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Molecular Diagnostics

Role of AI and digital pathology for colorectal
immuno-oncology
Mohsin Bilal 1,6✉, Mohammed Nimir 2,6, David Snead2,3, Graham S. Taylor 4 and Nasir Rajpoot 1,2,5✉

© The Author(s) 2022

Immunotherapy deals with therapeutic interventions to arrest the progression of tumours using the immune system. These include
checkpoint inhibitors, T-cell manipulation, cytokines, oncolytic viruses and tumour vaccines. In this paper, we present a survey of
the latest developments on immunotherapy in colorectal cancer (CRC) and the role of artificial intelligence (AI) in this context.
Among these, microsatellite instability (MSI) is perhaps the most popular IO biomarker globally. We first discuss the MSI status of
tumours, its implications for patient management, and its relationship to immune response. In recent years, several aspiring studies
have used AI to predict the MSI status of patients from digital whole-slide images (WSIs) of routine diagnostic slides. We present a
survey of AI literature on the prediction of MSI and tumour mutation burden from digitised WSIs of haematoxylin and eosin-stained
diagnostic slides. We discuss AI approaches in detail and elaborate their contributions, limitations and key takeaways to drive future
research. We further expand this survey to other IO-related biomarkers like immune cell infiltrates and alternate data modalities like
immunohistochemistry and gene expression. Finally, we underline possible future directions in immunotherapy for CRC and
promise of AI to accelerate this exploration for patient benefits.

British Journal of Cancer (2023) 128:3–11; https://doi.org/10.1038/s41416-022-01986-1

INTRODUCTION
Colorectal cancer (CRC) is the second most common cause of
cancer-related death in the UK [1]. Some of these deaths
may be avoided if cancer progression or recurrence can be
predicted early and treated. Personalised medicine makes use of
individual-specific information—such as their genetic informa-
tion—to tailor the diagnosis and treatment of cancer. In CRC,
however, personalised treatment options are limited to only a
subset of patients. For example, certain molecular biomarkers,
such as the mismatch repair (MMR) status and NRAS mutations,
have a major influence on how CRC patients can be managed
[2]. The remarkable promise of immunotherapy in metastatic
MMR deficient (dMMR) or microsatellite instability-high (MSI-H)
cancer is highlighted by a subset of CRC patients who achieve
long-term durable remissions [3], with MSI-H tumours posses-
sing more neoantigens thus being more visible to the immune
system and more responsive to immune-checkpoint inhibitor
therapy [4–6].
Our main focus in this paper is on the histopathology-based

literature on immunotherapy in CRC. In the next section, we
introduce MMR proteins and the impact of their inactivation? We
have further discussed two fundamental questions concerning
the immune system and tumour microenvironment (TME): (1) how

does the immune system respond to tumours? (2) How can the
immune system be harnessed to fight tumours? We discuss
the significance of the immunological phenotype of microsatellite
instability (MSI) in deciding on immunotherapy treatment for CRC
tumours in the “Immunotherapy in CRC” section. To conclude this
part of the literature, we briefly describe the alternative immu-
notherapeutic approaches, cytokines, oncolytic viruses, tumour
vaccines, and other cells in the TME which are found relevant to
immunotherapy in CRC.
The AI for immunotherapy survey is also focused on studies

which include histopathology data for therapeutic decision-making.
It provides the generic and fundamental concepts of artificial
intelligence (AI) and how it gets integrated into histopathology.
Recently, AI and machine learning have appeared as novel tools
for predicting and evaluating actionable genetic alterations from
routine histology images. It has also been a gateway to a new
research approach, particularly AI for immunotherapy from within
the horizon of computational pathology. This led to modelling the
prediction of MSI-H tumours and other molecular pathways,
subtypes, and genetic mutations of several cancer types, including
CRC. In the final section, we discussed the key takeaways from this
rapid progress of AI for immunotherapy in CRC and potential future
directions.

Received: 18 March 2022 Revised: 31 August 2022 Accepted: 7 September 2022
Published online: 1 October 2022

1Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, Coventry, UK. 2Department of Pathology, University Hospitals Coventry and
Warwickshire NHS Trust, Coventry, UK. 3Warwick Medical School, University of Warwick, Coventry, UK. 4Institute of Immunology and Immunotherapy, University of Birmingham,
Birmingham, UK. 5The Alan Turing Institute, London, UK. 6These authors contributed equally: Mohsin Bilal, Mohammed Nimir. ✉email: mohsinbil@gmail.com;
N.M.Rajpoot@warwick.ac.uk

