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We construct a continuous domain, as a model of interval analysis, for temporal discretization of 
differential equations. By using this domain, and the domain of Lipschitz maps, we formulate 
a generalization of the Euler operator, which exhibits second-order convergence. We prove 
computability of the operator within the framework of effectively given domains. The operator 
only requires the vector field of the differential equation to be Lipschitz continuous, in 
contrast to the related operators in the literature which require the vector field to be at least 
continuously differentiable. Within the same framework, we also analyze temporal discretization 
and computability of another variant of the Euler operator formulated according to Runge-Kutta 
theory. We prove that, compared with this variant, the second-order operator that we formulate 
directly, not only imposes weaker assumptions on the vector field, but also exhibits superior 
convergence rate. We implement the first-order, second-order, and Runge-Kutta Euler operators 
using arbitrary-precision interval arithmetic, and report on some experiments. The experiments 
confirm our theoretical results. In particular, we observe the superior convergence rate of our 
second-order operator compared with the Runge-Kutta Euler and the common (first-order) Euler 
operators.
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1. Introduction

Many concepts and phenomena in modern science have been formulated using differential equations. To analyze systems which 
have been formulated using differential equations, apart from rare cases with closed-form solutions, numerical methods must be 
used. The methods of classical numerical analysis are adequate when infrequent errors are acceptable. In safety-critical systems, 
however, even isolated errors can lead to disproportionate damages, or more importantly, loss of life. Therefore, in analyses of such 
systems, computations must be validated.

A powerful approach to validated computation is provided by interval analysis [59,2]. The foundations of modern interval analysis 
were laid in 1950s by Warmus [79], Sunaga [73], and Moore [55], although, the most influential work has been the well-known 
book by Moore [56]. Ever since, interval methods have evolved considerably, and have been applied to various tasks, e.g., interval 
Newton method [58], optimization [35], solution of systems of linear equations [51], eigenvalue problems [38], solution of partial 
differential equations (PDEs) [68,39,76], various topics in functional analysis [57], and security analysis of neural networks [78], to 
name just a few. There is also a rich literature on the solution of initial value problems (IVPs)—which is the subject of the current 
article—using interval methods, e.g., [5,62,64,47,59,77,3,48].

Interval analysis has also had a productive interplay with domain theory [1,33,34], and each subject has enriched the other. In 
Dana Scott’s seminal paper on domain theory [69], the interval lattice appears as one of the only two examples of concrete data 
types that are presented.1 In the monograph [70]—which is a revised and expanded version of [69]—Moore’s book on interval 
analysis [56] is mentioned as one of the few references related to the mathematical theory that is developed. Subsequent results 
in casting mathematical analysis in a domain-theoretic framework also owe much of their inspiration and conceptual foundation to 
the earlier work on interval analysis. For instance, interval methods for integration and differential equation solving appear in [56], 
well before they were recast in a domain-theoretic framework [19,22,23]. Domain theory, in turn, provides a refined framework for 
interval analysis, which enables systematic analyses of convergence, computability, and complexity of the methods involved. To be 
more concrete, domain theory provides a model of interval analysis whereby a notion of approximation of an interval 𝐼 ∶= [𝐼, 𝐼] by 
another interval 𝐽 ∶= [𝐽 , 𝐽 ] is introduced, which requires 𝐽 to contain 𝐼 in its interior, i.e., [𝐼, 𝐼] ⊆ (𝐽 , 𝐽 ).2 This notion, together with 
the notion of convergence of a nested set of intervals to its intersection, allows for an analysis of computability of (say) the solution 
of an IVP, bringing the study of ordinary differential equations (ODEs) and theories of computability together.

In the current article, we focus on ODEs. Specifically, we consider the IVP:

⎧⎪⎨⎪⎩
𝑦′(𝑡) = 𝑓 (𝑦(𝑡)),
𝑦(0) = (0,… ,0

⏟⏟⏟
𝑛

), (1)

in which 𝑓 ∶ [−𝐾, 𝐾]𝑛 → [−𝑀, 𝑀]𝑛 is a continuous vector field, for some natural number 𝑛 ≥ 1, and positive rational numbers 
𝐾, 𝑀 ∈ℚ+.

By merely assuming the vector field 𝑓 to be continuous, Peano’s theorem implies that the IVP (1) has a differentiable solution 
𝑦 ∶ [− 𝐾

𝑀
, 𝐾
𝑀
] → [−𝐾, 𝐾]𝑛 [75, Theorem 2.19]. Furthermore, if 𝑓 is Lipschitz continuous, by Picard-Lindelöf theorem, the IVP must 

1 With the lattice of natural numbers being the other example.
2

2 Also, see (2) on page 5.
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have a unique solution [75, Theorem 2.2]. The Lipschitz condition is sufficient but not necessary for uniqueness of solutions [50]. 
Hiroshi Okamura provided a necessary and sufficient condition for uniqueness of solutions, which may be found in [81].

Lipschitz continuity is, nevertheless, the common assumption that is imposed on the vector field in developing computational 
methods. This is partly because convergence analysis is easier using Lipschitz properties of the maps involved. We also focus on 
Lipschitz continuous functions due to their desirable computational properties [20,21,18].

Methods of classical numerical analysis for solving differential equations are commonly implemented using floating-point num-

bers. These implementations have inherent inaccuracies, mainly due to round-off and truncation errors. A full error analysis may be 
carried out in some cases [37,8], but in general, error analysis of floating-point computations is very hard, and the computations 
may be deceptively unstable, even when the operations involved are rather simple [60,49,67,66]. An effective alternative is devel-

oping algorithms which are correct by construction, i.e., do not require a separate error analysis. Validated numerics offer a sound 
alternative of this kind, where results are provided with absolute guarantees of correctness.

By assuming the vector field to be analytic, a validated solution of the IVP (1) can be obtained in polynomial time [61] by using a 
Taylor model. Without the analyticity assumption, IVP solving becomes PSPACE-complete, even with 𝐶∞ assumption on the vector 
field [43]. Despite such complexity constraints, for sufficiently regular vector fields, there are feasible validated methods available 
in the literature, including high-order Taylor methods [5,62,77] and Runge-Kutta methods [47,3,48].

By combining powerful tools from order theory and topology, domain theory provides a rich semantic model for validated numer-

ics. In contrast to Taylor methods, a characteristic feature of a domain-theoretic approach is that the vector field is interpreted as the 
limit (under Scott topology) of a sequence of finitely-representable approximations. An added advantage of developing differential 
equation solvers in a domain-theoretic framework is that they can be subsequently incorporated into domain-theoretic models for 
other applications, such as reachability analysis of hybrid systems [24,54,52,53].

Domain theoretic methods for solving IVPs have indeed been studied for Picard method [20,23], (first-order) Euler method [22], 
and a second-order variant of Euler method [27].3 These methods are all based on the interval domain model [29]. The Picard 
operators of [20,23] have a functional style of definition. As the underlying interval domain models may be enriched with an ef-

fective structure, it is possible to study computability of the Picard operator using the classical interval domain. There are several 
advantages in adopting a functional—as opposed to imperative—style of programming, such as correctness of program construction, 
equational reasoning, modularity, and automatic optimization, to name a few [4,41,40]. In general, functional programs are signifi-

cantly more amenable to automatic reasoning and verification, compared with imperative programs. These are particularly relevant 
when programs become larger and more complex, as in the context of IVP solving.

The Euler operators of [22,27], however, have been defined in an imperative style. As it turns out, this is not a problem that can 
be rectified directly in the classical interval domain models of (say) [29,20,23].4 In essence, the main difference between Euler and 
Picard methods is that Euler methods proceed according to a temporal discretization. This temporal discretization is the main obstacle 
which renders classical interval domain models ineffective. Runge-Kutta methods also proceed according to a temporal discretization. 
As a result, the classical interval domain is not adequate for functional definition of Runge-Kutta operators either.

1.1. Contributions

At a fundamental level, the main contribution of this article is the construction of an effectively-given domain for temporal 
discretization of differential equations. The construction of this domain model requires a novel approach because the classical 
interval domain models are too restrictive. For further clarification, we expand on this claim informally here, while the technical 
details and precise formulations will be presented in Section 4.

We let ℝ denote the set of real numbers, and let (𝐈ℝ, ⊑) denote the interval domain, i.e., the partially ordered set (poset) {[𝑎, 𝑏] ∣
𝑎, 𝑏 ∈ℝ, 𝑎 ≤ 𝑏} of non-empty compact intervals ordered under reverse inclusion:

[𝑎, 𝑏] ⊑ [𝑐, 𝑑] ⟺ [𝑐, 𝑑] ⊆ [𝑎, 𝑏].

For every interval function 𝑓 ∶ℝ → 𝐈ℝ, we let 𝑓 and 𝑓 denote the lower and upper bounds of 𝑓 , i.e., ∀𝑥 ∈ℝ ∶ 𝑓 (𝑥) = [𝑓 (𝑥), 𝑓 (𝑥)]. It is 
well-known that 𝑓 is continuous with respect to the Euclidean topology over ℝ and Scott topology over 𝐈ℝ if and only if 𝑓 ∶ℝ →ℝ
is lower semi-continuous and 𝑓 ∶ ℝ → ℝ is upper semi-continuous [20]. For temporal discretization of differential equations, these 
requirements turn out to be too restrictive. A typical method that proceeds by temporal discretization—e.g., Euler or Runge-Kutta 
method—may only require semi-continuity from the left (Definition 4.2). The problem is that, the poset of interval functions with left 
semi-continuous bounds—which we denote by ℚ and define formally in (26)—is not even continuous (Corollary 4.7).5 This should 
be contrasted with the poset of interval functions with semi-continuous bounds, which is indeed a continuous domain, and has been 
used extensively, e.g., in domain-theoretic analysis of the Picard method [20,23].

To address this problem, we present a method for constructing continuous domains for function spaces [𝑋 →𝐷], in which 𝑋 is an 
arbitrary topological space—i.e., not necessarily core-compact—and 𝐷 is an arbitrary bounded-complete continuous domain. Then, 
following this general construction, and using a suitable abstract basis, we obtain the fundamental 𝜔-continuous domain of the paper 

3 A numerical scheme for solving IVPs is said to be of order 𝑝 if, for every step size ℎ, the local error incurred is of order 𝑂(ℎ𝑝+1) [42, Page 8]. See Section 5.2 for 
more details.

4 These claims will be justified formally in Section 4, after introducing the necessary technical background in Section 2.
3

5 The subscript ℚ appears in ℚ because we take the partition points to be rational numbers.
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as a special case, which we denote by  and define formally in Definition 4.16. Although this domain is not isomorphic to ℚ, 
they are related to each other via a Galois connection (which is a special case of the general Galois connection of Theorem 3.15). As 
such,  may be regarded as an ‘optimal’ substitute for the non-continuous poset ℚ.

Suitability of  for temporal discretization will be demonstrated by developing domain-theoretic formulation of two operators 
for validated solution of IVPs:

(1) A second-order Euler operator 𝐸2, which has its foundation in the results of [27].

(2) An Euler operator 𝐸R, which is formulated according to Runge-Kutta theory.

We will show that, the operator 𝐸2 has superior theoretical and practical properties compared with the operator 𝐸R. In particular, 
it exhibits superior convergence properties under weaker differentiability assumptions on the vector field of the differential equation.

In the formulation of Picard and Euler operators as presented in [20,23] and [22], respectively, the vector field is required to be 
Lipschitz continuous to guarantee uniqueness of the solutions. The local Lipschitz properties of the vector field, however, are not used 
in the algorithms. The second-order Euler method introduced in [27] uses the local Lipschitz properties of the vector field to speed 
up the convergence. In [27], several fundamental properties of the method have been proven, such as soundness and completeness, 
together with some basic convergence and algebraic complexity results. The convergence analysis of [27], however, is not fine 
enough to reflect the second-order nature of the operator. As such, another important contribution of the current article is a detailed 
convergence analysis of the Euler operator 𝐸2, which proves that it is truly second-order.

To summarize, the main contributions of the current article are as follows:

(i) A general construction that provides continuous domains for function spaces [𝑋 →𝐷], for arbitrary topological spaces 𝑋 and 
arbitrary bounded-complete continuous domains 𝐷.

(ii) Introduction of a continuous domain for temporal discretization and solution of IVPs, as a special case of the general construc-

tion.

(iii) Domain-theoretic formulations of the Euler operator according to two approaches: a direct approach, and one which conforms 
to the Runge-Kutta theory.

(iv) Computable analysis of the Euler operators within the framework of effectively given domains.

(v) A detailed convergence analysis of the Euler operator 𝐸2, which shows that the operator is indeed second-order.

(vi) Experiments which confirm the theoretical results.

Remark 1.1 (Initial values). For simplicity, we take the initial values in the IVP (1) to be all zeros. The results can be generalized, in a 
straightforward manner, to initial conditions of the form 𝑦(𝑡0) = (𝑞1, … , 𝑞𝑛), in which 𝑡0, 𝑞1, … , 𝑞𝑛 ∈ℚ. Indeed, in our experiments, we 
consider IVPs that have rational initial values. Generalizing further to initial values which are irrational points, or non-degenerate 
intervals, is not so straightforward, and must be studied separately. We do not follow this line in the current work, but point out that 
handling uncertain initial values has been studied for the Picard operator [45].

Remark 1.2 (Autonomous versus non-autonomous IVPs). We consider only autonomous IVPs of the form (1). Given a non-autonomous 
equation 𝑦′(𝑡) = 𝑓 (𝑡, 𝑦(𝑡)) with 𝑦(𝑡) = (𝑦1(𝑡), … , 𝑦𝑛(𝑡)), the function defined by 𝑌 (𝑡) ∶= (𝑡, 𝑦(𝑡)) satisfies the autonomous equation 𝑌 ′(𝑡) =
𝑔(𝑌 (𝑡)) with 𝑔(𝑡, ⃗𝜃) ∶= (1, 𝑓 (𝑡, ⃗𝜃)). Thus, any non-autonomous IVP can be converted to an autonomous one by adding an extra variable. 
The uniqueness of solutions for the non-autonomous IVP is guaranteed if the vector field 𝑓 is Lipschitz continuous in its second 
argument, in contrast to the autonomous IVP (1), for which Lipschitz continuity of 𝑓 is required in all arguments. As such, we lose a 
slight bit of generality.

1.2. Structure of the paper

The rest of this article is structured as follows:

• The necessary technical background and notation is introduced in Section 2.

• The general construction of the main continuous domain is presented in Section 3.

• In Section 4, we investigate the continuous domain constructed in Section 3 for the specific case of temporal discretization.

• Section 5 contains the domain-theoretic analyses of the second-order Euler operator, including the formulation of the operator, 
computability, and convergence analyses.

• The domain-theoretic analyses of the Runge-Kutta Euler operator are presented in Section 6.

• The results of some of our experiments will be presented in Section 7, where different variants of the Euler operator will be 
compared in terms of their performance.

• The article will be concluded by some remarks in Section 8.

2. Preliminaries
4

In this section, we present the technical background needed for the rest of the article.
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2.1. Domain theory

Domain theory has its roots in topological algebra [32,44], and it has enriched computer science with powerful methods from 
order theory, algebra, and topology. Domains gained prominence when they were introduced as a mathematical model for lambda 
calculus by Scott [69]. We present a brief reminder of the concepts and notations that will be needed later. The interested reader 
may refer to [1,33,34] for more on domains in general, and refer to [29,16] for the interval domain, in particular. A succinct and 
informative survey of the theory may be found in [44].

For any subset 𝑋 of a partially ordered set (poset) (𝐷, ⊑), we write ⨆𝑋 and ⨅𝑋 to denote the least upper bound, and the greatest 
lower bound, of 𝑋, respectively, whenever they exist. We also define the lower and upper sets of 𝑋 by ↓𝑋 ∶= {𝑦 ∈𝐷 ∣ ∃𝑥 ∈𝑋 ∶ 𝑦 ⊑ 𝑥}
and ↑𝑋 ∶= {𝑦 ∈𝐷 ∣ ∃𝑥 ∈𝑋 ∶ 𝑥 ⊑ 𝑦}, respectively. When 𝑋 is a singleton {𝑥}, we may simply write ↓𝑥 and ↑𝑥, respectively.

In our discussion, 𝑥 ⊑ 𝑦 may be interpreted as ‘𝑦 contains more information than 𝑥’. A subset 𝑋 ⊆ 𝐷 is said to be directed if 
𝑋 ≠ ∅ and every two elements of 𝑋 have an upper bound in 𝑋, i.e., ∀𝑥, 𝑦 ∈𝑋 ∶ ∃𝑧 ∈ 𝑋 ∶ 𝑥 ⊑ 𝑧 ∧ 𝑦 ⊑ 𝑧. A poset (𝐷, ⊑) is said to be 
directed complete if every directed subset 𝑋 ⊆𝐷 has a least upper bound in 𝐷. The poset (𝐷, ⊑) is said to be pointed if it has a bottom 
element, which we usually denote by ⊥𝐷 , or if 𝐷 is clear from the context, simply by ⊥. In the current article, we assume that every 
directed-complete partial order (dcpo) is pointed.

Directed completeness is a basic requirement for almost all the posets in our discussion. A notable exception is the poset of 
partitions, which is essential in temporal discretization. In what follows, we assume that 𝑎 > 0 is a rational number. Although most 
of the abstract theory may be presented by just assuming 𝑎 to be real, for implementation and computable analysis of the algorithms 
(in Type-II Theory of Effectivity (TTE) [80]) it is more convenient to take 𝑎 ∈ℚ.

Definition 2.1 (Partitions). A partition of [0, 𝑎] is a finite sequence (𝑞0, … , 𝑞𝑘) of real numbers such that 𝑘 ≥ 1 and 0 = 𝑞0 <⋯ < 𝑞𝑘 = 𝑎. 
Furthermore:

(i) We let  denote the set of all partitions of an interval of interest, e.g., [0, 𝑎].
(ii) We let ℚ denote the set of rational partitions, i.e., those that satisfy ∀𝑖 ∈ {0,… , 𝑘} ∶ 𝑞𝑖 ∈ℚ.

(iii) The norm |𝑄| of a partition 𝑄 = (𝑞0, … , 𝑞𝑘) is given by |𝑄| ∶= max{𝑞𝑖 − 𝑞𝑖−1 ∣ 1 ≤ 𝑖 ≤ 𝑘}.

(iv) We define 1 ∶= {𝑄 ∈  ∣ |𝑄| ≤ 1} and 1,ℚ ∶= {𝑄 ∈ ℚ ∣ |𝑄| ≤ 1} = 1 ∩ℚ.

(v) The minimal width of a partition 𝑄 = (𝑞0, … , 𝑞𝑘) is given by 𝑚(𝑄) ∶= min{𝑞𝑖 − 𝑞𝑖−1 ∣ 1 ≤ 𝑖 ≤ 𝑘}.

(vi) We let 𝑟𝑄 ∶= |𝑄|
𝑚(𝑄) . A partition 𝑄 = (𝑞0, … , 𝑞𝑘) is said to be equidistant if and only if 𝑟𝑄 = 1, i.e., ∀𝑖 ∈ {1,… , 𝑘} ∶ 𝑞𝑖 − 𝑞𝑖−1 =

𝑎

𝑘
.

(vii) A partition 𝑄 = (𝑞0, … , 𝑞𝑘) is said to refine another partition 𝑃 = (𝑝0, … , 𝑝𝓁)—denoted by 𝑃 ⊑ 𝑄— if and only if 
{
𝑝0,… , 𝑝𝓁

}
⊆{

𝑞0,… , 𝑞𝑘
}

, with 𝑝0 = 𝑞0 = 0 and 𝑝𝓁 = 𝑞𝑘 = 𝑎.

As each partition must have only finitely many points, none of the posets ( , ⊑), (1, ⊑), (ℚ, ⊑), or (1,ℚ, ⊑) may be directed 
complete. They are, however, all pointed, and have lattice or semilattice structures:

Proposition 2.2. For any interval [0, 𝑎] with 𝑎 ∈ℚ, the sets  and ℚ form lattices under the refinement order ⊑, while 1 and 1,ℚ form 
join semilattices.

Proof. The fact that they form posets is immediate. Next, assume that 𝑃 ≡ {
𝑝0,… , 𝑝𝓁

}
∈  and 𝑄 ≡ {

𝑞0,… , 𝑞𝑘
}
∈  . Then, the parti-

tions 𝑃 ⊔𝑄 and 𝑃 ⊓𝑄 are formed from the partition points 
{
𝑝0,… , 𝑝𝓁

}
∪
{
𝑞0,… , 𝑞𝑘

}
and 

{
𝑝0,… , 𝑝𝓁

}
∩
{
𝑞0,… , 𝑞𝑘

}
, respectively. □

We let 𝐊ℝ𝑛
⊥

denote the poset with the carrier set {𝐶 ⊆ℝ𝑛 ∣ 𝐶 is non-empty and compact} ∪ {ℝ𝑛}, ordered by reverse inclusion, 
i.e., ∀𝑋, 𝑌 ∈𝐊ℝ𝑛

⊥
∶𝑋 ⊑ 𝑌 ⟺ 𝑌 ⊆𝑋. By further requiring the subsets to be convex, we obtain the sub-poset 𝐂ℝ𝑛

⊥
. Finally, we let 𝐈ℝ𝑛

⊥
denote the poset of hyper-rectangles of ℝ𝑛—i.e., subsets of the form ∏𝑛

𝑖=1[𝑎𝑖, 𝑏𝑖]—ordered under reverse inclusion, with ℝ𝑛 added as 
the bottom element. The three posets are dcpos and ⨆𝑋 =

⋂
𝑋, for any directed subset 𝑋.

At the heart of domain theory lies the concept of way-below relation. Assume that (𝐷, ⊑) is a dcpo and let 𝑥, 𝑦 ∈𝐷. The element 𝑥
is said to be way-below 𝑦—written as 𝑥 ≪𝑦—if for every directed subset 𝑋 of 𝐷, if 𝑦 ⊑⨆

𝑋, then there exists an element 𝑑 ∈𝑋 such 
that 𝑥 ⊑ 𝑑. Intuitively, the relation 𝑥 ≪𝑦 may be phrased as ‘𝑥 is a finitary approximation of 𝑦’, or even as ‘𝑥 is a lot simpler than 𝑦’ 
[1, Section 2.2.1]. An element 𝑥 ∈𝐷 is said to be finite if 𝑥 ≪𝑥. The way-below relation is, in general, stronger than the information 
order ⊑. For instance, over 𝐊ℝ𝑛

⊥
(hence, also over 𝐈ℝ𝑛

⊥
and 𝐂ℝ𝑛

⊥
) we have the following characterization:

∀𝐾1,𝐾2 ∈𝐊ℝ𝑛
⊥ ∶𝐾1 ≪𝐾2 ⟺ 𝐾2 ⊆𝐾1

◦, (2)

in which 𝐾1
◦ denotes the interior of 𝐾1. In particular, 𝐊ℝ𝑛

⊥
(hence, also 𝐈ℝ𝑛

⊥
and 𝐂ℝ𝑛

⊥
) has no finite element except ⊥, which is 

always finite.

For every element 𝑥 of a dcpo (𝐷, ⊑), let ⇓𝑥 ∶= {𝑎 ∈𝐷 ∣ 𝑎≪ 𝑥}. In domain-theoretic terms, the elements of ⇓𝑥 are the true 
approximants of 𝑥. In fact, the way-below relation is also known as the order of approximation [1, Section 2.2.1]. A subset 𝐵 of a 
dcpo (𝐷, ⊑) is said to be a basis for 𝐷, if for every element 𝑥 ∈𝐷, the set 𝐵𝑥 ∶=⇓𝑥 ∩ 𝐵 is a directed subset with supremum 𝑥, i.e., 
𝑥 =⨆

𝐵𝑥. A dcpo (𝐷, ⊑) is said to be:
5

(i) continuous if it has a basis;
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(ii) 𝜔-continuous if it has a countable basis;

(iii) algebraic if it has a basis consisting entirely of finite elements;

(iv) 𝜔-algebraic if it has a countable basis consisting entirely of finite elements.

