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Abstract
Motivation: Antibiotic resistance presents a formidable global challenge to public health and the environment. While considerable endeavors
have been dedicated to identify antibiotic resistance genes (ARGs) for assessing the threat of antibiotic resistance, recent extensive investiga-
tions using metagenomic and metatranscriptomic approaches have unveiled a noteworthy concern. A significant fraction of proteins defies anno-
tation through conventional sequence similarity-based methods, an issue that extends to ARGs, potentially leading to their under-recognition due
to dissimilarities at the sequence level.

Results: Herein, we proposed an Artificial Intelligence-powered ARG identification framework using a pretrained large protein language model,
enabling ARG identification and resistance category classification simultaneously. The proposed PLM-ARG was developed based on the most
comprehensive ARG and related resistance category information (>28K ARGs and associated 29 resistance categories), yielding Matthew’s cor-
relation coefficients (MCCs) of 0.9836 0.001 by using a 5-fold cross-validation strategy. Furthermore, the PLM-ARG model was verified using an
independent validation set and achieved an MCC of 0.838, outperforming other publicly available ARG prediction tools with an improvement
range of 51.8%–107.9%. Moreover, the utility of the proposed PLM-ARG model was demonstrated by annotating resistance in the UniProt data-
base and evaluating the impact of ARGs on the Earth’s environmental microbiota.

Availability and implementation: PLM-ARG is available for academic purposes at https://github.com/Junwu302/PLM-ARG, and a user-friendly
webserver (http://www.unimd.org/PLM-ARG) is also provided.

1 Introduction

Antibiotic resistance is one of the biggest threats to global
public health, food safety and security, and environmental
sustainability (Dadgostar 2019, Murray et al. 2022).
Antibiotic resistance leads to more extended hospital stays,
higher medical costs, and increased mortality (Thorpe et al.
2018). According to the 2019 Antibiotic Resistance Threats
Report released by the Centers for Disease Control and
Prevention, >2.8 million antibiotic-resistant infections occur
in the United States, resulting in over 35 000 people dying
per year (https://www.cdc.gov/drugresistance/biggest-threats.
html). Global efforts have been initiated to combat the esca-
lating threat of antibiotic resistance, such as the Global
Antimicrobial Resistance Surveillance System (Mendelson

and Matsoso 2015, World Health Organization 2018), the
Global Antibiotic Research and Development Partnership
(Drugs for Neglected Diseases Initiative 2016), and the
Interagency Coordination Group on Antimicrobial Resistance
(Rochford et al. 2018). One focus of these consortium efforts
is to develop a robust and efficient preclinical tool to predict
antibiotic resistance. Notably, governmental agencies like the
US Food and Drug Administration (FDA) are actively endors-
ing the One Health Initiative, which underscores the intercon-
nected nature of health and environmental issues, specifically
antibiotic resistance, and advocates for a comprehensive ap-
proach instead of a fragmented one (https://www.fda.gov/sci
ence-research/focus-areas-regulatory-science-report/cross-cut
ting-topics-one-health-initiative).
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The horizontal transfer (HGT) of ARGs allows bacteria to
exchange genetic information among different species, con-
tributing to antibiotic resistance (Cao et al. 2021, Ellabaan
et al. 2021, Wang et al. 2023). Therefore, identifying and
quantifying ARGs has become one of the most effective ways
to monitor antibiotic resistance. There are two main
approaches for ARG identification, including sequence-based
assembly/alignment (McArthur et al. 2013, Buchfink et al.
2015, Jia et al. 2017, Alcock et al. 2020) and machine learn-
ing techniques (Gibson et al. 2015, Arango-Argoty et al.
2018, Moradigaravand et al. 2018, Ruppé et al. 2019,
Chowdhury et al. 2020). For sequence-based assembly/align-
ment, the queried sequence is directly compared to the known
ARG reference database using alignment tools such as BLAST
(Altschul et al. 1990), DIAMOND (Buchfink et al. 2015), and
BWA (Li and Durbin 2009). Also, some modifications, such
as local-based alignments, improve the performance of remote
homolog identification (Feldgarden et al. 2019, Gibson et al.
2015). Although these methods performed well for highly
conserved ARGs, they also generated a high false-negative
rate for species-specific ARGs such as gram-negative bacteria
(Chowdhury et al. 2019). In addition, several machine
learning-based ARG identification models for identifying
ARGs have been introduced, offering an alternative approach
based on features representing characteristics of ARGs
(Gibson et al. 2015, Arango-Argoty et al. 2018,
Moradigaravand et al. 2018, Ruppé et al. 2019, Chowdhury
et al. 2020). Nevertheless, these previously reported machine
learning models were constructed using a limited set of genetic
features derived from sequence data in specific bacterial spe-
cies obtained from particular genomics technologies. This lim-
itation restricts their broad applicability for ARG
identification across diverse bacterial species.

