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ABSTRACT 30 

In order to investigate relationships between outdoor air pollution and concentrations indoors, a 31 

novel design of experiment has been conducted at two sites, one heavily trafficked and the other 32 

residential.  The novel design aspect involves the introduction of air directly to the centre of an 33 

unoccupied room by use of a fan and duct giving a controlled air exchange rate and allowing an 34 

evaluation of particle losses purely due to uptake on indoor surfaces without the losses during 35 

penetration of the building envelope which affect most measurement programmes. The rooms were 36 

unoccupied and free of indoor sources, and consequently reductions in particle concentration were 37 

due to deposition processes within the room alone.  Measurements were made of indoor and 38 

outdoor concentrations of PM2.5, major chemical components and particle number size distributions. 39 

Despite the absence of penetration losses, indoor to outdoor ratios were very similar to those in 40 

other studies showing that deposition to indoor surfaces is likely to be the major loss process for 41 

indoor air.  The results demonstrated a dramatic loss of nitrate in the indoor atmosphere as well as a 42 

selective loss of particles in the size range below 50 nm, in comparison to coarser particles.  43 

Depletion of indoor particles was greater during a period of cold weather with higher outdoor 44 

concentrations probably due to an enhancement of semi-volatile materials in the outdoor particulate 45 

matter.  Indoor/outdoor ratios for PM2.5 were generally higher at the trafficked site than the 46 

residential site, but for particle number were generally lower, reflecting the different chemical 47 

composition and size distributions of particles at the two sites. 48 

 49 

Keywords:  Indoor-outdoor air;  deposition;  PM2.5;  nanoparticles 50 

 51 
  52 
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1. INTRODUCTION 53 

Atmospheric aerosol has been documented to cause increased mortality, morbidity, decreased lung 54 

function and other adverse effects upon health (Beelen et al., 2014; Raaschou-Nielsen et al., 2013), 55 

although there is considerable uncertainty about which physical and/or chemical characteristics of 56 

particulate matter (PM) are most important as determinants of health effects (Brunekreef and 57 

Holgate, 2002, REVIHAAP, 2013). Recently, toxicological and epidemiological studies have 58 

focused on health effects from exposure to ultrafine particles (UFP, particles with diameter <100 59 

nm) due to their toxicity and ability to penetrate deeply in the human lung (Peters et al., 2011; Hoek 60 

et al., 2010; von Klot et al., 2005) 61 

 62 
Traffic is the main source of fine and ultrafine particles and a principal determinant of the spatial 63 

pattern of air pollution within urban areas. While exposure to PM from vehicular emissions has 64 

been demonstrated to have detrimental impacts on human health (HEI, 2010) epidemiological 65 

evidence of adverse health effects associated with residential proximity to traffic is still limited. 66 

Some studies have shown a higher prevalence of respiratory symptoms (e.g. Delfino et al., 2014), 67 

especially in children (Gasana et al, 2012) but others did not find any effects (Badaloni et al., 2013; 68 

Macintyre et al., 2014).  69 

 70 
A key issue in studies on residential proximity to traffic is exposure assessment. Substantial efforts 71 

have been made in this field and a significant improvement has been reached with Land Use 72 

Regression Models (LUR) which make use of a spatially dense network of measured air pollution 73 

concentrations together with predictor variables such as population density, land use, and various 74 

traffic related variables to estimate outdoor air pollution concentrations within urban areas (Hoek et 75 

al., 2008a). However, exposure to pollutants takes place mainly indoors (Monn, 2001) and 76 

assessment of both indoor and outdoor variability of concentrations and characteristics of particles 77 
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are of primary importance to better understand the way residential proximity to traffic sources could 78 

affect human health.  79 

 80 
The relationships between indoor levels due to outdoor and indoor sources vary between cities, 81 

regions and countries due to differences in factors that can influence the indoor levels, e.g. climate, 82 

building characteristics, human activity, ventilation and heating systems (Monn, 2001; Nazaroff, 83 

2004; Ashmore and Dimitroulopoulou, 2009). However, it is reasonable that indoor sources could 84 

be considered a relevant, sometimes dominant, white noise superimposed upon spatial variation of 85 

exposure due to outdoor air that infiltrates indoors. Thus, it is particularly important to assess the 86 

penetration characteristics of particles into indoor environments, and the differences in physical and 87 

chemical properties of particles of outdoor origin.  88 

 89 
There are two possibilities to assess the mean differences in exposure due to proximity to traffic. 90 

The first is to measure a large number of indoor environments filtering out the effects of indoor 91 

sources and personal habits (Fuller et al., 2013; Spinazzè et al., 2013) . This type of study has the 92 

drawback of a strong limitation of the number of indoor environments which can be studied, and of 93 

the measurement duration of air pollutants, personal habits and air exchange rates. The other is to 94 

compare uninhabited indoor environments with characteristics and air exchange rates typical of 95 

residential settings. Very few studies have been conducted using this second approach (Schneider et 96 

al., 2004).   97 

 98 
In this paper we present the results of an experimental study carried out in a highly polluted city in 99 

Northern Italy following this second approach.  Indoor and outdoor PM2.5 mass and chemical 100 

composition as well as the size distribution of ultrafine particle have been contemporaneously 101 

measured at two sites with very different characteristics in relation to proximity to traffic sources. 102 