In this article, we call (𝐷, ⊑) a domain if it is a continuous dcpo.6

Assume that Σ is a finite alphabet. Let Σ∗ denote the set of finite strings over Σ, and let Σ𝜔 denote the set of countably infinite 
sequences over Σ. A typical example of an 𝜔-algebraic domain is given by the set Σ∞ ∶= Σ∗ ∪ Σ𝜔, ordered under prefix relation:

∀𝑠, 𝑡 ∈ Σ∞ ∶ 𝑠 ⊑ 𝑡 ⟺ (𝑠 ∈ Σ𝜔 ∧ 𝑠 = 𝑡) ∨
(
𝑠 ∈ Σ∗ ∧ ∃𝑧 ∈ Σ∞ ∶ 𝑠𝑧 = 𝑡

)
,

in which 𝑠𝑧 denotes the concatenation of 𝑠 and 𝑧. The set Σ∗ is a basis of finite elements for Σ∞. Although algebraic domains have 
been used in real number computation [12,30], non-algebraic domains have proven more suitable for computation over continuous 
spaces, e.g., dynamical systems [17], exact real number computation [29,16], differential equation solving [23], reachability analysis 
of hybrid systems [24,54], and robustness analysis of neural networks [82], to name a few. Hence, in this article, we will also be 
mainly working in the framework of non-algebraic 𝜔-continuous domains.

The three dcpos 𝐈ℝ𝑛
⊥

, 𝐊ℝ𝑛
⊥

, and 𝐂ℝ𝑛
⊥

, are all 𝜔-continuous domains, because:

• 𝐵𝐈ℝ𝑛
⊥
∶= {ℝ𝑛} ∪ {𝐶 ∈ 𝐈ℝ𝑛

⊥
∣ 𝐶 is a hyper-rectangle with rational coordinates} is a basis for 𝐈ℝ𝑛

⊥
;

• 𝐵𝐊ℝ𝑛
⊥
∶= {ℝ𝑛} ∪ {𝐶 ∈𝐊ℝ𝑛

⊥
∣ 𝐶 is a finite union of hyper-rectangles with rational coordinates} is a basis for 𝐊ℝ𝑛

⊥
;

• and 𝐵𝐂ℝ𝑛
⊥
∶= {ℝ𝑛} ∪ {𝐶 ∈𝐂ℝ𝑛

⊥
∣ 𝐶 is a convex polytope with rational coordinates} is a basis for 𝐂ℝ𝑛

⊥
.

They are all non-algebraic because their only finite element is the bottom element ⊥.

The following interpolation property is one of the most important features of the way-below relation over domains:

Lemma 2.3 ([1, Lemma 2.2.15]). Assume that (𝐷, ⊑) is a continuous domain. Let 𝑧 ∈𝐷 and let 𝑋 ⊆𝐷 be a finite set satisfying ∀𝑥 ∈𝑋 ∶
𝑥 ≪𝑧. Then, there exists an element 𝑦 ∈𝐷 interpolating between 𝑋 and 𝑧, i.e., satisfying ∀𝑥 ∈𝑋 ∶ 𝑥 ≪𝑦 ≪𝑧, which we write as 𝑋 ≪ 𝑦 ≪𝑧. 
Furthermore, if 𝐵 is a basis for 𝐷, then 𝑦 can be chosen from 𝐵.

Remark 2.4. In what follows, we use ‘enclosure’ as a generic term referring to intervals, hyper-rectangles, polytopes, etc., or functions 
that take such set values.

Remark 2.5. Dcpos which are not continuous seldom appear naturally in applications, and examples of such posets are usually 
manufactured for providing insight (see, e.g., [1, Section 2.2.3]). One such instance, however, appears naturally in our discussion. 
The poset ℚ of left semi-continuous enclosures, which we will study in Section 4.1, is a non-continuous dcpo.

Apart from order-theoretic structure, domains also have a topological structure. Assume that (𝐷, ⊑) is a poset. A subset 𝑂 ⊆𝐷 is 
said to be Scott open if it has the following properties:

(1) It is an upper set, i.e., ∀𝑥 ∈𝑂, ∀𝑦 ∈𝐷 ∶ 𝑥 ⊑ 𝑦 ⟹ 𝑦 ∈𝑂.

(2) For every directed set 𝑋 ⊆𝐷 for which ⨆𝑋 exists, if ⨆𝑋 ∈𝑂 then 𝑋 ∩𝑂 ≠ ∅.

The collection of all Scott open subsets of a poset forms a 𝑇0 topology, referred to as the Scott topology. A function 𝑓 ∶ (𝐷1, ⊑1
) → (𝐷2, ⊑2) is said to be Scott continuous if it is continuous with respect to the Scott topologies on 𝐷1 and 𝐷2. Scott continuity 
can be stated purely in order-theoretic terms, i.e., a map 𝑓 ∶ (𝐷1, ⊑1) → (𝐷2, ⊑2) between two posets is Scott continuous if and only 
if it is monotonic and preserves the suprema of directed sets, i.e., for every directed set 𝑋 ⊆ 𝐷1 for which ⨆𝑋 exists, we have 
𝑓 (

⨆
𝑋) =⨆

𝑓 (𝑋) [34, Proposition 4.3.5].

For every element 𝑥 of a dcpo (𝐷, ⊑), let ⇑𝑥 ∶= {𝑎 ∈𝐷 ∣ 𝑥≪ 𝑎}.

Proposition 2.6 ([1, Proposition 2.3.6]). Let 𝐷 be a domain with a basis 𝐵. Then, for each 𝑥 ∈𝐷, the set ⇑𝑥 is open, and the collection 
 ∶= {⇑𝑥 𝑥 ∈𝐵} forms a base for the Scott topology.

The maximal elements of 𝐈ℝ𝑛
⊥

, 𝐊ℝ𝑛
⊥

, and 𝐂ℝ𝑛
⊥

are singletons, and the sets of maximal elements may be identified with ℝ𝑛. As a 
corollary of Proposition 2.6, if 𝑆 is the Scott topology on 𝐈ℝ𝑛

⊥
, 𝐊ℝ𝑛

⊥
, or 𝐂ℝ𝑛

⊥
, then the restriction of 𝑆 over ℝ𝑛 is the Euclidean 

topology. Thus, the sets of maximal elements are indeed homeomorphic to ℝ𝑛 . For simplicity, we write 𝑥 to denote a maximal 
element {𝑥}. For any 𝐾 ≥ 0, by restricting to [−𝐾, 𝐾]𝑛, we obtain the 𝜔-continuous domains 𝐈[−𝐾,𝐾]𝑛, 𝐊[−𝐾, 𝐾]𝑛, and 𝐂[−𝐾, 𝐾]𝑛, 
respectively.

In general, if 𝐷 and 𝐸 are two domains, the space of Scott-continuous functions from 𝐷 to 𝐸, under pointwise ordering, may 
not be a domain. The study of Cartesian closed categories of domains has a rich literature, and the interested reader may refer to, 
6

6 Recall that, in this article, we assume every dcpo to be pointed.
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e.g., [1,34], and the references therein for more details. We say that a poset (𝐷, ⊑) is bounded-complete if each bounded pair 𝑥, 𝑦 ∈𝐷

has a supremum. By [1, Corollary 4.1.6], the category of bounded-complete domains is Cartesian closed. The domains 𝐈[−𝐾,𝐾]𝑛 , 
𝐊[−𝐾, 𝐾]𝑛, and 𝐂[−𝐾, 𝐾]𝑛 are all bounded-complete. In fact, all the domains that we use in the framework developed in this article 
are bounded-complete.

Assume that (𝑋, Ω(𝑋)) is a topological space, and let (𝐷, ⊑𝐷) be a bounded-complete continuous domain. We let (𝐷, Σ(𝐷)) denote 
the topological space with carrier set 𝐷 under the Scott topology Σ(𝐷). The space [𝑋 → 𝐷] of functions 𝑓 ∶ 𝑋 → 𝐷 which are 
(Ω(𝑋), Σ(𝐷)) continuous can be ordered pointwise by defining:

∀𝑓, 𝑔 ∈ [𝑋 →𝐷] ∶ 𝑓 ⊑ 𝑔 ⟺ ∀𝑥 ∈𝑋 ∶ 𝑓 (𝑥) ⊑𝐷 𝑔(𝑥).

It is straightforward to verify that the poset ([𝑋 → 𝐷], ⊑) is directed-complete and ∀𝑥 ∈ 𝑋 ∶ (
⨆

𝑖∈𝐼 𝑓𝑖)(𝑥) =
⨆
{𝑓𝑖(𝑥) ∣ 𝑖 ∈ 𝐼}, for any 

directed subset {𝑓𝑖 ∣ 𝑖 ∈ 𝐼} of [𝑋 →𝐷]. A central question in our discussion is whether this poset is continuous or not.

Consider the poset (Ω(𝑋), ⊆) of open subsets of 𝑋 ordered under subset relation. For any topological space 𝑋, this poset is a 
complete lattice, with ∅ as the bottom element, and 𝑋 as the top element. Furthermore, we have:

∀𝐴⊆Ω(𝑋) ∶
⨆

𝐴 =
⋃

𝐴 and
⨅

𝐴 = (
⋂

𝐴)
◦
.

A topological space (𝑋, Ω(𝑋)) is said to be core-compact if the lattice (Ω(𝑋), ⊆) is continuous. It is well-known that:

Theorem 2.7. For any topological space (𝑋, Ω(𝑋)) and non-singleton bounded-complete continuous domain (𝐷, ⊑𝐷), the function space 
([𝑋 →𝐷], ⊑) is a bounded-complete continuous domain ⟺ (𝑋, Ω(𝑋)) is core-compact.

Proof. For the (⇐) direction, see [28, Proposition 2]. A proof of the (⇒) direction can also be found on [28, pages 62 and 63]. □

Notation 2.8 (𝑋 ⇒ 𝐷). Whenever (𝑋, Ω(𝑋)) is a core-compact topological space, and (𝐷, ⊑𝐷) is a bounded-complete continuous domain, 
we use the notation 𝑋 ⇒𝐷 to denote the bounded-complete continuous domain ([𝑋 →𝐷], ⊑).

Every locally compact space is core-compact [34, Theorem 5.2.9]. It is well-known that Euclidean spaces are locally compact. 
Furthermore, every domain is locally compact in its Scott topology [34, Corollary 5.1.36]. As such, Euclidean spaces and continuous 
domains form two important cases of core-compact spaces that are relevant to our discussion.

Definition 2.9 (𝐷(0)
𝑚 (𝑋)). For any set 𝑋 ⊆ℝ𝑛 which is locally compact under the restriction of the Euclidean topology, we let 𝐷(0)

𝑚 (𝑋)
denote the function space 𝑋 ⇒ 𝐈ℝ𝑚

⊥
, with 𝑋 under the restriction of the Euclidean topology and 𝐈ℝ𝑚

⊥
under the Scott topology.

If (𝑋, Ω(𝑋)) is any topological space, then 𝑓 ∶𝑋 →ℝ is said to be:

• upper semi-continuous at 𝑥0 ∈𝑋 ⟺ for every 𝑦 > 𝑓 (𝑥0), there exists a neighborhood 𝑈 ∈Ω(𝑋) of 𝑥0 such that ∀𝑥 ∈𝑈 ∶ 𝑓 (𝑥) < 𝑦.

• lower semi-continuous at 𝑥0 ∈𝑋 ⟺ for every 𝑦 < 𝑓 (𝑥0), there exists a neighborhood 𝑈 ∈Ω(𝑋) of 𝑥0 such that ∀𝑥 ∈𝑈 ∶ 𝑓 (𝑥) > 𝑦.

• upper (respectively, lower) semi-continuous ⟺ it is upper (respectively, lower) semi-continuous at every 𝑥0 ∈𝑋.

The following is a well-known fact (see, e.g., [20]) and follows from the definition of semi-continuity:

Proposition 2.10. A function 𝑓 ≡ (𝑓1, … , 𝑓𝑛) ∶ [0, 𝑎] → 𝐈ℝ𝑛
⊥

is in 𝐷(0)
𝑛 ([0, 𝑎]) if and only if for every 𝑗 ∈ {1,… , 𝑛}, 𝑓𝑗 is upper semi-

continuous and 𝑓𝑗 is lower semi-continuous.

As 𝐈ℝ𝑛
⊥

is a sub-poset of 𝐊ℝ𝑛
⊥

, for any compact set 𝐾 ∈ 𝐊ℝ𝑛
⊥

, we may define the hyper-rectangular closure as 𝐾□ ∶=⨆
{𝑅 ∈ 𝐈ℝ𝑛

⊥
∣𝐾 ⊆𝑅}, i.e., the smallest axes-aligned hyper-rectangle containing 𝐾 .

Proposition 2.11 ([82, Corollary 2.17]). The map (⋅)□ ∶𝐊ℝ𝑛
⊥
→ 𝐈ℝ𝑛

⊥
is Scott-continuous.

Definition 2.12 (Extension, canonical interval extension 𝑰𝑓 , approximation).

(i) A map 𝑢 ∶𝐊ℝ𝑛
⊥
→𝐊ℝ𝑚

⊥
is said to be an extension of 𝑓 ∶ℝ𝑛 →ℝ𝑚 iff ∀𝑥 ∈ℝ𝑛 ∶ 𝑢({𝑥}) = {𝑓 (𝑥)}.

(ii) A map 𝑢 ∶ 𝐈ℝ𝑛
⊥
→ 𝐈ℝ𝑚

⊥
is said to be an interval extension of 𝑓 ∶ℝ𝑛 →𝐊ℝ𝑚

⊥
iff ∀𝑥 ∈ℝ𝑛 ∶ 𝑢({𝑥}) = 𝑓 (𝑥)□.

(iii) For any 𝑓 ∶ℝ𝑛 →𝐊ℝ𝑚
⊥

, we define the canonical interval extension 𝑰𝑓 ∶ 𝐈ℝ𝑛
⊥
→ 𝐈ℝ𝑚

⊥
by:

∀𝛼 ∈ 𝐈ℝ𝑛
⊥ ∶ 𝑰𝑓 (𝛼) ∶=

⨅
𝑥∈𝛼

𝑓 (𝑥)□. (3)
7

(iv) A map 𝑢 ∶ 𝐈ℝ𝑛
⊥
→ 𝐈ℝ𝑚

⊥
is said to be an interval approximation of 𝑓 ∶ℝ𝑛 →𝐊ℝ𝑚

⊥
if 𝑢 ⊑ 𝑰𝑓 .
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Proposition 2.13. For every Euclidean-Scott-continuous 𝑓 ∶ℝ𝑛 →𝐊ℝ𝑚
⊥

, the canonical interval extension 𝑰𝑓 defined in (3) is the maximal 
extension of 𝑓 among all the interval extensions in the domain 𝐈ℝ𝑛

⊥
⇒ 𝐈ℝ𝑚

⊥
. In particular, 𝑰𝑓 is Scott-continuous.

Proof. Given a map 𝑓 ∶ℝ𝑛 →𝐊ℝ𝑚
⊥

, we define 𝑓□ ∶ℝ𝑛 → 𝐈ℝ𝑚
⊥

by 𝑓□ ∶= (⋅)□◦𝑓 , i.e., ∀𝑥 ∈ℝ𝑛 ∶ 𝑓□(𝑥) = 𝑓 (𝑥)□. If 𝑓 is Euclidean-Scott-

continuous, then, by Proposition 2.11, so is 𝑓□. It is straightforward to verify that a map 𝑢 ∶ 𝐈ℝ𝑛
⊥
⇒ 𝐈ℝ𝑚

⊥
is an interval approximation 

of 𝑓 if and only if it is an interval approximation of 𝑓□.

Thus, it suffices to prove the proposition for the special case of 𝑓 ∶ℝ𝑛 → 𝐈ℝ𝑚
⊥

. This has already been proven in [19, Lemma 3.4]

for the case of 𝑛 = 𝑚 = 1. But, the proof given in [19] is independent of the values of 𝑛 and 𝑚, because the crucial property that is 
needed is that 𝐈ℝ𝑚

⊥
is a continuous ⨅-semilattice, for any 𝑚 ∈ ℕ. □

As the restriction of the Scott topology of 𝐊ℝ𝑚
⊥

over ℝ𝑚 is the Euclidean topology, we may consider any continuous map 𝑓 ∶ℝ𝑛 →
ℝ𝑚 also as a function of type ℝ𝑛 →𝐊ℝ𝑚

⊥
, and construct its canonical interval extension accordingly, which will be Scott-continuous.

In lambda calculus, a fixpoint combinator is used for recursive definitions. One common fixpoint term is the so-called 𝑌 combi-

nator 𝑌 ∶= 𝜆𝑓 .(𝜆𝑥.𝑓 (𝑥𝑥))(𝜆𝑥.𝑓 (𝑥𝑥)). As previously mentioned, domains were introduced to construct mathematical models of lambda 
calculus [69]. The denotation of a fixpoint combinator may be provided by the (domain-theoretic) fixpoint operator, as specified in 
the following theorem:

Theorem 2.14 (fixpoint operator: f ix). Assume that 𝐷 is a dcpo with bottom element ⊥. Then:

(i) Every Scott-continuous 𝑓 ∶𝐷→𝐷 has a least fixpoint given by ⨆𝑛∈ℕ 𝑓𝑛(⊥).
(ii) The fixpoint operator f ix ∶ [𝐷→𝐷] →𝐷 defined by f ix𝑓 ∶=

⨆
𝑛∈ℕ 𝑓𝑛(⊥) is Scott continuous.

Proof. See [1, Theorem 2.1.19]. □

Domains provide a natural setting for the concept of approximation. In particular, objects which are not finitely-representable 
may be constructed via their finite approximations. A common approach in this context is through the use of the fixpoint operator. 
One of the main contributions of the current paper is the formulation of Euler and Runge-Kutta operators using the fixpoint operator 
(Theorem 5.7 and Definition 6.7).

2.2. Domain-theoretic derivative

We recall the concept of a domain-theoretic derivative for a function 𝑓 ∶ 𝑈 → ℝ defined on an open set 𝑈 ⊆ ℝ𝑛. Assume that 
(𝑋, Ω(𝑋)) is a topological space, and (𝐷, ⊑) is a dcpo, with bottom element ⊥. Then for any open set 𝑂 ∈ Ω(𝑋), and any element 
𝑏 ∈𝐷, we define the single-step function 𝑏𝜒𝑂 ∶𝑋 →𝐷 as follows:

𝑏𝜒𝑂(𝑥) ∶=
{

𝑏, if 𝑥 ∈𝑂,

⊥, if 𝑥 ∈𝑋 ⧵𝑂,
(4)

Definition 2.15 (𝐿-derivative). Assume that 𝑂 ⊆𝑈 ⊆ℝ𝑛, both 𝑂 and 𝑈 are open, and 𝑏 ∈𝐂ℝ𝑛
⊥

:

(i) The single-step tie 𝛿(𝑂, 𝑏) is the set of all functions 𝑓 ∶𝑈 →ℝ which satisfy:

∀𝑥, 𝑦 ∈𝑂 ∶ 𝑏(𝑥− 𝑦) ⊑ 𝑓 (𝑥) − 𝑓 (𝑦).

The set 𝑏(𝑥 − 𝑦) is obtained by taking the inner product of every element of 𝑏 with the vector 𝑥 − 𝑦, and ⊑ is the reverse 
inclusion order on 𝐂ℝ1

⊥
.

(ii) The 𝐿-derivative of any function 𝑓 ∶𝑈 →ℝ is defined as:

𝐿(𝑓 ) ∶=
⨆{

𝑏𝜒𝑂 𝑓 ∈ 𝛿(𝑂,𝑏)
}
.

The 𝐿-derivative is a Scott-continuous function. When 𝑓 is classically differentiable at 𝑥 ∈ 𝑈 , the 𝐿-derivative and the classical 
derivative coincide [14]. Many of the fundamental properties of the classical derivative can be generalized to the domain theoretic 
one, e.g., additivity and the chain rule [25]. A generalization of the mean value theorem [21, Theorem 5.4] is essential in the 
proof of Lemma 6.1, which underlies the soundness of the Euler and Runge-Kutta operators. This generalization follows from the 
corresponding result for the Clarke-gradient [9, Theorem 2.3.7], and the fact that the Clarke-gradient coincides with the domain 
theoretic derivative, which was first proven for finite dimensional Banach spaces by Edalat [14], and later generalized to infinite 
dimensional Banach spaces by Hertling [36].

In this paper, instead of working with the general convex sets in 𝐂ℝ𝑛
⊥

, we work with the simpler hyper-rectangular ones in 𝐈ℝ𝑛
⊥

:

Definition 2.16 (𝐿-derivative). Let 𝑈 ⊆ℝ𝑛 be an open set. In the definition of 𝐿-derivative (Definition 2.15), if 𝐂ℝ𝑛
⊥

is replaced with 
8

𝐈ℝ𝑛
⊥

, then we obtain the concept of 𝐿-derivative for functions of type 𝑈 →ℝ.
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Clearly, the 𝐿-derivative is, in general, coarser than the 𝐿-derivative:

Example 2.17. Let 𝐷𝑛 denote the closed unit disc in ℝ𝑛, and define 𝑓 ∶ℝ𝑛 →ℝ by 𝑓 (𝑥) = ‖𝑥‖2, in which ‖ ⋅‖2 is the Euclidean norm. 
Then, 𝐿(𝑓 )(0) =𝐷𝑛, while 𝐿(𝑓 )(0) = [−1, 1]𝑛.

Definition 2.18. For every open set 𝑈 ⊆ℝ𝑛 and vector valued function 𝑓 ≡ (𝑓1, … , 𝑓𝑚) ∶𝑈 →ℝ𝑚, we define:

𝐿(𝑓 ) ∶=
(
𝐿(𝑓1),… ,𝐿(𝑓𝑚)

)⊺
,

in which, (⋅)⊺ denotes the transpose of a matrix. In other words, for each 1 ≤ 𝑖 ≤𝑚 and 𝑥 ∈𝑈 , let 𝐿(𝑓𝑖)(𝑥) ≡ (𝛼𝑖,1, … , 𝛼𝑖,𝑛) ∈ 𝐈ℝ𝑛
⊥

. Then, 
for each 𝑥 ∈𝑈 , 𝐿(𝑓 )(𝑥) is the 𝑚 × 𝑛 interval matrix [𝛼𝑖,𝑗 ]1≤𝑖≤𝑚,1≤𝑗≤𝑛.

The solution of the IVP (1) is a function of type 𝑦 ≡ (𝑦1, … , 𝑦𝑛) ∶ [0, 𝑎] → [−𝐾, 𝐾]𝑛. For each component 𝑦𝑗 , with 1 ≤ 𝑗 ≤ 𝑛, if 𝑀 is 
a local Lipschitz constant for 𝑦𝑗 around 𝑥, then [−𝑀, 𝑀] ⊑𝐿(𝑦𝑗 )(𝑥) = 𝐿(𝑦𝑗 )(𝑥). We also have:

𝐿(𝑦) = (𝐿(𝑦1),… ,𝐿(𝑦𝑛))⊺ ∶ [0, 𝑎]→ 𝐈ℝ𝑛
⊥.

In general, 𝐿(𝑦)(𝑥) contains the generalized Jacobian of 𝑦 at 𝑥.

Definition 2.19 (1). Consider the domain:

∗ ∶= (𝐈[−𝐾,𝐾]𝑛 ⇒ 𝐈[−𝑀,𝑀]𝑛) ×
(
𝐈[−𝐾,𝐾]𝑛 ⇒ 𝐈[−𝑀1,𝑀1]𝑛

2
)
.

We say that a pair (𝑢, 𝑢′) ∈ ∗ is consistent if there exists an ℎ ∶ [−𝐾, 𝐾]𝑛 → [−𝑀, 𝑀]𝑛 satisfying 𝑢 ⊑ 𝑰ℎ and 𝑢′ ⊑ 𝑰𝐿(ℎ). We define the 
domain 1 to be the sub-domain of ∗ consisting of consistent pairs (𝑢, 𝑢′) ∈ ∗.

