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Automatic Classification of Drones Using Radar:
Key Considerations, Performance Evaluation and
Prospects

Bashar I. Ahmad, Colin Rogers, Stephen Harman, Holly Dale, Mohammed Jahangir, Michael Antoniou, Chris
Baker, Mike Newman and Francesco Fioranelli

Abstract—Automatic target classification is a critical capability
for non-cooperative surveillance using radar in several defence
and civilian applications. It is a well-established research field
and numerous algorithms exist for recognising targets, including
miniature unmanned air systems (i.e., small, mini, micro and
nano platforms) or drones, from their radar signatures. They
have notably benefited from advances in machine learning (e.g.,
deep neural networks) and are increasingly able to achieve
remarkably high accuracy. Such classification results are often
captured by standard, generic, object recognition metrics and
originate from testing on simulated or real radar measurements
of drones under high signal to noise ratios. Hence, it is difficult
to assess and benchmark the performance of different classifiers
under realistic operational conditions. In this paper, we first
review the key challenges and considerations associated with the
automatic classification of miniature drones from radar data. We
then present a set of important performance measures, from an
end-user perspective. These are relevant to typical drone surveil-
lance system requirements and constraints. Selected examples
from real radar observations are shown for illustrations. We also
outline here various emerging approaches and future directions
that can produce more robust drone classifiers for radar.

Index Terms—radar, classification, deep learning, unmanned
air traffic management, non-cooperative surveillance

I. INTRODUCTION

VER the last few years, there has been a significant
surge in the use of Unmanned Air Systems (UASs) or
Aerial Vehicles (UAVs), not only in military applications, but
also in the civilian domain given the numerous benefits they
bring such as to agriculture, e-commerce, filming, inspection-
maintenance, to name a few. This is primarily driven by the
wide availability of commercial off-the-shelf miniature UASs.
They are relatively cheap, can be easily operated and are be-
coming more sophisticated, capitalising on advances in sensing
systems, wireless communications, automation and Artificial
Intelligence (AI). However, the potential security and safety
threats UAVs pose, for example to manned aviation, privacy
and sensitive infrastructure or assets, are widely recognised.
Therefore, there is a growing demand for reliable non-
cooperative drone surveillance for either of the following:
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1) Counter UAS (C-UAS): detect and mitigate the unautho-
rised use of drones by malicious or novice operators such
as in exclusion zones around airports [1] or military bases.

2) Unmanned Air Traffic Management (UTM): harness the
full potential of UAVs via enabling their safe, widespread,
utilisation and integration into the airspace along with
manned aviation, for instance the Single European Sky
ATM Research SESAR programme 2004-2020 [2].

Non-cooperative C-UAS and UTM solutions often comprise
of multiple sensors such as radar, electro-optical cameras,
acoustic and radio frequency (direction finders) to deliver
consistent situational awareness in complex and dynamically
changing environments [3], [4], for example surrounding air-
ports. Nevertheless, only radar offers 24 hour, all weather,
surveillance at long ranges and for wide areas. In this paper,
we consider (ground-based) radar which can be part of a multi-
sensor system governed by a suitable Concept of Operations
(CONOPS). For instance, radar cues a high-resolution camera
to confirm the identify of a target of interest, such as a drone.

Here, we treat the specific problem of Automatic Target
Classification (ATC) or Recognition (ATR) of UASs from
radar data, in particular the proliferating sub-50kg Class I
drones, see the NATO taxonomy in Table I. This encompasses
improvised, commercial and military grade rotary or fixed
wing drones. Spanning the “small” to “nano” categories, the
sub-50kg platforms are thence referred to as miniature UAS
(mUASs) or UAVs (mUAVs) for brevity. They pose unique
challenges to radar as highlighted in Section II. Tactical and
Medium/High Altitude Long Endurance (M/HALE) UAVs can
be regarded to resemble traditional targets such as airplanes
in terms of Radar Cross Section (RCS), speed and altitude.

Different classification tasks can be formulated depending
on the sought target categories. For example, the objective
might be to distinguish drone from non-drone targets, the
UAS type (e.g., rotor or fixed wing), size (small, medium and

TABLE I: NATO drone platforms designations and taxonomy.

UAS Class Maximum Take-off Weight (kg) Label
I(a) < 0.2 Nano
I(b) 02—-2 Micro
I(c) 2—20 Mini
I(d) 20 — 150 Small

1I 150 — 600 Tactical
i > 600 M/HALE
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large), carrying a payload or not and others. In this paper and
for simplicity, we predominantly focus on the radar ability
to automatically discriminate between drone and non-drone
objects. ATC enabler, considerations, performance metrics that
are relevant to common operational requirements, and other
related capabilities (e.g., ATR with drone sub-classes, global
classifiers, detecting malicious intent, simulators, digital twins
and others) are also discussed. Additionally, here we use real
measurements from the Thales Gamekeeper radar for illustra-
tions. It is an L-band staring, otherwise known as ubiquitous
or holographic™ [5], radar with 64-element receiver array
designed for detecting, tracking in 3D and classifying mUASs
within a 7.5km range, 90° azimuth coverage, and with an
~ 0.27s update period in its current configuration.

The remainder of this paper is organised as follows. In
Section II, we outline the key problems and considerations of
classifying mUASs with radar. ATC performance indicators
are introduced in Section III and example results are shown
in Section IV. Opportunities to achieve enhanced (or more
detailed) target recognition results are highlighted in Section
V and conclusions are drawn in Section VI.