The objectives of the study were to compare indoor/outdoor (I/O) ratios of particulate pollutants in 103 

two similar unoccupied buildings with very different proximity to traffic, and to quantify I/O ratios 104 
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when air exchange ratios were well defined and penetration losses were eliminated by experiment 105 

design. 106 

 107 
2. METHODS 108 

2.1 Study Design 109 

The study area is the city of Bologna, Italy. This is a highly polluted urban area of about 400,000 110 

inhabitants in northern Italy. In the period 2010-2012 the city-average annual mean number of 111 

exceedances of the daily PM10 limit value (50 µg/m3) was 52.  112 

 113 

The main objective of the study was to compare exposure conditions of people living in residential 114 

settings with those in high traffic areas. The measurements at the two sites were conducted 115 

simultaneously indoors and outdoors at a residential as well as a traffic site. We selected indoor 116 

environments with the following characteristics: uninhabited, very similar in terms of volumes and 117 

building materials, and with very similar air exchange rates. The main goal was to assess the 118 

differences of population exposure to particles in relation to traffic without considering specific 119 

indoor characteristics and personal behaviours. We controlled the air exchange rates by installing in 120 

each indoor environment a mechanical system to force air to be exchanged between indoors and 121 

outdoors. The system consisted of an external fan connected to an air pipe (length = 1.2 m) carrying 122 

the air to the centre of the room (at a height of 2 m). Increased indoor air pressure caused the flow 123 

to exit the room through a grid. The fan in each room was set at a specific value related to the 124 

volume of the room in order to obtain an estimated 0.5 h-1 air exchange rate in each room, a typical 125 

level for residential environments (Cattaneo et al., 2011). The air inflow was measured with a 126 

TESTO 417 Anemometer. There was concern that this experimental arrangement for providing a 127 

forced input of aerosol might lead to depletion due to passage through the fan and pipe.  This 128 

possibility was tested by experiments in which the particle number size distribution was measured 129 

at the inlet to the fan and outlet to the pipe by an FMPS system with rapid switching between the 130 
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two sampling locations (upstream and downstream). The air inflow system was found to cause a 131 

minor loss of particles (additional information can be found in the Supplemental Information). This 132 

was considered a negligible source of error. The heating systems in the two indoor monitoring sites 133 

were kept always off. 134 

 135 

The traffic site was located in a busy street which surrounds the historical centre of Bologna. This is 136 

one of the busiest streets of the entire municipal area with a traffic load of 31,000 vehicles (4–5% 137 

heavy duty vehicles) each working day. The building is located in a broad (20 m) two-way street 138 

canyon. The indoor monitoring site was on the ground floor in a two-storey building. The volume 139 

of the room was 55 m3 with a ceiling height of 3.7 m. The floor was covered with marble. The 140 

ceilings and the walls were painted with acrylic paint.  141 

 142 

The residential site was located in a low traffic area about 2 km from the historical centre of 143 

Bologna. The nearest street has a traffic volume of 6,000 vehicles per day. The measuring room was 144 

on the ground floor in a four-storey building. The volume of the room was 63 m3 with a 3.7m 145 

ceiling height. The floor was covered with marble. The ceilings and the walls were painted with 146 

acrylic paint.  147 

 148 

The outdoor PM2.5 monitoring sites were located at 2 m above ground and for practical reasons at a 149 

distance of about 50 m from the indoor sites along the same streets. It is possible that the specific 150 

location of the outdoor PM2,5 monitoring site could have produced a small reduction of the 151 

indoor/outdoor ratio for PM2,5 and for some chemical components associated with primary 152 

emissions from traffic. 153 

 154 

Three monitoring campaigns were conducted in the period February-June 2012. Each monitoring 155 

campaign lasted 15 days: 1st campaign from 22 February to 7 March, 2nd campaign from 16 to 30 156 
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April, and 3rd campaign from 28 May to 12 June. Filters were changed daily at each measurement 157 

site, and chemical speciation was performed sequentially every three days for metals, ions, and 158 

carbon (EC and OC).  During the first two campaigns elemental and organic carbon were measured 159 

on an 8 hour basis in order to avoid an overload of the filters.  160 

 161 

 162 
2.2 Instrumentation and Monitoring Procedure  163 

Four identical low volume samplers (Skypost, TCR TECORA, Corsico – Mi) were operated to 164 

measure indoor and outdoor daily PM2.5 concentrations at the two sites (flow rate 2.3 m3h-1). The 165 

samplers provide automatic filter changing after each 24-h period and are designed according to 166 

CEN standards. Each of these samplers consists of a PM2.5 sampling inlet that is directly connected 167 

to a filter substrate and a regulated flow controller. Following completion of the sampling period, 168 

the PM2.5 mass collected on the filter was determined gravimetrically. The filters were conditioned 169 

at 20°C and 50% relative humidity prior to weighing. Samples were collected on quartz fiber filters 170 

(Whatman, 47 mm diameter) and weighed following the procedure outlined in UNI EN 12341. 171 

 172 

Agreements among the four instruments used in this study and some other identical instruments 173 

were checked in several intercomparison campaigns carried out in the years 2008-2012. Both 174 

correlation levels and test for differences for slope and intercept (1 ± 2 standard error (s.e.), 0 ± 2 175 

s.e., respectively) of orthogonal regressions between co-located instruments were used as statistical 176 

indicators (EC, 2010). Determination coefficients were always higher than 0.972 (mean correlation 177 

0.985).  Typical errors (standard deviation of the differences between samplers) were about 2 µg/m3 178 

and were quite similar among the various intercomparisons. The differences for slope (from unity) 179 

and intercepts (from zero) were usually not significant and not related to specific instruments.   180 

Consequently, no corrections were applied to PM2.5 data.  181 

 182 



8 
 

PM2.5 samples were analyzed for a various chemical species. In this paper we present the findings 183 

of the chemical species having more than 50% of contemporary data above the limit of 184 

quantification (LOQ) for indoor and outdoor samples at both sites. LOQs for chemical components 185 

were 0.028 µg/m3 for iron (Fe), 0.04 µg/m3 for ammonium (NH4
+), 0.04 µg/m3 for potassium (K+), 186 

0.05 µg/m3 for nitrates (NO3
-), 0.09 µg/m3 for sulfates (SO4

2-), 2.1 µg/m3 for daily Organic Carbon 187 

(OC), 0.3 µg/m3 for daily Elemental Carbon (EC). OC and TC were quantified by means of 188 

thermal-optical transmittance (Sunset Laboratory Inc., USA) using the EUSAAR_2 protocol. 189 

Inorganic ions were determined by extracting species in 10mL of ultrapure water. The extracts were 190 

filtered and analyzed by Ion Chromatography (Dionex ICS-1000 for anions and ICS-1100 for 191 

cations, Thermo Fischer Scientific Inc., USA). Iron was analyzed  by Inductively Coupled Plasma – 192 