We use consistent pairs to approximate functions and their derivatives. Specifically, in a consistent pair (𝑢, 𝑢′), the component 𝑢 is 
meant to approximate a function while 𝑢′ approximates the derivative.7 For more on consistency and strong consistency, the reader 
may refer to [20,21], where it has also been shown that 1 is indeed a domain.

The domain 1 can be equipped with an effective structure [21]. This is crucial when dealing with imprecisely given input data 
as we need an effective method for verifying the consistency of a given pair (𝑢, 𝑢′) ∈ ∗. The effective structure will also be central in 
computable analysis, as will be seen when we study computability of the Euler operator in Section 5.1.

Remark 2.20. Although the 𝐿-derivative is coarser than the 𝐿-derivative, we will still obtain completeness and second-order conver-

gence for our IVP solver (Theorem 5.21). Implementing hyper-rectangles is easier and more efficient compared with compact convex 
sets. Furthermore, the consistency relation is decidable over rational hyper-rectangles, but it remains open whether it is decidable 
over rational convex polytopes in 𝐂ℝ𝑛

⊥
[21].

Definition 2.21 (1
𝑓

). We define the continuous lattice 1
𝑓

to be the sub-domain of 1 with the carrier set:

1
𝑓 ∶= {(𝑢, 𝑢′) ∈ 1 ∣ 𝑢 ⊑ 𝑰𝑓 and 𝑢′ ⊑ 𝑰𝐿(𝑓 )},

in which 𝑓 ∶ [−𝐾, 𝐾]𝑛 → [−𝑀, 𝑀]𝑛 is a Lipschitz continuous vector field with 𝑀1 as a Lipschitz constant.8

Notation 2.22. If 𝑓 ≡ (𝑓1, … , 𝑓𝑛) ∶ [𝑎, 𝑏] → ℝ𝑛 is 𝑘-times differentiable and 0 ≤ 𝑖 ≤ 𝑘, we write 𝑓 (𝑖) ∶ [𝑎, 𝑏] → ℝ𝑛 for the 𝑖-th classical 
derivative of 𝑓 . In particular, 𝑓 (0) = 𝑓 , 𝑓 (1) = 𝑓 ′, and 𝑓 (2) = 𝑓 ′′.

The following is a generalization of the domain of scalar 𝐶1 functions introduced in [20]. The constants 𝑀, 𝑀1, … , 𝑀𝑝 will be 
fixed depending on the application:

Definition 2.23 (�̂�(𝑝), �̂�(𝑝)
𝑓

). For every 𝑝 ∈ℕ, we define the domain:

𝐷(𝑝)
∗ ∶= (𝐈[−𝐾,𝐾]⇒ 𝐈[−𝑀,𝑀]) ×

(
𝐈[−𝐾,𝐾]⇒ 𝐈[−𝑀1,𝑀1]

)
×…×

(
𝐈[−𝐾,𝐾]⇒ 𝐈[−𝑀𝑝,𝑀𝑝]

)
.

We let �̂�(0) ∶=𝐷(0)
∗ , and for every 𝑝 ≥ 1, we let �̂�(𝑝) denote the sub-domain of consistent tuples of 𝐷(𝑝)

∗ , i.e.:

�̂�(𝑝) ∶=
{
(𝑢0,… , 𝑢𝑝) ∈𝐷(𝑝)

∗ ∃𝑔 ∈ 𝐶𝑝−1([−𝐾,𝐾]) ∶ ∀𝑖 ∈ {0,… , 𝑝− 1} ∶ 𝑢𝑖 ⊑ 𝑰𝑔(𝑖) ∧ 𝑢𝑝 ⊑ 𝑰𝐿(𝑔(𝑝−1))
}
.

7 The presence of 𝐾 , 𝑀 , and 𝑀1 in Definition 2.19 reflects the fact that the pair (𝑢, 𝑢′) is meant to approximate the vector field 𝑓 of (1) and its derivative.
9

8 In the current article, we will be mainly concerned with the continuous lattice 1
𝑓

where 𝑓 is the vector field of the IVP (1).
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For a fixed 𝑓 ∈ 𝐶𝑝−1([−𝐾, 𝐾]), we define:

�̂�(0)
𝑓

∶=
{
𝑢 ∈ �̂�(0) 𝑢 ⊑ 𝑰𝑓

}
,

and for 𝑝 ≥ 1, we let �̂�(𝑝)
𝑓

denote the sub-domain of �̂�(𝑝) consisting of those tuples that approximate 𝑓 and its derivatives, i.e.:

�̂�(𝑝)
𝑓

∶=
{
(𝑢0,… , 𝑢𝑝) ∈ �̂�(𝑝) ∀𝑖 ∈ {0,… , 𝑝− 1} ∶ 𝑢𝑖 ⊑ 𝑰𝑓 (𝑖) ∧ 𝑢𝑝 ⊑ 𝑰𝐿(𝑓 (𝑝−1))

}
. (5)

Note that in (5), for �̂�(𝑝)
𝑓

to be non-empty, the following must hold:

(i) ∀𝑥 ∈ [−𝐾, 𝐾] ∶ 𝑓 (𝑥) ∈ [−𝑀, 𝑀].
(ii) ∀𝑥 ∈ [−𝐾, 𝐾], ∀𝑖 ∈ {1,… , 𝑝− 1} ∶ 𝑓 (𝑖)(𝑥) ∈ [−𝑀𝑖, 𝑀𝑖].

(iii) The function 𝑓 (𝑝−1) must be Lipschitz continuous with 𝑀𝑝 as a Lipschitz constant.

2.3. Interval analysis

We will also use some concepts from interval analysis, especially for convergence analysis in Section 5.2.

Definition 2.24 (Width).

(i) For any interval 𝛼 = [𝛼, 𝛼], the width of 𝛼 is defined by w(𝛼) ∶= 𝛼 − 𝛼.

(ii) For an 𝑛-dimensional hyper-rectangle (i.e., interval vector) �⃗� =
(
𝛼1,… , 𝛼𝑛

)
, the width is defined by w(�⃗�) ∶= max1≤𝑖≤𝑛w(𝛼𝑖).

(iii) For an interval matrix 𝐴 = [𝐴𝑖𝑗 ]𝑚×𝑛, we define w(𝐴) ∶= max
{
w(𝐴𝑖𝑗 ) 1 ≤ 𝑖 ≤𝑚,1 ≤ 𝑗 ≤ 𝑛

}
.

(iv) If width is given over a set 𝐵, then it can be lifted to functions from any set 𝐴 to 𝐵 by:

∀𝑓 ∶ 𝐴→𝐵∶ w(𝑓 ) ∶= sup{w(𝑓 (𝑥)) ∣ 𝑥 ∈𝐴}.

Note that it is possible to have w(𝑓 ) =∞.

Definition 2.25 (‖𝐼 ‖, ‖𝐴‖1, ‖𝐴‖∞). For every interval 𝐼 = [𝑎, 𝑏], we define ‖𝐼 ‖ ∶= max(| 𝑎 |, | 𝑏 |). For an interval matrix 𝐴 = [𝐴𝑖𝑗 ]𝑚×𝑛, 
the norms ‖𝐴‖1 and ‖𝐴‖∞ are defined as follows:{ ‖𝐴‖1 ∶= max1≤𝑗≤𝑛

∑𝑚
𝑖=1 ‖𝐴𝑖𝑗 ‖,‖𝐴‖∞ ∶= max1≤𝑖≤𝑚

∑𝑛
𝑗=1 ‖𝐴𝑖𝑗 ‖. (6)

Remark 2.26. Assume that 𝐴 = [𝐴𝑖𝑗 ]𝑚×𝑛 is a matrix of real numbers, viewed as a linear operator 𝐴 ∶ℝ𝑛 →ℝ𝑚. For each 𝑝 ∈ [1, ∞], if 
we use the 𝑝-norm for vectors on ℝ𝑛 and ℝ𝑚, then the corresponding operator norm for 𝐴 is:

‖𝐴‖𝑝 = sup
𝑥∈ℝ𝑛⧵{0}

‖𝐴𝑥‖𝑝‖𝑥‖𝑝 .

It can be shown that for the specific cases of 𝑝 ∈ {1,∞}, we have:{ ‖𝐴‖1 = max1≤𝑗≤𝑛
∑𝑚

𝑖=1|𝐴𝑖𝑗 |,‖𝐴‖∞ = max1≤𝑖≤𝑚
∑𝑛

𝑗=1|𝐴𝑖𝑗 |. (7)

As such, the interval matrix norms of (6) are generalizations of the real matrix norms of (7).

For error analysis of interval computations, a metric structure is required. Moore, Kearfott, and Cloud [59, page 52] used the 
Hausdorff distance for interval analysis. The following extends their definition to tuples and functions:

Definition 2.27 (Interval distance).

(i) For any pair of intervals 𝑥 = [𝑥, 𝑥] and 𝑦 = [𝑦, 𝑦], let 𝑑(𝑥, 𝑦) ∶= max
(|𝑥− 𝑦 |, |𝑥− 𝑦 |).

(ii) For 𝛼 = (𝛼1, … , 𝛼𝑛) and 𝛽 = (𝛽1, … , 𝛽𝑛) in 𝐈ℝ𝑛, we let 𝑑(𝛼, 𝛽) ∶= max{𝑑(𝛼𝑖, 𝛽𝑖) ∣ 1 ≤ 𝑖 ≤ 𝑛}.

(iii) Let 𝑋 be an arbitrary set, and let 𝑓, 𝑔 ∶𝑋 → 𝐈ℝ𝑛. Then, we define 𝑑(𝑓, 𝑔) ∶= sup{𝑑(𝑓 (𝑥), 𝑔(𝑥)) ∣ 𝑥 ∈𝑋}.

Definition 2.28 (Symmetric expansion). For any 𝛼 = ([𝑎1, 𝑎1], … , [𝑎𝑛, 𝑎𝑛]) ∈ 𝐈ℝ𝑛 and 𝑟 ≥ 0, we define the symmetric expansion of the 
interval vector 𝛼 with the real constant 𝑟 as follows:
10

𝛼 ⊕ 𝑟 ∶= ([𝑎1 − 𝑟, 𝑎1 + 𝑟],… , [𝑎𝑛 − 𝑟, 𝑎𝑛 + 𝑟]).
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Note that 𝛼 ⊕ 𝑟 is the Minkowski sum of ∏1≤𝑖≤𝑛[𝑎𝑖, 𝑎𝑖] and [−𝑟, 𝑟]𝑛, as subsets of ℝ𝑛.

We say that a function 𝑢 ∶ 𝐈ℝ𝑛
⊥
→ 𝐈ℝ𝑚

⊥
, with 𝑛, 𝑚 ∈ℕ, is interval Lipschitz [59, Definition 6.1] with constant 𝐿 ≥ 0 if and only if:

∀𝛼 ∈ 𝐈ℝ𝑛 ∶ w(𝑢(𝛼)) ≤𝐿w(𝛼).

Remark 2.29. If 𝑢 is interval Lipschitz, then it is total, i.e., it maps every maximal element of 𝐈ℝ𝑛
⊥

to a maximal element of 𝐈ℝ𝑚
⊥

, 
because ∀𝑥 ∈ℝ𝑛 ∶ w(𝑢({𝑥})) ≤𝐿 w({𝑥}) = 0.

3. A domain for function spaces

The interval [0, 𝑎] under the Euclidean topology is core-compact. Thus, the function space 𝐷(0)
𝑛 ([0, 𝑎]) of Definition 2.9 is a 

continuous domain. The domain 𝐷(0)
𝑛 ([0, 𝑎]) is suitable for IVP solving using Picard method [20,23]. For methods such as Euler and 

Runge-Kutta, which proceed according to a temporal discretization, the Euclidean topology is not suitable. Instead, we must work 
with (a variant of) the so-called upper limit topology on [0, 𝑎], which is not core-compact (Proposition 4.5). This necessitates the 
construction of a continuous domain for dealing with function spaces [𝑋 →𝐷] when 𝑋 is not core-compact.

A function 𝑓 ∶𝑋 →𝐷 is said to be a step function if it is the supremum of a finite set of single-step functions, i.e., 𝑓 =
⨆

𝑖∈𝐼 𝑏𝑖𝜒𝑂𝑖
, 

in which 𝐼 is finite and 𝑏𝑖𝜒𝑂𝑖
is as defined in (4). Assume that 𝐵(𝑋) is a base of the topology Ω(𝑋), and 𝐵(𝐷) is a basis—in the 

domain-theoretic sense—of the continuous domain 𝐷. We let  denote the set of step functions defined using elements of 𝐵(𝑋) and 
𝐵(𝐷), i.e.

 ∶=

{
𝑓 ∶𝑋 →𝐷 𝑓 =

⨆
𝑖∈𝐼

𝑏𝑖𝜒𝑂𝑖
, 𝐼 is finite,∀𝑖 ∈ 𝐼 ∶𝑂𝑖 ∈ 𝐵(𝑋) ∧ 𝑏𝑖 ∈𝐵(𝐷)

}
. (8)

In (8), we have tacitly assumed that each 𝑓 is well-defined. More precisely, the supremum ⨆𝑖∈𝐼 𝑏𝑖𝜒𝑂𝑖
exists if and only if {

𝑏𝑖𝜒𝑂𝑖
𝑖 ∈ 𝐼

}
satisfies the following consistency condition:

∀𝐽 ⊆ 𝐼 ∶
⋂
𝑗∈𝐽

𝑂𝑗 ≠ ∅ ⟹ ∃𝑏𝐽 ∈ 𝐵(𝐷) ∶ ∀𝑗 ∈ 𝐽 ∶ 𝑏𝑗 ⊑ 𝑏𝐽 .

When 𝑋 is core-compact, the set  provides a basis for the continuous domain [𝑋 → 𝐷] [28]. If 𝑋 is not core-compact, then 
by Theorem 2.7, the function space [𝑋 →𝐷] is not a continuous domain. In applications of domain theory, normally a continuous 
domain is constructed first, and then one of its bases is identified for further analysis. At times, however, it is useful to take the 
opposite approach, i.e., start with a given structure as a basis, and then construct a continuous domain over that basis. The essential 
properties required of such a structure to enable the construction of a continuous domain are quite minimal. This is captured by the 
concept of an abstract basis:

Definition 3.1 (Abstract basis). A pair (𝐵, ≺) consisting of a set 𝐵 and a binary relation ≺ ⊆𝐵 ×𝐵 is said to be an abstract basis if the 
relation ≺ is transitive and satisfies the following interpolation property:

• For every finite subset 𝐴 ⊆ 𝐵 and element 𝑥 ∈𝐵 ∶𝐴 ≺ 𝑥 ⟹ ∃𝑦 ∈𝐵 ∶𝐴 ≺ 𝑦 ≺ 𝑥.

Here, by 𝐴 ≺ 𝑥 we mean ∀𝑎 ∈𝐴 ∶ 𝑎 ≺ 𝑥.

Continuous domains may be constructed over abstract bases by a completion process which is similar to how the set ℝ of real 
numbers is constructed by completion of the set ℚ of rational numbers.9 The process is referred to as ideal completion, which requires 
a certain type of ideals, called rounded ideals:

Definition 3.2 (Rounded ideal). A subset 𝐼 of an abstract basis (𝐵, ≺) is said to be a rounded ideal if it satisfies the following 
conditions:

(i) 𝐼 is non-empty.

(ii) 𝐼 is a lower set, i.e., ∀𝑦 ∈ 𝐼, 𝑥 ∈𝐵 ∶ 𝑥 ≺ 𝑦 ⟹ 𝑥 ∈ 𝐼 .

(iii) 𝐼 is directed, i.e., for every finite set 𝐴 ⊆ 𝐼 , there exists an element 𝑧 ∈ 𝐼 such that 𝐴 ≺ 𝑧.

Remark 3.3. Condition (i) in Definition 3.2 is redundant as it follows from condition (iii) by taking 𝐴 = ∅. Nonetheless, we keep 
non-emptiness in the statement as it makes it explicit and also makes the proof of some later statements (e.g., Proposition 3.12) more 
intuitive.
11

9 To be more specific, the completion process is similar to the construction of real numbers via Dedekind cuts of rational numbers [33, Exercise III-4.18].
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A continuous domain can be constructed over an abstract basis (𝐵, ≺) by taking the set of rounded ideals of 𝐵 under the subset 
relation. In other words, if we denote the set of the rounded ideals of (𝐵, ≺) by RId(𝐵, ≺), then (RId(𝐵, ≺), ⊆) is a continuous domain. 
For more on construction of domains using abstract bases, the reader may refer to [1, Section 2.2.6] or [33, Section III-4].

Remark 3.4. The symbol ‘≺’ is commonly used to denote the order over abstract bases. In what follows, we will use the symbol ‘⊲’ 
instead to distinguish the order over the abstract bases of step functions from the general case of Definition 3.1. Furthermore, this 
helps us avoid confusion with the common ‘strictly less than’ relation symbol, which will also be used over the elements of some 
abstract bases of real valued function that we will need later on (especially in Section 4).

Given a step function ⨆𝑖∈𝐼 𝑏𝑖𝜒𝑂𝑖
∶𝑋 →𝐷, for every 𝑥 ∈𝑋 we define 𝐼𝑥 ∶=

{
𝑖 ∈ 𝐼 𝑥 ∈𝑂𝑖

}
. We observe that:

∀𝑥 ∈𝑋 ∶ (
⨆
𝑖∈𝐼

𝑏𝑖𝜒𝑂𝑖
)(𝑥) =

⨆
𝑥∈𝑂𝑖

𝑏𝑖 =
⨆
𝑖∈𝐼𝑥

𝑏𝑖. (9)

Proposition 3.5. For any pair of step functions ⨆𝑖∈𝐼 𝑏𝑖𝜒𝑂𝑖
and ⨆𝑗∈𝐽 𝑏′𝑗𝜒𝑂′

𝑗
, we have:⨆

𝑖∈𝐼
𝑏𝑖𝜒𝑂𝑖

⊑
⨆
𝑗∈𝐽

𝑏′𝑗𝜒𝑂′
𝑗
⟺ ∀𝑖0 ∈ 𝐼 ∶𝑂𝑖0

⊆ (
⨆
𝑗∈𝐽

𝑏′𝑗𝜒𝑂′
𝑗
)−1(↑𝑏𝑖0 ). (10)

Proof. To prove the (⇒) direction, for any given 𝑖0 ∈ 𝐼 and 𝑥 ∈𝑂𝑖0
, we derive:

𝑏𝑖0 ⊑
⨆
𝑖∈𝐼𝑥

𝑏𝑖

(by equation (9)) = (
⨆
𝑖∈𝐼

𝑏𝑖𝜒𝑂𝑖
)(𝑥)

(by assumption
⨆
𝑖∈𝐼

𝑏𝑖𝜒𝑂𝑖
⊑

⨆
𝑗∈𝐽

𝑏′𝑗𝜒𝑂′
𝑗
) ⊑ (

⨆
𝑗∈𝐽

𝑏′𝑗𝜒𝑂′
𝑗
)(𝑥),

which implies that 𝑂𝑖0
⊆ (

⨆
𝑗∈𝐽 𝑏′𝑗𝜒𝑂′

𝑗
)−1(↑𝑏𝑖0 ).

To prove the (⇐) direction, we fix an 𝑖0 ∈ 𝐼 . From the assumption 𝑂𝑖0
⊆ (

⨆
𝑗∈𝐽 𝑏′𝑗𝜒𝑂′

𝑗
)−1(↑𝑏𝑖0 ) we deduce that ∀𝑥 ∈𝑂𝑖0

∶ 𝑏𝑖0𝜒𝑂𝑖0
(𝑥) =

𝑏𝑖0 ⊑ (
⨆

𝑗∈𝐽 𝑏′𝑗𝜒𝑂′
𝑗
)(𝑥). This, combined with the fact that ∀𝑥 ∈ 𝑋 ⧵ 𝑂𝑖0

∶ 𝑏𝑖0𝜒𝑂𝑖0
(𝑥) = ⊥, implies that 𝑏𝑖0𝜒𝑂𝑖0

⊑
⨆

𝑗∈𝐽 𝑏′𝑗𝜒𝑂′
𝑗
. As 𝑖0 was 

chosen arbitrarily, by taking the supremum we obtain ⨆𝑖∈𝐼 𝑏𝑖𝜒𝑂𝑖
⊑
⨆

𝑗∈𝐽 𝑏′𝑗𝜒𝑂′
𝑗
. □

Definition 3.6 (Stable space). A core-compact space (𝑋, Ω(𝑋)) is called stable if 𝑈 ≪ 𝑉 and 𝑈 ≪ 𝑉 ′ imply 𝑈 ≪ 𝑉 ∩ 𝑉 ′, for any 
𝑈, 𝑉 , 𝑉 ′ ∈ Ω(𝑋).

When 𝑋 is stable, based on [28, Lemma 1 and Proposition 5], we know that:⨆
𝑖∈𝐼

𝑏𝑖𝜒𝑂𝑖
≪

⨆
𝑗∈𝐽

𝑏′𝑗𝜒𝑂′
𝑗
⟺ ∀𝑖 ∈ 𝐼 ∶𝑂𝑖 ≪ (

⨆
𝑗∈𝐽

𝑏′𝑗𝜒𝑂′
𝑗
)−1(⇑𝑏𝑖). (11)

We point out that, for the (⇐) implication to hold, it suffices for 𝑋 to be core-compact [28, Lemma 1]. Our aim is, however, to 
develop a framework for any arbitrary topological space 𝑋. In fact, our focus will be on spaces 𝑋 which are not core-compact. 
Hence, with (10) and (11) in mind, we define an approximation order ⊲ on the step functions in  (defined in (8)) as follows:⨆

𝑖∈𝐼
𝑏𝑖𝜒𝑂𝑖

⊲
⨆
𝑗∈𝐽

𝑏′𝑗𝜒𝑂′
𝑗
⟺ ∀𝑖 ∈ 𝐼 ∶𝑂𝑖 ⊆ (

⨆
𝑗∈𝐽

𝑏′𝑗𝜒𝑂′
𝑗
)−1(⇑𝑏𝑖). (12)

For the relation ⊲ to be well-defined, we must show that (12) is independent of how step functions are presented. The def-

inition is clearly independent of how ⨆𝑗∈𝐽 𝑏′𝑗𝜒𝑂′
𝑗

is presented. Hence, we must show that, if ⨆𝑖∈𝐼1 𝑏𝑖𝜒𝑂𝑖
=

⨆
𝑖∈𝐼2 𝑐𝑖𝜒𝑈𝑖

, then ⨆
𝑖∈𝐼1 𝑏𝑖𝜒𝑂𝑖

⊲
⨆

𝑗∈𝐽 𝑏′𝑗𝜒𝑂′
𝑗
⟺

⨆
𝑖∈𝐼2 𝑐𝑖𝜒𝑈𝑖

⊲
⨆

𝑗∈𝐽 𝑏′𝑗𝜒𝑂′
𝑗
. This follows from item (i) of the following Proposition:

Proposition 3.7. For all 𝜃, 𝜃′, 𝜃′′ ∈, we have:

(i) 𝜃 ⊑ 𝜃′⊲𝜃′′ ⟹ 𝜃⊲𝜃′′.

(ii) 𝜃⊲𝜃′ ⊑ 𝜃′′ ⟹ 𝜃⊲𝜃′′.

(iii) 𝜃⊲𝜃′ ⟹ 𝜃 ⊑ 𝜃′.