The advent of metagenomic and metatranscriptomic tech-
nologies has unveiled a rich reservoir of proteins, significantly
enhancing our understanding of microbial community func-
tional diversity (Danko et al. 2021, Cai et al. 2022, Zhang
et al. 2022). However, these studies have also highlighted a
substantial challenge: a notable portion of proteins remains
unannotated using homology-based or integrative informa-
tion methods (Almeida et al. 2021, Wu et al. 2022). This issue
extends to antibiotic resistance genes (ARGs), potentially
causing them to remain unrecognized due to dissimilarities at
the sequence level. Moreover, the application of 3D protein
structures, believed to play a critical role in their biological
function, is instrumental in ARG detection, with methods like
pairwise comparative modeling (PCM) being used (Ruppe
et al. 2019). Nevertheless, the availability of 3D protein struc-
tures of known ARGs is limited. Although, several outstand-
ing protein structure prediction methods, e.g. AlphaFold2
(Jumper et al. 2021) and Rosetta (Du et al. 2021), have been
developed, the confidence of the prediction results degraded
when proteins lack homologous sequences, as the perfor-
mance of these methods relies on the quality of multiple se-
quence alignment (Wang et al. 2022). In addition, the
substantial computational resources required for structure
prediction hinder their widespread application in large-scale
metagenomic and metatranscriptomic studies for general re-
search groups.

To uncover novel ARGs, elucidating the uncharacterized
properties of proteins may be one of the most promising ways
forward. Inspired by approaches proposed for natural lan-
guage processing (NLP), the proteins could be represented as

protein languages. Different protein-language models were
applied to develop predictive methods for extracting complex
sequence–structure–function relationships (Bepler and Berger
2021, Ofer et al. 2021, Unsal et al. 2022). Thus, a universal
ARG prediction framework is urgently needed and can be
provided by incorporating multi-omics data from different ge-
nomics technologies to offer a “one-stop” solution for ARG
identification (Arango-Argoty et al. 2018, Li et al. 2021).
Sequencing Quality Control Phase II (SEQC-II), led by the US
FDA, aims to advise on best practices for sequence data analy-
sis and to promote real-world applications of genomic tech-
nologies. As part of SEQC-II consortium efforts, we
introduced a pioneering framework, PLM-ARG, meticulously
crafted to discriminate ARGs, irrespective of their sequence
similarity to well-established ARGs. This model harnesses the
capabilities of ESM-1b, a publicly accessible protein language
model comprising 650 million parameters, which has been
trained on a dataset of approximately 250 million protein
sequences (Rives et al. 2021).

This PLM-ARG framework consists of four components,
including (i) ARG data curation and unification; (ii) protein
language model-based ARG classification method develop-
ment; (iii) model evaluation; and (iv) real-world applications
(Fig. 1). In PLM-ARG, the most comprehensive ARG data
were curated, unified, and manually assigned into different
antibiotic resistance categories. In addition, we harnessed the
publicly available ESM-1b model, accessible at https://github.
com/facebookresearch/esm, to create embedding representa-
tions for the protein sequences. These embeddings were subse-
quently input into an XGBoost classifier, renowned for its
implementation of gradient-boosting decision trees, and rec-
ognized for its outstanding performance across diverse classi-
fication challenges (Giacobbe 2020, Zhang et al. 2021,
Lambert et al. 2022).

This integrated approach facilitates the concurrent identifi-
cation of ARGs and the classification of resistance categories.
Moreover, we demonstrated the utility of PLM-ARG by
expanding the resistance annotation for ARGs in the Uniprot
database and exploring the resistance diversity of the Earth’s
environmental microbiota.