II. DRONE SURVEILLANCE RADAR AND ATC
A. Why Are Drones Difficult Targets for Radar?

Class I (miniature) drones are particularly challenging tar-
gets to detect and track with radar because they can simulta-
neously have all (or most) of the following attributes:

o Small (low observable): mUASs can have low RCSs,
which can be < 0.01m? as with nano or micro drones,
and discriminative features of their radar signatures (e.g.,
micro-Doppler components) are a further one to two
orders lower [6]. This necessitates the sensor having a
high sensitivity and thereby detecting a potentially large
number of targets of similarly low RCSs such as birds.

e Slow: drones can have markedly low speeds, for ex-
ample less than 10m/s which renders them virtually
undetectable to conventional radar systems (e.g., primary
airport radars); rotary-wing mUAVs can also hover. Con-
sequently, their body return and/or any distinguishable
features in their radar signatures (e.g., from their on-board
rotors, if any) can be easily obfuscated by stationary
or slow-moving clutter within the same resolution (e.g.,
range, azimuth and elevation) cell making them difficult
to consistently detect and track.

e Low: mUASSs can fly at low altitudes (e.g., between 30 to
150 meters above ground and remain not easily visible
to the naked eye). At such heights, especially in urban-
industrial environments, we can have: a) occlusions to the
radar line-of-sight from terrain or buildings and electro-
magnetic RF interference; b) multipath effects, impacting
targets height measurements; c¢) interference from ground
targets (e.g., cars) and man-made equipment with moving
or rotating parts such as air-conditioning units, generators
or roof fans; and d) the potential presence of large number
of birds of various types and sizes.

o Agile: whilst (semi-)autonomous mUAVs often follow
optimised smooth paths (e.g., between pre-defined way-

Raw 1&Q Detector

Multi-Target Classifier [, Targets
data e==Ppi (Doppler FFT, Beam- *
forming, CFAR, etc.) Tracker ’ ATC Category
: % 'y

Fig. 1: Standard processing chain of a drone surveillance radar.

points), they can be highly maneuverable, and can under-
take sharp maneuvers such as abrupt turns and acceler-
ations. Manually operated drones, for example racing or
first person view mUAVs, can fly erratically with frequent
maneuvers. The radar Multi-Target Tracker (MTT) has to
be able to handle a wide range of kinematic behaviours.
This is generally constrained by the tracker employing
motion models with fixed, fine-tuned, parameters for
describing the expected level of variability in the targets
movements. This encompasses models specifically devel-
oped for manoeuvring targets [7]. Alternative techniques,
such as interacting multiple model [8] and adapted MTT
[9], can be either hard to correctly configure or pro-
hibitively computationally demanding when simultane-
ously tracking large number of objects, majority of which
are non-drone targets such as cars, pedestrians, birds, etc.

A drone surveillance radar processing chain normally con-
sists of the standard three sequential operations for: 1) detec-
tion, 2) tracking and 3) classification of targets within the field
of coverage. Each is carried out within a separate software-
firmware module which can share information. An example
block diagram is shown in Figure 1. Merging two or more
of these tasks is known to substantially improve the radar
performance against mUASs, for instance track-before-detect
[10], joint tracking-classification [11] and even recognise-
before-detect. The latter however regularly refer to a rule-
based filtering of detections to prevent overloading the multi-
target tracker or the operator. Next, we focus on ATC.

B. Automatic Discrimination: Drone versus Confuser Targets

Several radar systems, including in multi-static configura-
tions, have emerged to address the formidable challenges pre-
sented by mUASs [3], [5], [12]. Within a relatively large field
of coverage (e.g., spanning a few kilometers in range), they
have to contend with a large number of potential “confuser”
targets, such as birds, which co-habit the same aerospace
and exhibit similar characteristics to mUASs, for instance
their RCSs, altitude and speeds. A reliable automatic target
classifier is thus fundamentally important in drone surveillance
radars to distinguish between mUASSs, which are usually rare,
and confuser targets (e.g., birds), which can be abundant in
(semi-) rural or urban environments. The surveillance system
resources (e.g., secondary optical sensors) and/or operator at-
tention should be dedicated to scrutinising targets that can pose
a threat (e.g., mUAVs). Otherwise, they can be overwhelmed
by the large number of tracked targets. ATC is also crucial
for automation to reduce the overall C-UAS/UTM system
operating cost by circumventing human-intensive CONOPS.

To demonstrate the sheer number of targets drone surveil-
lance radars often handle, in Table Il we list the average
numbers of trajectories formed on targets per hour by the
Thales Gamekeeper sensor within a range of 7.5km; 90°
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TABLE II: Average number of tracks per hour from a staring radar, within 7.5 km range and 90° azimuth at different sites.

Site  Description Average number of tracks (/hr)
A Dense urban environment with the radar overlooking a major UK city 6803.2
B Mixed semi-urban and semi-rural environments with small-medium villages/towns distributed in coverage 9204.5
C Semi-rural environment with major roads in coverage 9863.3
D National airport within a semi-rural environment and surrounded by small-medium villages/towns 6532.3
E International airport with mixture of dense urban and industrial areas within coverage 9394.4
F Mixed urban and semi-rural environment with major roads and villages/towns within coverage 11183.9

Fig. 2: Trajectories of tracked targets within a range of 7.5km
at Site B during a typical 30 minute radar recording.

azimuth coverage. They are attained from 24 hour continuous
recordings at various sites in the UK and France. From the
table, it can be seen that several thousands tracks per hours
are processed on average by the radar; this can exceed 15,000
per hour at certain times in mixed urban and semi-rural
areas. On average several hundred tracks can be considered
at any point in time. Figure 2 displays all the trajectories
reported by the radar MTT during a 30 minutes period at semi-
urban/rural environment (Site B). Although no ground-truth is
available for all targets within the radar coverage, analysis of
the characteristics of the tracks in Table II and Figure 2 (e.g.,
height, location, speed, etc.) confirm that they are not spurious.
Accordingly, ATC module has to correctly classify the vast
majority of tracks as non-drone and avoid triggering False
Alarms (FAs) whose prominence is emphasised in Section III.

C. Classification Algorithms and Enablers

Automatic classification or recognition of non-cooperative
targets with radar, including UASs, is a well-established
research field with a plethora of existing techniques [13].
Conventional approaches are commonly based on hand-crafted
rules applied to selected target features (e.g., RCS, height,
velocity, etc.) and/or employ classical spectral analysis tools
(e.g., cepstrum). Recent ATC algorithms on the other hand
are increasingly data-driven and leverage advances in Machine
Learning (ML), such as Deep Neural Networks (DNNs), to
achieve impressive classification performance, see [14]-[21].

Whilst progress is being made to better understand the
behaviour of DNNs [22], the main difficulty in developing
generalisable machine learnt classifiers, usually within a su-
pervised learning framework, is the availability of extensive
and sufficiently representative labelled training datasets. This

is due to the great diversity of potential targets to be recognised
relative to the available real radar measurements. For example,
the wide range of possible mUAS sizes, designs, speeds,
heights, trajectory profiles-maneuvers, rolls-pitch-yaw angles
with respect to the radar (i.e., incident angles), rotor speeds
which may depend on the ambient wind, clutter characteristics,
etc. Obtaining ground-truth of bird targets can involve further
complications, for example due to the difficulties and cost
of conducting controlled trials with birds instrumented with
transceivers or employing a specialised targets labelling solu-
tion with electro-optical cameras, secondary radars, etc. Using
synthetic data (e.g., to complement the available real sensor
data, see Section V-C), can be critical to mitigate over-fitting
effects and ensure that data-driven classifiers deliver robust
performance when applied under real operational conditions
(e.g., low SNR and previously unseen drone data).

