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Dual function of a bacterial protein as an adhesin and extracellular
effector of host GTPase signaling

Daniel Henry Stones and Anne Marie Krachler*
Institute of Microbiology and Infection; School of Biosciences; University of Birmingham; Edgbaston, Birmingham, United Kingdom

Bacterial pathogens often target con-
served cellular mechanisms within

their hosts to rewire signaling pathways
and facilitate infection. Rho GTPases are
important nodes within eukaryotic sig-
naling networks and thus constitute a
common target of pathogen-mediated
manipulation. A diverse array of micro-
bial mechanisms exists to interfere with
Rho GTPase signaling. While targeting
of GTPases by secreted bacterial effectors
is a well-known strategy bacterial patho-
gens employ to interfere with the host,
we have recently described pathogen
adhesion as a novel extracellular stimulus
that hijacks host GTPase signaling. The
Multivalent Adhesion Molecule MAM7
from Vibrio parahaemolyticus directly
binds host cell membrane lipids. The
ensuing coalescence of phosphatidic acid
ligands in the host membrane leads to
downstream activation of RhoA and actin
rearrangements. Herein, we discuss
mechanistic models of lipid-mediated
Rho activation and the implications from
the infected host’s and the pathogen’s
perspective.

Vibrio parahaemolyticus is an emerging
pathogen and since its discovery in the
1950s it has lead to a globally dissemi-
nated pandemic of gastroenteritis.1

V. parahaemolyticus preferentially colo-
nizes the small intestine, and food-borne
infection typically manifests as watery or
bloody diarrhea, nausea and vomiting.
Although the disease is usually self-limit-
ing in otherwise healthy individuals, V.
parahaemolyticus infection can rapidly dis-
seminate and lead to fatal septicemia in
immunocompromised patients.2

V. parahaemolyticus possesses an arsenal
of virulence factors, including adhesins,

toxins and 2 type 3 secretion systems,
which together give the pathogen the
capacity to penetrate the mucosa, invade
deeper tissues and disseminate to
the blood stream. Although this property
is usually kept in check by the host’s
immune system, it is important to under-
stand the basis for the organism’s invasive-
ness. Although invasion has been observed
both in human and animal hosts, the fac-
tors facilitating this property have long
remained elusive.3,4 It has been ruled out
that the secreted toxins associated with
clinical isolates, TDH and TRH, are
responsible for intestinal permeability,
although both contribute to enterotoxic-
ity.5 Two type 3 secretion systems (T3SS)
have been identified in V. parahaemolyti-
cus, each carrying its own dedicated set of
effectors, which are translocated into the
eukaryotic cytoplasm during infection to
manipulate the host to the pathogen’s
advantage. Although many of the effectors
still remain elusive, the first T3SS,
encoded by chromosome I, seems to
mediate cytotoxicity, while the second
T3SS, encoded by chromosome II, is
required for enterotoxicity and establish-
ment of persistence through a small intra-
cellular niche population.6 However,
earlier work suggests that invasiveness can-
not be attributed to either T3SS1 or
T3SS2 alone. T3SS1 has no effect on per-
meability, while T3SS2 contributed but is
dispensable for bacterial transmigration.7

Recently, a new class of bacterial adhe-
sins, termed Multivalent Adhesion Mole-
cules (MAMs) was discovered and its
founding member was identified in
V. parahaemolyticus. The V. parahaemoly-
ticus MAM, MAM7, is constitutively
expressed and confers on bacteria the abil-
ity to attach to a wide range of different

Keywords: actin dynamics, adhesin, effec-
tor, host-pathogen interaction, lipid sig-
naling, phosphatidic acid, Rho GTPases,
RhoA, Vibrio

© Daniel Henry Stones and Anne Marie Krachler
*Correspondence to: Anne Marie Krachler; Email:
a.krachler@bham.ac.uk

Submitted: 01/05/2015

Revised: 03/04/2015

Accepted: 03/09/2015

http://dx.doi.org/10.1080/21541248.2015.1028609
This is an Open Access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/),
which permits unrestricted use, distribution, and
reproduction in any medium, provided the original
work is properly cited. The moral rights of the
named author(s) have been asserted.

www.tandfonline.com 1Small GTPases

Small GTPases 6:3, 1--4; July/August/September 2015; Published with license by Taylor & Francis Group, LLC
COMMENTARY