www.nature.com/bjcBritish Journal of Cancer

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-022-01986-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-022-01986-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-022-01986-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41416-022-01986-1&domain=pdf
http://orcid.org/0000-0001-8632-2729
http://orcid.org/0000-0001-8632-2729
http://orcid.org/0000-0001-8632-2729
http://orcid.org/0000-0001-8632-2729
http://orcid.org/0000-0001-8632-2729
http://orcid.org/0000-0002-9409-6685
http://orcid.org/0000-0002-9409-6685
http://orcid.org/0000-0002-9409-6685
http://orcid.org/0000-0002-9409-6685
http://orcid.org/0000-0002-9409-6685
http://orcid.org/0000-0002-4807-2797
http://orcid.org/0000-0002-4807-2797
http://orcid.org/0000-0002-4807-2797
http://orcid.org/0000-0002-4807-2797
http://orcid.org/0000-0002-4807-2797
http://orcid.org/0000-0002-4706-1308
http://orcid.org/0000-0002-4706-1308
http://orcid.org/0000-0002-4706-1308
http://orcid.org/0000-0002-4706-1308
http://orcid.org/0000-0002-4706-1308
https://doi.org/10.1038/s41416-022-01986-1
mailto:mohsinbil@gmail.com
mailto:N.M.Rajpoot@warwick.ac.uk
www.nature.com/bjc


IMMUNE SYSTEM AND TME
This section describes four key concepts related to immunother-
apy in CRC.

What are mismatch repair (MMR) proteins?
Cancer arises by mutations in the cellular genome. Colorectal
tumours from different patients vary markedly in their mutational
burden [7]. An important cause of mutations in colorectal cancer,
accounting for about 15% of cases of non-metastatic CRC, is
deficiency or inactivation of the DNA mismatch repair (MMR)
pathway [8]. This pathway is essential for genome stability,
correcting mismatched DNA nucleotides arising from polymerase
errors during DNA replication or from chemical damage [9]. The
most important genes involved in MMR are MLH1 (human mutL
homolog 1), MSH2 (human mutS homologue 2) MSH6 (human
mutS homologue 6) and PMS2 (human postmeitotic segreagation
2). Inactivation of these genes can occur sporadically, for example,
through hypermethylation of the MLH1 gene [10], or can be
inherited (e.g., Lynch syndrome).

What happens when MMR proteins are inactivated?
Inactivation of the MMR pathway, whether inherited or sporadic,
leads to a high frequency of mutations throughout the genome.
Microsatellites are small repetitive stretches of DNA sequence
scattered throughout the genome that are prone to mutation. Loss
of MMR function therefore causes high-level microsatellite instabil-
ity (MSI-H) creating differently sized repeat sequences, not found in
the normal DNA. These repeat sequences can be detected by
polymerase chain reaction assays or genome sequencing; their
presence therefore indicates MMR dysfunction with concomitant
high mutational burden spread across the whole genome [11, 12].
Alternatively, loss of the key MMR genes can be detected by
immunohistochemistry (IHC).

How does the immune system respond to tumours?
The immune system employs multiple mechanisms to differenti-
ate between self (e.g., normal tissues) and non-self (e.g., virus-
infected cells) to avoid attacking the former. Although cancer cells
arise from normal cells, they express proteins that, in some cases,
are sufficiently altered to be recognised by the immune system as
non-self and thus targeted by the immune system. Some of these
proteins are aberrantly expressed proteins not usually made by
adult cells (such as carcinoembryonic antigen, a protein normally
expressed only during foetal development). Others are created de
novo by mutations within the cancer cell genome altering the
amino acid sequence of proteins. These neoantigens are highly
attractive targets for immunotherapy. First, their absence from
normal tissues reduces the risk of off-target effects from
immunotherapies seeking to target them. Second, they are highly
foreign to the immune system allowing them to be efficiently
recognised [13]. Potential limitations of using neoantigens for
cancer immunotherapy are first, the fact that most are unique to
an individual patient and secondly because their generation is
stochastic: only a small proportion of genomic mutations lead to
the formation of a neoantigen able to be displayed by the cancer
cell and then recognised by the immune system. Tumours with a
high mutational burden, such as MSI-H CRC, are therefore simply
more likely to contain neoantigens than lower mutational burden
tumours such as microsatellite stable (MSS) CRC.
The fact that tumours expressing immunogenic tumour

antigens or neoantigens can persist and grow in patients with
overtly normal immune function indicates other processes must
be operating to prevent tumour eradication. Tumours comprise of
malignant cells but also a diverse range of non-malignant stromal
and immune cells that collectively form the tumour microenvir-
onment (TME). Some of these immune cells are potentially
capable of initiating or exerting anti-tumour activity: these include
dendritic cells, CD8+ T cells, Th1 CD4+ T cells, natural killer cells,

