm in size and spherical. These were deposited at
known locations onto a glass slide on the coverslip, defined by
imprinted grid patterns (Figure 3a). FIB milling was employed to mill
away particles, and cross-sectional images were formed with SEM.
The insets of Figure 3c,g show the top-view of the silica particles in
Figure 3b,f after part of the particles have been milled away.

■ RESULTS AND DISCUSSION
Particle Morphology. TEOS droplets were reacted for 5−

240 min, resulting in particles of various morphologies
(Figures 2 and 3). The FIB-milled cross-sections of particles
imaged with an electron beam showed a uniform nanostructure
both compositionally and architecturally at the highest
magnification used (Figure 3j). The degree of coalescence
and thus the structures formed when multiple droplets were
brought together were found to be dependent on the reaction
time (Figure 3d−f).
Particles synthesized under basic catalysis were found to

completely coalesce, forming a single larger particle when
reacted for 5 min or less (Figure 3d). Following deposition on
the glass slide, this particle had partially flowed, fusing with the
glass slide. Droplets that reacted for 6 (Figure 3e) or 7 min
(Figure 3f) underwent partial coalescence, leading to a dumb-
bell shape with a smaller neck at the longer reaction time.
These particles had also partially flowed over the glass slide
fusing with it. Cross-sections produced by FIB milling and
SEM imaging of the coalesced particle in Figure 3f are shown
in g−j. As with the single particle (Figure 3c), the coalesced
particle also exhibited a homogeneous bulk, and no voids were
observed in the magnification image.

Figure 1. (a) Apparatus used to trap, observe, and assemble silica
structures. (b) Diagram of the optical trapping and Raman
spectroscopy laser beams at the foci of the laser beams.

Figure 2. Overview of the droplet collision, coalescence, and
deposition processes for multiple droplets and the resulting
morphologies. Process of droplet deposition is outlined, including
(1) trapping, (2) acidic/basic hydrolysis, (3) collision of droplets, (4)
deposition of droplets, and (5) SEM analysis.

ACS Applied Nano Materials www.acsanm.org Article

https://doi.org/10.1021/acsanm.2c02683
ACS Appl. Nano Mater. 2022, 5, 11699−11706

11700

https://pubs.acs.org/doi/suppl/10.1021/acsanm.2c02683/suppl_file/an2c02683_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsanm.2c02683?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.2c02683?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.2c02683?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.2c02683?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.2c02683?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.2c02683?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.2c02683?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.2c02683?fig=fig2&ref=pdf
www.acsanm.org?ref=pdf
https://doi.org/10.1021/acsanm.2c02683?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Furthermore, a magnified image of the neck region shows no
distinct boundary (Figure 3j). This suggests that the particles
were bonded together strongly via mixing of the two particles
at the neck, forming a single structure. All the particles were
observed to have at least one pore or hole on their surface
regardless of the reaction time, whether for 5 min or 4 h. The
pore was typically between 10 and 50 nm in radius and is
speculated to arise from refocus of the trapping laser refracted
at the front of the spherical particle onto the rear surface of the
particle.
Sol−Gel Reaction Kinetics. During a sol−gel reaction, an

alkoxysilane, such as TEOS, is converted into its oxide, silica
(SiO2). The chemical structure of the oxide evolves as the
product of successive hydrolysis and condensation reactions
(Figure 6a).26 Reaction rates are influenced by the type of
catalyst and available water as well as other factors.27,28 The
moles of water per moles of alkoxide, known as the R-ratio,
necessary to complete the polycondensation of silanes is
dependent on the number of hydrolyzable (alkoxide) groups in
the silane molecule. An R-ratio of approximately 2 is required
for the complete hydrolysis of TEOS.29 An increased R-ratio
from 2 increases the hydrolysis rate up to a threshold, after
which it begins to inhibit the reaction.29,30 This behavior has
been related to the solubility of the alkoxysilanes.30 For acidic
catalysis, the degree of hydrolysis and condensation is

dependent upon the availability of water; however for basic
catalysis or neutral systems, the water content does not
significantly affect the final structure of the product.31−33 In
acid-catalyzed reactions of TEOS with a low R-ratio,34

monomeric silanol species hydrolyze and condense to form
linear chain-like structures rather than colloidal particles.
These chain structures are highly entangled and undergo
gelation through crosslinking between overlapping chains.
Contrastingly, basic catalysis, as in the Stöber process,35 results
in a high degree of branching and the formation of large
individual clusters (∼200 Å) that are dense. These can then
link together to form a gel. Thus, the catalyst type, R-ratio, and
pH of the reaction medium can influence polymerization
kinetics.29