Given the drastic measures that might need to be taken
when an unauthorised or malicious mUAS is declared (e.g.,
closure of the airspace near civilian airports that can severely
disrupt the aviation traffic), it can be highly desired for the
radar ATR module to report the certainty level in its classifi-
cations/predictions such as confidence scores for all considered
target categories. For instance, a DNN micro-Doppler classifier
can have a softmax output layer to produce these confidence
scores, in lieu of the target final label [14], [18]-[20]. This
permits the multi-sensor counter UAS or UTM system to not
only adopt different risk management strategies for different
targets, but also a more informed data fusion and CONOPS.

Drone classification often relies on target discriminative fea-
tures that can be grouped into three categories: micro-Doppler,
kinematics, and long-term behaviour. They are described next
along with their limitations.

1) Micro-Doppler Signatures: The motion of rotors or
propellers on-board a mUAS produce spectral lines in the
radar Doppler spectrum, with approximate harmonic struc-
ture around the target body Doppler frequency. These are
dubbed micro-Doppler components and their characteristics
depend on the number of blades, blade length, frequency of
rotation, radar wavelength and respective incident angle [23].
Example Doppler spectrograms from a bird and DJI Inspire 2
quadcopter drone are depicted in Figure 3, where both targets
are approximately 1.5 — 2km from the L-band Gamekeeper
radar. Unlike the bird, the mUAV Doppler spectrogram in Fig-
ure 3a has visible micro-Doppler components symmetrically
distributed around the target body. Nevertheless, bird wings
motion can result in intricate micro-Doppler-type spectral fea-
tures for appropriately short radar wavelengths [24]; they are
notably distinctive from those originating from mUAS blades
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(a) DJI Inspire 2 UAS (diameter ~ 0.5m, weight ~ 3.5kg).
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(b) Bird target.

Fig. 3: Doppler spectrograms from real radar data of a quad-
copter drone (a) and bird (b) at ranges ~ 1.5 — 2km. Red
crosses mark the target body Doppler frequency at one time
step; arrows indicate the UAS micro-Doppler returns.

rotating up to several thousand times a minute (i.e., drone’s
propellers move at a very different speed to a bird’s wings).
On detecting micro-Doppler signatures for ATC, convolutional
Neural Networks (CNNs) have shown great promise [14]-[16],
[18], [19], [21]. Their input can be Doppler spectrograms from
multiple radar frames/scans (e.g. magnitude spectrogram as in
Figure 3), complex time series data or covariance matrices.
The former can be treated as an image and micro-Doppler
harmonic structure becomes the sought pattern. Popular and
specialised CNN architectures such as Googl.eNet, AlexNet ,
CRNet, SPDNet or an aggregation of various models can be
utilised. Recurrent neural networks and other hybrid DNNs
have also proven effective for micro-Doppler-based drone
recognition [14]. Whilst micro-Doppler is a strong classifi-
cation cue, especially against prevalent confuser targets such
as birds, rotors radar signatures can be —15dB to —20dB

lower than that of the mUAS body. The corresponding Signal
to Noise (SNR) ratios decay rapidly with range and can be
reduced further due to the blades characteristics (e.g., small
size, fairing and constructions from a low reflective material
such as carbon or plastic) as well as deliberate concealment
(e.g., with blade guards). Consequently, the dectectability of
micro-Doppler from drone propellers can be restricted to
specific scenarios such as mUASs at short ranges and/or with
certain rotor blades physical properties. Furthermore, there
are several (false positive) micro-Doppler sources in indus-
trial/urban settings such as air-conditioning units, generators
or roof fans, etc.

2) Target Body Kinematics and Characteristics: Features
extracted from the kinematic movements and characteristics
of the target main body can facilitate distinguishing between
drone and non-drone targets, for instance velocity, acceler-
ation, jerk, height above ground, 2D/3D trajectory curvature,
torsion, body Doppler stability and spread over time, RCS and
others [16], [17]. They are typically derived from the multi-
target tracker output or even associated detections/plots; hence
their quality is dependant on the detection-tracking accuracy.
The classifier employs a statistical measure of each kinematic
feature (e.g., mean, L-moments, median, standard deviation,
smoothness metric, quantiles, etc.) computed from the time
series of its consecutive instantaneous values for a given
trajectory. Contrary to micro-Doppler signature, the range of
possible values of the kinematic features for the mUAS and
bird targets can largely overlap. Thereby, relying on them
alone can lead to a relatively low classification performance.

3) Long-term Behaviour and Patterns of Life: Drones can
follow distinctive trajectory shapes dictated by a mission
planning software to optimise use of resources (e.g., time
the platform is airborne under limited battery life) such as
waypoints-driven paths, hippodromes, hexagon and others
[25]. These are generally not characteristic of birds behaviour.
Conversely, frequent swooping maneuvers are more likely
to be displayed by birds. Revealing such distinctive long-
term kinematic patterns can allow identifying mUASs targets.
They are however not always present and demand a persistent
tracking of low observable and agile targets over extended
durations, which is difficult to maintain at long ranges and in
high clutter-noise environments (see Section II-A). Addition-
ally, a substantial delay is incurred before a distinguishable
motion pattern (if any) materialises and this degrades the
ATC timeliness which we discuss in Section III-D. For some
target types (e.g., cars or birds), revealing high activity areas
and times (e.g., on major roads) can be salient pattern-of-life
information that can be exploited by the classifier; this can be
viewed as contextual data as in Section V-E.

Subsequently, it is imperative that combining micro-
Doppler, kinematic and long-term behaviour features (if avail-
able) can boost the ATC overall performance [16], [17].

D. Summary of ATC Considerations

Linked to the challenges of detecting/tracking mUASs in
Section II-A, in summary the major considerations for formu-
lating drone surveillance radar ATC approaches are:
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Fig. 4: Confidence scores in UAS category from three classifiers for the quadcopter whose spectrogram is shown in Figure 3a;
decision tree (DT), simple moving average (SMA) and convolutional neural network (CNN).