Mass Spectrometry (8800 ICP-MS, Agilent Technologies Inc., USA). Sample digestion was made 193 

with nitric acid and hydrogen peroxide in a microwave digestion apparatus, according to 194 

UNI14902:2005, with a recovery efficiency over 85% 195 

 196 

Two Fast Mobility Particle Sizers (FMPS model 3091; TSI, Shoreview, MN, USA) were used to 197 

measure particle size distributions and to estimate UltraFine Particle (UFP) concentrations. The 198 

FMPS was developed based on electrical aerosol spectrometer technology from Tartu University 199 

(Tammet et al. 2002). The instrument consists of a particle charger column, a classification column, 200 

and a series of detection electrometers. After passing through the cyclone, the aerosol flow passes 201 

through a negative charger to prevent overcharging, and then a positive charger which applies a 202 

predictable charge on the sample using a corona unipolar diffusion charger. Small particles with 203 

high electrical mobility are repelled to the electrometers near the top of the column, and large 204 

particles with low electrical mobility are deflected further downstream. The particles transfer their 205 

charges to the electrometers generating currents that are inverted to produce a particle size 206 

distribution. The FMPS spectrometer measured the size and number concentration of particles from 207 

5.6 nm to 560 nm with 32 size bins every one second. Size bins below 13 nm were not included in 208 
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the analysis because of the amount of data below the detection limit and also because of 209 

questionable peaks in the size distribution observed in other studies. (Kaminski et al., 2013) (Jeong 210 

et al., 2009). UFP concentrations were obtained summing the number of particles detected in the 211 

channels below 100 nm. Hourly and daily data were calculated and used in the analyses.  212 

In the preliminary phase of the monitoring campaign we carried out a 1-week intercomparison 213 

between the two spectrometers using the same methodology applied for PM2.5 samplers. We applied 214 

orthogonal linear regressions between data of each bin of the two instruments. Table 1S 215 

(Supplementary Information) shows the regression coefficients for each size bin. We found 216 

significant but small differences in the slopes and intercepts for the majority of size bins. Based on 217 

these findings we decided to apply bin-specific correction factors calculated during the 218 

intercomparison campaign to the data collected from one spectrometer during the field monitoring 219 

campaigns. The aim of this correction was to obtain an improvement of the comparability between 220 

the two FMPS. UFP number concentrations were calculated after the correction.  Typical errors 221 

(standard deviation of the differences between UFP hourly data from the intercomparison campaign 222 

after the correction) were 320 part./cm3, and the determination coefficient was 0.989. 223 

 224 

Nearly simultaneous indoor and outdoor size distributions were obtained with a switching system 225 

(Mod 11sc200, Pneumoidraulica Engineering S.r.l., Vicenza, Italy) which allowed for sampling 226 

from indoor and outdoor air, switching from one to the other within a time frame set by the user. A 227 

valve installed in the system could switch between sampling from the outdoor air, or from the 228 

indoor air. After the valve switched, there was a short time delay before the air from the sampled 229 

environment reached the instruments, which was the time the air travelled from the valve to the 230 

instruments. The system switched every 10 min between the indoor and outdoor measurements. In 231 

order to avoid the possibility of mixing of the outdoor and indoor air streams, the 2 min samples 232 

taken at the beginning of each 10 min period were deleted from the database.  233 

 234 
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Two digital thermo-hygrometers (Testo 175 H2, Testo AG, Lenzkirch, Deutschland) were used to 235 

measure temperature and relative humidity in the two indoor environments. Data were collected 236 

every 30 minutes.   237 

 238 

 2.3 Analysis 239 

Summary statistics and paired t-test results have been calculated to investigate differences between 240 

series of measurements. Pearson correlation coefficients  and regression analysis has been used to 241 

address linear relationships between data .  We adopted an orthogonal regression approach (Fuller, 242 

1987) which is the most suitable when both dependent and independent variable are affected by 243 

errors and are not related by a causal relationship.  244 

Quality control of PM2.5 mass and chemical composition data was carried out based on residuals 245 

calculated by regression analysis between indoor and outdoor data.  We identified as anomalous 246 

(not necessarily not valid) the data with residuals larger then three times the standard deviation of 247 

residuals.  248 

 249 

For FMPS data quality control we used the following procedure: a) applying a log10 function on 250 

the UFP minute data; b) stratifying data in time slots of three hours (0-3, 3-6 etc) and calculating the 251 

summary statistics for each slot and campaign; c) classifying data as anomalous if they were higher 252 

than the mean plus three times the standard deviation for the corresponding campaign and time slot. 253 

Then we averaged non-anomalous data on an hourly and daily basis.  254 

 255 

Statistical data analysis was carried out using the R package (Version 3.0.1).  256 

 257 

 258 

 259 

 260 
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3. RESULTS AND DISCUSSION 261 

3.1 Measurement Campaigns and Meteorological Conditions 262 

The meteorological conditions during the study periods are summarized in Table 2S 263 

(Supplementary Information). The sampling periods were quite representative of the typical annual 264 

variations in the area. The first campaign took place after an heavy snow event and was 265 

characterized by minimum temperatures similar to the typical values of the period but maximum 266 

temperature significantly higher than the climatological average values. In particular, in the second 267 

part of the first monitoring period maximum temperature reached 21.7ºC, i.e. 4.2ºC higher than the 268 

typical maximum temperature of the period. The second campaign was characterized by varying 269 

weather conditions with rainy and sunny days, and the third campaign was a typical early summer 270 

period. The area is characterized by low wind intensities and this was a common characteristic of 271 

the three monitoring campaigns (mean wind intensities from 1.9 m/s during the third campaign to 272 

2.6 m/s during the first campaign). Reasonably constant was also relative humidity which showed 273 

very similar mean values (55.2, 53.8, 50.4% for the three campaigns) but large day to day 274 

variations. Precipitation events were rare and small for all the sampling periods. In particular during 275 

the first campaign we had only three rainy days with 2 mm mean precipitation.  276 