The Raman spectra of levitated droplets were collected with
acquisition times of 2 and 5 s (Figures 4a and 5c,d). The
evolution of the chemical composition of a single droplet of
TEOS could be monitored in real-time, following the
introduction of the catalyst and throughout the sol−gel
reactions (Figures 4a, 5 and 6a). Raman spectra of TEOS
droplets exposed to HCl and NH4OH vapor show peaks
corresponding to TEOS, 2931 cm−1 (C−H) and 653 cm−1 (Si-
(OR)4) (Figure 4a), which decrease in intensity during the
sol−gel reaction. A broad peak at 499 cm−1 (Si−O−Si) is then
observed, indicating the in situ formation of silica within the

Figure 3. Morphology of the silica particles produced and imaged by SEM. (a) Glass slide used for particle deposition. (b) Morphology of a single
silica particle reacted in air for 4 h under 2 M HCl vapor, including the (c) cross-section and top-view (c) inset) of the particle after FIB milling to a
certain depth. (d−j) Silica particles formed after two TEOS droplets were reacted in air under 1 M NH4OH vapor for (d) 5, (e) 6, and (f) 7 min
and subsequently collided together for coalescence. (g−i) Cross-sections and top-view (g) inset of coalesced particles in (f) after FIB milling to
various depths. (j) High magnification image of the boxed region in (h).
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trapped droplet. The product from either acidic or basic
catalysis appears to be similar when comparing the final Raman
spectra.
Figure 5a shows plots of normalized intensity of the C−H,

Si(OR)4, and Si−O−Si vibrations as a function of time for an
acid-catalyzed sol−gel reaction. The decrease in the C−H and
Si(OR)4 vibrations indicates that TEOS was rapidly hydro-
lyzed,36 resulting in the loss of material, namely ethanol,
through evaporation from the droplet (see also Figures 4b and
6). The disappearance of the Si(OR)4 vibrations after 15 min
may also indicate that nearly all the molecules of the initial
TEOS reactant have been hydrolyzed, although, at this point,
most of the C−H material is still within the droplet. Si−O−Si
bond formation is only seen at low levels (<10% of the final
product) during the first 10 min. The formation of Si−O−Si
bonds through condensation progresses steadily once hydrol-
ysis of TEOS is complete and continues until extended silica
structures are formed (Figure 6a). Some hydrocarbon material
appears to be retained in the final product.
The rate of hydrolysis under basic conditions was

significantly slower, and the onset of silica formation occurred

at around 70 min [Figure 5b]. The single droplet reactions
follow a similar behavior with respect to pH to that reported
previously.29 Thus, in acidic medium, hydrolysis is fast and
condensation is slow, meaning condensation forms the rate-
limiting step. Conversely, in basic medium, hydrolysis is slow
and condensation is fast, and therefore, hydrolysis is the rate-
limiting step.
Evolution of Droplet Size and Refractive Index. A

broader series of peaks were observed in the Raman signal that
shifted in wavenumber as the experimental run progressed.
These peaks are Mie resonances arising from the weak
spontaneous scattering of light across the Raman spectral
range.37−39 Mie scattering spectra were extracted using
temporal filtering (i.e., the Mie spectral positions change
with time, while Raman spectral positions are essentially fixed
for these studies). The Supporting Information includes a
more detailed description of the temporal filtering process and
an image of the Mie resonance shifting with time.
The Mie resonances were compared to a theoretical Mie

scattering model40 to retrieve the refractive index and volume
of the droplet over the course of the reaction.19,41−45 Figure

Figure 4. (a) Initial and final Raman spectra of the in situ sol−gel formation of a silica-like particle from a TEOS droplet catalyzed with NH4OH
and HCl. (b) Droplet volume and (c) refractive index values at 589 nm throughout the sol−gel reaction under NH4OH and HCl catalyses. The
error bars reflect the variation of the optimum theoretical solutions while modeling each recorded spectrum; the uncertainty for volume is less than
the symbol size.
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4b,c shows the evolution of the volume and refractive index (at
589 nm), respectively, for a TEOS particle after exposure to
acidic (HCl) and basic (NH4OH) catalysts.
The decrease in droplet volume over time can be described

by two simultaneous first-order equations

= +V V a ae ek t k t
final 1 2

1 2 (1)