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
B

ir
m

in
gh

am
] 

at
 0

9:
44

 2
6 

A
ug

us
t 2

01
5 

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


host cell types, including epithelial cells,
fibroblasts and macrophages.8 Attachment
is mediated by 2 host surface molecules:
While fibronectin acts as a co-receptor to
increase the rate of binding, high affinity
interactions between pathogen and host
surface is mediated by a group of lipid
ligands, phosphatidic acids (PAs). MAM7
comprises 7 tandem mammalian cell entry
(MCE) domains, each of which is capable
of binding phosphatidic acid ligands,
albeit with varying affinity.9 It has been
established that targeting MAM-mediated
adhesion can attenuate bacterial infection
of a wide range of pathogens, including
V. parahaemolyticus.10 For this purpose,
we have developed a synthetic adhesion
inhibitor, comprising a recombinant frag-
ment of MAM7 chemically coupled to a
polymer scaffold. Such bacteriomimetic
inhibitors show vastly improved efficacy
over soluble MAM-based adhesion inhibi-
tors, by exploiting the binding avidity
gained by bacterial surface display, while
avoiding side effects caused by other bac-
terial surface components.11 While these
adhesin-coupled beads where originally
produced with therapeutic applications in
mind, they have more recently lead to a
serendipitous discovery regarding the
interplay between adhesion and host cellu-
lar signaling. Studies using this minimalis-
tic approach to characterize the effect of
adhesion independent of other microbial
factors have revealed that MAM7s ability
to bind tightly to host phosphatidic acids
directly activates host RhoA signaling and
turns it to the pathogen’s advantage.12

Rho GTPases constitute important
nodes of eukaryotic cell signaling, at
which many cellular processes, including
cytoskeletal dynamics, trafficking, and
proliferation intersect. As such, it is per-
haps unsurprising that many microbial
pathogens possess effectors which are
capable of influencing Rho GTPase sig-
naling, either by direct biochemical modi-
fication of GTPases, or by manipulation
of endogenous host downstream effec-
tors.13 Indeed, V. parahaemolyticus con-
tains at least 2 effectors targeting Rho
GTPases. VopS, a T3SS1 effector, AMPy-
lates Rho GTPases, leading to multiface-
ted effects such as immune evasion and
cytoskeletal collapse at later stages of infec-
tion.14,15 VopC, a T3SS2 effector,

selectively deamidates the Rho GTPases
Rac and Cdc42, but not RhoA, and is
implicated in the establishment of an
intracellular niche.16 MAM is distinct
from these in several ways. Although it
leads to GTPase activation, and can thus
be described as a GTPase effector, it is not
secreted but is a surface exposed, outer
membrane-anchored bacterial protein.
Also, its function is not directly conveyed
by an enzymatic activity (as is the case for
both T3SS effectors), but is an indirect
consequence of its binding to PA, a lipid
second messenger. Despite its activity
being indirect, it is highly specific and is
only directed at RhoA, but not Rac or
Cdc42.12

Phosphatidic acids are phospholipids
consisting of a glycerol backbone linked to
a phosphate headgroup via C3 and 2 fatty
acid chains via C1 and C2. Although PAs
are usually turned over quickly and as
such are short-lived and constitute only a
minor fraction of a cell’s membrane lipid
composition (1–4% of total phospholipid,
on average, are PAs), they are a key second
messenger and a component of multiple
cellular signaling pathways. PAs are
involved in regulation of cellular lipid
metabolism, proliferation and trafficking,
among others.17-19 However, because of
their fast-lived nature, our knowledge con-
cerning the details of PA biochemistry,
including their prevalence and distribu-
tion within different tissues, is still sparse.
Thus far, studies on PAs have focused on
pathways involving PA localized in the
inner leaflet of the plasma membrane and
cellular organelles, such as the Golgi.20

Although it has been shown that PA is
also found in the outer leaflet of the
plasma membrane, it is not characterized
how this pool is generated or how it is
linked to cellular functions, especially in
the context of the intestinal epithelium.21

Characterization of the interaction
between bacterial Multivalent Adhesion
Molecules (MAMs) and the extracellular
PA pool and of the resulting host cellular
phenotypes will help to shed more light
on this important group of lipid second
messengers.