 277 

The temperatures measured at the two indoor monitoring sites showed very similar values and 278 

temporal patterns. Seasonal differences were clearly reduced compared to the outdoor values 279 

especially due to higher  minimum temperatures.  On the contrary, we found larger seasonal 280 

variations in indoor compared to outdoor RH values although RH indoor values were always below 281 

50%.  282 

 283 

 284 

 285 
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3.2 Measurements of Indoor and Outdoor Particles 286 

It is important to recognise that the design of this experiment is different from most earlier work on 287 

indoor and outdoor particle measurements.  Most earlier studies have depended upon natural 288 

ventilation processes involving exchange of air through cracks around doors and windows or 289 

through open windows which lead to air exchange.  In these experiments, air exchange was forced 290 

by a fan driving air into the room and consequently the processes of particle loss will be subject to 291 

some differences.  In the absence of indoor sources, indoor particle concentrations are generally 292 

found to be lower than those outdoors due to particle loss on surfaces during the infiltration of air 293 

and due to loss on internal surfaces within the building.  In these experiments, the first loss 294 

mechanism is insignificant as the air introduction method caused only very small changes to particle 295 

concentrations and hence the reductions in airborne concentrations are due almost solely to 296 

deposition to surfaces.  The removal of air by the FMPS and filtration of particles by the PM2.5 297 

sampler are at a rate far smaller than the air exchange for the room and consequently have only a 298 

modest influence upon the measured indoor concentrations. 299 

 300 

In their review article, Chen and Zhao (2011) define both an Infiltration Factor which represents the 301 

equilibrium fraction of particles which penetrates indoors and remains suspended, and a Penetration 302 

Factor which describes the penetration efficiency of particles through the building envelope.  In our 303 

study design, the Penetration Factor is 1.0 (100%), and we measure an Infiltration Factor. 304 

 305 

3.2.1 Comparison of the sites 306 

3.2.1.1 Indoor and outdoor PM2.5 mass 307 

Indoor and outdoor PM2.5 concentrations during the three monitoring campaigns are shown in 308 

Figure 1 (upper panel) and Table 1. No PM2.5 data was identified as anomalous and removed from 309 

the database.  Outdoor concentrations in the first campaign were about three times higher compared 310 
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to the other two monitoring periods. Very small variations (less than 10%) were found between the 311 

second and third campaign. Much higher concentrations during the winter season are typical of the 312 

area (Bigi et al., 2012).  313 

 314 

We found very small and non-significant differences in PM2.5 outdoor concentrations between the 315 

sites (see Figure 2). Average PM2.5 concentrations at the traffic site were about 6% higher than at 316 

the residential site. The highest values for daily mean PM2.5 concentrations were 72 µg/m3 for the 317 

traffic site and 70 µg/m3 for the residential site. The PM2.5 spatial variability found in our study was 318 

a little lower than the mean within-city variability reported in the ESCAPE study, a very large 319 

epidemiological study in Europe which included monitoring campaigns on air pollution spatial 320 

variability in urban areas (Eefftens et al., 2012). In that study the mean ratio between traffic sites 321 

and urban background sites was 1.14, with a quite broad range of values (0.96 – 1.30). However, it 322 

should be taken into account that we compared a traffic with a residential site in a low traffic area, 323 

whilst background sites in many other studies have been placed in parks. In fact, our aim was to 324 

assess the variability of PM2.5 concentrations between areas where people live. In addition, a 325 

reduced relative spatial variability of PM2.5 could be explained also by the higher background 326 

contribution of secondary particulate matter to the total PM2.5 mass in this area (Perrino et al., 327 

2013).  328 

 329 
Indoor/outdoor (I/O) ratios of PM2.5 were close to 0.4 during the first campaign at both monitoring 330 

sites. The I/O ratio increased in the subsequent campaigns with mean values equal to  0.9 at the 331 

traffic site and 0.7 at the residential site for the second and third campaign. This range of I/O ratios 332 

was in good agreement with previous studies on indoor settings (Chen and Zhao, 2011).  Inter-333 

campaign variations of PM2.5 in the indoor sites were lower than outdoors. The ratios between mean 334 

indoor concentrations during the first campaign and the other two were 1.6 and 1.3 for the traffic 335 

site and 2.3 and 1.8 for the residential site. The major difference in I/O ratio between the first 336 
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campaign and the latter two seems most likely related to the aerosol composition.  The outdoor 337 

nitrate content was much higher in the cooler first campaign, leading to a much reduced I/O ratios 338 

(Figure 3).  The higher I/O ratios observed at the traffic site in the second and third campaign seems 339 

most likely related to the higher I/O ratio for elemental and organic carbon and iron (Figure 3) 340 

which were the (traffic-related) constituents showing the largest difference between the sites. 341 

 342 
Values of Infiltration Factor for PM2.5 reviewed by Chen and Zhao (2011) range from around 0.35 343 

to 0.82.  Penetration factors in the size range of 0.1-2.5 µm, in which most PM2.5 mass resides are 344 

typically in the range of 0.75-1.0, with many measured values close to 1.0.  Chen and Zhao (2011) 345 

highlight the anomalous behaviour of reactive particles such as nitrates.  If a Penetration Factor of 346 

0.9 is applied to the above range of Infiltration Factors (0.35 to 0.82), it yields adjusted values of 347 

0.39 to 0.91 which should be, and are broadly equivalent to the I/O values determined in our study.  348 

The only divergences appear to be due to semi-volatile nitrates which lead to lower values of I/O 349 

ratio.  The more recent review of Diapouli et al. (2013) also summaries results for the penetration 350 

efficiency and infiltration factor for PM2.5.  The former ranges from 0.54-1.0, with the majority of 351 

data in the 0.8-1.0 range.  The infiltration factor lies between 0.4-0.85 in the various studies 352 

reviewed, which is very consistent with that reported above, no doubt because both reviews include 353 

many studies in common. 354 

 355 
Figure 2 shows the scatter plots and the correlation coefficients calculated among the measurement 356 

sites. We found a very high level of correlation between outdoor PM2.5 concentrations at the two 357 

sites. Indoor PM2.5 concentrations were highly correlated as well. Pearson coefficients were equal to 358 