M1 macrophages and N1 neutrophils [14]. Accordingly, increased
intra-tumoural numbers of some of these cells are associated
with improved prognosis for several cancers including colorectal
cancer [15]. Conversely, other immune cell types, such as
regulatory CD4+ T cells and myeloid-derived suppressor cells
support the growth and maintenance of the tumour, limiting anti-
tumour immunity within the TME. These cells may also support
tumour growth by secreting factors that promote angiogenesis,
the formation of new blood vessels essential for tumours to grow
beyond the limits of oxygen diffusion, and promote tumour cell
metastasis.
It is important to note that this balance between anti- and pro-

tumour immunity is not static and changes over time, a process
called cancer immunoediting[16]. During the first phase, elimina-
tion, transformed cells are recognised by the immune system and
eliminated. If successful, then the individual will not develop a
clinically apparent tumour. However, if elimination is unsuccessful,
then the second phase, equilibrium, commences with the anti-
tumour cells limiting the growth of the transformed cells but
being unable to eliminate them. Based on the long period
between carcinogen exposure and cancer development [17] the
equilibrium phase likely persists for decades [16]. Further evidence
for long-term equilibrium comes from unfortunate cases of cancer
transmission by organ transplantation. Here, transplant recipients
developed cancers after receiving organs harvested from donors
who had previously recovered from cancer, in some cases over a
decade before transplantation occurred [18]. Equilibrium may end
with the immune system clearing the transformed cells. However,
it is a dynamic process, and alternatively, the transformed cells
may evolve to evade immune-mediated equilibrium to enter the
third phase and escape, producing a tumour.

How can the immune system be harnessed to fight tumours?
Cancer that develops in immunocompetent animals, having
evolved under immune pressure, are less well recognised by
immune effectors [19]. Cancer cells from patients similarly show
the effects of immune escape, for example, downregulating
expression of human leucocyte antigen (HLA) class I molecules
and other components of this pathway essential for recognition
by CD8+ T cells [20]. Nevertheless, compelling results from
multiple Phase III clinical trials and the licensing by regulatory
authorities of several immunotherapies able to produce durable
clinical responses show it is possible to restore immune control of
cancer for some diseases and patients [21].
Several avenues are being taken to explore how to control

tumours using the immune system. These include checkpoint
inhibitors, T-cell manipulation, cytokines, oncolytic viruses and
tumour vaccines. A summary of these is provided in (Fig. 1). In the
next section, we describe immunotherapy approaches in CRC
followed by AI for CRC immunotherapy, and a discussion to
synthesise the reviewed literature, limitations and advantages, and
future potential of AI for immunotherapy in CRC.

IMMUNOTHERAPY IN CRC
As of 2022, two types of immunotherapy agents have been
approved by the United States Food and Drug Administration
(FDA) for use in CRC patients with MSI-H tumours [4]. A useful
paradigm for understanding how these immunotherapies work is
the cancer immunity cycle [22]. In this model, tumour antigens
from tumour cells are internalised by antigen-presenting cells and
displayed to T cells in draining lymph nodes. This stimulates
tumour antigen-specific T cells which then traffic to the tumour
and kill tumour cells. Tumour cell death then releases tumour
antigens that can prime new tumour-specific T-cell responses.
The first type of immunotherapy agent licensed for CRC are

three different antibodies (Pembrolizumab from Merck, Dorstali-
mab from Glaxo Smith Klein and Nivolumab from Bristol Meyers
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Squibb) that act by blocking the programmed cell death protein 1
(PD1) immune checkpoint. The normal role of this checkpoint is to
protect host tissues by limiting immune-mediated damage at sites
of inflammation. The binding of PD1 on the surface of T cells to
its ligand PD-L1 affects T-cell receptor signalling differentially
affects different T-cell types. PD1 engagement on effector T cells
promotes their apoptosis, anergy and exhaustion, whereas PD1
engagement on regulatory T cells stimulates their proliferation
[23]. Consequently, this checkpoint is frequently harnessed by
tumours to evade immune-mediated destruction [24]. Antibodies
that bind to PD1 or PD-L1, preventing their interaction, therefore
act at the final effector stage of the cancer immunity cycle,
restoring effector T-cell function within the tumour. For some
cancer patients this alone is sufficient to restore immune-
mediated control of the tumour, with compelling evidence of
efficacy from multiple clinical trials in MSI-H CRC patients [4].
The second type of immunotherapy agent licensed for CRC is an

antibody (Ipilimumab, from Bristol Meyers Squibb) that targets a
different immune checkpoint called Cyotoxic T-lymphocyte
antigen 4 (CTLA4). Expressed on the surface of activated T cells,
CTLA4 competes for binding to B7 molecules on the surface of
antigen-presenting cells, inhibiting the early priming stage of the
T-cell response. Because CTLA4 acts is a different stage of the
cancer immunity cycle compared to PD1, inhibiting both
checkpoints is synergistic, with anti-PD1/anti-CTLA4 combination
therapy yielding improved clinical benefit relative to anti-PD1
monotherapy [5].