2 Materials and methods

2.1 PLM-ARG model architecture

The proposed PLM-ARG model architecture encompasses a
pretrained extensive protein language model to represent pro-
tein sequences. In addition, an inherent classification module
is incorporated within this architecture, composed of two
consecutive XGBoost models. These models are used for the
specific tasks of ARG identification and the subsequent classi-
fication of these genes into distinct resistance categories. To
establish a benchmark dataset for the development of the
PLM-ARG model, we curated a comprehensive Antibiotic
Resistance Gene database (PLM-ARGDB). This database was
created by amalgamating and standardizing curated ARGs
from five public ARG databases, followed by manual correc-
tion (see Supplementary Materials).

Briefly, we processed protein sequences through a
transformer-based protein language model, ESM-1b, to gen-
erate embedding vectors. Each protein was then represented
by a 1280-length numeric vector obtained by averaging the
output from the 32nd layer of the ESM-1b model.
Subsequently, we developed two XGBoost models using these
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protein representations for identifying ARGs and classifying
their resistance categories. We opted for the XGBoost model
due to its well-established prominence in the field of tabular
data analysis. It is renowned for its outstanding performance,
versatility, interpretability, and, notably, its reduced demand
for hyperparameter tuning when compared to deep learning
models (Shwartz-Ziv and Armon 2022). Five hyperpara-
meters of the XGBoost model, specifically n_estimators,
max_depth, learning_rate, subsample, and colsample_bytree,
were meticulously optimized using the GridSearchCV proce-
dure, involving 100 iterations of 3-fold cross-validation, as fa-
cilitated by Scikit-learn (Pedregosa et al. 2011). The model’s
performance was assessed based on the Area Under the
Receiver Operating Characteristic curves (AUROC) values
(see Supplementary Materials). Moreover, considering the
computational requirements of ESM-1b model, including
computational time and memory utilization, tend to rise pro-
portionally with the length of input protein sequences, we
conducted a systematic exploration of varying trimming
lengths to ascertain an optimal trimming length that ensures
both superior performance and computational efficiency (see
Supplementary Materials).

2.2 Validation of PLM-ARG performance

Three state-of-the-art approaches for ARG classification, in-
cluding RGI (a sequence alignment-based method) suggested
by both CARD (Jia et al. 2017, Alcock et al. 2020) and
MEGARes (version 5.2.0) (Lakin et al. 2017), Resfams (an
HMM-based approach, version 1.2) (Gibson et al. 2015) and
DeepARG (a deep-learning-based method, version v2)
(Arango-Argoty et al. 2018), were selected as competitors for
performance comparison. The threshold used to determine
the queried proteins as ARGs was set as default for each
method. In detail, DeepARG predicted proteins with a proba-
bility >0.8 as ARGs. Resfams considered proteins with an E-
value <1e–10 were regarded as ARGs. For the RGI, proteins
with perfect or strict hits were regarded as ARGs.

The comparison was 2-fold: (i) we implemented the three
state-of-the-art ARG prediction methodologies with the cu-
rated data in PLM-ARGDB with a 5-fold cross-validation
strategy. Then, we compared it to the performance of the
PLM-ARG model. Briefly, the data was split into five sets.
One set is taken for validation and the other four for training.
We repeated the process for all five sets. (ii) We compared the
optimized state-of-the-art ARG prediction models to the
PLM-ARG model with the curated independent validation.
Considering the curated independent validation set has no
complete “ground-truth” information on the resistance

categories, we only limited the comparison to the perfor-
mance on ARG classification.

2.3 Performance metrics

Receiver operating characteristic (ROC) curves are used to
evaluate model performance, generated by plotting sensitivity
against specificity at different settings. For PLM-ARG and
deepARG, we used the probability to calculate the AUROC.
For the Resfam, we used the E-value to calculate AUROC. As
the RGI used the “Loose,” “Strict,” and “Perfect” as criteria
to determine the ARGs, we used the ratio of
“Best_Hit_Bitscore” to “Pass_Bitscore” to calculate AUROC.
Besides AUROC, we also evaluated the model using five other
performance metrics, including accuracy, precision, recall, F1-
score, and Matthews Correlation Coefficient (MCC) calcu-
lated as follows:

Accuracy ¼ TPþ TN
TPþ FPþ TNþ FN

(1)

Precision ¼ TP
TPþ FP

(2)

Recall ¼ TP
TPþ FN

(3)

F1 ¼ 2� Precision� Recall
Precisionþ Recall

(4)

MCC ¼ TP� TN� FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þ

p (5)

TP, TN, FP, and FN denote true positive, true negative,
false positive, and false negative. The model performance was
calculated for the resistance category classification based on
micro-averages for each performance metric.