The a1 and a2 parameters (Table 1) correspond to an initial
volume V0 for each first-order equation, and the constants k1
and k2 (Table 1) describe the rate of change of the droplet
volume. The values of k1 can be used to compare the relative

Figure 5. Variations in the normalized spectral intensity of CH, SiOR4, and Si−O−Si bands during a catalyzed sol−gel reaction of TEOS with (a)
HCl and (b) NH4OH smoothed using an adaptive baselining technique to remove Mie resonances and normalized for comparison. Evolution of
the CH vibrations in the Raman spectra throughout the sol−gel reaction, displayed as 3D waterfall plots as a function of time for reactions
catalyzed by (c) HCl and (d) NH4OH. Similar plots for the SiOR4 and Si−O−Si vibrations are included in the Supporting Information.

Figure 6. Overall sol−gel reaction of TEOS to silica, with individual reaction steps and the corresponding state of the trapped TEOS droplet
transitioning to a “silica-like” Si−O−Si structure. (a) Overall sol−gel chemical reaction scheme of TEOS to silica, including an illustration of the
“silica” like structure.34 (b) Hypothesized changes in droplet structure throughout the reaction. All refractive indices, n, are for λ = 589 nm.49,50

Table 1. Rate Constants Describing the Decrease in Droplet
Volume During the Sol−Gel Reaction

NH4OH HCl

a1/μm3 4.25 24.16
a2/μm3 1.59 N/A
k1/s−1 1.75 × 10−3 2.63 × 10−3

k2/s−1 1.72 × 10−4 N/A
Vi/% 55 57
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reaction rates of the HCl- and NH4OH-catalyzed reactions.
The fitting process for these equations is detailed in the
Supporting Information.
The initial rapid loss in the volume of the droplet (Figure

4b) indicates that the particle undergoes a fast reaction step,
described by k1. This initial reaction step is completed in <∼5
and ∼21 min for the HCl and NH4OH catalysts, respectively,
after which a slower reaction step, described by k2, dominates.
Thereafter, the droplet size gradually reduces until the reaction
is complete. The second component k2 is approximately an
order of magnitude slower than k1 under basic catalysis.
The initial volume decrease is consistent with the

observation of nearly total TEOS hydrolysis from the
simultaneous Raman spectroscopy measurements (Figure 6).
Acidic catalysis was found to be ∼1.5 and ∼7.2 times faster
than basic catalysis for the rate of loss of droplet volume, k1.
Therefore, the volume changes also agree well with the
literature that acidic catalysis causes rapid hydrolysis of TEOS,
with considerably slower hydrolysis under basic conditions.29

The slower component k2 describes the slow loss of droplet
volume which dominates toward the end of the reaction and
can be attributed to an increasing density within the droplet.
As successive condensation reactions occur, the droplet
composition tends toward the final “silica-like” structure
(Figure 6). This is observed in the Raman spectra with an
increase in Raman intensity at ∼499 cm−1 (Si−O−Si). The
order of the condensation reaction step varies in the literature
from the first to the fifth order46,47 and has been shown to be
of first order under the addition of salt as a catalyst. In this
case, the ionic strength of the salt determines whether it acts as
an acid or a base.29,48 In the experiments performed here, the
relative values of k1 and k2 for basic catalysis (Table 1) indicate
that condensation proceeds at approximately an order-of-
magnitude slower rate than hydrolysis under acidic catalysis.
The calculated increase in refractive index at 589 nm

(Figures 4c and 6b) appears to be rapid for both HCl and
NH4OH catalysts. The refractive index is constant before and
after this increase, and so Figure 4c shows only the first 50 min.
The timescale for the refractive index to increase is comparable
to the time at which evaporation is complete and gelation
begins to dominate, as inferred from the droplet size evolution.
It is also comparable to the onset of gelation behavior
determined by contact of droplet surfaces. The droplet volume
Vi (Table 1) at this point was calculated as a percentage of the
initial volume V0, determined as the summation of a1, a2, and
the final volume. This intermediate volume, Vi, is comparable
for both catalytic conditions but is reached in a shorter
timescale for catalysis with HCl. Additionally, SEM imaging of
TEOS droplets that had been reacted in a catalyzed sol−gel
reaction (Figure 3) demonstrated that both catalytic
conditions resulted in solid particles. The comparable loss in
droplet volume and similar final morphologies indicate that the
physical changes to the droplet (Figure 6b) occur through the
same mechanism for both HCl and NH4OH catalysts but at
differing reaction rates.
The refractive indices of silica and ethanol are 1.45849 and