0.97 for the outdoor correlations and 0.88 for the indoor correlations. Somewhat lower correlations 359 

were found between indoor and outdoor concentrations. I/O correlation coefficients at the traffic 360 

and the residential site were equal to 0.75 and 0.82, respectively. The latter coefficients are similar 361 
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to the highest values found in other studies (e.g. Hanninen et al., 2004) and this is probably related 362 

to the absence of indoor sources.  363 

3.2.1.2 Indoor and outdoor UFP number concentrations 364 

Based on the procedure outlined in the methods section, 0.83% and 1.33% of minute data in the 365 

residential and traffic site, respectively were classified as outliers and removed from the database. 366 

The completeness of hourly data at the outdoor traffic site, indoor traffic site, outdoor residential 367 

site, indoor residential site was 100%, 98%. 86% and 73%, respectively. Completeness of data at 368 

the residential site was lower because the switching unit had problems during the first campaign and 369 

nighttime indoor data at the residential site were not available.  370 

 371 
Figure 1 (lower panel) and Table 1 give an overview of the ultrafine particle concentrations during 372 

the monitoring campaigns. Outdoor concentrations at the traffic site were much higher than at the 373 

residential site. Mean outdoor UFP concentrations measured at the traffic site during the three 374 

campaigns were 3.4, 3.2 and 1.7 times higher than at the residential site. The highest hourly value at 375 

the traffic site was 129,400/cm3 while the highest value in the residential site was 37,790/cm3. 376 

These findings were in good agreement with the findings of studies carried out in Los Angeles 377 

(Moore et al., 2009) and in Spain (Rivera et al., 2012). Similar results were also found in another 378 

study in Athens (Diapouli et al., 2011) showing a spatial variability ranging from ratios of 1.8 to 2.6 379 

depending on the season. Significantly lower gradients were found in a study of four major 380 

European cities (Puustinen et al., 2007), but indoor sources were present.  381 

 382 
The indoor concentrations of UFP at the residential site varied over a relatively small range 383 

compared to the larger day to day variations evident at the traffic site (Figure 2 and Figure 4). The 384 

ratio between indoor UFP concentrations at the two sites varied between the three campaigns (Table 385 

1) with UFP levels at the traffic site approximately 2-4 times those of the residential site.  386 

 387 
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As with PM2.5, the I/O ratio for UFP increased at the traffic site from 0.38 in the first campaign to 388 

0.69 in the third campaign. On the contrary, the I/O ratio at the residential site remained more 389 

constant at around 0.5. Diapouli et al. (2011) found an I/O ratio for particles in the 10-400 nm size 390 

range equal to 0.6 in the 0.5-1 range of AER  while I/O ratios between 0.3-0.4 were found in Erfurt 391 

(Germany) (Cyrys et al., 2004) and in other major  European urban areas (Hoek et al., 2008b) 392 

 393 
Ultrafine particles show marked increases between 7-9 a.m. and 7-8 p.m. (Figure 5) in 394 

correspondence with the rush hours. These peaks were significantly higher at the traffic site. The 395 

maximum concentrations in the morning were reached at 8 a.m. at the residential site and at 9 a.m.. 396 

at the traffic site. During the afternoon the maximum was reached at 9 p.m. at the residential site 397 

and at 7 p.m. at the traffic site during the first campaign. In the second campaign the afternoon 398 

peaks were shifted one hour later. Morning peaks were typically higher than the late afternoon 399 

peaks. The differences in UFP concentrations between indoor levels at the two sites were quite 400 

constant during the day for all campaigns. The differences in concentrations between indoor levels 401 

decreased slowly during the night leading to almost identical indoor concentrations at the two sites 402 

at around 5 a.m.. These results were in good agreement to those reported by Lianou et al. (2011). 403 

 404 

The Pearson correlation coefficient between daily outdoor UFP concentrations at the two sites was 405 

equal to 0.89, significantly higher than those reported in other studies of particle number 406 

concentrations (Puustinen et al., 2007). Correlations between indoor UFP concentrations were much 407 

lower (R=0.42). Very similar correlation coefficients were found between indoor and outdoor UFP 408 

concentrations at the traffic and residential sites (R= 0.57 and 0.63 respectively). A broad range of 409 

correlations between I/O daily data was found by Hoek et al. (2008b) with values ranging from 0.41 410 

in Helsinki to 0.80 in Athens. The correlation coefficient between hourly outdoor concentrations 411 

was equal to 0.71. Slightly higher correlations between indoor hourly data were found than for the 412 

daily data, with I/O hourly correlation coefficients almost equal to 0.60 for both sites.  413 
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With the exception of the third campaign, I/O ratios were markedly higher at the residential site 414 

than the traffic site (Table 1). This seems most probably related to more efficient loss of the traffic-415 

generated ultrafine particles which predominate at the traffic site, as seen in Figure 6.  The higher 416 

temperatures in the third campaign probably minimised the contribution of this aerosol component 417 

due to its semi-volatile nature (Fujitani et al., 2012) as reflected in the lower outdoor particle 418 

number counts in this campaign (Table 1). 419 

 420 

3.2.1.3 Indoor and outdoor size distribution 421 

Figure 6 shows the mean indoor and outdoor size distributions at the two sites. Multimodal 422 

distributions with sharp peaks at about 30 nm in the outdoor concentrations were found at the traffic 423 

site. The same peak was present also at the other indoor and outdoor monitoring sites though much 424 

less pronounced. A second peak was present at about 80-100 nm.  This is typical of heavily 425 

trafficked sites, with the modes arising from the semi-volatile nucleation particles and solid 426 

graphitic particles respectively (Harrison et al., 2011). The plateau in the indoor distribution of the 427 

traffic site may be the joint effect of the coexistence of two modes, an Aitken mode peak at about 428 