(iv) (𝜃⊲𝜃′′) ∧ (𝜃′⊲𝜃′′) ⟹ ⨆{
𝜃, 𝜃′

}
⊲𝜃′′.
12

Proof. Let us assume that 𝜃 =⨆
𝑖∈𝐼 𝑏𝑖𝜒𝑂𝑖

, 𝜃′ =⨆
𝑗∈𝐽 𝑏′𝑗𝜒𝑂′

𝑗
, and 𝜃′′ =⨆

𝑘∈𝐾 𝑏′′
𝑘
𝜒𝑂′′

𝑘
.
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(i) From the assumption 𝜃 ⊑ 𝜃′, we deduce that ∀𝑖 ∈ 𝐼 ∶ 𝑏𝑖𝜒𝑂𝑖
⊑
⨆

𝑗∈𝐽 𝑏
′
𝑗𝜒𝑂′

𝑗
. From (9) and (10), for any 𝑖 ∈ 𝐼 and 𝑥 ∈𝑂𝑖, by setting 

𝐽𝑥 ∶=
{
𝑗 ∈ 𝐽 𝑥 ∈𝑂′

𝑗

}
, we have:

𝑏𝑖 ⊑
⨆
𝑗∈𝐽𝑥

𝑏′𝑗 ⟹
⋂
𝑗∈𝐽𝑥

⇑𝑏′𝑗 ⊆⇑𝑏𝑖 ⟹ (𝜃′′)−1(
⋂
𝑗∈𝐽𝑥

⇑𝑏′𝑗 ) ⊆ (𝜃′′)−1(⇑𝑏𝑖). (13)

On the other hand, from the assumption 𝜃′ ⊲𝜃′′, we obtain ∀𝑗 ∈ 𝐽𝑥 ∶𝑂′
𝑗 ⊆ (𝜃′′)−1(⇑𝑏′𝑗 ). Hence:⋂

𝑗∈𝐽𝑥

𝑂′
𝑗 ⊆

⋂
𝑗∈𝐽𝑥

(𝜃′′)−1(⇑𝑏′𝑗 )(
In general, 𝑓−1(

⋂
𝑠∈𝑆

𝑋𝑠) =
⋂
𝑠∈𝑆

𝑓−1(𝑋𝑠)

)
= (𝜃′′)−1(

⋂
𝑗∈𝐽𝑥

⇑𝑏′𝑗 )

(By (13)) ⊆ (𝜃′′)−1(⇑𝑏𝑖).

In other words ∀𝑥 ∈𝑂𝑖 ∶ 𝑥 ∈ (𝜃′′)−1(⇑𝑏𝑖), which implies that 𝑂𝑖 ⊆ (𝜃′′)−1(⇑𝑏𝑖). As 𝑖 was chosen arbitrarily, by (12) we infer that 
𝜃⊲𝜃′′.

(ii) From 𝜃⊲𝜃′ and (12) we deduce ∀𝑖 ∈ 𝐼 ∶ 𝑂𝑖 ⊆ (𝜃′)−1(⇑𝑏𝑖). On the other hand, from 𝜃′ ⊑ 𝜃′′ we obtain ∀𝑖 ∈ 𝐼 ∶ (𝜃′)−1(⇑𝑏𝑖) ⊆
(𝜃′′)−1(⇑𝑏𝑖). Thus, we have ∀𝑖 ∈ 𝐼 ∶𝑂𝑖 ⊆ (𝜃′′)−1(⇑𝑏𝑖), which implies that 𝜃⊲𝜃′′.

(iii) If 𝜃⊲𝜃′, then by (12) we have:

∀𝑖 ∈ 𝐼 ∶𝑂𝑖 ⊆ (
⨆
𝑗∈𝐽

𝑏′𝑗𝜒𝑂′
𝑗
)−1(⇑𝑏𝑖) ⟹ ∀𝑖 ∈ 𝐼 ∶ ∀𝑥 ∈𝑂𝑖 ∶ 𝑏𝑖 ≪ (

⨆
𝑗∈𝐽

𝑏′𝑗𝜒𝑂′
𝑗
)(𝑥)

⟹ ∀𝑖 ∈ 𝐼 ∶ ∀𝑥 ∈𝑂𝑖 ∶ 𝑏𝑖 ⊑ (
⨆
𝑗∈𝐽

𝑏′𝑗𝜒𝑂′
𝑗
)(𝑥)

⟹ ∀𝑖 ∈ 𝐼 ∶ 𝑏𝑖𝜒𝑂𝑖
⊑

⨆
𝑗∈𝐽

𝑏′𝑗𝜒𝑂′
𝑗

⟹
⨆
𝑖∈𝐼

𝑏𝑖𝜒𝑂𝑖
⊑

⨆
𝑗∈𝐽

𝑏′𝑗𝜒𝑂′
𝑗
.

(iv) By item (iii) and assumption of (𝜃⊲𝜃′′) ∧ (𝜃′⊲𝜃′′), 𝜃′′ is an upper bound of 
{
𝜃, 𝜃′

}
. Hence, since 𝐷 is bounded-complete, the 

function ⨆{
𝜃, 𝜃′

}
is well-defined. Without loss of generality, we may assume that the index sets 𝐼 and 𝐽 are disjoint, let 

𝐴 ∶= 𝐼 ∪ 𝐽 , and define:

∀𝛼 ∈𝐴 ∶ 𝑌𝛼 ∶=
{

𝑂𝛼, if 𝛼 ∈ 𝐼,

𝑂′
𝛼, if 𝛼 ∈ 𝐽 ,

𝑑𝛼 ∶=
{

𝑏𝛼, if 𝛼 ∈ 𝐼,

𝑏′𝛼, if 𝛼 ∈ 𝐽 .
(14)

It is straightforward to verify that ⨆{
𝜃, 𝜃′

}
=
⨆

𝛼∈𝐴 𝑑𝛼𝜒𝑌𝛼
, which entails that ⨆{

𝜃, 𝜃′
}

is indeed a step function in . From (14)

and the assumption (𝜃⊲𝜃′′) ∧ (𝜃′⊲𝜃′′), we deduce that ∀𝛼 ∈𝐴 ∶ 𝑌𝛼 ⊆ (𝜃′′)−1(⇑𝑑𝛼), which implies that ⨆{
𝜃, 𝜃′

}
⊲𝜃′′. □

Proposition 3.8. For any 𝜃1, 𝜃2 ∈ satisfying 𝜃1⊲𝜃2, there exists a step function interpolating them, i.e., ∃�̂� ∈ ∶ 𝜃1⊲ �̂�⊲𝜃2.

Proof. We first prove the claim for the case where 𝜃1 is a single-step function. Hence, assume that 𝜃1 = 𝑏𝜒𝑂 and 𝜃2 =
⨆

𝑗∈𝐽 𝑏′𝑗𝜒𝑂′
𝑗
. As 

before, for each 𝑥 ∈𝑂, we let 𝐽𝑥 ∶=
{
𝑗 ∈ 𝐽 𝑥 ∈𝑂′

𝑗

}
. As 𝐽 is a finite index set, then the collection 𝐶 ∶=

{
𝐽𝑥 𝑥 ∈𝑂

}
must be finite. If 

𝑏 = ⊥𝐷 , then by taking �̂� ∶= ⊥[𝑋→𝐷], the result follows. If 𝑏 ≠ ⊥𝐷 , then we have 𝐶 ≠ ∅ and we may write 𝐶 =
{
𝐽𝑥1 ,… , 𝐽𝑥𝑘

}
, for some 

𝑘 ≥ 1 and 𝑥1, … , 𝑥𝑘 ∈𝑂. For each 1 ≤ 𝓁 ≤ 𝑘, we define Ω𝓁 ∶=
⋂

𝑗∈𝐽𝑥𝓁
𝑂′

𝑗 . If 𝑏 ≠ ⊥𝐷 , then we must have:

𝑂 ⊆
⋃

1≤𝓁≤𝑘
Ω𝓁 . (15)

The assumption 𝑏𝜒𝑂 ⊲𝜃2 entails that ∀𝓁 ∈ {1,… , 𝑘} ∶ 𝑏 ≪𝜃2(𝑥𝓁) =
⨆

𝑗∈𝐽𝑥𝓁
𝑏′𝑗 . Using the interpolation property of continuous domains 

(Lemma 2.3), for each 𝓁 ∈ {1,… , 𝑘} we choose an element 𝑏′′𝓁 ∈ 𝐵(𝐷) satisfying:

𝑏≪ 𝑏′′𝓁 ≪𝜃2(𝑥𝓁). (16)

We now define �̂� ∶=⨆
1≤𝓁≤𝑘 𝑏′′𝓁𝜒Ω𝓁

. The fact that 𝑏𝜒𝑂 ⊲ �̂� follows from (15) and (16). On the other hand, for any 1 ≤ 𝓁 ≤ 𝑘, we have 
∀𝑥 ∈Ω𝓁 ∶ 𝜃2(𝑥𝓁) ⊑ 𝜃2(𝑥), which, combined with (16) implies that ∀𝑥 ∈Ω𝓁 ∶ 𝑏′′𝓁 ≪𝜃2(𝑥). Thus, Ω𝓁 ⊆ (𝜃2)−1(⇑𝑏′′𝓁 ). Hence, �̂�⊲𝜃2.

Now, we generalize the proof to any step function 𝜃1. Thus, assume that 𝜃1 =
⨆

𝑖∈𝐼 𝑏𝑖𝜒𝑂𝑖
. For each 𝑖 ∈ 𝐼 , we obtain an interpolating 

step function �̂�𝑖 such that 𝑏𝑖𝜒𝑂𝑖
⊲ �̂�𝑖⊲𝜃2. By using Proposition 3.7 (iv), we deduce that 𝜃1 =

⨆
𝑖∈𝐼 𝑏𝑖𝜒𝑂𝑖

⊲
⨆

𝑖∈𝐼 �̂�𝑖⊲𝜃2. □
13

Lemma 3.9. The pair (, ⊲) forms an abstract basis.



Theoretical Computer Science 980 (2023) 114221A. Edalat, A. Farjudian and Y. Li

Proof. To prove transitivity, let us assume that 𝜃1⊲𝜃2⊲𝜃3. By Proposition 3.7 (iii), from 𝜃2⊲𝜃3 we deduce that 𝜃2 ⊑ 𝜃3. Hence, we 
have 𝜃1⊲𝜃2 ⊑ 𝜃3. From Proposition 3.7 (ii), we obtain 𝜃1⊲𝜃3.

Next, we must prove the interpolation property for (, ⊲). Assume that 𝜃1⊲𝜃 and 𝜃2⊲𝜃. If we define 𝜃3 =
⨆{

𝜃1, 𝜃2
}

, then by 
Proposition 3.7 (iv) we have 𝜃3⊲𝜃. By Proposition 3.8, we obtain another step function �̂� such that 𝜃3⊲ �̂�⊲𝜃. Once again, from 
Proposition 3.7 we deduce that 𝜃1⊲ �̂�⊲𝜃 and 𝜃2⊲ �̂�⊲𝜃. □

Definition 3.10 (). Let  denote the rounded ideal completion of (, ⊲).

Let 𝑖 ∶ → be the map 𝑖(𝑏) ∶= {𝑏′ ∈ ∣ 𝑏′⊲𝑏}. By [1, Proposition 2.2.22], we know that  is a continuous domain, for which 
𝑖() forms a basis. When (𝑋, Ω(𝑋)) is second countable and (𝐷, ⊑𝐷) is 𝜔-continuous, we can choose the bases 𝐵(𝑋) and 𝐵(𝐷) to be 
countable. In this case,  is also countable, and  is an 𝜔-continuous domain with 𝑖() as a countable basis.

3.1. Relationship between  and [𝑋 →𝐷]

In this section we demonstrate that, regardless of whether 𝑋 is core-compact or not, the function space [𝑋 → 𝐷] is tightly 
linked with the continuous domain  via an adjunction, also known as a Galois connection. We briefly recall the concept of Galois 
connection, but for a more comprehensive account, the reader may refer to, e.g., [1, Section 3.1.3].

Definition 3.11 (Category 𝐏𝐨, Galois connection 𝐹 ⊣ 𝐺). We let 𝐏𝐨 denote the category of posets and monotonic maps. A Galois 
connection in the category 𝐏𝐨 between two posets (𝐶, ⊑𝐶 ) and (𝐷, ⊑𝐷) is a pair of monotonic maps:

𝐷 𝐶
𝐺

𝐹

⊤

such that:

∀𝑥 ∈ 𝐶 ∶ ∀𝑦 ∈𝐷 ∶ 𝑥 ⊑𝐶 𝐺(𝑦) ⟺ 𝐹 (𝑥) ⊑𝐷 𝑦.

In this case, we call 𝐹 ∶ 𝐶 →𝐷 the left adjoint and 𝐺 ∶𝐷→ 𝐶 the right adjoint, and write 𝐹 ⊣ 𝐺.

We extend the order ⊲ that was defined in (12) over step functions to all functions from 𝑋 to 𝐷 as follows:

∀𝑓, 𝑔 ∶𝑋 →𝐷 ∶ 𝑓 ⊲𝑔 ⟺ ∃𝜃1, 𝜃2 ∈ ∶ 𝑓 ⊑ 𝜃1⊲𝜃2 ⊑ 𝑔. (17)

Intuitively, 𝑓 ⊲𝑔 if and only if 𝑓 and 𝑔 are separated by two step functions 𝜃1 and 𝜃2 satisfying 𝜃1⊲𝜃2. Based on this intuition, we 
refer to the relation ⊲ as the separation order. We point out that (17) is indeed a consistent extension of (12). Specifically, assume 
that 𝑓 and 𝑔 are two step functions in :

• If 𝑓 ⊲𝑔 according to (12), then by taking 𝜃1 = 𝑓 and 𝜃2 = 𝑔, the separation order of (17) will also be satisfied.

• If 𝑓 ⊲𝑔 according to (17), then by referring to Proposition 3.7, it can be verified that (12) also holds for 𝑓 and 𝑔.

Let us briefly recall the concept of a monotone section-retraction pair. For a more detailed account the reader may refer to [1, 
Section 3.1.1]. Assume that 𝐷 and 𝐸 are two posets. A pair of maps 𝑠 ∶𝐷→𝐸 and 𝑟 ∶𝐸 →𝐷 is called a monotone section-retraction 
pair if 𝑠 and 𝑟 are monotone and 𝑟◦𝑠 = id𝐷 . In this case, 𝐷 is said to be a monotone retract of 𝐸. It is straightforward to verify that if 
𝑠 and 𝑟 form a section-retraction pair, then 𝑠 must be injective and 𝑟 must be surjective.

Let 𝑋 be an arbitrary topological space. For every 𝑓 ∈ [𝑋 →𝐷], we define:

𝑓∗ ∶= {𝑏 ∈ ∣ 𝑏⊲𝑓}. (18)

Proposition 3.12. For every 𝑓 ∈ [𝑋 →𝐷], the set 𝑓∗ is a rounded ideal in .

Proof. Consider a function 𝑓 ∈ [𝑋 →𝐷]. Then:

(i) 𝑓∗ is non-empty, because ⊥ ∈ 𝑓∗.

(ii) 𝑓∗ is a lower set, because ∀𝑔, 𝑔′ ∈ ∶ 𝑔 ⊑ 𝑔′⊲𝑓 ⟹ 𝑔⊲𝑓 .

(iii) 𝑓∗ is directed: Assume that 𝑔1, 𝑔2 ∈  satisfy 𝑔1⊲𝑓 and 𝑔2⊲𝑓 . By (17), there must exist 𝑔′1, 𝑔
′
2 ∈  satisfying 𝑔1⊲𝑔′1 ⊑ 𝑓 and 

𝑔2⊲𝑔′2 ⊑ 𝑓 . Let us define 𝑔, 𝑔′ ∈  as 𝑔 ∶=
⨆{

𝑔1, 𝑔2
}

and 𝑔′ ∶=⨆{
𝑔′1, 𝑔

′
2
}

. By Proposition 3.7, we have 𝑔⊲𝑔′ ⊑ 𝑓 . Since (, ⊲)
is an abstract basis, then it must have the interpolation property. Hence, there must exist a step function ℎ ∈  satisfying 
𝑔⊲ℎ ⊲𝑔′. Again, by Proposition 3.7, we have 𝑔1⊲ℎ ⊲𝑓 and 𝑔2⊲ℎ ⊲𝑓 .
14

Thus, the set 𝑓∗ is a rounded ideal. □
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Proposition 3.13. For every 𝑓 ∈ [𝑋 →𝐷], we have 𝑓 =
⨆

𝑓∗.

Proof. It is clear that 𝑓 ⊒
⨆

𝑓∗. To prove the ⊑ direction, choose any elements 𝑥 ∈𝑋 and 𝑏 ∈ (⇓𝑓 (𝑥) ∩ 𝐵(𝐷)). By the interpolation 
property of continuous domains (Lemma 2.3), we choose another basis element 𝑏′ ∈𝐵(𝐷) such that 𝑏 ≪𝑏′ ≪𝑓 (𝑥). By Proposition 2.6, 
we know that ⇑𝑏′ is Scott open. Hence, 𝑓−1(⇑𝑏′) ∈ Ω(𝑋). As 𝐵(𝑋) is assumed to be a base for Ω(𝑋), there must exist an open set 
𝑂 ∈ 𝐵(𝑋) for which we have 𝑥 ∈𝑂 ⊆ 𝑓−1(⇑𝑏′). Clearly, we have 𝑏𝜒𝑂 ∈ and 𝑏′𝜒𝑂 ∈. Furthermore, 𝑏𝜒𝑂 ⊲𝑏′𝜒𝑂 ⊑ 𝑓 .

Since 𝑓 (𝑥) =⨆
(⇓𝑓 (𝑥) ∩𝐵(𝐷)) and 𝑏 was chosen arbitrarily, we have:

𝑓 (𝑥) =
⨆{

𝑏𝜒𝑂(𝑥) 𝑏𝜒𝑂 ∈ 𝑓∗
}
,

which implies that 𝑓 (𝑥) ⊑⨆{
𝑔(𝑥) 𝑔 ∈ 𝑓∗

}
. Finally, as 𝑥 was chosen arbitrarily, then we must have 𝑓 ⊑

⨆
𝑓∗. □

In the other direction, for every rounded ideal 𝜙 ∈ , we define 𝜙∗ ∶𝑋 →𝐷 by:

𝜙∗ ∶=
⨆
𝑏∈𝜙

𝑏. (19)

Recall that every rounded ideal is directed. Thus, as [𝑋 →𝐷] is a dcpo, then 𝜙∗ is well-defined and continuous.

Lemma 3.14. The pair (⋅)∗ and (⋅)∗ form a monotone section-retraction pair between [𝑋 →𝐷] and  .

Proof. By Proposition 3.12, the map (⋅)∗ is a function from [𝑋 → 𝐷] to  . Monotonicity of (⋅)∗ follows directly from (18). In the 
other direction, since [𝑋 → 𝐷] is a dcpo, for each 𝜙 ∈ , we have 𝜙∗ ∈ [𝑋 → 𝐷]. Monotonicity of (⋅)∗ follows directly from (19). 
Finally, the fact that the two maps form a monotone section-retraction pair is a consequence of Proposition 3.13, because for each 
𝑓 ∈ [𝑋 →𝐷], we have 𝑓 = (𝑓∗)∗. □

Theorem 3.15 (Galois connection). The maps (⋅)∗ and (⋅)∗ form a Galois connection:

[𝑋 →𝐷] 
(⋅)∗

(⋅)∗
⊤

in the category 𝐏𝐨, in which, (⋅)∗ is the right adjoint, and (⋅)∗ is the left adjoint. Furthermore:

(i) The map (⋅)∗ is an epimorphism, and (⋅)∗ is a monomorphism.

(ii) (⋅)∗◦(⋅)∗ = id[𝑋→𝐷], i.e., ∀𝑓 ∈ [𝑋 →𝐷] ∶ (𝑓∗)∗ = 𝑓 .

(iii) The left adjoint (⋅)∗ is Scott continuous.

Proof. To prove that the maps (⋅)∗ and (⋅)∗ form a Galois connection, we must show that:

∀𝜙 ∈ , 𝑓 ∈ [𝑋 →𝐷] ∶ 𝜙 ⊆ 𝑓∗ ⟺ 𝜙∗ ⊑ 𝑓,

which is a straightforward consequence of the definitions of (⋅)∗ and (⋅)∗.

• Claims (i) and (ii) follow from Lemma 3.14.

• For any adjunction between two dcpos, the left adjoint is Scott continuous [1, Proposition 3.1.14]. Claim (iii) now follows from 
the fact that both [𝑋 →𝐷] and  are dcpos. □

Corollary 3.16. If the right adjoint (⋅)∗ is Scott continuous and 𝐷 is not a singleton, then 𝑋 must be core-compact.

Proof. By Lemma 3.14 and Theorem 3.15, the pair 
(
(⋅)∗, (⋅)∗

)
forms a monotone section-retraction, with a Scott continuous retraction 

map (⋅)∗. When the section (⋅)∗ is also Scott continuous, the dcpo [𝑋 →𝐷] becomes a continuous retract of the continuous domain 
 . By [1, Theorem 3.1.4], any continuous retract of a continuous domain is also a continuous domain, hence [𝑋 → 𝐷] must be a 
continuous domain. By Theorem 2.7, this means that 𝑋 must be core-compact. □

3.2. Core-compact 𝑋

By Theorem 3.15, the continuous domain  is a suitable substitute for [𝑋 → 𝐷] when 𝑋 is not core-compact, which is the 
main focus of the current article. In this section, however, we briefly explore the relationship between  and [𝑋 →𝐷] when 𝑋 is 
core-compact. In particular, we show that the converse of Corollary 3.16 is not true in general.

When 𝑋 is core-compact, by Theorem 3.15,  contains [𝑋 →𝐷] as a sub-poset. First, we show that, when 𝑋 is stable (Defini-
15

tion 3.6) the separation order over step functions in  is finer than the way-below relation over [𝑋 →𝐷]:



Theoretical Computer Science 980 (2023) 114221A. Edalat, A. Farjudian and Y. Li

Proposition 3.17. Assume that 𝑋 is a stable core-compact space, and let ⨆𝑖∈𝐼 𝑏𝑖𝜒𝑂𝑖
and ⨆𝑗∈𝐽 𝑏′𝑗𝜒𝑂′

𝑗
be two step functions in . Then:⨆

𝑖∈𝐼
𝑏𝑖𝜒𝑂𝑖

≪
⨆
𝑗∈𝐽

𝑏′𝑗𝜒𝑂′
𝑗
⟹

⨆
𝑖∈𝐼

𝑏𝑖𝜒𝑂𝑖
⊲

⨆
𝑗∈𝐽

𝑏′𝑗𝜒𝑂′
𝑗
. (20)

Proof. Claim (20) follows from (11) and (12). □

Next, we show that the way-below relation over  is finer than that over [𝑋 →𝐷]:

Lemma 3.18. Assume that 𝑋 is a stable core-compact space. Then, for any 𝑓, 𝑔 ∈ [𝑋 →𝐷], we have:

𝑓 ≪ 𝑔 ⟹ 𝑓∗ ≪𝑔∗.

Proof. By [28, Proposition 2], the set of step functions in  forms a basis for the continuous domain [𝑋 → 𝐷]. By applying the 
interpolation property of continuous domains (Lemma 2.3) twice, we obtain two step functions ⨆𝑖∈𝐼 𝑏𝑖𝜒𝑂𝑖

and ⨆𝑗∈𝐽 𝑏′𝑗𝜒𝑂′
𝑗

which 
satisfy:

𝑓 ⊑
⨆
𝑖∈𝐼

𝑏𝑖𝜒𝑂𝑖
≪

⨆
𝑗∈𝐽

𝑏′𝑗𝜒𝑂′
𝑗
⊑ 𝑔. (21)

According to Proposition 3.17, we must have:⨆
𝑖∈𝐼

𝑏𝑖𝜒𝑂𝑖
⊲

⨆
𝑗∈𝐽

𝑏′𝑗𝜒𝑂′
𝑗
. (22)

From (21) we deduce that:

𝑓∗ ⊆ (
⨆
𝑖∈𝐼

𝑏𝑖𝜒𝑂𝑖
)∗ ⊆ (

⨆
𝑗∈𝐽

𝑏′𝑗𝜒𝑂′
𝑗
)∗ ⊆ 𝑔∗. (23)

By [1, Proposition 2.2.22], the relations (22) and (23) imply 𝑓∗ ≪𝑔∗. □

The converse of Lemma 3.18, however, is not true in general. In other words, the way-below relation over  can be strictly finer 
than that over [𝑋 →𝐷].