MSI-H CRC tumours have a distinct immunological phenotype
MSI-H tumours are distinct from similarly staged MSS tumours in
several respects [25]. They are predominantly located in the right
side of the colon, are less likely to metastasise and are less
sensitive to 5-fluorocil-based chemotherapy used for first-line
therapy of CRC [26, 27]. Their TME is also different. MSI-H CRC
tumours are highly infiltrated with T cells with an activated
cytotoxic phenotype [28–30]. These effectors are counterbalanced
by a range of highly upregulated immune checkpoints that
include PD1/PD-L1 and CTLA4 but also Lymphocyte Activation
Gene 3 (LAG3), and indolamine 2’3’-dioxygenase (IDO), which

inhibits T-cell function by depleting tryptophan levels within the
TME [31]. This combination of increased immune effector
infiltration and immune inhibitory pathways is consistent with
highly mutated MSI-H tumours possessing more neoantigens
(thus being more visible to the immune system) and more
responsive to immune-checkpoint inhibitor therapy [4–6].

Alternative immunotherapeutic approaches for CRC
Advances in genetic engineering now make it possible to express
conventional or modified T-cell receptors in T cells, redirecting
them to recognise new targets. Chimeric antigen receptor T cells
(CAR-T cells) are patient-derived T cells that are genetically
modified outside the body to express a fusion protein (hence the
term chimeric) comprising an intracellular signalling domain and
the antigen-binding region of an antibody specific for tumour-
associated antigens expressed on the outer surface of the cancer
cell [32]. A major advantage of this strategy is that it is not
dependent on the cancer cell expressing HLA molecules nor a
functional antigen processing pathway; both are frequently
downregulated in cancer cells to escape surveillance by conven-
tional T cells. Amongst the targets being explored for CRC therapy
is CEA, which as described earlier is absent from normal adult cells
but frequently expressed by CRC cancer cells. A phase dose
escalation trial of CEA-targeting CAR-T cells in patients with
metastatic CEA-positive CRC reported tumour shrinkage in two of
the ten patients who received the CAR-T cells with another seven
patients achieving stable disease that for two patients were
sustained for over 30 weeks [33].
Genetic manipulation of T cells is a complex, expensive process.

An alternative, more scalable approach is to use bispecific T-cell
engager (BiTE) antibodies: These antibodies are made by fusing
two different single chain antibodies such that the new antibody
possesses a variable region that recognises the tumour antigen
and another able to bind to the T-cell marker CD3 and trigger
T-cell activation [34]. A potential disadvantage of the approach is
the lack of T-cell specificity compared to some of the other
immunotherapy methods, since CD3 is expressed not only by
cyotoxic T cells but also by regulatory T cells. Cibisatamab (CEA-
TCB) is a BiTE antibody specific for CEA [35] currently being tested
for safety and efficacy in a Phase 1b clinical trial (ClinicalTrials.gov
identifier: NCT03866239). A potential limitation of this and the CAR
T-cell response described above is the use of CEA as a target.
Because CEA is not essential for tumour cell survival, resistance
can develop due to selection for tumour cells with low or absent
expression of CEA. In a recent in vitro study, patient-derived CRC
organoids developed resistance to Cibisatamab [36]. Combination
approaches may therefore be important to avoid treatment
resistance developing when non-essential tumour antigens are
being therapeutically targeted.

Cytokines, oncolytic viruses, tumour vaccines and targeting
other cells in the TME
The immune system uses a diverse range of cytokines to co-
ordinate immune responses. Non-specific immune stimulation with
cytokines has been used to treat patients for decades, although
response rates for cytokine monotherapy are modest and toxicity is
often dose-limiting [37]. Cytokines are likely more valuable when
used in combination with other immunotherapy modalities [38].
Examples include interleukin-2 (IL-2, which supports the growth and
differentiation of T cells) and granulocyte-macrophage colony-
stimulating factor (GM-CSF, which facilitates processing and
presentation of antigens by antigen-presenting cells), both of
which have been used in combination with multiple agents.
Oncolytic viruses (OVs) can act as anti-tumour agents in a

myriad of ways [39]. They can function via direct oncolysis of the
tumour cells but also through other mechanisms that include:
serving as vehicles for cytokine expression within the TME,
providing activation signals that promote a more hostile TME, or
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promoting MHC-I-associated presentation of tumour-specific
antigens. OVs can also be modified to preferentially infect cancer
cells. Given the frequent upregulation of immune checkpoints
within tumours, a rational approach is to administer OVs in
combination with CPIs, with the former promoting antigen release
to stimulate immune effectors and the latter allowing those
effectors to function effectively. Since both agents are acting at
complementary stages of the cancer immunity cycle, this strategy
is likely to be synergistic [40, 41].
An alternative approach to stimulate anti-tumour effectors,

which like OVs could be used in combination with checkpoint
inhibitors to achieve synergy, is therapeutic cancer vaccination.
Several clinical trials are currently underway seeking to develop
therapeutic vaccines to treat CRC and/or prevent recurrence. A
diverse range of modalities are being investigated, including
dendritic cells loaded with CEA, EpCAM, p53 or 5T4 antigens (all of
which are potential immune targets in CRC) or tumour cell lysates
[42]. Like OVs, these vaccines can potentially be combined with
immune-checkpoint inhibitors as a rational combination strategy.
In the next section, we describe the fundamental of Artificial

Intelligence (AI) and then we will present our survey of literature
on AI for immunotherapy in CRC.