40-50 nm and an accumulation mode peak at 100-200 nm. The two principal peaks were evident for 429 

all hours during the day and all monitoring campaigns although their relative weight was highly 430 

variable, especially during the day. Figure 7 shows the huge increase of the 30 nm peak during the 431 

rush hours. The highest particle number concentrations were found at 9 a.m. (i.e. between 8 a.m. 432 

and 9 a.m). The subsequent hours showed a decrease of this peak with a further increase in the late 433 

afternoon (5 p.m.  to 8 p.m.). The differences between morning and late-afternoon of particle 434 

number concentration in the 30 nm size range were more evident during the first campaign and 435 

decreased in the following campaigns. Similar patterns were seen at the residential site with a much 436 

less pronounced peak in the 30 nm size range. Indoor particle concentrations were lower compared 437 

to outdoor concentrations for both sites and all size bins. Very similar particle size distributions 438 
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were found after midnight at both indoor and outdoor sites. Indoor size distributions were similar to 439 

the findings of Hussein et al. (2004) with an increase of the nucleation mode associated with rush 440 

hours. Minor intra-day variations were found for particles in the accumulation mode. Much lower 441 

relative weight of the nucleation mode compared to the accumulation mode was found indoors 442 

compared to the outdoor size distributions, as reported in previous studies (Hussein et al., 2004; 443 

Diapouli et al., 2011). The comparison of the indoor size distributions between sites showed similar 444 

trends but relevant absolute differences. Differences in the nucleation mode were much reduced 445 

compared to outdoor distributions. This was probably due to the importance of size-dependent 446 

removal mechanisms that show a maximum in the lower and upper part of the spectrum. (Riley et 447 

al., 2002) 448 

 449 

Diapouli et al. (2013) review data for ultrafine particles from three studies for penetration 450 

efficiency, showing values from 0.47-0.80.  For infiltration factor, two studies give values close to 451 

0.60 (Diapouli et al., 2013).  While caution is needed in making comparisons of studies due to the 452 

high size-dependence of ultrafine particle losses, these values imply I/O ratios similar to the I/O 453 

ratios in Table 1 for UFP, which range from 0.38-0.69.  The application of the highest penetration 454 

efficiency of 0.80 to an infiltration factor of 0.60 (both figures from Diapouli et al., 2013) suggests 455 

an I/O ratio equivalent to that in our experiment of 0.75. 456 

 457 

The presence of a bi (or tri)-modal distribution was also shown in previous studies (Morawska et 458 

al., 2008; Hussein et al., 2005) and is in line with knowledge of particle emissions and 459 

transformation. The 30 nm mode is due to the combination of freshly nucleated particles formed as 460 

the exhaust gases are diluted with ambient air and particles directly emitted by vehicles (Charron et 461 

al., 2003). Particles emitted from diesel engines are in the size range 20–130 nm and from petrol 462 

engines in the range 20–60 nm (Ristovski et al., 2006). Emission factors for petrol (gasoline) cars 463 

are much lower than for diesel (Beddows and Harrison, 2008), although petrol vehicles during 464 
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acceleration show particle number emissions close to those observed from diesel vehicles (Graskow 465 

et al., 1998). Nucleation mode particles are associated with the hot exhaust gases expelled from the 466 

tailpipe of a vehicle. These gases cool and condense to form large numbers of very small particles 467 

in the air (Shi and Harrison, 1999). On-road dilution of the exhaust plume is very important in the 468 

generation of particles in the exhaust plume. These nucleation processes are favoured by low 469 

ambient temperatures and high relative humidity (Charron et al., 2003). In addition, the gaseous 470 

precursors condense or adsorb on to the surface of carbon particles in the accumulation mode. If the 471 

concentration of carbon particles is low, the gases will nucleate homogeneously, giving rise to large 472 

concentrations of semi-volatile nanoparticles.  473 

 474 
The differing meteorological conditions between the first campaign and the other campaigns can 475 

explain the differing indoor/outdoor ratios.  The cooler atmospheric conditions of the first campaign 476 

would tend to increase the semi-volatile nucleation mode particles relative to the coarser graphitic 477 

mode particles in the traffic aerosol.  Upon entry into the building, not only would the nucleation 478 

mode fraction show a higher deposition velocity than the coarser graphitic mode (Riley et al., 479 

2002), it would be subject to evaporation at the higher indoor temperatures (Dall’Osto et al., 2011) 480 

and the hydrocarbon vapours released would tend to adsorb to indoor surfaces (Weschler and 481 

Nazaroff (2008) and settled indoor dusts (Weschler and Nazaroff, 2010).  Such processes would 482 

contribute to a relatively rapid loss of the nucleation mode of particles hence explaining both the 483 

changes in size distribution seen in Figure 5 and the far higher outdoor/indoor ratios seen at the 484 

trafficked site in the first campaign (Table 1).  Semi-volatile components of the PM2.5 might also 485 

show lower I/O ratios in cold weather due to enhanced volatilisation in the warmer indoor 486 

environment. 487 

 488 

It is clear from Figures 6 and 7 that a large proportion of the sub-200 nm particles have been lost 489 

between the traffic and residential sites, as a result of dispersion processes, and of evaporation for 490 
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the smaller sized particles.  However, as these particles are also lost with high efficiency in the 491 

indoor environment, the mean indoor size distributions differ little between the sites, although a 492 

concentration difference remains (Figure 6). 493 

 494 

3.2.1.4 Indoor and outdoor chemical composition of PM2.5 495 

All concentrations of chemical components had more than 75% of values above LOQ with the 496 

exceptions of residential indoor iron (73% of data above LOQ), traffic indoor potassium (60%), 497 

residential indoor potassium (53%). No data on chemical composition of PM2.5 was identified as 498 

anomalous and removed from the database. OC was found to be the largest contributor to outdoor 499 

PM2.5 mass at both sites followed by nitrates, elemental carbon and sulfates. The contribution of 500 