2.4 Webserver construction

We utilized the Apache HTTP server as a web server, devel-
oped by PHP (Version: 7.0.12, https://www.php.net/) pro-
gramming. Data interaction was implemented by HTML5,
JavaScript, jQuery. All data in PLM-ARG are stored and
managed in MySQL database (Version: 5.7.17, https://www.
mysql.com/). Data analyses were mainly carried out by the R

Figure 1. Overview of the proposed PLM-ARG framework.
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(Version 4.1.0, https://www.r-project.org/) or python
(Version 3.6.13, https://www.python.org/) script.

3 Results

3.1 Unifying public ARG databases for enhanced

PLM-ARG training

We developed a reproducible data curation schema for a
benchmark ARG and resistance category classification data-
set, including data normalization, redundant exclusion, and
resistance class assignment (see Supplementary Materials,
Fig. 2A and B). Following the proposed ARG data curation
schema, we obtained a benchmark dataset for ARG and resis-
tance category classification (i.e. PLM-ARGDB), consisting of
28 579 ARGs, including 26 391 ARGs labeled with 27 ex-
plicit resistance categories plus 2188 ARGs tagged with the
fuzzy category “multi-drug” or “antibiotic without defined
classification.” Specifically, PLM-ARGDB contains 4790
ARGs from CARD (i.e. 100% of proteins in CARD), 859
ARGs from ResFinder (27.94% of proteins in ResFinder),
2044 ARGs from MEGARes (30.01% of proteins in
MEGARes), 444 ARGs from AMRFinderPlus (7.43% of pro-
teins in AMRFinderPlus), 9863 ARGs from ARGMiner
(66.34% of proteins in ARGMiner), and 10 579 ARGs from

HMD-ARG-DB (61.30% of proteins in HMD-ARG-DB).
Excluding the ARG with fuzzy category, we observed that
most ARGs (22 015, 77.03%) confer resistance to only one
antibiotic category. In contrast, approximately a quarter of
ARGs (4376, 15.31%) resist multiple antibiotic categories
(Fig. 2C). We also found that ARG distribution in different
antibiotic resistance categories was extremely unbalanced.
For example, of 29 antibiotic resistance categories, the top 10
resistance categories occupied approximately 82.24% of the
ARGs. The top 3 resistance categories, such as beta-lactam
(24.92% of ARGs), peptide (14.83% of ARGs), and fluoro-
quinolone (8.91% of ARGs), cover nearly half of the ARGs
(Fig. 2D).

3.2 Comparative analysis against state-of-the-art

ARG prediction methods

To demonstrate the superiority of the proposed PLM-ARG
model, we compared our PLM-ARG model to three state-of-
the-art ARG prediction approaches, including RGI (a se-
quence alignment-based method suggested by both CARD
and MEGARes, version 5.2.0), Resfams (an HMM-based sys-
tem, version 1.2), and DeepARG (a deep-learning-based algo-
rithm, version v2) by using a 5-fold cross-validation method.

Figure 2. Workflow of ARG data curation and the composition of PLM-ARG database: (A) six publicly available ARG databases; (B) the proposed workflow

for ARG data curation. (C) Number of ARGs with various resistance categories. (D) Distribution of ARGs across different resistance categories.
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For ARG classification, we found the ranking order on the
area under the ROC curve (AUROC) in a sequence of PLM-
ARG > RGI > DeepARG > Resfams (Fig. 3A). The AUROC
of PLM-ARG (0.999 6 0.0003) is higher than that of RGI
(0.984 6 0.001), DeepARG (0.917 6 0.002), and Resfams
(0.807 6 0.003). Also, PLM-ARG outperformed the other
three approaches on four performance metrics (i.e. Recall,
Accuracy, F1-score, and MCC) except Precision (Fig. 3B).
For example, PLM-ARG yielded the highest MCC
(0.983 6 0.001), providing improvement of 51.7%, 52.9%,
and 65.2% compared to DeepARG (0.648 6 0.005), Resfams
(0.643 6 0.006) and RGI (0.695 6 0.008), respectively.
The low MCC of DeepARG and RGI may be due to the
strict default thresholds. Furthermore, PLM-ARG yielded
the most balanced precision (0.995 6 0.001) and recall
(0.988 6 0.002), suggesting its superior ability to eliminate
false positives and negatives. Although the DeepARG and
RGI achieved the highest precision (1.000), they sacrificed re-
call values (i.e. 0.685 6 0.005 for DeepARG and
0.488 6 0.003 for RGI).