ARTIFICIAL INTELLIGENCE AND IMMUNOTHERAPY IN CRC
Artificial intelligence overview
In general, artificial intelligence (AI) refers to machines designed to
imitate human intelligence while performing complex tasks
without human intervention. Machine learning (ML) is a branch
of AI and computer science that provides various algorithms of
learning from the data and examples without being programmed
explicitly. Logistic regression, decision trees, random forests,
support vector machines, and artificial neural networks (ANN)
are few widely used and popular algorithms of classical ML. Deep
learning (DL) is a relatively new offshoot of machine learning,
where ANNs are designed with several intermediate (or hidden)
layers of artificial neurons between the input and output layers
and new set of operations as artificial neurons e.g., convolution in
convolutional neural networks (CNNs). In this survey, our focus is
on both classical ML and DL, which are widely used in
computational pathology for a range of related applications in
cancer diagnosis and prognosis. Broadly, machine learning refers
to models that learn from the data or examples either with or
without supervision. Figure 2 illustrates the difference of model-
ling ML and DL workflows for AI systems.
A general workflow of modelling artificial intelligence by

machine learning involves finding the discriminative patterns
within the data that involves data preparation, feature engineer-
ing, feature selection and classification or regression (classification
refers to prediction of discrete labels, whereas regression refers to

continuous labels), where learning is managed by training and
validating/testing the problem-solving model. Classical ML refers
to the manual or hand-crafted feature engineering and selection
of most relevant features, whereas the modern deep learning (or
DL) methods employ data-driven feature engineering and
selection intrinsically. We will refer the classical ML as ML from
hereon. In ML, the term feature engineering refers to encoding the
raw data in meaningful measures and descriptors using domain
knowledge and expertise for better representation of data to
facilitate learning. Feature selection is the process of selecting
subset(s) of relevant features by removing irrelevant and
redundant features. The blend of ML and DL is gaining popularity
in digital and computational pathology, where DL is mainly used
for learning representation of pixel data in histology images and
ML for learning decision boundaries or classifications. Conven-
tionally, ML was often divided into three subcategories: super-
vised, unsupervised and reinforcement learning. Supervised
learning is further categorised into weakly supervised and semi-
supervised methods, whereas unsupervised learning can also take
the form of self-supervised learning.
Supervised learning refers to learning from well-curated

labelled data often used to learn differences and similarities to
automatically group data samples into different categories, e.g.,
diagnosing normal and abnormal samples of subjects. This is also
referred to as classification, in which the model learns to label the
data samples according to their corresponding categories. In
weakly supervised learning, the dataset is labelled but only at a
high level, e.g., in histopathology a WSI with a patient’s level label
but without any region-level or cell-level annotations. In semi-
supervised learning, a small subset of well-annotated data
together with a large amount of unlabelled data are available
for training purposes. In unsupervised learning, data is not
labelled at all; instead, different similarities and distance metrics
are used to find the potential groupings within the data. This is
also referred to as data clustering. Self-supervised learning is a
form of unsupervised learning where the data itself provides
supervision with the help of an auxiliary learning task on a subset
or all of the data. In reinforcement learning, learning has a reward
or penalty associated with the expected outcome in a particular
situation.

Machine-learning applications in histopathology
The data for machine-learning applications in histopathology
involves nuclei, cells, tissues regions, within the whole-slide
images, clinical information related to patients' diagnosis, treat-
ments and outcomes, as well as gene expression data [43, 44]. A
wide range of digital pathology applications of deep learning
include automatic detection, segmentation, and classification of
nuclei [32, 45], cells [33, 34] and tissue regions [35] as objects or
regions of interest (ROIs). Image segmentation is the process of

Artificial intelligence

Machine learning

Deep learning

Classical machine learning

Data preparation
FEATURES

FEATURESData preparation

Feature
engineering

Automatic feature
engineering & selection

Classification

Feature
selection

Classification

Fig. 2 Artificial intelligence and machine learning. Computational workflow for conventional machine learning and deep learning-based
modelling.
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partitioning image into multiple image segments (ROI) or image
objects (nuclei). Manual feature engineering involves quantifying
nuclei phenotypes, cellular composition, morphology and orienta-
tions [36]. DL pipelines involve automated feature engineering
employed for nuclei detection, cell segmentation and classifica-
tion, as well as tissue segmentation and classification [44]. ML is
often used as a postprocessing step after detection and
segmentation to make predictions on the downstream tasks of
cancer diagnosis [38–40], subtyping [41, 42], patient stratifications
in terms of survival, outcome and response to therapy [46, 47].