OC to indoor PM2.5 was even larger followed by elemental carbon and sulfates. Mean 501 

concentrations appear in Figure 3.  502 

 503 

Significant differences (paired t-test, significance level = 0.05) between traffic outdoor and 504 

residential outdoor data were found for iron, elemental carbon and total carbon: 222 vs 135 ng/m3 505 

for iron, 2.9 vs 1.8 µg/m3 for elemental carbon. Minor and non-significant differences were found 506 

for the other chemical components. Very similar spatial gradients were found for indoor data. A 507 

large impact of traffic proximity on iron and carbonaceous species has been reported in several 508 

studies. Iron has been found an elemental marker for both exhaust and non-exhaust emissions (Pant 509 

and Harrison, 2013) while carbonaceous particles have been related mainly to exhaust emissions.  510 

 511 
Indoor concentrations were lower than outdoor for all chemical species and both sites with the only 512 

exceptions of elemental carbon at the traffic site. The higher concentrations of elemental carbon 513 

found indoors at the traffic site may have been caused by the specific location of the outdoor 514 

measurement site. As already mentioned in Section 2.1, the outdoor monitoring site was some 50 m 515 

away from the indoor site in a location which was less influenced by the canyon effect.  Very large 516 



21 
 

differences were found especially for nitrates, ammonium, potassium and sulfates. The lowest I/O 517 

ratio was observed for nitrates. Average nitrate concentrations at the two outdoor measurements 518 

sites were 4.6 and 4.7 µg/m3 while indoor concentrations were equal to 0.3 µg/m3. I/O ratios for 519 

ammonium and sulfates were 0.3 and 0.6, respectively. The outdoor and indoor EC/TC ratios were 520 

respectively 0.35 and 0.4 at the traffic site and 0.24 and 0.13 in the residential site. These values are 521 

similar to those reported for outdoor urban air data by Naser et al. (2008).  522 

 523 
Table 2 shows the Pearson correlation coefficients calculated among the chemical components data. 524 

Outdoor data at the two sampling sites were highly correlated (correlation coefficients always 525 

greater than 0.9). High correlation levels between within-city outdoor concentrations of organic 526 

carbon, elemental carbon, ammonium, nitrates and sulfates was found by Bell et al. (2011). Similar 527 

results were found for organic carbon and elemental carbon by  Naser et al. (2008). High 528 

correlations were found also between indoor data with the exception of iron (R=0.33). Correlation 529 

levels were also generally very high in respect of I/O data. Low values were found only for 530 

ammonium (R=0.24) and iron (R=0.38) at the traffic site and ammonium (R=0.45) at the residential 531 

site. High correlations between indoor and outdoor concentrations of organic carbon and elemental 532 

carbon were also found by Sawant at al. (2004) in several schools in California . The I/O 533 

correlations for ammonium found by Sawant et al. (2004) showed large variability in the different 534 

schools. Particles of outdoor origin can undergo substantial changes and may be lost to building 535 

walls during indoor penetration. A study investigating the transformation of ambient ammonium 536 

nitrate aerosols in indoor environments has shown that measured indoor concentrations were 537 

considerably lower than the values predicted based only on penetration and deposition losses 538 

(Lunden et al., 2003). This is due to the semi-volatility of ammonium nitrate, leading to loss as 539 

nitric acid vapour and ammonia which attach to indoor surfaces.  Varying ratios of volatile 540 

ammonium nitrate to involatile ammonium sulphate will lead to varying indoor-outdoor ratios of 541 

ammonium and hence the weaker correlation. 542 
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The only major inter-site differences in behaviour appearing in Figure 3 are for iron and elemental 543 

carbon.  Both are primary emissions from road traffic and the apparent behaviour at the traffic site 544 

is probably anomalous because of the spatial separation of the indoor and outdoor samplers referred 545 

to above. 546 

 547 

3.3 Strengths and Weaknesses of the Study  548 

A major strength of the study was the contemporary measurements of a number of particle metrics 549 

and characteristics in indoor and outdoor environments with very different characteristics in relation 550 

to traffic sources. The absence of indoor sources and the attention devoted to make air exchange 551 

rates as similar as possible should reduce to a minimum the noise due to personal behavior and 552 

specific indoor characteristics. Thus concentration gradients between sites should be almost solely 553 

due to proximity to traffic sources. 554 

 555 

A weakness was related to the use of a very simple system to impose an air exchange rate in the two 556 

environments. Direct measurements of the air exchange rates were not made. However, it should be 557 

taken into account that air exchange rates are almost always measured at only one or a few points in 558 

time during a monitoring campaign. Therefore this is a general weakness of this type of study 559 

because air exchange rates vary significantly in time in relation to outdoor conditions and several 560 

other factors. Even if AER had been measured directly we would not have had much greater 561 

guarantee on the exact level of AER in the two indoor environment during the 45 day measurement 562 

period. Moreover, the main goal was to have similar AER in the two indoor environments and this 563 

goal should have been achieved using two identical systems for ventilation. Our experimental 564 

system should facilitate measurements under different controlled ventilation conditions.  565 

Additionally, it has the benefit of allowing evaluation of indoor deposition processes independently 566 

of losses during infiltration through the building shell. 567 

 568 
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4. SUMMARY AND CONCLUSIONS 569 

This study addressed the issue of the difference in exposure to particles in relation to proximity to 570 

traffic within an urban area. In particular, we analysed indoor and outdoor PM2.5 mass and chemical 571 

composition, size distribution and particle number concentrations in a heavy traffic site compared to 572 

a residential area.  573 

 574 
Large spatial variability in the concentrations of UFP, iron and elemental carbon was found both 575 

indoors and outdoors. Concentrations of UFP were much higher at the traffic site. Mean indoor 576 

concentrations at the traffic site were higher than outdoor concentrations at the residential site. 577 

Indoor variability was higher than outdoors for iron and elemental carbon. Significant differences 578 

were also found for the shape of particle size distributions for outdoor particles while indoor 579 

particles showed very similar distributions. Indoor concentrations were much lower than outdoor 580 

for PM2.5 mass and UFP, especially when outdoor concentrations were high and air temperatures 581 

low. Taking into account the chemical components, deposition to the building surfaces was 582 

protective especially for nitrates, ammonium, potassium, and sulfates. Both indoor and outdoor 583 