1.361,50 respectively, at 589 nm, and so an increase in
refractive index, with a simultaneous rapid loss in droplet
volume, is consistent with the loss of ethanol and the
formation of Si−O−Si bonds to yield a silica−enriched
droplet. It is hypothesized that the sol−gel reaction occurs
from the outer parts of the aerosol droplet through a
heterogeneous chemical reaction.51 The rapid change in the

refractive index is then due to the initial formation at the
droplet surface of a “silica-like” shell enriched in Si−O−Si
groups, causing a large increase in droplet surface density
(Figure 6). This mechanism may explain why the reaction does
not go to completion, as evidenced by the −CH peak
remaining in the Raman spectra after the experimental run is
complete (Figure 4a). The formation of the “silica-like” shell
may inhibit further access of the catalyst vapor to the center of
the droplet, where partially hydrolyzed TEOS remains (Figure
6), and prevent additional loss of ethanol through evaporation.
The basic catalysis of TEOS creates a highly branched and
dense polymer network compared to the less dense linear
chain-like polymer network produced in acidic catalysis.29,34

Therefore, the structure of the “silica-like” shell is likely to be
dependent on the catalytic conditions, with basic catalysis
forming a denser shell compared to acidic catalysis. This would
further explain the slower kinetics observed in basic catalysis,
where the denser shell further inhibits the access of the
NH4OH vapor to the droplet center and reduces the loss of
ethanol through evaporation. The subsequent slow loss of
droplet volume after the shell formation is attributed to an
increasing droplet density as condensation polymerization
occurs. However, the formation of a solid silica shell may
physically limit further size changes during a continued
reaction. Increased porosity inside the droplet would indicate
such behavior; however, this was not observed in the SEM
images. It is noted the final refractive index of the silica product
is lower than that reported in the literature for bulk silica.

■ CONCLUSIONS
In summary, optically trapped aerosol droplets of TEOS were
isolated and studied to determine the formation of bespoke
silica structures in situ and the effect of acidic and basic
catalyses on hydrolysis and condensation reactions. The
analysis of the chemical structure by Raman spectroscopy
and that of the refractive index and volume of the droplet by
Mie spectroscopy identified differences in the reaction kinetics
dependent on the catalytic conditions, with acidic catalysis
found to result in much faster hydrolysis than in basic
conditions. Additionally, nanoscale FIB−SEM imaging of the
solidified droplets after the reaction was complete showed no
obvious difference in the end structure for both acidic and
basic catalyses. Finally, FIB−SEM imaging of multiple merged
droplets showed that the degree of coalescence was dependent
upon the reaction time. Complete particle coalescence to form
a single large particle was observed when TEOS particles were
reacted for less than 5 min under basic conditions (1 M
NH4OH). Thus, for in-air reactive manufacturing processes
under these conditions, this work identifies an optimum sol−
gel reaction time under basic conditions of 6−7 min to allow
for partial coalescence of silica particles. Our results provide a
novel pipeline combining spectroscopy in the form of Mie and
Raman, along with optical and FIB−SEM imaging, to enable
chemical and structural insights on airborne particles. The
described optical trapping technology has the potential to
further increase the understanding of existing inkjet printing
processes. The droplet size ranges and timescales are
sufficiently flexible to follow a wide range of conditions that
could potentially lead to a significantly higher resolution in
inkjet printing. In addition, the demonstrated multi-particle
approach controlled by laser beams has the potential to be
highly scalable and enable templating of 2D and 3D structures
in situ prior to surface deposition. This provides an
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opportunity to apply the technique to further fields where
imaging of aerosols would be beneficial. The authors have
previously published studies on respiratory pharmaceuticals,52

atmospheric reactive processes,53 and aerosol-assisted sol−gel
catalyses.39 From an assembly perspective, there are a
multitude of processes such as spray-drying or powder-coating
that could be deconstructed to enable further insights�for
example, understanding how nanoparticles behave in aerosol-
based applications to form functional surface coatings and
structures.
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