AI FOR IMMUNOTHERAPY IN CRC
MSI-H tumours possess more neoantigens and are therefore more
visible to the immune system and more responsive to immune-
checkpoint inhibitor therapy [4–6]. MSI turned out to be the most
popular biomarker out of ten biomarkers explored in these studies
on AI for immunotherapy in CRC. However, six out of ten
biomarkers were some forms of immune cell quantification in the
tumour microenvironment. Below, we provide an introduction to
AI-related concepts, followed by a survey of AI literature for
immunotherapy in CRC.
In Fig. 3, we summarise key factors of our literature review of

twenty-six studies of AI predicting immune response-related
biomarkers. Twenty-three of these studies predicted MSI status
using AI techniques. Since WSIs are large, they are often divided
into small image tiles (patches). Patch-based analysis was twice as
popular in comparison to cell-based analysis in these studies. Four
different data modalities were used involving three different
imaging techniques and gene expression data, with H&E images
being the most popular data modality. Four different types of
machine learning (ML) approaches were employed in these
studies with supervised and weakly supervised learning as the
most frequently used approach.
Recently, substantial progress has been made in predicting MSI

status and immune response-related biomarkers using AI in
different data modalities. ML was used for predicting MSI from
gene expression data [48–51]. Deep learning (DL) and ML-based
approaches were explored for predicting MSI status [52–64],

genetic alterations, CRC pathways, and high mutation density
(HMD) [55, 59] and tumour mutation burden (TMB) [65] from H&E-
stained histology slides. Few of these studies are automatically
predicting survival based on immune cell densities directly from
H&E image, IHC and gene expression data [66–71]. Details of
these studies and their findings are reviewed in the subsequent
sections.

Machine learning for MSI prediction from gene expression
data
In this section, we cover studies that employed machine learning
for the prediction of MSI status from gene expression data. Chen
et al. [48] analysed effects of MSI status on gene expression, and
Lu et al. [49] developed an immune-checkpoint inhibition
prediction model. Wang et al. [50] and Huang et al. [51] used
classical ML techniques to develop “MSIpred” and “MSIseq” for
automatic MSI classification, respectively.
SVM appears a widely used classifier for discriminating different

classes of MSI status from the gene expression data. Lu et al. [49]
developed ML-based models to predict immune-checkpoint-
related genetic expressions like TMB, PDL-1, Durable clinical
benefit (DCB) or No durable clinical benefit (NDB), and dMMR as
digital biomarkers in GI cancers. They used 359 human genes of
immunological response to immunotherapy, infiltrating immune
cell markers, tumour-specific antigens, tumour markers and
essential signalling pathways from RNA profiling data. Among
four models, the DCB vs NDB prediction model showed better
performance (AUROC= 0.74) than the rest of the immune-
checkpoint-related biomarkers, whereas PDL-1 positive vs PDL-1
negative prediction models performed worse (AUROC= 0.52).
Other methods [48, 50, 51] have shown better AUROC (0.941–1.0)
in predicting MSI-H vs MSI-L and MSI-H vs MSS. MSI status seems
better predicted if the model is developed for a single type of GI
cancer like CRC and performance is lower when the development
cohort consists of data from multiple cancers. The use of different
cohorts and different methodologies makes it difficult to compare
performance across different studies. The selection of genes
for given biomarkers can also have an impact on the model
performance.

Machine learning for predicting immunotherapy-related
biomarkers
In this section, we cover studies that aim to evaluate densities of
different immune cells and their interplay with tumour epithelial
and stromal tissue, their association with overall survival and
relevant molecular subtypes. These studies provide similar
evidence in favour of different immune cell densities and their
significant role in predicting survival independent of the relevant
molecular subtypes like MSI.
Väyrynen et al. [66] analysed tumour-associated plasma cells,

neutrophils, and eosinophils in tumour intraepithelial and stromal
areas within H&E images using classical ML. They found high
densities of lymphocytes and eosinophils in tumour–stroma are
associated with better survival. They also found higher densities of
both intraepithelial & stromal lymphocytes in MSI-H cases.
Gao et al. [67] proposed a novel deep learning framework for

the cancer molecular subtype classification. They transformed
high-throughput gene expression data of TCGA-CRC cohort into
functional spectra using gene set enrichment analysis and
achieved balanced accuracy of 90% for consensus molecular
subtype (CMS) classification, on 13 validation cohorts (n= 3578).
Fujiyoshi et al. [68] hypothesised that T-cell densities (reflecting