For ARG resistance category classification, PLM-ARG
outperformed the other three ARG prediction methodologies

concerning all the performance metrics and almost all the resis-
tance categories (Fig. 3C). For example, PLM-ARG achieved a
macro-average AUC of (0.9896 0.008), improving 57.74%,
48.28%, and 29.96% over DeepARG (0.6276 0.19), Resfams
(0.6676 0.17) and RGI (0.7616 0.07), respectively. We also
observed that all four methods performed well (AUC � 0.8)
for resistance categories with a larger number of referred
ARGs, such as beta-lactam, aminoglycoside, and glycopeptide.
Significantly, PLM-ARG demonstrated significantly improved
performance compared to the three state-of-the-art approaches
when dealing with resistance categories involving a small number
of referenced ARGs. Moreover, we also computed the confusion
matrix to evaluate the performance of PLM-ARG for each resis-
tance category (Supplementary Table S1). The results showed
that PLM-ARG achieved a high kappa score, a commonly
used metric for evaluating classification model performance, for
all resistance categories with>100 training sequences.

We also validate the performance of the developed PLM-
ARG model on an independent validation set. We first re-
trieved bacterial ARGs protein sequences with the query
“taxonomy: ‘Bacteria [2]’ AND keyword: ‘Antibiotic resis-
tance [KW-0046]’ AND reviewed: yes” against the UniProt

Figure 3. Comparison of the PLM-ARG with three state-of-the-art approaches on ARG prediction based on a 5-fold cross-validation strategy: (A) ROC

curves of PLM-ARG, DeepARG, Resfams, and RGI based on 5-fold cross-validation results. (B) Performance metrics of the PLM-ARG model and three

state-of-the-art approaches, including DeepARG, Resfams, and RGI, based on the 5-fold cross-validation results. (C) Performance comparison of PLM-

ARG, DeepARG, Resfams, and RGI on each antibiotic-resistant category. The color bar represents the range of values for each metric, with 0 denoting the

poorest performance and 1 indicating the highest or best performance. The probability was used to generate the ROC curves for PLM-ARG and DeepARG

models, and the e-value was used for the Resfams model. For the RGI model, we used the ratio of Best_Hit_Bitscore to Pass_Bitscore to generate the

ROC curve.
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database, and then excluded the overlapped ARGs in the
PLM-ARGDB, obtaining 2280 ARGs (released on 27 May
2022). Following the strategy outlined in the ARG data cura-
tion section, we also curated an equal number of non-ARGs
that did not overlap with those in the PLM-ARGDB. As a re-
sult, an independent validation consisting of an equal number
(i.e. 2280) of ARGs and non-ARGs was constructed to evalu-
ate the PLM-ARG model. Due to the lack of ground truth in
resistance category information, the comparison focused on
the ARG identification. We observed the same ranking order
on all the performance metrics except precision as those of the
5-fold cross-validation, i.e. PLM-ARG > RGI > DeepARG >
Resfams (Fig. 4A). With notable significance, PLM-ARG has
achieved an impressive MCC of 0.838, signifying a substan-
tial advancement over alternative methodologies within the
range of 51.8%–107.9%. Moreover, PLM-ARG demon-
strates exceptional prowess in the F1-score metric, boasting a
value of 0.904, indicative of a noteworthy improvement com-
pared to alternative methods spanning from 40.8% to
107.3%. In addition, PLM-ARG secures the highest AUC
value, reaching 0.979 and manifesting an improvement rang-
ing from 9.6% to 36% when juxtaposed against three promi-
nent state-of-the-art approaches for ARG prediction.