— Large number of confuser targets that can potentially
trigger false alarms; this can render stringent FA spec-
ifications (e.g., a maximum of one false alarm every 24
hours or even every several days in urban-rural settings)
unachievable in practice with radar alone.

— Fleeting discriminative target features, such as micro-
Doppler from a drone’s rotors, that are intermittently
observed due diversity in target type, flight profiles, be-
haviours, clutter, multipath, respective incident angle, etc.
This can lead to fluctuations in the classification results
over time. For illustration, an example of confidence
scores in the UAS class from three ML classifiers are
depicted in Figure 4. This is from real Gamekeeper
radar data of the DJI Inspire 2 drone, whose Doppler
spectrogram is shown in Figure 3a. The ATC methods
are: i) multistage with machine-learnt Decision Tree
(DT) [17] trained on real sensor data and using micro-
Doppler as well as kinematic features at each radar frame
with a Simple Moving Average (SMA) at its output,
ii) AlexNet-based CNN in [18] with nonoverlapping
Doppler spectrograms of length ~ 5.5s (updates every
= b5.5s) and trained on real radar data, iii) low-latency
simple CNN model [20], trained exclusively on synthetic
data to use as its input the Doppler spectrum from one
update/timestep. Both multistage and low-latency CNN
classifiers update every ~ 0.27s. The noticeable changes
in the classification results over time is visible in Figure 4
for the three classifiers which all perform reasonably well
in terms of declaring this tracked target a UAV (e.g., with
a 50% decision threshold). This variability in their outputs
can be attributed to changes in the radar measurements
quality over time (see spectrogram in Figure 3a).

— Limited available data and generalisability of the clas-
sifier, especially for data-driven (machine-learnt) ATC
algorithms expected to tackle previously unseen drone
types or targets whose data is not in the training datasets.

— Capturing classification certainty to enable multi-sensor
C-UAS or UTM solutions to apply effective CONOPS at

the Command and Control (C2) system level.

— Computational efficiency and swarms, to process large
number of targets with a track-level classifier. An ini-
tial coarse plot-level classification is sometimes used by
radars for pruning detections fed to the tracker. This can
be exacerbated by drones ability to fly in swarms where
3281 is the Guinness world record for most unmanned
aerial vehicles airborne simultaneously [26]. With large
number of confuser targets, a much smaller swarm could
risk overwhelming the radar sensor processing chain.

III. CLASSIFICATION PERFORMANCE EVALUATION

There are widely used detection and multi-target track-
ing Key Performance Indicators (KPIs) for non-cooperative
surveillance systems, for example the Single Integrated Air
Picture (SIAP) [27]. On the other hand, radar automatic target
classification efficacy is often assessed in terms of standard
object recognition metrics from the machine learning field,
such as accuracy, True Positive (TP) and False Positive (FP)
rates, confusion matrix, F; Score, and Receiver Operating
Characteristic (ROC), if relevant. Whilst these are informa-
tive, especially for developing and refining the classification
algorithm, in this section we revisit the definitions of some of
the traditional KPIs and propose additional metrics that are im-
portant to the end-users in various C-UAS/UTM applications.

A. Evaluation Framework

For simplicity, we note that the classification KPIs are
presented here for a binary discrimination problem, namely
miniature drone/truth versus non-drone/truth (i.e., birds, cars,
pedestrians, etc.) targets. This also considers a framework
underlined by the following essential stipulations from the
ATC considerations outlined in Section II-D:

o ATC specific metrics are exclusively studied; they are
disentangled from issues that arise from the detection
and tracking steps which have own KPIs (e.g., SIAP).
For instance, true positive classifications are obtained
from time steps where a track is formed and associated
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with the truth/drone target. This permits a more objective
examination of the classifier behaviour and benchmarking
its performance. This is despite the dependence of the
ATC on the detection-tracking results.
Classification confidence and hard positives/negatives are
reported. The former, whose values can range from 0O to
1 (or 0 to 100%), is the certainty level in the classifier
predictions for each of the nominal target categories.
A decision rule is then applied to determine the target
category, for instance the most probable class, i.e. Max-
imum a Posteriori (MAP), or the confidence score in
the UAS class exceeding a threshold value. Thus, the
notion of “Hard” TP (HTP) and FP (HFP) is introduced
to signify their post-decision nature. Confidence scores
can be attained from a time average (e.g., SMA) or other
method for combining the classifier results over time.

o All metrics are calculated per radar recording/dataset
(e.g., during a live drone trial) and combined measures,
such as average, across multiple ones can be obtained.
An example is the 30 minutes recording in Figure 2.
This ensures that a poor performance at a specific site
or time (e.g., due to high number of confuser targets) is
not overlooked, especially in relation to false alarms, see
Table II for the variability between locations. Even at one
site, the surveyed scene characteristics can substantially
change with time. Conversely, traditional ATC perfor-
mance assessments (e.g., with accuracy and confusion
matrix) are usually computed from all of the available
test data (i.e., from the aggregate of all datasets).

e FPs from individual non-truth tracks in a recording are
first calculated and subsequently combined (e.g., via
average, standard deviation, etc.) to represent FP metrics.
This facilitates defining KPIs such as timeliness and
false alarms. Truth information is regularly unavailable
for non-drone targets such as birds. This is unlike TP
metrics pertaining to cooperative UAS targets during
flight trials (e.g., from on-board GPS). True positive KPIs
are attained from data of all tracks associated with the
truth, within the corresponding radar recording.

For context, consider a fixed site protection scenario where
a C-UAS radar at a civilian airport is tasked with reporting the
presence of mUASs in the vicinity of (or within) the restricted
flying zone covering the protected aerodrome [1]. Notation of
the discussed metrics are listed in Table III. We make one
further assumption here to streamline the notation. At any k™
time step (i.e., radar frame or update at time instant ¢3), only
one track can associate with the j'* truth/drone target. This
can be easily generalised to multiple associations at tj; by
appropriately defining the set A; in Table III.

B. TP Confidence, Deviations and Hard True Positives

The confidence cj'k estimated by the classifier is the one
for the UAS/truth category when a track plot at time instant
t (i.e., kM radar frame or update interval) is associated with
the 7 drone/truth target. Its values can range from 0 to 1 (or
0 to 100%) and represent the ATC certainty level in the target
being a UAV. A decision on the target class can then be taken
leading to the Hard TP (HTP) Cj:k € {0,1} at t. This can be

TABLE III: Notation for the proposed key performance met-
rics.