Example 3.19. Assume that 𝑋 = [−2, 2] under the Euclidean topology and 𝐷 = 𝐈ℝ⊥. As such, 𝑋 is core-compact and stable. Let 
𝑂 = (−1, 1), 𝑏 = [1, 3], and 𝑏′ = [2, 2]. Then, we have 𝑏𝜒𝑂 ⊲𝑏′𝜒𝑂 , which implies (𝑏𝜒𝑂)∗ ≪ (𝑏′𝜒𝑂)∗. But, by (11), 𝑏𝜒𝑂  𝑏′𝜒𝑂 .

In particular, Example 3.19 shows that the left adjoint (⋅)∗ does not preserve the order of approximation. While (𝑏𝜒𝑂)∗ ≪ (𝑏′𝜒𝑂)∗
holds, we have 

(
(𝑏𝜒𝑂)∗

)∗ = 𝑏𝜒𝑂  𝑏′𝜒𝑂 =
(
(𝑏′𝜒𝑂)∗

)∗
. By [1, Proposition 3.1.14], this means that the right adjoint is not Scott contin-

uous, and the converse of Corollary 3.16 is not true in general, even when 𝑋 is core-compact.

Nevertheless, in some cases, the converses of Corollary 3.16 and Lemma 3.18 do hold. Of course, this is true for some trivial cases, 
e.g., when 𝑋 is a singleton. The converses, however, hold even for non-trivial cases. In fact, the Galois connection of Theorem 3.15

can reduce to an isomorphism:

Example 3.20. Assume that 𝑋 =𝐷 = ℕ ∪ {+∞} under the Scott topology. We take the collection of sets of the form 𝑂𝑛 ∶= {𝑘 ∈ℕ ∣
𝑘 ≥ 𝑛} ∪ {+∞}, for 𝑛 ∈ ℕ, as the base for the Scott topology on 𝑋, and take ℕ as the (domain-theoretic) basis for 𝐷. In this case, 
the Galois connection of Theorem 3.15 reduces to an isomorphism. The reason is that, over Scott open subsets of 𝑋, the way-below 
relation ≪ and the subset relation coincide. It is straightforward to verify that 𝑋 is core-compact and stable.

3.3. Relationship between  and algebraic completion of [𝑋 →𝐷]

Let us take the set , but instead of the relation ⊲, we order the step functions in  under the order ⊑. Then, the rounded ideal 
completion of (, ⊑) results in an algebraic domain alg [1, Proposition 2.2.22].

We define the maps 𝑢 ∶ →alg and 𝓁 ∶alg → as follows:{
∀𝜙 ∈ ∶ 𝑢(𝜙) ∶=

⋃
{↓𝑏 ∣ (𝑏 ∈) ∧ (𝑏∗ ⊆ 𝜙)},

∀𝜓 ∈alg ∶ 𝓁(𝜓) ∶=
⋃
{𝑏∗ ∣ (𝑏 ∈) ∧ (↓𝑏 ⊆ 𝜓)}.

It is straightforward to verify that 𝓁 ⊣ 𝑢, i.e., they form a Galois connection as follows:

𝑢

16

 alg,
𝓁
⊤
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and 𝓁 is surjective. In general, the dcpo  is not algebraic. Hence, in general, 𝓁 does not preserve the order of approximation, and 
𝑢 is not Scott continuous.

We know from [1, Proposition 3.1.6] that, when 𝑋 is core-compact, [𝑋 →𝐷] is a retract of alg. Similar to Lemma 3.18, one may 
prove that the way-below relation over alg is finer than that over  . As the dcpo  is not always algebraic, the way-below relation 
over alg can be strictly finer than that over  . Hence, the continuous domain  is always in between [𝑋 →𝐷] and its algebraic 
completion alg, and the inclusions can be strict.

4. A domain for temporal discretization

Consider the differential equation 𝑦′(𝑡) = 𝑓 (𝑦(𝑡)) from the IVP (1). By integrating both sides, we obtain 𝑦(𝑡 + ℎ) = 𝑦(𝑡) +
∫ 𝑡+ℎ
𝑡 𝑓 (𝑦(𝜏)) d𝜏 , for all 𝑡 ∈ [0, 𝑎] and ℎ ∈ [0, 𝑎 − 𝑡]. This can be written as:

𝑦(𝑡+ ℎ) = 𝑦(𝑡) + 𝑖(𝑡, ℎ), (24)

in which the integral 𝑖(𝑡, ℎ) represents the dynamics of the solution from 𝑡 to 𝑡 + ℎ. Thus, a general schema for validated solution of 
IVP (1) may be envisaged as follows:

(i) For some 𝑘 ≥ 1, consider the partition 𝑄 = (𝑞0, … , 𝑞𝑘) of the interval [0, 𝑎].
(ii) Let 𝑌 (0) ∶= (0, … , 0).

(iii) For each 𝑗 ∈ {0,… , 𝑘− 1} and ℎ ∈ (0, 𝑞𝑗+1 − 𝑞𝑗 ]:

𝑌 (𝑞𝑗 + ℎ) ∶= 𝑌 (𝑞𝑗 ) + 𝐼(𝑞𝑗 , ℎ), (25)

where 𝐼(𝑞𝑗 , ℎ) is an interval enclosure of the integral factor 𝑖(𝑞𝑗 , ℎ) from equation (24). The operator 𝐼 , in general, depends on 
several parameters, including (enclosures of) the vector field and its derivatives, the enclosure 𝑌 (𝑞𝑗 ), the index 𝑗, etc.

In (25), the operator ‘+’ denotes interval addition, and for the method to be validated, the term 𝐼(𝑞𝑗 , ℎ) must account for all the 
inaccuracies, e.g., floating-point error, truncation error, etc.

The schema is indeed a general one which encompasses various validated approaches to IVP solving in the literature, most 
notably, Euler methods of [22,27], and Runge-Kutta methods of [47,3].

In step (iii) of the schema, the solver moves forward in time, from 𝑞𝑗 to 𝑞𝑗+1. This requires keeping the state, i.e., the solution up 
to the partition point 𝑞𝑗 , and referring to this state in iteration 𝑗. As such, the schema has an imperative style. This is in contrast with 
the functional style adopted in language design for real number computation. For instance, the languages designed in [29,30,13]

for computation over real numbers and real functions are functional languages based on lambda calculus, with their denotational 
semantics provided by domain models.

In a functional framework, the solution of the IVP (1) is obtained as the fixpoint of a higher-order operator. Domain models 
are particularly suitable for fixpoint computations of this type. For Picard method of IVP solving, fixpoint formulations have been 
obtained [20,23]. For Euler and Runge-Kutta methods, however, such fixpoint formulations do not exist in the literature. This is 
because the commonly used domain models in real number computation are not suitable for temporal discretization of differential 
equations. Let us briefly expand on this claim.

A straightforward way of obtaining a fixpoint formulation for the above general schema is to define a functional Φ over interval 
functions as follows:

Φ(𝑌 )(𝑥) ∶=
{

(0,… ,0), if 𝑥 = 0,
𝑌 (𝑞𝑗 ) + 𝐼(𝑞𝑗 , 𝑥− 𝑞𝑗 ), if 𝑞𝑗 < 𝑥 ≤ 𝑞𝑗+1.

The fixpoint of this operator (if it exists) will be the right choice. The problem is that, the enclosures obtained by applying Φ do not 
have upper (respectively, lower) semi-continuous upper (respectively, lower) bounds and, by Proposition 2.10, the domain models 
used in, e.g., [20,23], are not applicable. As a result, for a functional definition of Euler and Runge-Kutta operators, we need a new 
domain model which is different from, e.g., 𝐷(0)

𝑛 ([0, 𝑎]). To that end, we take the following observations as general guidelines:

(1) The bounds of enclosures generated by Φ may lose their semi-continuity only over the partition points 𝑞0, … , 𝑞𝑘.

(2) The integral operator 𝐼 typically generates enclosures with bounds that are continuous within each half-open interval (𝑞𝑗 , 𝑞𝑗+1]. 
This is true of the relevant validated methods of the literature, e.g., the Euler operators of [22,27], and Runge-Kutta operators 
of [47,3].

In essence, we must relax the semi-continuity requirement on the bounds of enclosures, and may only require left semi-continuity 
at partition points. This relaxation of the requirement necessitates a novel approach. The reason is that, while the poset 𝐷(0)

𝑛 ([0, 𝑎])
of semi-continuous enclosures forms an 𝜔-continuous domain, the poset of left semi-continuous enclosures is not even continuous 
17

(Corollary 4.7).
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4.1. Left semi-continuous maps and enclosures

Let [−𝐾, 𝐾]↑ denote the poset with carrier set [−𝐾, 𝐾] ordered by ∀𝑥, 𝑦 ∈ [−𝐾, 𝐾] ∶ 𝑥 ⊑ 𝑦 ⟺ 𝑥 ≤ 𝑦. Similarly, let [−𝐾, 𝐾]↓
denote the poset with carrier set [−𝐾, 𝐾] ordered by ∀𝑥, 𝑦 ∈ [−𝐾, 𝐾] ∶ 𝑥 ⊑ 𝑦 ⟺ 𝑥 ≥ 𝑦. Both [−𝐾, 𝐾]↑ and [−𝐾, 𝐾]↓ are 𝜔-continuous 
domains, which are non-algebraic when 𝐾 > 0. In both cases, the set ℚ ∩ [−𝐾, 𝐾] is a basis.

Proposition 4.1. Assume that (𝑋, Ω(𝑋)) is a topological space. Then, 𝑓 ∶𝑋 → [−𝐾, 𝐾] is:

(i) upper semi-continuous ⟺ 𝑓 ∈ [𝑋 → [−𝐾, 𝐾]↓].
(ii) lower semi-continuous ⟺ 𝑓 ∈ [𝑋 → [−𝐾, 𝐾]↑].

Proof. The Scott open subsets of [−𝐾, 𝐾]↓ are [−𝐾, 𝐾] and the collection {[−𝐾,𝑥) ∣ −𝐾 ≤ 𝑥 ≤𝐾}. Similarly, the Scott open subsets of 
[−𝐾, 𝐾]↑ are [−𝐾, 𝐾] and the collection {(𝑥,𝐾] ∣ −𝐾 ≤ 𝑥 ≤𝐾}. The proof now follows from definition of upper/lower semi-continuity 
and Proposition 2.6. □

To solve the IVP (1), we consider interval functions of type 𝑓 ∶ [0, 𝑎] → 𝐈[−𝐾,𝐾]𝑛. For Picard method, it suffices to consider 
the Euclidean topology over [0, 𝑎] [20,23]. Under the Euclidean topology, the interval [0, 𝑎] is a core-compact space. According to 
Proposition 2.10, by considering the Euclidean topology over [0, 𝑎], we obtain enclosures with upper and lower semi-continuous 
bounds. Based on our previous explanations, however, for methods that proceed based on temporal discretization, we may only 
require semi-continuity from the left.

Consider the set 𝑂 ∶= {(𝑎, 𝑏] ∣ 𝑎, 𝑏 ∈ℝ} of left half-open intervals of real numbers. The collection 𝑂 forms a base for the so-called 
upper limit topology over ℝ [72]. At an abstract level, this topology is sufficient to capture left semi-continuity. As we are laying 
down the foundation for an effective framework, however, we work with a coarser variant of the upper limit topology. We consider 
the set 𝑂ℚ ∶= {(𝑎, 𝑏] ∣ 𝑎, 𝑏 ∈ℚ} of left half-open intervals with rational end-points. The collection 𝑂ℚ forms a base for what we refer 
to as the rational upper limit topology.

Let ℝ(ℚ] denote the topological space with ℝ as the carrier set under the rational upper limit topology. For any 𝑋 ⊆ ℝ, we let 
𝑋(ℚ] ∶= (𝑋, 𝜏(ℚ]) denote the topological space with carrier set 𝑋 and the topology 𝜏(ℚ] inherited by 𝑋 as a subspace of ℝ(ℚ]. In contrast 
to the upper limit topology, the rational upper limit topology is second-countable, hence, strictly coarser. In fact, given any interval 
[𝑥, 𝑦], with 𝑥 < 𝑦, and an irrational point 𝑟 ∈ (𝑥, 𝑦), the half-open interval (𝑥, 𝑟] is open in the upper limit topology over [𝑥, 𝑦], but not 
in the rational upper limit topology.

Definition 4.2. We say that 𝑓 ∶𝑋 →ℝ is (rational) left upper (respectively, lower) semi-continuous at 𝑥0 ∈𝑋 if it is upper (respec-

tively, lower) semi-continuous at 𝑥0 with respect to the topology 𝜏(ℚ]. We drop the qualifier ‘rational’ for brevity, and simply write 
left upper/lower semi-continuous. In particular, we say that a function 𝑓 ∶𝑋 →ℝ is left upper (respectively, lower) semi-continuous 
if and only if it is left upper (respectively, lower) semi-continuous at every point 𝑥0 ∈𝑋.

We define:{ ℚ ∶= [[0, 𝑎](ℚ] → [−𝐾,𝐾]↓],
ℚ ∶= [[0, 𝑎](ℚ] → [−𝐾,𝐾]↑].

It is straightforward to prove the following:

Proposition 4.3. Assume that 𝑓 ∶ [0, 𝑎] → [−𝐾, 𝐾]. Then:

(i) 𝑓 is left upper semi-continuous ⟺ 𝑓 ∈ℚ.

(ii) 𝑓 is left lower semi-continuous ⟺ 𝑓 ∈ℚ.

To solve the IVP (1) using temporal discretization, we consider the following function space:

ℚ ∶= [[0, 𝑎](ℚ] → 𝐈[−𝐾,𝐾]𝑛], (26)

which we refer to as the poset of left semi-continuous enclosures. We first observe a counterpart of Proposition 2.10:

Proposition 4.4. A function 𝑓 ≡ (𝑓1, … , 𝑓𝑛) ∶ [0, 𝑎] → 𝐈[−𝐾,𝐾]𝑛 is in ℚ if and only if:

∀𝑗 ∈ {1,… , 𝑛} ∶
(
𝑓𝑗 ∈ℚ

)
∧
(
𝑓𝑗 ∈ ℚ

)
.

Next, we prove that none of the dcpos ℚ, ℚ, or ℚ is continuous:
18

Proposition 4.5. The topological space [0, 𝑎](ℚ] is not core-compact.
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Proof. It suffices to prove the following claim:

∀(𝑥, 𝑦], (𝑠, 𝑡] ⊆ [0, 𝑎] ∶ (𝑥, 𝑦]≪ (𝑠, 𝑡] ⟹ (𝑥, 𝑦] = ∅, (27)

in which 𝑥, 𝑦, 𝑠, 𝑡 ∈ℚ. To prove (27), let us assume that (𝑥, 𝑦] ≠ ∅, with 0 ≤ 𝑥 < 𝑦 ≤ 𝑎. We let 𝑧 be a rational number in (𝑥, 𝑦) and define 
the following increasing chain of open sets:

∀𝑛 ∈ℕ ∶ 𝐴𝑛 ∶= (𝑠, 𝑧] ∪ (𝑧+ 𝑡− 𝑧

2𝑛+1
, 𝑡].

We have (𝑠, 𝑡] ⊆⋃
{𝐴𝑛 ∣ 𝑛 ∈ℕ}, but ∀𝑛 ∈ℕ ∶ (𝑥, 𝑦] ⊈𝐴𝑛. Thus, (𝑥, 𝑦]  (𝑠, 𝑧], which is a contradiction. □

Remark 4.6. It can be shown, with a similar proof, that the upper limit topology on [0, 𝑎] is not core-compact either. See [34, 
Example 5.2.14] for more examples.

Corollary 4.7. None of the posets ℚ, ℚ, or ℚ is continuous.

Proof. This follows from Proposition 4.5 and Theorem 2.7. □

As a result, we follow the construction of the previous section using abstract bases. To that end, we consider the following 
countable bases:

• the base 𝑂ℚ of left half-open intervals with rational end-points for the rational upper limit topology on [0, 𝑎];
• the basis 𝐵𝐈[−𝐾,𝐾]𝑛 of hyper-rectangles with rational coordinates for 𝐈[−𝐾,𝐾]𝑛 ;

• the basis ℚ ∩ [−𝐾, 𝐾] of rational numbers in [−𝐾, 𝐾] for both [−𝐾, 𝐾]↓ and [−𝐾, 𝐾]↑.

Using these bases, we obtain the abstract bases of step functions ,  , and , corresponding to the dcpos ℚ, ℚ, and ℚ, 
respectively, according to (8) and (12). The abstract bases  and , although ordered under different—in fact, opposite—orders, 
have the same carrier set, which we denote by ℚ.

Remark 4.8. In the construction of step functions in ,  , and , we restrict the parameters to rational numbers to obtain 
an effective structure. Similar results can be obtained by replacing ℚ with any other countable dense subset of ℝ which has the 
necessary effective structure, e.g., is effectively enumerable, has a decidable order ≤, etc. For instance, the set 𝔻 of dyadic numbers 
is an important case that is indeed used in our experiments (Section 7) which are implemented using arbitrary-precision interval 
arithmetic. Nonetheless, to keep the presentation simple, we stay focused on rational numbers.

The set ℚ of step functions has a fairly simple description. Assume that 𝑃 = (𝑝0, … , 𝑝𝑘) is a partition of [0, 𝑎] with rational 
partition points, i.e., 𝑃 ∈ ℚ. We say that 𝑓 ∶ [0, 𝑎] →ℚ is a rational 𝑃 -function if, for some constants 

{
𝑐0,… , 𝑐𝑘

}
⊆ℚ:

𝑓 (0) = 𝑐0 ∧ ∀𝑖 ∈ {1,… , 𝑘} ∶ 𝑓↾(𝑝𝑖−1 ,𝑝𝑖]= 𝜆𝑥.𝑐𝑖. (28)

Thus, 𝑓 is left-continuous, but does not have to be right-continuous at the partition points, and over (𝑝𝑖−1, 𝑝𝑖], it is a constant function. 
The set ℚ consists of all rational 𝑃 -functions, with 𝑃 ranging over ℚ:

ℚ =
{
𝑓 ∶ [0, 𝑎]→ [−𝐾,𝐾] ∃𝑃 ∈ ℚ ∶ 𝑓 is a rational 𝑃 -function

}
.

For each function ℎ ∈ℚ, the partition points are rational numbers. It can also be verified that the functions in ℚ and ℚ cannot 
have jumps at irrational numbers.

Example 4.9. Let 𝑥0 be an irrational number in (0, 1), e.g., 𝑥0 ∶= 1∕
√
2. Assume that 𝑓 ∶ [0, 1](ℚ] → [−1, 1]↓ is defined as:

∀𝑥 ∈ [0,1] ∶ 𝑓 (𝑥) ∶=
{

0, if 𝑥 ≤ 𝑥0,

1, if 𝑥0 < 𝑥.

The set [−1, 1) is Scott open in [−1, 1]↓, but 𝑓−1([−1, 1)) = [0, 𝑥0], which is not open in [0, 1](ℚ]. Hence, 𝑓 ∉ ℚ. In other words, 
although 𝑓 is clearly upper semi-continuous with respect to the upper limit topology on [0, 1], it is not upper semi-continuous with 
respect to the rational upper limit topology.

4.2. The 𝜔-continuous domain 

For the bases ,  , and , we denote the separation order ⊲ as ⊲, ⊲ , and ⊲, respectively. The separation order of (12)

and (17) can be reformulated, for (say) ⊲, as follows: For any pair of functions 𝜃1, 𝜃2 ∶ [0, 𝑎] → [−𝐾, 𝐾] in ℚ, we have:( ) ( )

19

𝜃1⊲ 𝜃2 ⟺ ∃𝛿 > 0 ∶ ∀𝑡 ∈ [0, 𝑎] ∶ 𝜃1(𝑡) = −𝐾 ∨ 𝜃1(𝑡) ≤ 𝜃2(𝑡) − 𝛿 . (29)
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For any pair of (arbitrary) functions 𝑓, 𝑔 ∶ [0, 𝑎] → [−𝐾, 𝐾], we obtain:

𝑓 ⊲ 𝑔 ⟺ ∃𝜃1, 𝜃2 ∈ℚ ∶ 𝑓 ≤ 𝜃1⊲ 𝜃2 ≤ 𝑔.

Thus, 𝑓 ⊲ 𝑔 if and only if 𝑓 ≤ 𝑔, and the two functions are separated by two rational 𝑃 -functions 𝜃1 and 𝜃2 satisfying 𝜃1⊲ 𝜃2. 
Similarly, we have 𝑓 ⊲ 𝑔 if and only if 𝑓 ≥ 𝑔, and the two functions are separated by two rational 𝑃 -functions. In fact, we observe 
the following relations among the three separation orders:

∀𝑓, 𝑔 ∶ [0, 𝑎]→ [−𝐾,𝐾]𝑛 ∶ 𝑓 ⊲ 𝑔 ⟺ ∀𝑗 ∈ {1,… , 𝑛} ∶ (𝑓𝑗 ⊲ 𝑔𝑗 ) ∧ (𝑓𝑗 ⊲ 𝑔𝑗 ). (30)

In what follows, for convenience, we state most of our results for ⊲. The corresponding results can be stated for ⊲ in a straight-

forward manner.

Let 𝜃1, 𝜃2 ∈ℚ and assume that 𝜃1⊲ 𝜃2. We define 𝛿0 ∶= inf
{
𝜃2(𝑡) − 𝜃1(𝑡) 𝑡 ∈ [0, 𝑎]

}
. From (29), we know that ∀𝑡 ∈ [0, 𝑎] ∶ 𝜃1(𝑡) <𝐾 . 

If 𝜃1 does not touch the lower endpoint of the interval [−𝐾, 𝐾] either, then 𝛿0 > 0. Formally:(
∀𝑡 ∈ [0, 𝑎] ∶ −𝐾 < 𝜃1(𝑡)

)
⟹ 𝛿0 > 0.

If at some points 𝑡 ∈ [0, 𝑎] we have 𝜃1(𝑡) = −𝐾 , we may still obtain the following useful inequalities by clipping the values inside the 
[−𝐾, 𝐾] range, as long as we avoid 𝜃2(𝑡) = −𝐾 :

∃𝛿 > 0 ∶ ∀𝑡 ∈ [0, 𝑎] ∶ 𝜃1(𝑡) ≤max(−𝐾,𝜃2(𝑡) − 𝛿), (31)

∀𝑡 ∈ [0, 𝑎] ∶ −𝐾 < 𝜃2(𝑡) ⟹ ∃𝛿 > 0 ∶ ∀𝑡 ∈ [0, 𝑎] ∶ 𝜃1(𝑡) ≤ 𝜃2(𝑡) − 𝛿. (32)

For arbitrary functions 𝑓, 𝑔 ∶ [0, 𝑎] → [−𝐾, 𝐾], however, the above do not hold. Even if we restrict to left lower semi-continuous 
functions, the above do not hold. For instance, assume that 𝑓 is the constant function 𝑓 (𝑡) ∶= −𝐾 , while 𝑔 is defined as follows:

𝑔(𝑡) ∶=

{
0, if 𝑡 = 0,
𝐾

𝑎
𝑡−𝐾, if 𝑡 ∈ (0, 𝑎].