How exactly PA binding and clustering
by MAMs leads to RhoA activation is still
unknown, but several possibilities exist.
Due to their negatively charged

headgroups and charge repulsion, local-
ized enrichment of PAs in the membrane
induces a negative curvature in the lipid
bilayer.22 This may lead to the recruit-
ment of adapter proteins, which form the
basis of signaling platforms that are capa-
ble of RhoA activation.23,24 Alternatively,
sequestration of PA, which is usually sub-
ject to rapid turnover, could act as a signal
– the inhibition of PA degradation to
diacylglycerol or inhibited flux of PA
metabolites may stimulate enzymes
involved in PA synthesis and turnover, as
was demonstrated for other cell types.25,26

Further work, capitalizing on MAM-cou-
pled biomimetic beads as a tool to trap
and characterize MAM- and PA associated
signaling platforms by proteomics and lip-
idomics approaches, will help to shed light
on the mechanism of signal transduction
between PA and RhoA. While the exact
mechanism linking lipid binding and
RhoA activation is still unknown, it is
clear that MAM7s ability to cluster phos-
phatidic acids in the membrane is crucial
for its function. While individual MCE
domains coupled to a scaffold can still
bind phosphatidic acids with sufficient
affinity to mediate cellular attachment,
this is not sufficient to elicit GTPase sig-
naling. Additionally, even all 7, intact tan-
dem MCE domains are not able to
activate RhoA, unless coupled to a sur-
face.12 This requirement of MCE
domains to be coupled to a surface, be it
bacterial or polymer bead, in order to acti-
vate RhoA signaling, may indicate the
need for multiple MAM molecules to
be maintained in close proximity to one
another to facilitate PA clustering and
GTPase activation. Similarly, clustering of
protein-receptor interactions on the mem-
brane plays a key role in multiple cell sig-
naling pathways.27,28

The signaling events triggered by
MAM downstream of RhoA activation are
better defined, although some questions
still remain to be answered: RhoA activa-
tion leads to activation of LIM kinase
(LIMK), which in turn results in phos-
phorylation of cofilin. P-cofilin inhibits
actin depolymerization, which in isolated
epithelial cells leads to stress fiber forma-
tion. In the canonical pathway, RhoA/
ROCK signaling also leads to myosin acti-
vation, which contributes to tight junction
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disruption29, however if this is also the
case if the pathway is triggered by MAM
adhesion as an extracellular stimulus
remains to be investigated. In context of a
polarized epithelial cell layer, activation of
the RhoA/LIMK/cofilin signaling axis
leads to redistribution of tight junction
proteins and compromised barrier func-
tion. The effect of this is 2-fold: Bacteria
can migrate across the epithelial layer
through paracellular movement and reach
deeper tissues. Second, break-down of cell
junctions depolarizes the barrier, meaning
specific properties and markers of apical
and basolateral surfaces are lost. We and
others have shown that V. parahaemolyti-
cus only binds to and infects intestinal epi-
thelium from the apical (luminal) side.4,12

This asymmetry is lost through the process
of depolarization. Thus, depolarization
and cellular junction opening increases
the surface area accessible to V. parahae-
molyticus and speeds up bacterial attach-
ment and rate of effector delivery (Fig. 1).
We have shown this on the example of the
T3SS1 effector VopS. During infection of
polarized epithelium with wild type
V. parahaemolyticus, VopS efficiently
translocates into host cells and inactivates
RhoA, leading to cell rounding, a rapid
loss in transepithelial resistance, and ulti-
mately cell death.14 Cells infected with a

VopS deletion strain, in contrast, show
strong RhoA activation, brought on by
the action of MAM7. Infection with a
VopS positive but MAM deleted strain,
leads to intermediate RhoA activation,
presumably reflecting the cell’s endoge-
nous level of active RhoA. Thus, even
though VopS acts as a potent and irrevers-
ible inhibitor of RhoA, its rapid transloca-
tion and action on host cells requires
MAM-mediated enhancement of RhoA
activation early during infection.

Similar sequences of temporal activa-
tion and deactivation of cellular activities
by effectors are a conserved theme in bac-
terial pathogenesis. Legionella pneumo-
phila, for example, sequentially activates
and later deactivates the small GTPase
Rab1 during infection, to direct modifica-
tion of its intracellular niche.30,31 These
examples of the dynamic interplay
between 2 seemingly opposing activities
demonstrate the necessity of tight coordi-
nation between different pathogen-
derived cues to achieve successful
infection.
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