T Duration (in hours) of the processed radar recording

J Total number of detected-tracked drone/truth targets

N7 Total number of formed tracks with unique IDs in the radar recording

Aj;  Set of time steps (i.e., radar updates/frames) where there is a track-

plot associated with the j™ truth/drone target

Total number of time steps in set A; and N]'.F = |Aj]

Tj,; Set of time steps where the ith track is associated with a UAS

c;:k Confidence cj:k € [0,1] in the truth/UAS class at the k™ step (at
time instant ¢;,) when a track is associated with the 7™ drone target

CT, Hard true positive, C’+k, € {0,1}, that the target is a UAS/truth
when a track plot at ¢y, is associated with the 4™ UAS/truth target

¥ Threshold value of a hard TP, C;,—k = 1if cj7 , > 7 and O otherwise

HT Set of tracks (of unlque IDs) that are associated with the j®
drone/truth with C k= =1 for at least one time step

t0 . Time instant (in seconds) of the start of the " track which associates

with the 5" truth/drone target for at least one time step

Time instant (in seconds) of the first/earliest HTP declared for the

ith track associated with the j™ drone/truth target

I Total number of tracks (with unique IDs) not associated with any

drone/truth target

ik Confidence c; € [0,1] in the UAS/truth category for the i track

plot at ¢; not associated with the drone/truth target

Hard false positive, C;,k € {0, 1}, that the target is a UAS/truth at

ty, for the i" track plot not associated with the drone/truth target

ot Threshold value for a hard FP, C;k = 1if Ci_,k > 4 and O otherwise

B; Set of time steps (i.e., radar update intervals) where #™ track is not

associated with any of the truth/drone targets

Total number of time steps in set B; and N, = |B;|

Number of successive hard FP for a track not associated with a

drone/truth track that produces a unique false alarm as per eq. (9)

based on c;fk being larger than the value for all other target
classes, or its own value exceeding a certain threshold ~, for
instance at C+ 1if c K> = 0.9 and zero otherwise.

The mean TP Conﬁdence (TPC) for the j™ UAS/truth is
Zkenj Cj,k 0
Nt '

J

TPC; =

from the set A; of all time steps where a track-plot is
associated with the j" truth and NV j+ = |A;|. The average
across all J drone targets in the radar recording (e.g., during a
live drone trial) is given by: TPC = ., TPC;/J. An increase
in TPC implies a better ability to recognize drone targets and
with higher confidence. A related metric that can measure the
consistency of the TP confidences is the standard deviation

DevIPC; = | 3 (o,

keA;

—TeC,) N @

with average DevIPC = . DevTPC;/J. A decrease in its
value signifies an improvement in the ability of the classifier
to recognise drones over a period of time.

Another metric to capture the variability in the TPC can
be explored. Hard True Positive Classification Probability
(HTPCP) for the 7 = 1,2, ..., J drone/truth targets is

HTPCP; = > C},/N;,
keA;
HTPCP = Z HTPCP, /J, (3)

J
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where HTPCP is the traditional true positive or recall KPIL.

C. UAS Declaration Probability (UDP)

The likelihood that the ;™ UAS/truth target is correctly
classified as a drone for at least one time step . This is termed
UAS target Declaration Probability (UDP) and is given by

UDP. — 1 ifC;'k =1 forany k € A,
7710 otherwise

and UDP = Zj UDP;/J for j = 1,2,...J. In other words, if
a drone is within the radar system field of view and it has been
detected-tracked, this is the likelihood of it being identified
as a UAS. Higher UDP indicates a higher ATC reliability; it
should be considered with the timeliness metric detailed next.
A more demanding UDP rule can be adopted such as HTPs
are required to be maintained for a fixed duration.

“4)

D. Timeliness: Classification Time Delay (CTD)

This conveys the delay incurred prior to successfully declar-
ing, for the first time, a detected-tracked UAS/truth target as
a drone. This is an ATC timeliness measure. For the i track
which starts at time instant ¢7, and associates with the ;"
drone/truth target, its classification time delay (in seconds) is

CTD;; = 7,7, — 13, 5)
where Tj:i = min{ty : C’;fk =1,k € T,,;} is the first time

step this track is declared as a drone target. A demonstration
is shown in Figure 5 where we have a track break due to a
temporary loss of the target (e.g. due to a target manoeuvre,
loss of detections of the low observable target, high clutter
region, etc.). Time instants t?,i and 7']7; for the two tracks
formed on the drone are marked by arrows. Track 1 and 2 last
for five and four time steps (or updates), respectively. In this
case and for a radar update period of 0.27s, CTD;; = 0.27s
and CTD; 2 = 0.54s; HTPCP = 5/9 and UDP = 1.

The average and minimum CTD from all tracks (with unique
IDs) that are associated with the j® UAS/truth target and each
have at least one HTP, i.e. set Hj, are

CTD; = )~ CTD;,;/[H/],
i€HT

CTDj min = min{CTD;;, i € H }. (6)

Averages can be computed for all J targets as per CTD =
Zj CTD;/J and CTDy, = Z]‘ CTDj min/J. If one continu-
ous track is formed on the UAS, i.e. no breaks, then \H]ﬂ =1.

ATC timeliness can be critical where a minimal CTD is
often sought. Early recognition of the mUAS provides C-UAS
system operators with sufficient time to take necessary action
to address any threat the drone might present, for example
Air Traffic Management (ATM) can divert flights. If a new
trajectory with a unique ID is created by the MTT for the
same drone target (e.g., following a track break), it will be
treated as a new track that may require scrutiny/interrogation
by the surveillance system. Consequently, the average CTD
can be a more suitable timeliness metric with a radar multi-
target tracker that has a high rate of track number changes (R)

=== Ground-truth == Track 1 =B Track 2

+ +
G>=0 Gs=1

Fig. 5: Example of a UAS trajectory with two formed tracks
on a mUAS due to a temporary loss of the target (i.e. a track
break/death, for instance due to the target going through zero-
Doppler and/or undertaking a sharp maneuver). Hard TPs are
displayed (green is for 1 and red for 0). Time instants of tracks
start and first HTP are indicated by arrows.

and/or low longest track segment (both are SIAP measures of
MTT continuity). CTD can be in reference to the time instant
tD0; the mUAS was detectable in principle in lieu of t;{i in
(5). This mixes detection and classification metrics and it is
difficult to specify ¢{D0; in complex environments.