Although 𝑓 ⊲ 𝑔 and ∀𝑡 ∈ [0, 𝑎] ∶ −𝐾 < 𝑔(𝑡), it is not true that ∃𝛿 > 0 ∶ ∀𝑡 ∈ [0, 𝑎] ∶ 𝑓 (𝑡) ≤ 𝑔(𝑡) − 𝛿. In other words, (32) does not hold. 
The reason is that 𝑔 can take values which are arbitrarily close to the lower bound of the interval [−𝐾, 𝐾]. If we exclude such cases, 
then we obtain the counterparts of (31) and (32):

Proposition 4.10. Assume that 𝑓, 𝑔 ∶ [0, 𝑎] → [−𝐾, 𝐾] and 𝑓 ⊲ 𝑔. Then:

(i) ∃𝛿 > 0 ∶ ∀𝑡 ∈ [0, 𝑎] ∶ 𝑓 (𝑡) ≤max(−𝐾, 𝑔(𝑡) − 𝛿).
(ii) [∃𝜖 > 0 ∶ ∀𝑡 ∈ [0, 𝑎] ∶ −𝐾 + 𝜖 < 𝑔(𝑡)] ⟹ ∃𝛿 > 0 ∶ ∀𝑡 ∈ [0, 𝑎] ∶ 𝑓 (𝑡) ≤ 𝑔(𝑡) − 𝛿.

Proof. As 𝑓 ⊲ 𝑔, for two rational 𝑃 -functions 𝜃1, 𝜃2 ∈ℚ, we must have 𝑓 ≤ 𝜃1⊲ 𝜃2 ≤ 𝑔. The proof of (i) now follows from (31).

To prove (ii), we take a rational number 𝜖 ∈ (0, 𝜖). We define �̂�2(𝑡) ∶= max(𝜃2(𝑡), −𝐾 + 𝜖). Then, we must have 𝑓 ≤ 𝜃1⊲ �̂�2 ≤ 𝑔. 
Furthermore, it is clear that ∀𝑡 ∈ [0, 𝑎] ∶ −𝐾 < �̂�2(𝑡). Therefore, by (32), we have: ∃𝛿 > 0 ∶ ∀𝑡 ∈ [0, 𝑎] ∶ 𝜃1(𝑡) ≤ �̂�2(𝑡) − 𝛿, which implies 
that 𝑓 (𝑡) ≤ 𝑔(𝑡) − 𝛿. □

We will also need a kind of inverse of the above results, which is formulated as follows:

Proposition 4.11. Assume that 𝜃 ∈ℚ and 𝑓 ∶ [0, 𝑎] → [−𝐾, 𝐾] is an arbitrary function. Then:

(i) [∃𝛿 > 0 ∶ ∀𝑡 ∈ [0, 𝑎] ∶ 𝜃(𝑡) ≤max(−𝐾,𝑓 (𝑡) − 𝛿)] ⟹ 𝜃⊲ 𝑓 .

(ii) [∃𝛿 > 0 ∶ ∀𝑡 ∈ [0, 𝑎] ∶ min(𝑓 (𝑡) + 𝛿,𝐾) ≤ 𝜃(𝑡)] ⟹ 𝜃⊲ 𝑓 .

Proof. To prove (i), let 𝛿0 ∈ (0, 𝛿) be a rational number. We define 𝜃2 ∶ [0, 𝑎] → [−𝐾, 𝐾] as follows:

∀𝑡 ∈ [0, 𝑎] ∶ 𝜃2(𝑡) ∶=
{

𝜃(𝑡) + 𝛿0, if 𝜃(𝑡) > −𝐾,

−𝐾, if 𝜃(𝑡) = −𝐾.

It is straightforward to verify that 𝜃2 ∈ℚ. Thus, we have 𝜃⊲ 𝜃2 ≤ 𝑓 , which implies that 𝜃⊲ 𝑓 . The proof of (ii) is similar. □

We point out that Proposition 4.11 does not hold if 𝜃 is replaced with an arbitrary function 𝑔 ∶ [0, 𝑎] → [−𝐾, 𝐾]. In fact, it does 
not hold even for left lower semi-continuous functions. For instance, let 𝑓, 𝑔 ∶ [0, 1] → [−3, 3] be defined as follows:

∀𝑡 ∈ [0,1] ∶ 𝑔(𝑡) ∶=
⎧⎪⎨ −2, if 𝑡 ∈ (2−(2𝑛+1),2−2𝑛] for some 𝑛 ∈ℕ,
0, if 𝑡 ∈ (2−(2𝑛+2),2−(2𝑛+1)] for some 𝑛 ∈ℕ,
20

⎪⎩ 0, if 𝑡 = 0,
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and ∀𝑡 ∈ [0, 1] ∶ 𝑓 (𝑡) ∶= 𝑔(𝑡) +1. Then, we have ∀𝑡 ∈ [0, 1] ∶ 𝑔(𝑡) ≤ 𝑓 (𝑡) −1, but 𝑔⊲ 𝑓 does not hold, because the two cannot be separated 
by rational 𝑃 -functions.

Definition 4.12 (Non-degenerate enclosure). We call an enclosure 𝑓 ∶ [0, 𝑎] → 𝐈[−𝐾,𝐾]𝑛 non-degenerate if:

∃𝜖 > 0 ∶ ∀𝑗 ∈ {1,… , 𝑛} ∶ ∀𝑡 ∈ [0, 𝑎] ∶
(
𝑓𝑗 (𝑡) <𝐾 − 𝜖

)
∧
(
−𝐾 + 𝜖 < 𝑓𝑗 (𝑡)

)
.

Proposition 4.13. Assume that 𝑓, 𝑔 ∶ [0, 𝑎] → [−𝐾, 𝐾] and 𝐾 > 0. Then:

(i) 𝑓 ⊲ 𝑔 ⟹ ∃𝜖 > 0 ∶ ∀𝑡 ∈ [0, 𝑎] ∶ 𝑓 (𝑡) <𝐾 − 𝜖.

(ii) 𝑓 ⊲ 𝑔 ⟹ ∃𝜖 > 0 ∶ ∀𝑡 ∈ [0, 𝑎] ∶ −𝐾 + 𝜖 < 𝑓 (𝑡).

Proof. The results are straightforward consequences of Proposition 4.10. □

Corollary 4.14. Assume that 𝐾 > 0 and 𝑓, 𝑔 ∶ [0, 𝑎] → 𝐈[−𝐾,𝐾]𝑛. If 𝑓 ⊲ 𝑔, then 𝑓 must be non-degenerate.

Proof. This follows from Proposition 4.13 and (30). □

Let 𝑛 ∈ℕ ⧵ {0} and let 𝒫(ℝ𝑛) be the set of all subsets of ℝ𝑛. For any real 𝐾 ≥ 0, we define the operator 𝑇𝐾,𝑛 ∶𝒫(ℝ𝑛) →𝒫(ℝ𝑛) by:

∀𝑋 ∈𝒫(ℝ𝑛) ∶ 𝑇𝐾,𝑛(𝑋) ∶=𝑋 ∩ [−𝐾,𝐾]𝑛. (33)

Based on Proposition 4.10 and Corollary 4.14, we obtain the following result, which provides another perspective on the separation 
relation:

Proposition 4.15. Assume that 𝑓, 𝑔 ∶ [0, 𝑎] → 𝐈[−𝐾,𝐾]𝑛. Then:

𝑓 ⊲ 𝑔 ⟹ ∃𝛿 > 0 ∶ ∀𝑡 ∈ [0, 𝑎] ∶ 𝑓 (𝑡) ⊑ 𝑇𝐾,𝑛(𝑔(𝑡)⊕𝛿),

in which ⊕ is the symmetric expansion of Definition 2.28.

The set  can be effectively enumerated, and the relation ⊲ is decidable over . Thus, to obtain an effective framework, we 
designate (, ⊲) as an abstract basis, over which we construct our effective domain model:

Definition 4.16 (). Let  denote the rounded ideal completion of (, ⊲).

Let 𝑖 ∶ → be the map 𝑖(𝑏) ∶= {𝑥 ∈ ∣ 𝑥⊲ 𝑏}. By [1, Proposition 2.2.22], we know that  is an 𝜔-continuous domain, 
for which 𝑖() forms a countable basis. From Theorem 3.15, we deduce that  and the non-continuous dcpo ℚ are related via 
the following Galois connection:

ℚ 
(⋅)∗

(⋅)∗
⊤ (34)

With the above Galois connection, we may delegate the IVP solving from  to ℚ—which is more suitable for performing the 
main computations—and then return to . First, we formulate the following property:

Definition 4.17 (Uniform ideal continuity (UIC)). We say that a function Φ ∶ ℚ →ℚ has the UIC property if it is monotone and 
satisfies:

∀𝜙 ∈ ∶ ∀𝛿 > 0 ∶ ∃𝑏𝛿 ∈ 𝜙 ∶ ∀𝑡 ∈ [0, 𝑎] ∶ 𝑇𝐾,𝑛

(
Φ(𝜙∗)(𝑡)⊕𝛿

)
⊑Φ(𝑏𝛿)(𝑡).

Informally, for any given ideal 𝜙 ∈ and accuracy 𝛿 > 0, there exists an element 𝑏𝛿 ∈ 𝜙 for which Φ(𝑏𝛿) approximates Φ(𝜙∗)
uniformly over [0, 𝑎] to within 𝛿 accuracy. This condition is satisfied by the operators which appear in Definition 5.3 (for second-order 
Euler) and Definition 6.2 (for Runge-Kutta Euler) methods. We expect this property to hold for any similar operator defined according 
to the general schema. With that in mind, the following lemma presents a procedure for obtaining Scott-continuous operators to be 
used in fixpoint formulations:

Lemma 4.18. Assume that Φ ∶ℚ →ℚ has the UIC property and define 𝐹 ∶ → by ∀𝜙 ∈ ∶ 𝐹 (𝜙) ∶= (Φ(𝜙∗))∗. Then:

(i) ∀𝜙 ∈ ∶ 𝐹 (𝜙) =⋃
𝑏∈𝜙 (Φ(𝑏))∗.
21

(ii) 𝐹 ∶ → is Scott-continuous.
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Proof. (i) We must prove that:

∀𝜙 ∈ ∶
(
Φ(𝜙∗)

)
∗ =

⋃
𝑏∈𝜙

(Φ(𝑏))∗ .

The proof of the ⊇ direction is relatively straightforward. For any 𝑏 ∈ 𝜙, we have 𝑏 ⊑ 𝜙∗. By monotonicity of Φ, we obtain 
Φ(𝑏) ⊑Φ(𝜙∗), which, in turn, entails that (Φ(𝑏))∗ ⊆ (Φ(𝜙∗))∗.

Next, we prove the ⊆ direction. Let us take an arbitrary �̂� ∈ (Φ(𝜙∗))∗, which must satisfy �̂�⊲Φ(𝜙∗), and by Corollary 4.14, 
is non-degenerate. By Proposition 4.15, we have:

∃𝛿 > 0 ∶ ∀𝑡 ∈ [0, 𝑎] ∶ �̂�(𝑡) ⊑ 𝑇𝐾,𝑛(Φ(𝜙∗)(𝑡)⊕𝛿). (35)

From the UIC property of Φ, we have:

∀𝛿 > 0 ∶ ∃𝑏𝛿 ∈ 𝜙 ∶ ∀𝑡 ∈ [0, 𝑎] ∶ 𝑇𝐾,𝑛

(
Φ(𝜙∗)(𝑡)⊕𝛿

)
⊑Φ(𝑏𝛿)(𝑡). (36)

If, in (36), we take 𝛿 = 𝛿∕2, we obtain:

∀𝑡 ∈ [0, 𝑎] ∶ 𝑇𝐾,𝑛

(
Φ(𝜙∗)(𝑡)⊕𝛿∕2

)
⊑Φ(𝑏𝛿∕2)(𝑡).

By symmetrically expanding both sides by 𝛿∕2, and clipping the results using 𝑇𝐾,𝑛, we obtain:

∀𝑡 ∈ [0, 𝑎] ∶ 𝑇𝐾,𝑛

(
Φ(𝜙∗)(𝑡)⊕𝛿

)
⊑ 𝑇𝐾,𝑛

(
Φ(𝑏𝛿∕2)(𝑡)⊕𝛿∕2

)
. (37)

From (37) and (35), we obtain:

∀𝑡 ∈ [0, 𝑎] ∶ �̂�(𝑡) ⊑ 𝑇𝐾,𝑛

(
Φ(𝑏𝛿∕2)(𝑡)⊕𝛿∕2

)
(by Proposition 4.11) ⟹ �̂�⊲Φ(𝑏𝛿∕2)

(by (18)) ⟹ �̂� ∈
(
Φ(𝑏𝛿∕2)

)
∗
.

(ii) Monotonicity of 𝐹 follows from (i) and the monotonicity of union. As  is 𝜔-continuous, by [1, Proposition 2.2.14], it 
suffices to prove that for any chain 𝜙0 ⊆ 𝜙1 ⊆ … ⊆ 𝜙𝑘 ⊆ …, we have 𝐹

(⋃
𝑘∈ℕ 𝜙𝑘

)
=

⋃
𝑘∈ℕ 𝐹 (𝜙𝑘). This is also a consequence 

of (i), because:

𝐹

(⋃
𝑘∈ℕ

𝜙𝑘

)
=

⋃
𝑏∈∪𝑘∈ℕ𝜙𝑘

(Φ(𝑏))∗ =
⋃
𝑘∈ℕ

⋃
𝑏∈𝜙𝑘

(Φ(𝑏))∗ =
⋃
𝑘∈ℕ

𝐹 (𝜙𝑘). □

The relationship between the operators 𝐹 and Φ from Lemma 4.18, and the left and right adjoints (⋅)∗ and (⋅)∗ of the Galois 
connection from Theorem 3.15 are depicted in the following commutative diagram, in which denotes a monomorphism, 
and denotes an epimorphism:

ℚ 

ℚ 

(⋅)∗

Φ(⋅) 𝐹 (⋅)

(⋅)∗

5. Second-order Euler operator

Based on the foundation laid so far, we derive a functional formulation of the second-order Euler operator 𝐸2 that was first 
introduced—with an imperative formulation—in [27]. We recall the definition of the operator 𝐸2 as appears in [27, Definition 3.7]:

Definition 5.1 (Second-order Euler operator: 𝐸2). Let 𝑎 ∈ (0, 𝐾

𝑀(1+𝑛𝑀 ′) ]. The second-order Euler operator 𝐸2 ∶ 1 × 1 → [0, 𝑎] →
𝐈[−𝐾,𝐾]𝑛 is defined as follows: for a given partition 𝑄 ≡ (𝑞0, … , 𝑞𝑘) of [0, 𝑎] satisfying |𝑄| ≤ 1, and a given pair (𝑢, 𝑢′) ∈ 1:

𝑦(𝑥) ∶=

{
(0,… ,0), if 𝑥 = 0,
𝑦(𝑞𝑖) + ∫ 𝑥

𝑞𝑖
𝑢
(
𝑦(𝑞𝑖)

)
+ (𝑡− 𝑞𝑖)(𝑢′ ⋅ 𝑢)

(
𝑦(𝑞𝑖)⊕Δ𝑞𝑖𝑀

)
𝑑𝑡, if 𝑞𝑖 < 𝑥 ≤ 𝑞𝑖+1,

(38)

in which:

• 𝑦 ≡𝐸2
(𝑢,𝑢′)(𝑄);

• Δ𝑞𝑖 ∶= 𝑞𝑖+1 − 𝑞𝑖;
22

• (𝑢′ ⋅ 𝑢)(⋅) denotes the product of the interval matrix 𝑢′(⋅) with the interval vector 𝑢(⋅).
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In [27], some basic results regarding the operator 𝐸2 have been derived. We will, in particular, refer to the following:

Lemma 5.2. Assume that 𝑄 = (𝑞0, … , 𝑞𝑘) ∈ 1, and let 𝑦𝑗 = [𝑦𝑗 , 𝑦𝑗 ] ∶=𝐸2
(𝑢,𝑢′)(𝑄)𝑗 be the 𝑗-th component of 𝐸2

(𝑢,𝑢′)(𝑄), for every 𝑗 ∈ {1,… , 𝑛}. 
Then, both 𝑦𝑗 and 𝑦𝑗 are Lipschitz continuous with Lipschitz constant:

Λ𝑄 ∶=𝑀(1 + |𝑄|𝑛𝑀 ′).

In particular:

∀𝑥 ∈ [0, 𝑎] ∶ 𝐸2
(𝑢,𝑢′)(𝑄)(𝑥) ∈ 𝐈[−𝐾,𝐾]𝑛. (39)

Proof. For completeness, we present the proof as given in [27, Lemma 3.9]. We prove the lemma for 𝑦𝑗 . The proof for 𝑦𝑗 is almost 
identical. Hence, our aim is to show that:

∀𝑥,𝑥′ ∈ [0, 𝑎] ∶ |𝑦𝑗 (𝑥′) − 𝑦𝑗 (𝑥) | ≤Λ𝑄|𝑥′ − 𝑥 |. (40)

Indeed, it suffices to prove (40) for the special case of 𝑞𝑖 ≤ 𝑥 ≤ 𝑥′ ≤ 𝑞𝑖+1, for some 0 ≤ 𝑖 ≤ 𝑘 − 1. Referring to (38), note that:

• The interval entries in the vector 𝑢 and matrix 𝑢′ are bounded by 𝑀 and 𝑀 ′, respectively. As 𝑢′ is an 𝑛 × 𝑛 matrix, and 𝑢 is an 
𝑛 × 1 vector, each interval component of the vector 𝑢′ ⋅ 𝑢 is bounded by 𝑛𝑀𝑀 ′.

• ∀𝑡 ∈ [𝑞𝑖, 𝑞𝑖+1] ∶ 𝑡 − 𝑞𝑖 ≤ |𝑄|.
As such, we obtain:

|𝑦𝑗 (𝑥′) − 𝑦𝑗 (𝑥) | ≤ 𝑥′

∫
𝑥

(
𝑀 + |𝑄|𝑛𝑀𝑀 ′)𝑑𝑡 =𝑀(1 + |𝑄|𝑛𝑀 ′)(𝑥′ − 𝑥),

which proves (40). Extending the proof to all pairs 𝑥, 𝑥′ ∈ [0, 𝑎] is straightforward. Finally, claim (39) also follows from the assump-

tions that 𝑎 ≤ 𝐾

𝑀(1+𝑛𝑀 ′) and |𝑄| ≤ 1. Thus, the proof is complete. □

To derive a functional formulation of 𝐸2, we define the following auxiliary operator:

Definition 5.3 (Operator: Φ). Let 𝑎 ∈ (0, 𝐾

𝑀(1+𝑛𝑀1)
], with 𝐾 , 𝑀 , and 𝑀1 as in Definition 2.19. For a given partition 𝑄 ≡ (𝑞0, … , 𝑞𝑘) ∈

ℚ, a given pair (𝑢, 𝑢′) ∈ 1, and 𝜙 ∈ℚ, we define:

𝑦𝜙(𝑥) ∶=

{
(0,… ,0), if 𝑥 = 0,
𝑇𝐾,𝑛

[
𝜙(𝑞𝑗 ) + ∫ 𝑥

𝑞𝑗
𝑢
(
𝜙(𝑞𝑗 )

)
+ (𝑡− 𝑞𝑗 )(𝑢′ ⋅ 𝑢)

(
𝑇𝐾,𝑛(𝐺𝑗 (𝜙))

)
d𝑡
]
, if 𝑞𝑗 < 𝑥 ≤ 𝑞𝑗+1,

(41)

in which:

• 𝑇𝐾,𝑛 is as defined in (33).

• 𝐺𝑗 (𝜙) ∶= 𝜙(𝑞𝑗 ) ⊕𝑀Δ𝑗 and Δ𝑗 ∶= 𝑞𝑗+1 − 𝑞𝑗 .

• (𝑢′ ⋅ 𝑢)(⋅) denotes the product of the interval matrix 𝑢′(⋅) with the interval vector 𝑢(⋅).

The operator Φ ∶ ℚ × 1 →ℚ → ([0, 𝑎]→ 𝐈[−𝐾,𝐾]𝑛) is defined by:

Φ(𝑢,𝑢′)(𝑄)(𝜙) ∶= 𝑦𝜙.

Proposition 5.4. Assume that 𝑎 ∈ (0, 𝐾

𝑀(1+𝑛𝑀1)
], 𝑄 ≡ (𝑞0, … , 𝑞𝑘) ∈ ℚ, and (𝑢, 𝑢′) ∈ 1. Then:

∀𝜙 ∈ℚ ∶ Φ(𝑢,𝑢′)(𝑄)(𝜙) ∈ℚ. (42)

Furthermore, Φ(𝑢,𝑢′)(𝑄) ∶ℚ →ℚ has the UIC property.

Proof. In (41), let us denote the unclipped term as:

�̂�𝜙(𝑥) = 𝜙(𝑞𝑗 ) +

𝑥

∫
𝑞𝑗

𝑢
(
𝜙(𝑞𝑗 )

)
+ (𝑡− 𝑞𝑗 )(𝑢′ ⋅ 𝑢)

(
𝑇𝐾,𝑛(𝐺𝑗 (𝜙))

)
d𝑡, if 𝑞𝑗 < 𝑥 ≤ 𝑞𝑗+1.

We note that 𝜙 is applied only at 𝑞𝑗 . Hence, the terms 𝜙(𝑞𝑗 ), 𝑢 
(
𝜙(𝑞𝑗 )

)
, and (𝑢′ ⋅ 𝑢) 

(
𝑇𝐾,𝑛(𝐺𝑗 (𝜙))

)
, are all constant over the interval 
23

(𝑞𝑗 , 𝑞𝑗+1]. Let us assume that:
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⎧⎪⎨⎪⎩
𝜙(𝑞𝑗 ) = (𝛼𝑗,1,… , 𝛼𝑗,𝑛) ∈ 𝐈ℝ𝑛

⊥
,

𝑢
(
𝜙(𝑞𝑗 )

)
= (𝛽𝑗,1,… , 𝛽𝑗,𝑛) ∈ 𝐈ℝ𝑛

⊥
,

(𝑢′ ⋅ 𝑢)
(
𝑇𝐾,𝑛(𝐺𝑗 (𝜙))

)
= (𝛾𝑗,1,… , 𝛾𝑗,𝑛) ∈ 𝐈ℝ𝑛

⊥
.

As such, for each 1 ≤ 𝑖 ≤ 𝑛, we obtain:{
(�̂�𝜙(𝑥))𝑖 = 𝛼𝑗,𝑖 + 𝛽𝑗,𝑖(𝑥− 𝑞𝑗 ) + 𝛾𝑗,𝑖(𝑥− 𝑞𝑗 )2∕2,
(�̂�𝜙(𝑥))𝑖 = 𝛼𝑗,𝑖 + 𝛽𝑗,𝑖(𝑥− 𝑞𝑗 ) + 𝛾𝑗,𝑖(𝑥− 𝑞𝑗 )2∕2.

Therefore, the upper and lower bounds of (�̂�𝜙(𝑥))𝑖 are quadratic—hence continuous—over the interval (𝑞𝑗 , 𝑞𝑗+1]. After applying 𝑇𝐾,𝑛, 
these bounds remain continuous. Hence, for each 1 ≤ 𝑖 ≤ 𝑛, the bounds (𝑦𝜙)𝑖 and (𝑦𝜙)𝑖 are continuous over each (𝑞𝑗 , 𝑞𝑗+1]. This, 
together with the assumption 𝑄 ∈ ℚ, implies (42).