Furthermore, we assessed the distribution of annotation
quality scores among UniProt-reviewed ARGs predicted by

various methods (see Section 2), utilizing the annotation qual-
ity score supplied by the UniProt database. In this regard, we
included the HMD-ARG method, which provides a web
server for ARG prediction, in our analysis. Our findings dem-
onstrate that PLM-ARG could detect more UniProt-reviewed
ARGs than other methods, particularly for ARGs with high
annotation scores (Fig. 4B). These results further affirm the
high reliability of PLM-ARG.

To investigate whether the proposed PLM-ARG could have
better discrimination power for ARGs that are not similar to
the ones in the training set, we divided the 2280 UniProt-
reviewed ARG in the independent test set into 5 groups
according to its similarity with the referenced ARGs in the
training set. We summarized the individual rate of the propor-
tion of ARGs identified in the four methodologies. The results
showed that PLM-ARG could identify >80% of the ARGs in
different similarity groups except for those with <20% simi-
larity (Fig. 4C). RGI can hardly identify ARG with <60%
similarity, although its precision is the highest. The low per-
formance of Resfam for the ARGs with high identity may be
due to the lack of available HMM models for the reference
ARGs.

Moreover, to investigate the decline in performance across
all methods within the subset of ARGs sharing <40% identity
with the referenced ARGs, we conducted a BLAST analysis of

Figure 4. Comparison of the PLM-ARG with three the-state-of-art approaches on ARG prediction based on independent validation set: (A) performance

metrics of the PLM-ARG model and three-state-of-art approaches, including DeepARG, RGI, and Resfams based on the independent validation set. (B)

Number of UniProt-reviewed ARGs with different annotation scores detected by different methods. The subplot indicated the total number of UniProt-

reviewed ARG detected by different methods. (C) Comparison of the ARG identification ability of the PLM-ARG model and the other three approaches on

ARGs with different identities to the reference ARGs.

6 Wu et al.



these low-identity ARGs against the non-ARGs present in the
training dataset. Our analysis revealed that 35.5% of these
ARGs exhibited higher similarity to the non-ARGs present in
the training dataset. Notably, our proposed methodology suc-
cessfully identified 41.54% of these ARGs, surpassing the per-
formance of other contemporary state-of-the-art approaches.

3.3 Case study: resistance category annotation of

the unreviewed ARGs in UniProt

A substantial portion of unreviewed bacterial proteins in the
UniProt database were categorized as antibiotic resistance, yet
lacked specific detailed information about resistance catego-
ries. To fill the gap, we utilized our developed PLM-ARG to
prioritize unreviewed ARGs in the UNIPROT database and
expand their resistance category annotations (see
Supplementary Materials). Of 73 938 unreviewed ARGs,
PLM-ARG predicted respective 38 996 (52.74%) and 13 902
(18.8%) with probabilistic value intervals 0.9–1 and 0.5–0.9
as ARGs (Fig. 5A). Among these identified 52 898 ARGs
(probabilistic value > 0.5), 46 343 ARGs (87.61%) can be
assigned with explicit resistance categories. The top three
assigned resistance categories were peptide, beta-lactam, and
tetracycline (Fig. 5B). Most of these identified ARGs
(93.84%) were conferred only one class of antibiotics. As a
typical exception, the antibacterial spectre and mechanisms of

macrolides, lincosamides, and streptogramines (MLS) are sim-
ilar. The genes conferring resistance to one of three classes of
antibiotics are also conferring resistance to the other two clas-
ses of antibiotics. This phenomenon was also observed in our
prediction results (Fig. 5C). We can see that 2993 genes were
assigned with at least one of the MLS categories, and 92.38%
conferred resistance to all three categories of antibiotics. The
specific resistance categories assigned to the 73 938 unre-
viewed ARGs, along with their predicted probabilistic values,
have been provided in Supplementary Table S2. This resource
is intended to facilitate further assessment and prioritization
by the scientific community.