E. FP Confidence, Deviations and Hard FP

For the ™ track, which is not associated with a drone/truth
target during the time steps in set B; and N, = |B;|,

2
2 ke (C;,k - FPCi)
DevFPC; = =

N;

% i

(7

are the mean False Positive Confidence (FPC) and its devia-
tions, respectively. Hard False Positive (HFP) follows from a
decision scheme with C'; . € {0, 1} at ty, for instance C; . = 1
if¢; ) > 4 and 0 otherwise. Whilst average from all non-truth
trajectories can be obtained, reporting the L (e.g., L = 10)
tracks with the highest mean FPC can be highly beneficial to
understanding the ATC false positive behaviour.

A decrease in the mean false positive confidence implies an
improvement in the ability to classify a non-drone as a non-
drone, hence potentially reducing hard FPs and false alarms
(see Section III-F). Lower DevFPC (for selected tracks or
average across all non-drone tracks) suggests a more consistent
classification of non-drone targets. The traditional (hard) false
positive metric, referred to here by False Positive Classification
Probability (HFPCP), within the studied radar recording is

HFPCP =Y "> C;/N; .

1 keB;

®)

FE False Alarm Rate

This is the number of tracks that trigger a false alarm and
can require the operator and/or secondary sensor attention
(e.g., camera to confirm the target class). We measure this as a

)
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rate, per hour and/or per R,k tracks. False alarms are based
on hard false positives, i.e. post deciding the target class (e.g.,
with a thresholding or MAP criterion). The i track triggers a
Unique False Alarm (UFA), i.e. UFA; = 1, if the ATC makes
a My successive hard false classifications for this non-drone
trajectory, at least in one occasion such that My > 1 is an
integer. We can formulate this for the 5™ track not associated
with the UAS target at the k € B; time steps as follows

UFA,; , = 1 ifke B; and Zmin(k:,kfﬂﬁerl) Ci,k > My
' 0 otherwise ’
L1 if Y, UFA > 0
UFA; = {O otherwise : ®)

It is thus unique since one track can cause one false alarm.
The False Alarm Rate (FAR) per hour is

I
FAR = Z UFA, /T, (10)

i=1

and FAR Ratio (FARR) per Ry, tracks (e.g., Ry = 100),

I
FARR = Rryq »  UFA;/Nr.
i=1

Y

These two performance metric determine: a) the user confi-
dence in the radar classifications since false alarms can be
extremely distracting for operators; b) the load on the C-
UAS solution secondary sensors (e.g., cameras, RF direc-
tion finders, etc.); and c) potential for automation to reduce
human-intensive CONOPS. Minimising the false alarm rate is
amongst the main challenges for long-range drone surveillance
radars [14], [17], [20]. It is noted that less strict UFA; scheme
can be employed in (9), e.g. My nonsuccessive hard FPS.

G. Standard Metrics and Others

As well as the standard recall (i.e., HTPCP) in (3) and FP
(i.e., HFPCP) in (8), other standard metrics such as accuracy,
F score, confusion matrix and ROC (e.g., for any of the TP
versus FP measures to ascertain a suitable decision threshold)
are well-understood and can be utilised to evaluate the ATC
performance. The mUAS classification problem is however
markedly unbalanced, with typically far more non-drone data
compared to drone due to confuser targets (e.g., birds). It
can be more reasonable to apply different weights to HTPs
and HFPs when calculating any measure that mixes them,
thereby “weighted” accuracy, F score, etc. Otherwise, the true
negative and FP data points can dominate the outcome. For
this reason, we introduced in this paper additional metrics.

Examining ATC results with accuracy and/or F) scores
alone can hide a high false alarm problem. This is because
only if a small “percent” (e.g., 0.1%) of the large number of
non-drone tracks (e.g., 8,000 per hour, see Table II) can lead
to an excessive FAR (per hour) that can deluge the C-UAS
system and/or operators. This can occur even if the accuracy
and F} scores are satisfactory high (e.g., exceeding 95%).

We explored SIAP inspired ATC metrics [28] such as
classification spuriousness (i.e., ratio of extant HFPs to all

hard positive classifications), continuity (i.e., maintaining cor-
rect UAS identification over time) and ambiguity (i.e., over
reporting drone presence). They were viewed to rank lower in
terms of relevance to requirements of non-cooperative drone
surveillance systems compared with those detailed above.

H. Sensitivity to Signal to Noise Ratio

Classifiers efficacy is generally sensitive to the SNR pertain-
ing to the drone target, especially in terms of the detectability
of its micro-Doppler signatures [14], [19], [21]. For example,
CNNs’ impressive classification accuracy drastically degrades
as SNR decreases [21]. A lower SNR can be due to one
or more of the following reasons: 1) longer target range, 2)
smaller UAS platform (i.e., RCS), and 3) complex environment
with higher background noise from clutter and interference.

Therefore, it is paramount to quantify the ATC sensitivity
to SNR. This can be achieved by plotting the true-positives-
related classification metrics (e.g., HTPCP, TPC, accuracy and
Fy score) versus the estimated SNR from real radar data
(see next section) and/or from synthetically injected noise
as in [21]. This ensures a better assessment of the radar
“classification range” against different mUAS types/sizes and
resilience to environmental factors. Maximising ranges at
which miniature drones can be recognised is vital to imple-
menting effective system level CONOPS and threat mitigation
protocols. For instance, a mUAS moving at a speed of 15m/s
towards the airport glide slope and classifying it at 1.8km away
from this prohibited region gives ATM operators 2 minutes to
warn civilian airplanes landing and taking off; this can be
increased to 4 minutes if the ATC range is extended to 3.6km.