To prove the UIC property, first we note that, as all the operations in (41) are monotonic, so is Φ(𝑢,𝑢′)(𝑄). Furthermore, for 
any given 𝜓 ∈  and 𝜖 > 0, for each 𝑖 ∈ {0,… , 𝑘}, using (19), we find 𝑏𝑖𝜖 ∈ 𝜓 such that 𝑇𝐾,𝑛(𝜓∗(𝑞𝑖) ⊕ 𝜖) ⊑ 𝑏𝑖𝜖(𝑞𝑖). As the set 
{𝑏𝑖𝜖 ∣ 𝑖 ∈ {0,… , 𝑘}} is finite and 𝜓 is rounded, there exists an element 𝑏𝜖 ∈ 𝜓 which satisfies ∀𝑖 ∈ {0,… , 𝑘} ∶ 𝑏𝑖𝜖 ⊲ 𝑏𝜖 . From Propo-

sition 3.7 (iii), we obtain ∀𝑖 ∈ {0,… , 𝑘} ∶ 𝑏𝑖𝜖 ⊑ 𝑏𝜖 . Thus:

∀𝜖 > 0 ∶ ∃𝑏𝜖 ∈ 𝜓 ∶ ∀𝑖 ∈ {0,… , 𝑘} ∶ 𝑇𝐾,𝑛(𝜓∗(𝑞𝑖)⊕ 𝜖) ⊑ 𝑏𝜖(𝑞𝑖). (43)

Over the interval (𝑞𝑗 , 𝑞𝑗+1], the dependence of 𝑦𝜓 (as defined in (41)) on 𝜓 is solely based on 𝜓(𝑞𝑗 ). As a result, from (43), combined 
with Scott continuity of 𝑢, 𝑢′, and integration, we deduce:

∀𝜓 ∈ ∶ ∀𝛿 > 0 ∶ ∃𝑏𝛿 ∈ 𝜓 ∶ ∀𝑡 ∈ [0, 𝑎] ∶ 𝑇𝐾,𝑛

(
Φ(𝑢,𝑢′)(𝑄)(𝜓∗)(𝑡)⊕𝛿

)
⊑Φ(𝑢,𝑢′)(𝑄)(𝑏𝛿)(𝑡). □

Definition 5.5 (Euler operator: 𝐹 ). Let 𝑎 ∈ (0, 𝐾

𝑀(1+𝑛𝑀1)
]. The parametric second-order Euler operator:

𝐹 ∶ ℚ × 1 → →
is defined as follows: for any given 𝑄 ≡ (𝑞0, … , 𝑞𝑘) ∈ ℚ, (𝑢, 𝑢′) ∈ 1, and 𝜙 ∈:

𝐹(𝑢,𝑢′)(𝑄)(𝜙) ∶=
(
Φ(𝑢,𝑢′)(𝑄)(𝜙∗)

)
∗ . (44)

The formula (44) can be depicted as the following commutative diagram:

ℚ 

ℚ 

(⋅)∗

Φ(𝑢,𝑢′ )(𝑄)(⋅) 𝐹(𝑢,𝑢′)(𝑄)(⋅)

(⋅)∗

Lemma 5.6. For every partition 𝑄 ∈ ℚ and (𝑢, 𝑢′) ∈ 1, the function 𝐹(𝑢,𝑢′)(𝑄) ∶ → is Scott continuous.

Proof. This follows from Proposition 5.4 and Lemma 4.18. □

Theorem 5.7 (Second-order Euler operator: 𝐸2). Assume that 𝑎 ∈ (0, 𝐾

𝑀(1+𝑛𝑀1)
], 𝑄 ≡ (𝑞0, … , 𝑞𝑘) ∈ 1,ℚ is a partition of [0, 𝑎], (𝑢, 𝑢′) ∈ 1, 

and 𝐸2 is the second-order Euler operator of Definition 5.1. If we denote the bottom element of  by ⊥, then we have 𝐸2
(𝑢,𝑢′)(𝑄) = 𝜓∗ where:

𝜓 ∶= f ix𝐹(𝑢,𝑢′)(𝑄) =
⨆
𝑚∈ℕ

(
𝐹(𝑢,𝑢′)(𝑄)

)𝑚 (⊥) =
(
𝐹(𝑢,𝑢′)(𝑄)

)𝑘+1 (⊥).
Proof. For each 𝑗 ∈ ℕ, we define 𝜓[𝑗] ∶=

(
𝐹(𝑢,𝑢′)(𝑄)

)𝑗 (⊥) and 𝑌[𝑗] ∶= 𝑦𝜓∗
[𝑗]

, in which 𝑦𝜓∗
[𝑗]

is as defined in (41). In particular, we have, 
∀𝑗 ∈ℕ ∶ 𝜓[𝑗+1] =

(
𝑌[𝑗]

)
∗. Furthermore, from Theorem 3.15 (ii), we obtain:

∀𝑗 ∈ℕ ∶ 𝜓∗
[𝑗+1] =

((
𝑌[𝑗]

)
∗
)∗ = 𝑌[𝑗]. (45)

Using induction, we prove that:

∀𝑗 ∈ {0,… , 𝑘} ∶ ∀𝑥 ∈ [0, 𝑞𝑗 ] ∶𝐸2
(𝑢,𝑢′)(𝑄)(𝑥) = 𝑌[𝑗](𝑥). (46)

The base case of 𝑗 = 0 is immediate as both sides evaluate to (0, … , 0). Next, assume that (46) holds up to some 𝑗 ∈ {0,… , 𝑘− 1}. In 
24

particular, we have 𝐸2
(𝑢,𝑢′)(𝑄)(𝑞𝑗 ) = 𝑌[𝑗](𝑞𝑗 ). We define 𝛼𝑗 ∶=𝐸2

(𝑢,𝑢′)(𝑄)(𝑞𝑗 ) = 𝑌[𝑗](𝑞𝑗 ) and obtain:
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∀𝑥 ∈ (𝑞𝑗 , 𝑞𝑗+1] ∶ 𝑌[𝑗+1](𝑥) = 𝑦𝜓∗
[𝑗+1]

(𝑥) = 𝑇𝐾,𝑛

⎡⎢⎢⎢⎣𝛼𝑗 +
𝑥

∫
𝑞𝑗

𝑢
(
𝛼𝑗

)
+ (𝑡− 𝑞𝑗 )(𝑢′ ⋅ 𝑢)

(
𝑇𝐾,𝑛(𝛼𝑗 ⊕𝑀Δ𝑗

)
d𝑡
⎤⎥⎥⎥⎦ . (47)

By using (39), we can remove applications of 𝑇𝐾,𝑛 in (47), and obtain:

∀𝑥 ∈ (𝑞𝑗 , 𝑞𝑗+1] ∶ 𝑌[𝑗+1](𝑥) = 𝛼𝑗 +

𝑥

∫
𝑞𝑗

𝑢
(
𝛼𝑗

)
+ (𝑡− 𝑞𝑗 )(𝑢′ ⋅ 𝑢)(𝛼𝑗 ⊕𝑀Δ𝑗 ) d𝑡,

which, combined with (38), implies ∀𝑥 ∈ (𝑞𝑗 , 𝑞𝑗+1] ∶ 𝑌[𝑗+1](𝑥) = 𝐸2
(𝑢,𝑢′)(𝑄)(𝑥). Thus, we have proven (46). From (45) and (46), we 

obtain:

∀𝑗 ∈ {0,… , 𝑘} ∶ ∀𝑥 ∈ [0, 𝑞𝑗 ] ∶𝐸2
(𝑢,𝑢′)(𝑄)(𝑥) = 𝜓∗

[𝑗+1](𝑥),

which completes the proof of the theorem. □

Remark 5.8. In the statement of Theorem 5.7, we required 𝑄 ∈ 1,ℚ instead of 𝑄 ∈ ℚ. This is because the proof of Lemma 5.2

requires this stronger assumption.

Remark 5.9. To obtain an enclosure of the solution of the IVP (1), in Theorem 5.7, one must require (𝑢, 𝑢′) ∈ 1
𝑓

, in which 𝑓 is the 
vector field of IVP (1).

5.1. Computability

As pointed out previously, the Galois connection of (34) allows us to delegate IVP solving from  to ℚ and then return to , 
a fact which has also been reflected in the formulation of the Euler operator 𝐹 in (44). This raises a valid question on the purpose of 
constructing, and the utility of, the 𝜔-continuous domain . The answer lies mainly in computable analysis. As the poset ℚ is not 
continuous, it does not admit an effective structure, while the 𝜔-continuous domain  does. In fact, to study computability of the 
Euler operator, an effective structure is needed on all the underlying domains. To that end, we use the concept of effectively given 
domains [71]. Specifically, we follow the approach taken in [26, Section 3].

Definition 5.10 (Effectively given domain). Assume that (𝐷, ⊑) is an 𝜔-continuous domain, with a countable basis 𝐵 that is enumerated 
as follows:

𝐵 =
{
𝑏0 = ⊥,𝑏1,… , 𝑏𝑛,…

}
. (48)

We say that the domain 𝐷 is effectively given, with respect to the enumeration (48), if the set {(𝑖, 𝑗) ∈ℕ ×ℕ ∣ 𝑏𝑖 ≪ 𝑏𝑗} is recursively 
enumerable, in which ≪ is the way-below relation on 𝐷.

In the following proposition, computability is to be understood according to Type-II Theory of Effectivity [80].

Proposition 5.11 (Computable elements and functions). Let 𝐷 and 𝐸 be two effectively given domains, with enumerated bases 𝐵1 ={
𝑑0, 𝑑1,… , 𝑑𝑛,…

}
and 𝐵2 =

{
𝑒0, 𝑒1,… , 𝑒𝑛,…

}
, respectively:

(i) An element 𝑥 ∈𝐷 is computable ⟺ the set {𝑖 ∈ℕ ∣ 𝑑𝑖 ≪ 𝑥} is recursively enumerable.

(ii) A map 𝑓 ∶𝐷→𝐸 is computable ⟺ {(𝑖, 𝑗) ∈ℕ ×ℕ ∣ 𝑒𝑖 ≪ 𝑓 (𝑑𝑗 )} is recursively enumerable.

Proof. See [26, Proposition 3 and Theorem 9]. □

The domain  is 𝜔-continuous, with 𝑖() as a countable basis. We have:

∀𝑏, 𝑏′ ∈ ∶ 𝑏⊲𝑏′ ⟺ 𝑖(𝑏)≪ 𝑖(𝑏′). (49)

Proposition 5.12. Assume that  is enumerated as  =
{
𝑏0, 𝑏1, 𝑏2,…

}
, and 𝑖() is enumerated as:

𝑖() =
{
𝑖(𝑏0), 𝑖(𝑏1), 𝑖(𝑏2),…

}
. (50)

Then, the way-below relation ≪ over 𝑖() is recursive with respect to the enumeration (50).
25

Proof. This follows from (49), and the fact that only rational numbers are used in representation of the elements of . □



Theoretical Computer Science 980 (2023) 114221A. Edalat, A. Farjudian and Y. Li

Thus, we obtain an effective structure over , with respect to the enumeration (50). The Euler operator takes input from 
the domain 1 as well. The set of rational hyper-rectangles 𝐵𝐈ℝ𝑛

⊥
is a basis for 𝐈ℝ𝑛

⊥
. It is straightforward to construct an effective 

structure over 𝐈ℝ𝑛
⊥

with respect to any reasonable enumeration of 𝐵𝐈ℝ𝑛
⊥
. Moreover, using rational hyper-rectangles, we can construct 

an effective structure over 1 with respect to an enumeration of a basis:

𝐵1 =
{
(𝑢0, 𝑢′0), (𝑢1, 𝑢

′
1),… , (𝑢𝑛, 𝑢′𝑛),…

}
. (51)

Proposition 5.13. Assume that 𝑄 ∈ ℚ and (𝑢, 𝑢′) ∈ 1. Then, for any 𝑏 ∈, we have:

𝐹(𝑢,𝑢′)(𝑄)(𝑖(𝑏)) =
(
Φ(𝑢,𝑢′)(𝑄)(𝑏)

)
∗ . (52)

Proof. By Theorem 3.15 (ii), we have (𝑖(𝑏))∗ = (𝑏∗)∗ = 𝑏. Hence, the equality (52) follows from (44). □

Corollary 5.14. Assume that 𝑄 ∈ ℚ. Then, the relation:

𝑖(𝑏𝑖)≪𝐹(𝑢𝑘,𝑢′𝑘)
(𝑄)(𝑖(𝑏𝑗 ))

is recursive with respect to the enumerations (50) and (51).

Proof. As 𝑄 ∈ ℚ, (𝑢𝑘, 𝑢′𝑘) ∈ 𝐵1 , and 𝑏𝑗 ∈ , then Φ(𝑢𝑘,𝑢′𝑘)
(𝑄)(𝑏𝑗 ) is a piecewise quadratic enclosure with rational coefficients. 

By Proposition 5.13, deciding 𝑖(𝑏𝑖) ≪ 𝐹(𝑢𝑘,𝑢′𝑘)
(𝑄)(𝑖(𝑏𝑗 )) reduces to deciding 𝑏𝑖⊲Φ(𝑢𝑘,𝑢′𝑘)

(𝑄)(𝑏𝑗 ), which, in turn, reduces to deciding 
inequalities of the form 𝛼𝑥2 + 𝛽𝑥 + 𝛾 < 𝛿 over an interval [𝑝, 𝑞], with 𝛼, 𝛽, 𝛾, 𝛿 ∈ ℚ, and with 𝑝 and 𝑞 computable, which is semi-

decidable. □

From Proposition 5.11 (ii) and Corollary 5.14, we obtain the main result of this section:

Theorem 5.15 (Computability). For any fixed 𝑄 ∈ ℚ, the map 𝐹(⋅,⋅)(𝑄)(⋅) ∶ 1 × → is computable.

5.2. Convergence analysis

In this section, we demonstrate that the operator 𝐸2 is indeed second-order. In classical numerical analysis, one may find the 
following criteria that determine whether a method is of order 𝑝 (see, e.g., [42, Page 8]):

(C1) A numerical scheme for solving IVPs is said to be of order 𝑝 if, whenever the solution of an IVP is a polynomial of degree at 
most 𝑝, the solution can be obtained exactly by the scheme.

(C2) Alternatively, a numerical scheme is said to be of order 𝑝 if, for every step size ℎ, the local error incurred is of order 𝑂(ℎ𝑝+1). 
For the Euler method, this entails that the global error must be of order 𝑂(ℎ𝑝).

The bounds obtained for the width of 𝐸2
(𝑢,𝑢′)(𝑄) in [27, Section 4] are too conservative and do not reflect the second-order nature 

of the method. For instance, in [27, Corollary 4.3], the following bound is obtained for equidistant partitions:

w
(
𝐸2
(𝑢,𝑢′)(𝑄)

) ≤ 1
2
|𝑄|𝑀 (

e𝑎𝐿 − 1
)
. (53)

This is of the same order as the bounds obtained in [22] for the first-order Euler method. Here, we present a more accurate con-

vergence analysis which demonstrates that 𝐸2 is indeed second-order, according to criterion (C2). The basic idea is to adopt the 
midpoint-width representation of intervals introduced by Moore and Jones [58].

Definition 5.16 (𝑚(𝐴)). For every interval 𝐼 = [𝑎, 𝑏], we define 𝑚(𝐼) ∶= (𝑎 + 𝑏)∕2. For every interval matrix 𝐴 = [𝐴𝑖𝑗 ]𝑚×𝑛, we define 
𝑚(𝐴) ∶= [𝑚(𝐴𝑖𝑗 )]𝑚×𝑛.

Proposition 5.17 (Midpoint-width representation). Assume that 𝐴 = [𝐴𝑖𝑗 ]𝑚×𝑛 is an interval matrix. Then:

𝐴 =𝑚(𝐴) +𝑊 ,

in which 𝑊 is an 𝑚 × 𝑛 interval matrix with entries 𝑊𝑖𝑗 =
1
2 [−1, 1] w(𝐴𝑖𝑗 ).

Proof. This is a straightforward generalization of the fact that any interval 𝐼 = [𝑎, 𝑏] may be written as:

𝐼 = [𝑎, 𝑏] = 𝑎+ 𝑏

2
+
[
𝑎− 𝑏

2
,
𝑏− 𝑎

2

]
=𝑚(𝐼) + 1

2
[−1,1]w(𝐼). □
26

To simplify the arguments that follow, we reiterate an assumption from [27]:
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Assumption 5.18. In the sequel, we assume that 𝑢 and 𝑢′ are interval extensions of the vector field 𝑓 and its 𝐿-derivative 𝐿(𝑓 ), 
respectively, and satisfy the following additional condition:

∀𝑥 ∈ 𝐈[−𝐾,𝐾]𝑛 ∶ w(𝑢(𝑥)) ≤ ‖𝑢′(𝑥)‖∞w(𝑥), (54)

where ‖ ⋅‖∞ is the interval matrix norm of Definition 2.25.

As stated in [27, Corollary 3.6], if 𝑢 and 𝑢′ are the canonical interval extensions of the classical vector field 𝑓 ∶ [−𝐾, 𝐾]𝑛 →
[−𝑀, 𝑀]𝑛 and its 𝐿-derivative 𝐿(𝑓 ), respectively, then, 𝑢 and 𝑢′ do satisfy condition (54).

Theorem 5.7 entails that, if 𝑄 ≡ (𝑞0, … , 𝑞𝑘) ∈ 1,ℚ, and if we let 𝑦 ∶=𝐸2
(𝑢,𝑢′)(𝑄), then:

𝑦(𝑥) =

{
(0,… ,0), if 𝑥 = 0,
𝑦(𝑞𝑖) + ∫ 𝑥

𝑞𝑖
𝑢
(
𝑦(𝑞𝑖)

)
+ (𝑡− 𝑞𝑖)(𝑢′ ⋅ 𝑢)

(
𝑦(𝑞𝑖)⊕𝑀Δ𝑖

)
d𝑡, if 𝑞𝑖 < 𝑥 ≤ 𝑞𝑖+1.

(55)

For each 𝑖 ∈ {0,… , 𝑘− 1}, let us define:

𝐴𝑖 ∶= 𝑦(𝑞𝑖)⊕𝑀Δ𝑖. (56)

By the midpoint-width representation, we write:{
𝑢(𝐴𝑖) = 𝑚(𝑢(𝐴𝑖)) +𝑊𝑖,

𝑢′(𝐴𝑖) = 𝑚(𝑢′(𝐴𝑖)) +𝑊 ′
𝑖 .

(57)

Note that 𝑢(𝐴𝑖), 𝑚(𝑢(𝐴𝑖)), and 𝑊𝑖 are 𝑛 ×1 vectors, whereas 𝑢′(𝐴𝑖), 𝑚(𝑢′(𝐴𝑖)), and 𝑊 ′
𝑖 are 𝑛 × 𝑛 matrices. Next, we define the following 

constants:

𝜔𝑄 ∶= 1
2

max
0≤𝑖≤𝑘−1w(𝑊𝑖), 𝜔′

𝑄 ∶= 1
2

max
0≤𝑖≤𝑘−1w(𝑊

′
𝑖 ). (58)

When the partition 𝑄 is clear from the context, we drop the subscripts and simply write 𝜔 and 𝜔′.

Proposition 5.19. Assume that 𝑄 ≡ (𝑞0, … , 𝑞𝑘) ∈ 1,ℚ, 𝐿 ∶= 𝑛𝑀1, 𝜔 and 𝜔′ are as in (58), and define:

𝜌𝑄 ∶=𝐿𝜔+ 𝑛𝑀𝜔′ + 𝑛𝜔𝜔′. (59)

Then, ∀𝑖 ∈ {0,… , 𝑘− 1} ∶ ∀𝑥 ∈ [𝑞𝑖, 𝑞𝑖+1] ∶ w
(
𝐸2
(𝑢,𝑢′)(𝑄)(𝑥)

) ≤w
(
𝐸2
(𝑢,𝑢′)(𝑄)(𝑞𝑖)

)
(1 + |𝑄|𝐿) + |𝑄|2

2 𝜌𝑄.

Proof. Let 𝑦 ∶=𝐸2
(𝑢,𝑢′)(𝑄). From (55), we obtain:

w(𝑦(𝑥)) ≤w(𝑦(𝑞𝑖)) +

𝑥

∫
𝑞𝑖

w
(
𝑢
(
𝑦(𝑞𝑖)

))
+w

(
(𝑡− 𝑞𝑖)(𝑢′ ⋅ 𝑢)

(
𝑦(𝑞𝑖)⊕𝑀Δ𝑖

))
d𝑡

(by (54) and (56)) ≤w(𝑦(𝑞𝑖)) +

𝑥

∫
𝑞𝑖

‖𝑢′(𝑦(𝑞𝑖))‖∞w(𝑦(𝑞𝑖)) d𝑡+

𝑥

∫
𝑞𝑖

w
(
(𝑡− 𝑞𝑖)(𝑢′ ⋅ 𝑢)

(
𝐴𝑖

))
d𝑡

≤w
(
𝑦(𝑞𝑖)

)
+w

(
𝑦(𝑞𝑖)

)
(𝑥− 𝑞𝑖)𝐿+ 1

2
(𝑥− 𝑞𝑖)2 w

(
𝑢′(𝐴𝑖)𝑢(𝐴𝑖)

)
(as 𝑥− 𝑞𝑖 ≤ |𝑄|) ≤w

(
𝑦(𝑞𝑖)

)
(1 + |𝑄|𝐿) + |𝑄|2

2
w
(
𝑢′(𝐴𝑖)𝑢(𝐴𝑖)

)
.

It remains to show that w(𝑢′(𝐴𝑖)𝑢(𝐴𝑖)) ≤ 𝜌𝑄. From the midpoint-width representation (57), we obtain:

𝑢′(𝐴𝑖)𝑢(𝐴𝑖) =
(
𝑚(𝑢′(𝐴𝑖)) +𝑊 ′

𝑖

)(
𝑚(𝑢(𝐴𝑖)) +𝑊𝑖

)
=𝑚(𝑢′(𝐴𝑖))𝑚(𝑢(𝐴𝑖)) +𝑚(𝑢′(𝐴𝑖))𝑊𝑖 +𝑊 ′

𝑖 𝑚(𝑢(𝐴𝑖)) +𝑊 ′
𝑖 𝑊𝑖.

A term-by-term analysis of the width of the last expression shows that:

• The first term, i.e., 𝑚(𝑢′(𝐴𝑖))𝑚(𝑢(𝐴𝑖)), has width zero.

• The width of the second term 𝑚(𝑢′(𝐴𝑖))𝑊𝑖 is bounded by the product of ‖𝑚(𝑢′(𝐴𝑖))‖∞ and 𝜔. Hence, it is bounded by 𝐿𝜔.

• Similarly, the width of the third term 𝑊 ′
𝑖 𝑚(𝑢(𝐴𝑖)) is bounded by the product of 𝜔′ and ‖𝑚(𝑢(𝐴𝑖))‖1. Hence, it is bounded by 

𝜔′𝑛𝑀 .

• The width of the fourth term 𝑊 ′
𝑖 𝑊𝑖 is also clearly bounded by 𝑛𝜔′𝜔.
27

Thus, we obtain w(𝑢′(𝐴𝑖)𝑢(𝐴𝑖)) ≤ 𝜌𝑄. □



Theoretical Computer Science 980 (2023) 114221A. Edalat, A. Farjudian and Y. Li

Corollary 5.20 (Speed of convergence). Assume that 𝜌𝑄 is as defined in (59) and 𝐿 > 0. For any partition 𝑄 ∈ 1,ℚ, we have:

w
(
𝐸2
(𝑢,𝑢′)(𝑄)

) ≤ |𝑄| 𝜌𝑄
2𝐿

(
e𝑎𝑟𝑄𝐿 − 1

)
. (60)

In particular, when 𝑄 is equidistant:

w
(
𝐸2
(𝑢,𝑢′)(𝑄)

) ≤ |𝑄| 𝜌𝑄
2𝐿

(
e𝑎𝐿 − 1

)
. (61)

Proof. Assume that 𝑄 = (𝑞0, … , 𝑞𝑘), and let 𝑐 ∶= |𝑄|2 𝜌𝑄
2 , 𝑑 = 1 + |𝑄|𝐿. We prove by induction on 𝑖 that:

∀𝑥 ∈ [𝑞𝑖, 𝑞𝑖+1] ∶ w
(
𝐸2
(𝑢,𝑢′)(𝑄)(𝑥)

) ≤ 𝑐
𝑖∑

𝑗=0
𝑑𝑗 .