adaptive anti-tumour immunity) might be inversely associated
with tumour budding and poorly differentiated clusters (PDC) in
colorectal carcinoma. Their findings suggest that anti-tumour
immunity based on cytotoxic T cells may suppress microinvasion.
High densities of intraepithelial CD3+ CD8+ and CD3+ CD8+
CD45RO+ and cytotoxic T cells are associated with low tumour
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budding grade, reflecting the suppression of tumour progression by
cytotoxic anti-tumour immunity. PDC grade was significantly
associated with BRAF mutation, while tumour budding had a
tendency towards an inverse association with MSI-high phenotype.
Zhang et al. [69] performed an in-silico analysis of tumour

immunity among different MSI statuses in five cancer types,
including CRC. They used TIMER to calculate the abundances of
immune infiltrates of B cells, CD4 T cells, CD8 T cells, neutrophils,
macrophages, and dendritic cells from the gene expression matrix
of each TCGA cancer sample. All immune-related gene sets were
found to be positively correlated to samples harbouring MSI-H
status in CRC. Gene ontology enrichment analysis showed many
immune-related function modules to be significantly enriched
exclusively in MSI-H CRCs. The distinct infiltration immune cell
abundance and immunological gene signatures were stronger
predictors of patient survival than MSI status.
Nestarenkaite et al. [70] applied a spatial analysis method which

computes immuno-gradient indicators to estimate the migration
of immune cells towards the tumour across the tumour/stroma
interface. They used HALO multiplex IHC algorithm to detect and
extract coordinates of CD8+, CD20+, CD68+ cells. They compute
mean cell densities of CD8+, CD20+, and CD68+ in intra-tumoral
tissue and within the tumour–stroma interface zone (IZ), which
includes tumour, tumour edge and stroma. Independent from
molecular characteristics and TNM staging, CD8+ and CD20+

immuno-gradient indicators, which reflect cell migration towards
the tumour, were associated with improved patient survival, while
the infiltrative tumour growth pattern was linked to worse patient
outcome. They found MSI-H shows higher CD8+ and CD68+ cell
densities and no difference in of CD20+ in IZ among MSI or MSS.
Karpinski et al. [71] characterised the immune landscape of CRC

consensus clusters. They performed unsupervised clustering
(n= 1492) into five clusters. CRC with tumour purity <0.65 were
excluded, rest of the four clusters were mapped to CMS. They
reported significant enrichment of innate immune cells (macro-
phages M0 & M1, activated mast cells and neutrophils) in four of
the five clusters. Cluster3–CMS1 displayed both, enrichment of
leucocytes related to adaptive immunity and to innate immunity.
Cluster2–CMS2 and Cluster5-CMS3 displayed significantly higher
epithelial cell content than Cluster3–CMS1 and Cluster4–CMS4.

Deep learning for MSI prediction directly from H&E images
In this section, we discuss DL approaches for predicting MSI status
directly from H&E images. We include only those studies which
used H&E-stained routine formalin-fixed and paraffin-embedded
(FFPE) diagnostic slides for the prediction of MSI status in CRC
cancer.
Kather et al. [52] published a pioneering study to show that

DL can predict MSI status directly from histology images in
gastrointestinal cancers, including CRC. Several other studies have
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been published since then. In follow-up multisite validation
studies, Echle et al. [53, 64] demonstrated high performance
(external validation, n= 771 and n= 805, AUROC= 0.96) of a DL-
based MSI prediction from H&E images. An in-depth analysis of
these studies highlights a few key factors that may affect the
performance. These factors include having multiple large cohorts
covering a wide range of variability and heterogeneity [53],
balancing the dataset for MSI and MSS cases at the patient
level [52], selecting representative tissue types [54], and weakly
supervised learning to select representative tiles [55], using
transfer learning or fine-tuning [61] and fine-tuning with self-
supervised learning on TCGA-CRC [63], all contributed to
performance gains [56–60, 62]. The importance of publicly
available data resources like TCGA appears to be another key
factor, which not only accelerates the research and development
of AI techniques but also promotes reproducibility and head-to-
head comparative analysis among different approaches.
High mutation density (HMD) or tumour mutation burden (TMB)

is another immune response-related biomarker; three studies
[55, 59, 65] predict HMD directly from the H&E images. Figure 4a
shows cross-validation and train/test split performance on the
TCGA-CRC cohort. Figure 4b shows external validation perfor-
mances of different methods.
Despite some outstanding results for prediction of MSI and/or