Furthermore, we calculated the identity between the 73 938
unreviewed ARGs and our PLM-ARGDB and found 64.77%
of them with a similarity of <40%, which were defined as dis-
tant homologous ARGs. We found that 58% of these distant
homologous ARGs could be predicted with PLM-ARG.
Notably, 29.67% of the ARGs with <20% similarity can also
be identified. These results further demonstrated the strong
ability of PLM-ARG for ARG identification (Fig. 5D). The
category classification also had high reliability. For example,
the UniProt protein A0A010ZRL4, with <20% similarity to
the reference ARGs, was predicted as tetracycline. Its function
is recorded as the repressor of the tetracycline resistance ele-
ment in the UniProt database. Besides that, the UniProt pro-
tein A0A023CZL5, with <20% similarity to the reference

Figure 5. Resistance category annotation of the unreviewed ARGs in UniProt using PLM-ARG: (A) distribution of ARG across different prediction

probabilistic value bins; (B) predicted resistance category of the unreviewed ARGs in UniProt; (C) overlap of ARGs conferring resistance to macrolides,

lincosamides, and streptogramines, and (D) percentage of unreviewed ARGs with extremely low similarity to the referenced ARGs identified by the

proposed PLM-ARG.
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ARGs, was predicted as a peptide. Its functions are recorded
to be involved in the resistance mechanism against cationic
antimicrobial peptides.

In addition to augmenting resistance annotation within the
UniProt database, we also demonstrated the practical applica-
bility of the PLM-ARG framework in investigating the diver-
sity of the resistome within Earth’s environmental microbiota.
This highlights its substantial potential for real-world applica-
tions (see Supplementary Materials).

4 Discussion and conclusion

Environmental and commensal bacteria harbor a diverse and
largely unknown collection of ARGs that may be mobilized
and transferred to pathogens, impacting public health over
time. Computational approaches using the accumulated
omics data offer an effective way for ARG identification and
resistance category annotation. Here, we developed a novel
Artificial Intelligence (AI)-powered language model frame-
work, PLM-ARG, for ARG and resistance category classifica-
tion by translating sequence data to protein language. The
proposed method outperformed the state-of-the-art
approaches with a 9.6%–36% range of improvement over
AUC and 40.8%–107.3% over the F1-score based on the in-
dependent validation set. Although we demonstrated the su-
periority of the PLM-ARG on distant homologous ARGs by
comparing it with three popular ARG prediction approaches
(i.e. RGI, Resfams, and DeepARG), we have come to recog-
nize that there is no single method that can cater to all real-
world applications. Therefore, the pivotal consideration in
choosing a “fit-for-purpose” strategy is to meticulously align
it with the particular context of the real-world application.

It is widely acknowledged that bacteria can develop resis-
tance to specific antibiotics by acquiring ARGs and through
point mutations in chromosomal target genes associated with
antibiotic resistance. Although this study only focuses on ac-
quired genes, it is crucial to acknowledge that resistance
caused by point mutations in genes differs significantly from
acquired genes. Thus, identifying resistance caused by point
mutations is vital in comprehending the mechanism of
bacterial resistance and should receive more attention in
future research. In addition, defining resistance categories
more precisely would be beneficial, such as grouping beta-
lactams into different sub-classes, enhancing their clinical
applications.

Additional investigations are worth considering to improve
the model performance of PLM-ARG further and confirm the
findings from this study: (i) PLM-ARG takes the assembled
genes/ORF as the input, hampering its identification of low-
abundance ARGs that cannot be assembled without enough
sequencing depth. Therefore, further investigation on directly
modeling the sequence data (e.g. pair-end short-reads se-
quencing and Nanopore sequencing) may be more desirable
and might hold more potential for further improving the per-
formance of ARG identification. (ii) Due to the current con-
straints in our knowledge of ARGs, we cannot assure a 100%
certainty regarding the selection of genes as negative controls
or the comprehensiveness of assigned resistance categories for
ARGs. Therefore, it is imperative to use a robust strategy
when constructing the training dataset to enhance the reliabil-
ity of most ARG identification methods. (iii) Given the sub-
stantial imbalance in the number of genes resistant to various
antibiotic categories, there is a risk of performance

deterioration, particularly for those resistance categories with
fewer protein sequences. Therefore, we recommend adopting
an appropriate loss function or preprocessing strategy to
rebalance the class prevalence. (iv) In the current study, we
showed the great potential of an AI-powered language model
for ARG identification. As it needs a long computation time
to generate the embedding representation for a protein se-
quence by the ESM-1b model, which limits the application, a
lightweight model is necessary for further improvement (Liu
et al. 2021).

In summary, PLM-ARG offers a robust, one-stop solution
for both ARG identification and resistance category classifica-
tion. Its independence from sequence similarity makes
PLM-ARG well-suited for characterizing antibiotic resistance
diversity in large-scale microbiome studies.
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