PM2.5 concentrations were highly correlated while indoor UFP correlations were much lower than 584 

outdoor. The temporal trends of all chemical species at the two indoor sites  were highly correlated 585 

with the exception of iron.  586 

 587 
Our findings represent a contribution to understanding the appropriate particle metrics and data to 588 

be collected in epidemiological studies of the health effects of air pollution. In particular, our 589 

analyses showed that fixed site monitoring stations represent quite well the temporal trend of 590 

population exposure for PM2.5 together with its chemical components. Although indoor exposure 591 

could be significantly lower than outdoor, they are spatially very well correlated considering both 592 

indoor and outdoor concentrations. Some caution should be adopted for iron which showed high 593 

correlation between outdoor data but low correlation between indoor data. UFP concentrations 594 
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showed lower correlations compared to PM2.5, in particular between indoor concentrations. 595 

Therefore fixed site stations could be less representative of the temporal trends of population 596 

exposure. With regards to size distribution, an important decrease of the relative concentration of 597 

the nucleation mode relative to the accumulation mode in the indoor air compared to the outdoor 598 

was found at the traffic site.  599 

 600 
With regards to the epidemiological studies aiming at assessing the health impact of proximity to 601 

traffic, we observed that largest gradients in exposure were found for UFP, iron and elemental 602 

carbon. Tiny and insignificant differences were found for PM2.5 and the other chemical components. 603 

Indoor spatial gradients generally reflected outdoor gradients quite closely.  604 
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Table 1. Summary statistics of PM2.5 mass (µg m-3) and UFP number (cm-3) during the monitoring campaigns. 

 

Number of 
valid data

Outdoor mean 
(min - max)

Number of 
valid data

Indoor mean 
(min - max)

I/O
mean

Number of 
valid data

Outdoor mean 
(min - max)

Number of 
valid data

Indoor mean 
(min - max)

I/O
mean

PM2.5 (24-hour data)

All data 45 22.5 45 13.0 0.74 45 21.3 45 10.0 0.59
(5.1 - 72.0) (5.3 - 27.0) (3.9 - 70.0) (3.1 - 31.0)

1st campaign 15 40.7 15 16.3 0.42 15 38.4 15 15.1 0.40
(20.0 - 72.0) (11.0 - 27.0) (18.0 - 70.0) (8.0 - 31.0)

2nd campaign 15 12.9 15 10.2 0.88 15 13.0 15 6.6 0.70
(5.1 - 27.6) (5.3 - 15.2) (3.9 - 28.7) (3.1 - 10.8)

3nd campaign 15 14.0 15 12.6 0.92 15 12.5 15 8.4 0.69
(7.7 - 18.5) (8.4 - 18.1) (6.4 - 16.1) (6.0 - 13.7)

UFP (1-hour data)

All data 1,075 24,006 1,063 8,641 0.48 934 6,810 785 2,836 0.52
(2,193 - 129,386) (1,418 - 21,933) (1,446 - 37,790) (396 - 13,375)

1st campaign 360 31,042 360 9,117 0.38 292 10,148 146 4,885 0.54
(3,973 - 129,386) (2,568 - 21,933) (3,642 - 37,790) (2,969 - 13,375)

2nd campaign 357 25,752 353 7,939 0.38 282 6,024 283 2,439 0.47
(2,193 - 108,588) (1,418 - 20,407) (2,156 - 22,191) (1,315 - 6,088)

3nd campaign 358 15,189 350 8,859 0.69 360 4,718 356 2,311 0.54
(2,552 - 60,773) (2,363 - 20,952) (1,446 - 13,988) (396 - 8,287)

Sampling periods: 1st campaign from 22 February 2012 to 7 March 2012; 2nd campaign from 16 to 30 April 2012; 3rd campaign from 28 May to 12 June

Traffic Residential
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Table 2. Pearson correlation coefficients for different chemical species.  

  

 

R Slope
Intercept
(µg/m3)

R Slope
Intercept
(µg/m3)

R Slope
Intercept
(µg/m3)

R Slope
Intercept
(µg/m3)

Iron (Fe) 0.38 0.64 0.066 0.87 0.29 0.014 0.9 1.62 0.003 0.33 11.61 -0.397

Ammonium (NH4) 0.23 0.08 0.48 0.42 0.12 0.35 0.99 0.97 0.06 0.95 1.09 -0.01

Nitrates (NO3) 0.86 0.03 0.17 0.81 0.04 0.16 1 0.97 0.04 0.93 0.69 0.07

Sulfates (SO4) 0.99 0.72 -0.22 0.94 0.69 -0.33 0.97 1.12 -0.35 0.96 1.15 -0.07

Organic carbon (OC) 0.91 0.52 2.42 0.88 0.58 2.21 0.99 0.9 0.65 0.97 0.8 1.02

Elemental carbon (EC) 0.77 0.74 1.2 0.94 0.48 0.05 0.98 0.83 1.48 0.68 1.51 2.03

Total carbon (TC) 0.93 0.55 3.91 0.92 0.55 2.27 0.99 0.89 2.11 0.91 0.88 3.12

Traffic indoor  vs 
traffic outdoor

Residential indoor vs 
residential outdoor

Traffic outdoor vs 
residential outdoor

Traffic indoor vs 
residential indoor
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Figure 1. Average value and standard error of PM2.5 (upper panel) and UFP (lower panel) during the 
three monitoring campaign. 
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Figure 2. Scatter plot for daily PM2.5 mass and UFP number. 
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Figure 3. Average value and standard errors of the chemical species. 
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Figure 4. Scatter plot for hourly UFP number. 
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Figure 5. Daily temporal trend of UFP number during the three monitoring campaigns.  
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Figure 6. Mean particle size distribution of hourly data. 
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Figure 7. Mean particle size distribution of hourly data at specific time of the day.  