HMD directly from routine diagnostic H&E images, these techniques
are still far from adoption in the clinical workflow, which requires
the prediction performance to be comparable to the current clinical
practice as well as histopathological interpretation and verification
of the predictions. To add a degree of interpretability, some recent
studies [52–55, 57, 59, 64] have extended their downstream analysis
to strongly predicted tiles. Doing it systematically [54, 55, 57] is
another important aspect of verifying the existing knowledge and
paving a way to future expert-level annotation for such biomarkers
in the TME. Yamashita et al. [54] found mucinous annotation as a
differential tissue type in addition to tumour epithelium. Bilal et al.
[55] found a differential cellular composition of CRC pathways and
hypermutated tumours and Cao et al. [57] observed a high
proportion of poor differentiation in MSI tumours. Authors in [55]
found that tumour-infiltrating lymphocytes (TILs) played a differ-
ential role in MSI and HMD tumours.
In summary, large-scale studies with bigger cohorts from

multiple clinics, independent external validation, novel learning
methodologies, and identification of explainable features are
designated key factors for transforming any AI-based biomarker
into a potential clinical application.

DISCUSSION AND FUTURE OF AI IN IMMUNOTHERAPY
Among the current trends in the literature, microsatellite
instability or MSI has emerged as the most promising AI-based
biomarker out of ten different immunotherapeutic biomarkers. Six
of these ten biomarkers are related to immune cell quantification
in the tumour microenvironment. Immune cells in the tumour
microenvironment have been consistently observed as the most
relevant histopathological features of MSI tumours in most
studies. This suggests a significant role of immune cell quantifica-
tion in immunotherapy for colorectal cancer.
DL-based techniques appear to have dominated the role of AI in

immunotherapy for colorectal cancer. Substantial progress has been
made in predicting MSI status and immune response-related
biomarkers using AI in different data modalities. SVM appeared as
a widely used classical machine-learning method for predicting MSI
status from the gene expression data. In gene expression-based
analysis, cohort size and selection of right genes for the given
biomarkers have shown their impact on the model performance.
The ability to determine MSI status from H&E images is

a promising development that is likely to continue. Multiple
large developments and validation cohorts covering a wide

range of variability and disease heterogeneity, selecting repre-
sentative tissue types, and using some form of transfer learning,
have been evident as the major factors that have improved
prediction accuracies besides robustification and generalisation
of AI techniques.
For adoption in clinical practice, there must be strong evidence

for AI’s performance being at least matching the existing clinical
practice on large-scale multi-centric cohorts. Besides, predictions
made by AI must have histopathological interpretation and be
verifiable. There needs to be a global consensus on the clinical
‘gold standard’ MSI testing and its improved sensitivity and
specificity over the currently known values of sensitivity and
specificity, which are below 100% [72]. Recent developments in
making the prediction models available as open-source software
after rigorous testing are encouraging [73, 74]. The open-source
TIAToolBox library [73] has made models for MSI [55] and HER2
[75] predictions available for testing by the community. HEAL [74]
is another end-to-end tool for histopathology analysis that
contains the code for the prediction of MSI and EGFR status.
Several studies have been conducted to predict digital biomar-

kers related to immunotherapy in an indirect way, e.g., predicting
MSI/TMB status, digital profiling of immune cells directly from H&E
images and digital quantification or scoring of TILs could be
potential immunotherapy biomarkers. With the growth of AI in
general and computational pathology in particular, we expect to see
further progress in predicting response to immunotherapy directly
from H&E images. This would require clinical cohorts of patients with
H&E images and data with endpoints like response and outcome to
different types of treatments, including immunotherapy. This is an
area that has not been explored much through the AI approaches,
although its promise could be more widespread than the current
framework and approaches of AI in immunotherapy studies. It is also
unknown whether AI and histopathology can be used in therapeutic
decision-making for alternating immunotherapy approaches, cyto-
kines, oncolytic viruses, tumour vaccines, and other cells in the TME
that are not distinguishable from routine histology slides.
Recent developments have demonstrated the utilisation of

existing knowledge of the CRC immune landscape, the discovery
of potentially novel biomarkers and strategies for immunotherapy.
Alderdice et al. [76] have found IL2RB (CD122) as the most
common gene associated with immune-checkpoint genes in CRC.
Bocciarelli et al. diagnosed rare targetable oncogenic fusion in
MSI-High, RAS-BRAF wild-type CRC with MLH1 loss [77]. Another
promising direction is the exploration of gene expression and
whole exome sequencing data of immune checkpoints, consensus
on references and minimal application requirements, as suggested
by Barth and Gyorffy [78], combining features from both histology
and molecular profiling [79], and particularly novel therapeutic
strategies catering CRC heterogeneity [80, 81]. From the “AI in
healthcare” perspective, there is good momentum for continua-
tion and further acceleration of research and development to
explore these potentially novel directions on the role of AI for
immunotherapy in CRC. We anticipate that AI will play a vital role
in accelerating the research to explore new biomarkers and the
clinical adoption of new methodologies for the stratification of
patients likely to benefit from immunotherapy.
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