IV. EXAMPLE RESULTS' FROM REAL DATA

To demonstrate the ATC metrics in Section III, here we
use real measurements from the Gamekeeper staring radar.
They were collected during 25 live drone trials (i.e., radar
recordings) at various sites, including those in Table II. Each
recording is of a duration of 5 to 16 minutes and can have up to
6300 target tracks with unique IDs. It has one UAS target (i.e.
J = 1), whose ground truth information from onboard GPS is
available. The overall test data is ~ 4 hours of radar measure-
ments in total and comprises of over 55,000 trajectories to be
classified (drone versus non-drone). It contains observations
from numerous mUASSs such as the DJI Phantom 2 (diameter
~ 0.4m and weight ~ 1.38kg), DJI Inspire 2 as in Figure
3, DJI Matrice 200 (diameter ~ 0.9m and weight ~ 5.5kg),
DJI Mavic 2 (= 0.35m and weight ~ 0.9kg), fixed-wing
BlueBear Blackstart (diameter ~ 1.5m and weight ~ 4kg),
Alta X (diameter =~ 1.4m and weight ~ 10kg) and Octocopter
(diameter ~ 0.9m and weight ~ 4.5kg) at ranges up to 7.5km;
over 50% of drone flights were at ranges exceeding 3km. This
is a diverse and challenging data with a wide range of SNRs
(mean 35.14dB and standard deviation 7.42dB).

The machine-learnt ATC algorithm [17] with an SMA as in
Figure 4 is utilised with a MAP decision criterion for the hard

IResults here are from experimental algorithms and should not be consid-
ered in anyway to represent the performance of the Thales Gamekeeper radar,
which uses proprietary processing chain inclusive of the ATC.
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TABLE IV: Average ATC performance from real radar data.

Metric Value Optimal Value
Accuracy 0.97 1
Fy Score 0.85 1
Hard TP Classification Probability (HTPCP)f 0.83 1
TP confidence (TPC) 0.76 1
TPC Deviation (DevTPC) 0.17 0
Hard FP Classification Probability (HFPCP)t 0.02 0
False Alarm Rate FAR (per hour) 34 0
FAR Ratio FARR (/100 tracks); Rrpck = 100 0.03 0
Classification Time Delay CTD (seconds) 9.15 0
UAS Declaration Probability (UDP) 0.98 1

TThey correspond to the traditional (hard) TP and FP metrics definitions.

1
-»-Hard True Positive Classification Probability (HTPCP)
0.9 | ~©@True Positive Confidence (TPC)

o
®

o
3

HTPCP/TPC
o
o

o
3

0.3

0.2 I I I I
30 35 40 45 50 55

SNR (dB)
Fig. 6: Hard true positives and TP confidence for the test
dataset versus the estimated SNR for the truth (drone) targets.

true and false positives. Table IV lists the averages of selected
ATC metrics from all of the 25 radar recordings. One hard
FP per track produces a FA with My =1 in (9). It can been
noticed that the high accuracy and low hard FP (HTPCP) does
not give any insights on the potential false alarm rate, where
3.4/hour on average can be regarded as high in some C-UAS
scenarios if only a radar sensor is employed.

The average true positive confidence and hard true positive
classification probability versus SNR from the real data is
depicted in Figure 6. The substantial decay in TPC and HTPCP
is visible as SNR declines. Finally, Figure 7 shows the ROC
plot of the average HTPCP (recall) versus FAR (per hour)
from all of the testing datasets; this is for a wide range of
possible decision thresholds (i.e., rather than choosing the
target category with the highest confidence score as with the
MAP decision criterion as in Table IV). It exhibits the usual
compromise between the classifier’s TP and FP performance.

V. ADDITIONAL CAPABILITIES AND PROSPECTS

We now discuss a few opportunities and technologies that
can aid improving the ATC functionality in drone surveillance
radars, for example to keep pace with the continuously evolv-
ing drone platforms. This goes beyond general system-level
resilience, coverage and data quality issues [3], [5], [29], for
instance utilising distributed, multi-static, sensing-processing
concepts and state-of-the-art hardware (e.g., quantum oscilla-
tors, antenna designs, GPU-TPU-CPU, etc).

A. Target Recognition Beyond Drone versus Non-drone

Estimating the drone physical parameters such as the num-
ber of rotors and their rotation/flash rates, from the radar
micro-Doppler signatures has a long history. It can offer indi-
cators of the mUAS type (e.g. fixed or rotary wing), specific
platform and any payload [12], [30]-[32]. For example, the
number of blades and their rotation speeds can be referenced
against a database to establish the drone model. Similarly, the
heavier the weight a drone needs to carry, the faster its rotors
typically need to spin to provide sufficient lift. An abrupt
change in the rotation rates can pertain to the drone releasing
a payload. This information can aid ATC, where classical
spectral analysis tools (e.g., cepstrum) or neural networks can
be utilised for estimating the UAS physical parameters [30].

The ML classifier can be explicitly trained to recognise par-
ticular drone types or models [14], [18], [33]. This necessitates
the availability of datasets per target label, thus higher training
data requirements and/or applying a well-defined pipeline for
refining a learnt ATC algorithm, for instance with transfer
learning [14]. An alternative approach is to label the training
data with parent (abstract) classes that the ATR then treats, for
example small fixed-wing, large rotary wing and small rotary
wing for a CNN micro-Doppler classifier as in [18].

B. Cognitive Radar and Sensing Networks

The availability of low-cost electronic antennas, high per-
forming, easily programmable, signal/data processing hard-
ware and high-quality digital waveform generators are
amongst those technology advancements that enable embed-
ding intelligence or cognition within modern radar systems.
These sensors can in principle be proactive and tailor their
resources to multiple mission, for example to increase perfor-
mance against certain low observable targets such as drones
whose salient radar signatures (e.g., micro-Doppler from ro-
tors) can be otherwise undetectable due to the background
noise-clutter [34], [35]. The radar can suitably adjust its trans-
mission, beam-forming, and other parameters. It can specifi-
cally adapt its data acquisition (dwell-time) and processing
(e.g., complexity of applied tracking and ATC algorithms) in
a given target resolution cell in order to increase the SNR and
maximise chance of detecting any micro-Doppler signature(s).

0

4 [ L [ |
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
FAR (per hour)

Fig. 7: Hard true positive classification probability versus false
alarm rate per hour from radar measurements.
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Given the prevalence of occlusions to the radar line of sight
and persistent clutter in dense urban or other environments
with large structures such as wind turbine, a networked or
multi-static radar system with multiple spatially distributed
transmitters and/or receivers might be required to maintain
situational awareness over wide monitored regions. Such so-
Iutions have additional system-level challenges to overcome
such as synchronisation, data fusion, networking topology, etc.
This is an active research area, see [3], [12], [29], [31], [36].

C. Simulators and Digital Twins

The main limitation for training generalisable ML classifiers
is the availability of extensive radar datasets for all targets of
interest. This is compounded by the relatively high cost of con-
ducting controlled drone trials to collect real measurements;
more so for birds instrumented with sensors (e.g., GPS tags)
to provide ground truth information or utilising a sophisticated
automated labelling system (e.g., using cameras). Hence, there
is a pressing need to generate representative synthetic radar
data, including to augment the limited available real radar mea-
surements. Conventional full electromagnetic physics-based
radar simulators are generally prohibitively complex and time
consuming to construct as well as difficult to validate. On the
other hand, generative Al technology, such as transformers,
generative adversarial networks, variational autoencoders, can
expedite the process of simulating realistic radar signatures
of various targets for training ATR algorithms. Easy and
cheap access to representative simulated radar data can be
revolutionary to the drone surveillance radar functionalities
in the era of Al and data centric engineering. For example,
it can permit adopting advanced fully or model-driven ML/AI
for target detection [19] and track-before-detect methods [10]
to enhance the radar ability to detect micro-Doppler and track
low observable UAS targets (including when hovering).

Leveraging fully digitised and easily programmable pro-
cessing chain as well as access to elaborate data simulators,
digital twins can promote the rapid development, verification-
validation and integration of new ATR algorithms [35]. For
example, the Thales Gamekeeper radar has a full digital twin
of its processing chain, and the raw 1&Q data from each re-
ceiver element can be recorded and re-processed. Refinements
to the detection, MTT and ATC modules can then be rapidly
validated and deployed on radars in the field.

D. Global Classification Architectures

Different classifiers can rely on distinct underlying salient
characteristics in the target radar signatures (e.g., micro-
Doppler components or kinematic behaviour) and over dif-
ferent time-scales as in Figure 4. Simultaneously employing
disparate classifiers that can be potentially asynchronous (i.e.,
update at different rates) and heterogeneous (i.e., have different
target categories) can deliver more robust automatic target
classification, such as the global classification architecture with
classifiers dedicated to kinematic-features-based discrimina-
tion and others to micro-Doppler detection in [16]. Applying
different versions of a classifier (e.g., several realisations of
the same deep neural network, each configured following

a particular initialisation of its weights) and combine their
results is common in supervised learning; see [37]. This
can be extended to utilising asynchronous and heterogeneous
recognition algorithms with the associated fusion mechanism.

E. Exploiting Contextual and Pattern-of-life Information

Given the complexity and diversity of the large surveyed
areas with radar, available contextual (e.g., terrain type) or
pattern-of-life (e.g. bird migration times) information can
be highly effective at improving ATC and addressing the
high false alarm challenge at the sensor level. These can
bias/influence the classifier results and the associated decision
criteria on the target category. For example, false alarms
originating from objects near major roads or dense urban
areas, where high density vehicle traffic is expected (or even
dynamically detected) at selected times can be suppressed
or have a higher decision threshold. Similar schemes can be
applied for detected large flocks of birds or even the occasional
presence of bird species that can trigger FAs such as large
gliding birds (e.g., from ornithologist studies or observations).

Therefore, a data fusion approach (e.g., within a Bayesian
framework) would be required to capitalise on additional
information about the monitored scene or present targets at the
radar sensor or even at the C2 system level for a more robust
ATC. This nonetheless carries the risk that inaccurate priors
can undermine the radar ATC effectiveness and adversaries
can exploit them. It is noted that contextual or pattern-of-
life data can also be learnt from historical radar data as with
discriminative long-term behaviour features in Section II.

F. Meta-level Information Inference and Malicious Intent

As drones use is set to proliferate further, it will be critical
for surveillance systems to be able to infer “meta-level” infor-
mation on the detected-tracked-classified UAVs, namely their
intent (e.g., final destination and future trajectory to unveil, as
early as possible, malicious activities) and group interactions-
hierarchies in drone swarms (e.g., reveal coordinated mUASs
groups and, if relevant, their leaders which can have more on-
board capabilities). This can circumvent the system or operator
being overwhelmed by swamping tactics. It facilitates timely
decision making, automation and prioritisation of potential
threats as well as selective deployment of countermeasures
(if relevant), thereby minimising potential collateral damage.

Bayesian meta-level tracking offers a generic framework,
for instance to determine, early, if a drone intends to reach a
prohibited zone [38] or reveal a swarm hierarchy [39]. This can
incorporate the ATC results as priors. For example, if the ATC
indicates that a drone is carrying a payload, then this is strong
indicator of malicious intent. Some of these functionalities can
be employed at the C2 level, rather than by the radar sensor.

VI. CONCLUSIONS

Robust automatic target classification is fundamentally im-
portant for drone surveillance radar, especially given the large
number of potential confuser targets (e.g. birds) and complex
monitored environments. Although mUASs are formidably
difficult targets to detect, track and classify with radar, several
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sensors (including in multi-static configurations) have emerged
over the last few years. They increasingly exploit recent
advances in data processing and machine learning (e.g., deep
neural networks) to deliver a strong ATC performance.

It is however crucial to: a) understand the unique challenges
mUAVs pose to radar sensors and ATC enablers, especially
that drone platforms are expected to continuously evolve and
adapt as adversaries strive to make them harder to detect; b)
consider relevant classification metrics when evaluating the
efficacy of the classification approach; and c) highlight oppor-
tunities for future radar solutions. These aspects are discussed
in this paper. The objective is to promote a better appreciation
of what is achievable in practice now and in the future, i.e.
articulate the relationship between the art of the possible and
operational effectiveness of automatic classification of drones
with radar. An example is the common stringent ATC false
alarm rates requirement on a C-UAS solution (e.g., one FA
every several days or weeks). This is currently unrealistic to
meet with a radar sensor alone whilst maintaining the ability
to detect-track-classify miniature (e.g., micro and nano) drones
in complex urban/semi-rural environments. Whilst this can be
fulfilled by a multi-sensor system within which radar is a
critical component, the full potential of the C-UAS/UTM radar
technology is yet to be realised.

Although we predominately focused here on ground surface
radar and performance evaluation for a binary classification
task (i.e. miniature drone versus non-drone), several of the pre-
sented arguments seamlessly apply to maritime and airborne
radars. Metrics can also be easily extended to multi-class ATC
scenarios and other targets (e.g., larger UAVs).
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