The case of 𝑖 = 0 is immediate from Proposition 5.19 and the fact that w(𝑦(𝑞0)) = 0. For 𝑖 > 0, again, by Proposition 5.19, we have:

w
(
𝐸2
(𝑢,𝑢′)(𝑄)(𝑥)

) ≤w
(
𝐸2
(𝑢,𝑢′)(𝑄)(𝑞𝑖)

)
⋅ 𝑑 + 𝑐

(by induction hypothesis) ≤
(
𝑐
𝑖−1∑
𝑗=0

𝑑𝑗

)
𝑑 + 𝑐 = 𝑐

𝑖∑
𝑗=0

𝑑𝑗 .

Thus, we obtain:

w
(
𝐸2
(𝑢,𝑢′)(𝑄)

) ≤ 𝑐
𝑘−1∑
𝑗=0

𝑑𝑗 = 𝑐
𝑑𝑘 − 1
𝑑 − 1

=
|𝑄| 𝜌𝑄
2𝐿

(
(1 + |𝑄|𝐿)𝑘 − 1

)
=

|𝑄| 𝜌𝑄
2𝐿

(
(1 +𝑚(𝑄)𝑟𝑄𝐿)𝑘 − 1

)
≤ |𝑄| 𝜌𝑄

2𝐿

((
1 + 𝑎

𝑘
𝑟𝑄𝐿

)𝑘
− 1

)
≤ |𝑄| 𝜌𝑄

2𝐿
(
e𝑎𝑟𝑄𝐿 − 1

)
,

which proves (60). Inequality (61) now follows, because for an equidistant 𝑄, we have 𝑟𝑄 = 1. □

According to Corollary 5.20, if 𝜌𝑄 is of order 𝑂(|𝑄|), then the convergence must be second-order, i.e., 𝑂(|𝑄|2). This can be 
guaranteed if the vector field is continuously differentiable:

Theorem 5.21 (Second-order convergence). Assume that 𝑢 and 𝑢′ are interval extensions of the classical vector field 𝑓 and its 𝐿-derivative 
𝐿(𝑓 ), respectively. If 𝑢′ is interval Lipschitz, then 𝐸2 has second-order convergence.

Proof. By [27, Corollary 4.3], we know that w
(
𝐸2
(𝑢,𝑢′)(𝑄)

)
is 𝑂(|𝑄|). Hence, by (56), w(𝐴𝑖) is 𝑂(|𝑄|). As 𝑢′ is bounded, then 𝑢 is 

interval Lipschitz. Therefore, w(𝑢(𝐴𝑖)) is 𝑂(|𝑄|), and by (57) and (58), we must have 𝜔 ∈𝑂(|𝑄|). If we also assume that 𝑢′ is interval 
Lipschitz, then by a similar argument we can conclude that 𝜔′ ∈𝑂(|𝑄|).

Hence, from (59), and the fact that both 𝜔 and 𝜔′ are 𝑂(|𝑄|), we deduce that 𝜌𝑄 ∈ 𝑂(|𝑄|). This, together with Corollary 5.20, 
implies that w

(
𝐸2
(𝑢,𝑢′)(𝑄)

)
is indeed 𝑂(|𝑄|2). □

5.3. Further extensions

In Theorem 5.21, the assumption that 𝑢′ is interval Lipschitz was imposed. By Remark 2.29, an interval Lipschitz 𝑢′ must map 
maximal elements to maximal elements. Since 𝑢′ is Scott continuous, assuming that 𝑢′ is interval Lipschitz entails that 𝑢 is continu-

ously differentiable. This is adequate for a qualitative convergence analysis, but in practice, these assumptions are restrictive. Below, 
we discuss two relaxations of these assumptions that are important in practical applications.

5.3.1. Non-differentiable vector fields

Assuming that 𝑢′ is interval Lipschitz ensures that 𝜔′ ∈𝑂(|𝑄|), and as a consequence, that the term 𝑛𝑀𝜔′ in (59) also is in 𝑂(|𝑄|). 
By inspecting the proof of Proposition 5.19, it can be seen that if 𝑢′ maps some maximal elements to non-maximal elements, it may 
hinder the 𝑂(|𝑄|2) convergence of the operators, but only over the points where it takes non-maximal values.

As we will see in Fig. 6, our experiments show that the second-order convergence is retained for a non-differentiable vector field. 
28

We conjecture that this is true in case 𝑢′ takes non-maximal values on isolated points of the domain (e.g., over a finite subset of the 
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domain). In fact, by Rademacher’s theorem, if a function is Lipschitz continuous over an open subset 𝑈 of ℝ𝑛, then it is (Fréchet) 
differentiable almost everywhere (with respect to the Lebesgue measure) over 𝑈 [10, Corollary 4.19]. As such, it is plausible that 
the second-order convergence is retained, even when the vector field is merely Lipschitz continuous.

5.3.2. Approximations of the vector field

The assumption that 𝑢′ is interval Lipschitz is restrictive, even when the vector field is continuously differentiable. In imple-

mentations, finitely-representable objects must be used to approximate ideal elements. For instance, one may use piecewise constant 
enclosures with rational coordinates to approximate continuous functions in 𝐶([0, 1]). For a function such as 𝑓 (𝑥) = exp(𝑥) ∶ [0, 1] →ℝ, 
it is impossible to find such a finitely-representable enclosure which has a width of zero over the entire domain, because exp is a 
transcendental function.

To cope with this issue, we consider sequences (𝑢𝑛, 𝑢′𝑛)𝑛∈ℕ satisfying:

lim
𝑛→∞

𝑑(𝑢𝑛, 𝑢) = 0 and lim
𝑛→∞

𝑑(𝑢′𝑛, 𝑢
′) = 0,

in which 𝑑(⋅, ⋅) is the interval distance of Definition 2.27. With this added layer of approximation, we can still obtain a second-order 
convergence, as long as the sequence (𝑢𝑛, 𝑢′𝑛)𝑛∈ℕ converges to (𝑢, 𝑢′)—under the distance 𝑑(⋅, ⋅)—fast enough. Similar analyses may be 
found in [22,31,27]. Hence, we do not present the details here and just state the main theorem.

Theorem 5.22. Let (𝑄𝑛)𝑛∈ℕ be a sequence of partitions in 1,ℚ satisfying lim𝑛→∞ |𝑄𝑛| = 0 and assume that 𝑢′ is interval Lipschitz. Fur-

thermore, assume that (𝑢, 𝑢′) =⨆
𝑛∈ℕ(𝑢𝑛, 𝑢′𝑛), and for some constant 𝐶1 > 0, we have 𝑑(𝑢𝑛, 𝑢) ≤ 𝐶1|𝑄𝑛|2 and 𝑑(𝑢′𝑛, 𝑢′) ≤ 𝐶1|𝑄𝑛|2. By letting 

𝑦𝑛 ∶=𝐸2
(𝑢𝑛,𝑢′𝑛)

, we obtain:

(i) ∃𝐶2 ≥ 0, ∀𝑛 ∈ℕ ∶ w(𝑦𝑛) ≤ 𝐶2|𝑄𝑛|2.
(ii)

⨆
𝑛∈ℕ 𝑦𝑛 is real-valued and is a solution of (1).

Proof. The proof is a straightforward modification of the proof of [27, Theorem 4.11], using the midpoint-width analysis. □

Our implementation of the Euler operators is based on the MPFI library [65], which uses arbitrary precision dyadic numbers as 
end-points of intervals. As we will see in Section 7, under this representation, we still obtain quadratic convergence, even for some 
non-differentiable vector fields.

5.4. Monotonicity with respect to refinement of partitions

A desirable property for an Euler operator is monotonicity with respect to refinement of partitions. If 𝑄 and 𝑄′ are two partitions 
of [0, 𝑎] satisfying 𝑄 ⊑ 𝑄′, it would be desirable to have ∀(𝑢, 𝑢′) ∈ 1

𝑓
∶ 𝐸(𝑢,𝑢′)(𝑄) ⊑ 𝐸(𝑢,𝑢′)(𝑄′). The operator 𝐸2 does not satisfy this 

property, even though we have proven its convergence. In other words, if 𝑄1 ⊑ 𝑄2 ⊑… ⊑ 𝑄𝑛 ⊑… is a sequence of partitions which 
satisfies lim𝑛→∞ |𝑄𝑛| = 0, then it is guaranteed that the enclosures produced by 𝐸2

(𝑢,𝑢′)(𝑄𝑛) converge to a limit, but the sequence is not 
a shrinking chain.

The main reason for this lack of monotonicity is that, although the Lipschitz constant of the solution 𝑧 of the main IVP (1) is 
bounded by 𝑀 , the Lipschitz constant of the approximations obtained via application of 𝐸2—or the operator 𝐹 for that matter—are 
bounded by a larger constant 𝑀(1 + 𝑛𝑀 ′) (see Lemma 5.2). Thus, to obtain monotonicity with respect to refinement of partitions, in 
Definition 5.3, we can make one of the following modifications:

(1) We can modify 𝐺𝑗 by replacing 𝑀 with 𝑀(1 + 𝑛𝑀 ′) and define 𝐺𝑗 (𝜙) ∶= 𝜙(𝑞𝑗 ) ⊕𝑀(1 + 𝑛𝑀 ′)Δ𝑗 . The resulting operator will have 
a slower convergence.

(2) We can modify the definition (41) as follows:

𝑦𝜙(𝑥) ∶=

{
(0,… ,0), if 𝑥 = 0,
𝑇𝑀(𝑥−𝑞𝑗 ),𝑛

[
𝜙(𝑞𝑗 ) + ∫ 𝑥

𝑞𝑗
𝑢
(
𝜙(𝑞𝑗 )

)
+ (𝑡− 𝑞𝑗 )(𝑢′ ⋅ 𝑢)

(
𝑇𝐾,𝑛(𝐺𝑗 (𝜙))

)
d𝑡
]
, if 𝑞𝑗 < 𝑥 ≤ 𝑞𝑗+1.

This modification results in an operator with faster convergence, at the cost of a significant increase in clutter for presentation 
purposes.

Due to these considerations, we opted for keeping the formulation presented in Definition 5.3.

6. Runge-Kutta Euler operator

In this section, we demonstrate how the framework that we have developed can be used for domain-theoretic formulation of 
Runge-Kutta methods. We begin by a brief reminder of the Runge-Kutta theory, tailored to the autonomous IVP (1). More compre-

hensive accounts may be found in classical textbooks on numerical analysis, e.g., [46,63]. The explicit 𝑚-stage Runge-Kutta method 
29

for solving the IVP (1) proceeds as follows:
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(i) The interval [0, 𝑎] is partitioned as 𝑄 = (𝑞0, … , 𝑞𝑘), for some 𝑘 ≥ 1.

(ii) The initial value is assigned as 𝑦0 = (0, … , 0).
(iii) For each 𝑗 ∈ {0,… , 𝑘− 1}, we let ℎ ∶= 𝑞𝑗+1 − 𝑞𝑗 , and then:

𝑦𝑗+1 ∶= 𝑦𝑗 + ℎ
𝑚∑
𝑖=1

𝑤𝑖𝑘𝑖𝑗 , (62)

in which, for every 𝑖 ∈ {1,… ,𝑚}:

𝑘𝑖𝑗 ∶= 𝑓

(
𝑦𝑗 + ℎ

𝑖−1∑
𝓁=1

𝑎𝑖𝓁𝑘𝓁𝑗

)
. (63)

The coefficients 𝑤𝑖 and 𝑎𝑖𝓁 are parameters that are specific to each variant of the Runge-Kutta method. For any Runge-Kutta 
method of order 𝑝, the local truncation error at step 𝑗 + 1 is expressed as follows:

𝑟𝑗+1(ℎ) = 𝑦(𝑞𝑗 + ℎ) −

(
𝑦(𝑞𝑗 ) + ℎ

𝑚∑
𝑖=1

𝑤𝑖𝑘𝑖𝑗 (ℎ)

)
= 𝜓(𝑦(𝑞𝑗 ))ℎ𝑝+1 +𝑂(ℎ𝑝+2), (64)

in which, 𝑦(𝑞𝑗 + ℎ) and 𝑦(𝑞𝑗 ) denote the exact solutions at 𝑞𝑗 + ℎ and 𝑞𝑗 , respectively, and 𝑘𝑖𝑗 (ℎ) is obtained from (63) for the exact 
value of 𝑦(𝑞𝑗 ) substituted for 𝑦𝑗 .

In developing validated Runge-Kutta methods, one of the main tasks involves deriving explicit bounds for the truncation error. An 
extensive catalogue of validated Runge-Kutta methods may be found in [47], together with explicit formulation of their truncation 
error. There is no uniform formulation of the truncation error that is parametrized by (say) the order of the method. In simple terms, 
for each variant, the explicit formulation must be obtained separately. As may be seen from [47], the explicit formulation of the 
truncation error, especially of higher-order variants, can become very lengthy and even span pages.

As a result, we consider one of the Runge-Kutta variants—commonly referred to as the Euler method—which results in relatively 
shorter formulas. To simplify the presentation further, we focus on the autonomous scalar case. In contrast with the Euler method of 
Section 5, here we follow the Runge-Kutta theory, and demonstrate that our domain-theoretic framework is applicable for temporal 
discretization in the context of Runge-Kutta theory as well.

6.1. Scalar Euler: Runge-Kutta formulation

We consider the scalar case of IVP (1), i.e., with 𝑛 = 1. To begin with, we assume that the vector field 𝑓 is continuously differen-

tiable of any order that appears in the upcoming formulas. For the scalar case of a Runge-Kutta method of order 𝑝, Taylor’s theorem 
is applicable, and the truncation error of (64) is commonly expressed as:

𝑟𝑗+1(ℎ) = 𝜓(𝑦(𝑞𝑗 ))ℎ𝑝+1 +𝑂(ℎ𝑝+2)

= 𝑟(𝑝+1)
𝑗+1 (0) ℎ𝑝+1

(𝑝+ 1)!
+ 𝑟(𝑝+2)

𝑗+1 (𝜃ℎ) ℎ𝑝+2

(𝑝+ 2)!
,

for some 𝜃 ∈ (0, 1). This follows from the fact that, as the method is assumed to be of order 𝑝, we must have ∀𝓁 ∈ {0,… , 𝑝} ∶ 𝑟(𝓁)
𝑗+1(0) = 0.

For the autonomous scalar case of the Euler method, the formulation of (62) can be presented as follows:

𝑦𝑗+1 ∶= 𝑦𝑗 + 𝑓 (𝑦𝑗 )ℎ.

As the method is first-order, the local truncation error is given by:

𝑟𝑗+1(ℎ) = 𝜓(𝑦𝑗 )ℎ2 + 𝑟(3)
𝑗+1(𝜃ℎ)

ℎ3

6
, (65)

for some 𝜃 ∈ (0, 1). The following provides explicit formulations of 𝜓 and 𝑟(3)
𝑗+1 solely based on the vector field and its derivatives:

𝜓(𝑦𝑗 ) =
𝑓 ′(𝑦𝑗 )𝑓 (𝑦𝑗 )

2
,

𝑟(3)
𝑗+1(𝜃ℎ) = 𝑓 ′′(𝑦𝑗 + 𝜃ℎ)

(
𝑓 (𝑦𝑗 + 𝜃ℎ)

)2 + (
𝑓 ′(𝑦𝑗 + 𝜃ℎ)

)2
𝑓 (𝑦𝑗 + 𝜃ℎ). (66)

In the analysis of Euler method according to Runge-Kutta theory, the vector field 𝑓 ∶ [−𝐾, 𝐾] → [−𝑀, 𝑀] is required to be twice 
continuously differentiable, which we write as 𝑓 ∈ 𝐶2([−𝐾, 𝐾]). As the domain [−𝐾, 𝐾] is compact, there are two positive constants 
𝑀1 and 𝑀2 satisfying:

∀𝑥 ∈ [−𝐾,𝐾] ∶ |𝑓 ′(𝑥) | ≤𝑀1 ∧ |𝑓 ′′(𝑥) | ≤𝑀2. (67)
30

By considering equations (65) and (66), we introduce the constant 𝛼 as follows:
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𝛼 ∶=
(𝑀2𝑀 +𝑀2

1 )𝑀
6

.

To obtain a validated version, let 𝑌 , 𝐹 , and 𝐹 ′ be interval extensions of 𝑦, 𝑓 , and 𝑓 ′, respectively. Then, we obtain an interval 
extension Ψ of 𝜓 by defining:

Ψ(𝑥) ∶= 𝐹 ′(𝑥)𝐹 (𝑥)
2

.

In the general schema presented in Section 4, the formula (25) now admits the following explicit form:

𝑌 (𝑞𝑗 + ℎ) = 𝑌 (𝑞𝑗 ) + 𝐹 (𝑌 (𝑞𝑗 ))ℎ+Ψ(𝑌 (𝑞𝑗 ))ℎ2 + [−𝛼, 𝛼]ℎ3.

Although the classical Runge-Kutta theory requires 𝑓 ∈ 𝐶2([−𝐾, 𝐾]), it is possible to relax the condition slightly for the validated 
version. To that end, we recall the following generalization of classical Taylor’s theorem:

Lemma 6.1. Assume that 𝑝 ∈ ℕ. Let 𝑓 ∶ [𝛼, 𝛽] → ℝ be a function that is 𝑝-times continuously differentiable and suppose that the 𝑝-th 
derivative 𝑓 (𝑝) of 𝑓 is Lipschitz in (𝛼, 𝛽). Then:

𝑓 (𝛽) ∈
𝑝∑

𝑗=0
𝑓 (𝑗)(𝛼) ⋅ (𝛽 − 𝛼)𝑗

𝑗!
+𝐿(𝑓 (𝑝))(𝜃) ⋅ (𝛽 − 𝛼)𝑝+1

(𝑝+ 1)!
,

for some 𝜃 ∈ (𝛼, 𝛽).

Proof. See [27, Lemma 2.13]. □

Thus, we may just require 𝑓 to be in 𝐶1([−𝐾, 𝐾]), with 𝑓 ′ Lipschitz continuous, and replace (67) with the following:

∀𝑥 ∈ [−𝐾,𝐾] ∶ |𝑓 ′(𝑥) | ≤𝑀1 ∧ ‖𝐿(𝑓 ′)(𝑥)‖ ≤𝑀2,

in which 𝐿(𝑓 ′) is the 𝐿-derivative of 𝑓 ′, and ‖ ⋅‖ is the interval norm from Definition 2.25.

We now proceed to define the counterpart ΦR of the operator Φ from Definition 5.310:

Definition 6.2 (Operator: ΦR). For a given partition 𝑄 ≡ (𝑞0, … , 𝑞𝑘) ∈ ℚ, a given triple 
(
𝑢, 𝑢′, 𝑢′′

)
∈ �̂�(2), and 𝜙 ∈ℚ, we define:

𝑦𝜙(𝑥) ∶=
⎧⎪⎨⎪⎩
0, if 𝑥 = 0,
𝑇𝐾,1[𝜙(𝑞𝑗 ) + 𝑢(𝜙(𝑞𝑗 ))(𝑥− 𝑞𝑗 )+

(𝑢′ ⋅ 𝑢)(𝜙(𝑞𝑗 ))
(𝑥−𝑞𝑗 )2

2 + [−𝛼, 𝛼](𝑥− 𝑞𝑗 )3], if 𝑞𝑗 < 𝑥 ≤ 𝑞𝑗+1,

(68)

where:

• �̂�(2) is the domain from Definition 2.23.

• 𝛼 ∶=
(𝑀2𝑀+𝑀2

1 )𝑀
6 , in which 𝑀 , 𝑀1, and 𝑀2 are from Definition 2.23.

• 𝑇𝐾,1 is as defined in (33).

• (𝑢′ ⋅ 𝑢)(⋅) denotes the product of the interval 𝑢′(⋅) with the interval 𝑢(⋅).

The operator ΦR ∶ ℚ × �̂�(2) →ℚ → ([0, 𝑎]→ 𝐈[−𝐾,𝐾]) is defined by:

ΦR
(𝑢,𝑢′ ,𝑢′′)(𝑄)(𝜙) ∶= 𝑦𝜙.

Remark 6.3. Although 𝑢′′ does not appear explicitly in (68), it is implicitly used via the value 𝛼 which depends on 𝑀2 (from 
Definition 2.23), which is, in turn, an upper bound on the values that 𝑢′′ takes.

Having defined the operator ΦR, we may proceed by taking the same steps as those taken in Section 5. For instance, the counter-

part of Proposition 5.4 may be stated as follows:

Proposition 6.4. Assume that 𝑄 ≡ (𝑞0, … , 𝑞𝑘) ∈ ℚ and (𝑢, 𝑢′, 𝑢′′) ∈ �̂�(2). Then:

∀𝜙 ∈ℚ ∶ ΦR
(𝑢,𝑢′ ,𝑢′′)(𝑄)(𝜙) ∈ℚ. (69)

Furthermore, ΦR
(𝑢,𝑢′ ,𝑢′′)(𝑄) ∶ℚ →ℚ has the UIC property.
31

10 The superscript ‘R’ stands for Runge-Kutta.



Theoretical Computer Science 980 (2023) 114221A. Edalat, A. Farjudian and Y. Li

Proof. From (68), by using an argument similar to that used in the proof of Proposition 5.4, we deduce that the bounds 𝑦𝜙 and 𝑦𝜙
are continuous over each (𝑞𝑗 , 𝑞𝑗+1]. This, together with the assumption 𝑄 ∈ ℚ, implies (69).

To prove the UIC property, first we note that, as all the operations in (68) are monotonic, so is ΦR
(𝑢,𝑢′ ,𝑢′′)(𝑄). Furthermore, for any 

given 𝜓 ∈, as 𝜓 is rounded, then, by (19), together with the fact that each partition may have only finitely many partition points, 
we obtain:

∀𝜖 > 0 ∶ ∃𝑏𝜖 ∈ 𝜓 ∶ ∀𝑖 ∈ {0,… , 𝑘} ∶ 𝑇𝐾,1(𝜓∗(𝑞𝑖)⊕ 𝜖) ⊑ 𝑏𝜖(𝑞𝑖). (70)

From (70), combined with Scott continuity of 𝑢 and 𝑢′, we deduce:

∀𝛿 > 0 ∶ ∃𝑏𝛿 ∈ 𝜓 ∶ ∀𝑡 ∈ [0, 𝑎] ∶ 𝑇𝐾,1

(
ΦR

(𝑢,𝑢′ ,𝑢′′)(𝑄)(𝜓∗)(𝑡)⊕𝛿
)
⊑ΦR

(𝑢,𝑢′ ,𝑢′′)(𝑄)(𝑏𝛿)(𝑡). □

Definition 6.5 (Euler operator 𝐹R). The scalar Runge-Kutta Euler operator:

𝐹R ∶ ℚ × �̂�(2) → →
is defined as follows: for any given 𝑄 ≡ (𝑞0, … , 𝑞𝑘) ∈ ℚ, (𝑢, 𝑢′, 𝑢′′) ∈ �̂�(2), and 𝜙 ∈:

𝐹R
(𝑢,𝑢′ ,𝑢′′)(𝑄)(𝜙) ∶=

(
ΦR

(𝑢,𝑢′ ,𝑢′′)(𝑄)(𝜙∗)
)
∗
. (71)

Once again, the relationship between the operators 𝐹R, ΦR, and the left and right adjoints (⋅)∗ and (⋅)∗ of the Galois connection 
from Theorem 3.15 can be depicted as in the following commutative diagram:

ℚ 

ℚ 

(⋅)∗

ΦR
(𝑢,𝑢′ ,𝑢′′)

(𝑄)(⋅) 𝐹R
(𝑢,𝑢′ ,𝑢′′)

(𝑄)(⋅)

(⋅)∗

Lemma 6.6. For every partition 𝑄 ≡ (𝑞0, … , 𝑞𝑘) ∈ ℚ and (𝑢, 𝑢′, 𝑢′′) ∈ �̂�(2), the function 𝐹R
(𝑢,𝑢′ ,𝑢′′)(𝑄) ∶ → is Scott continuous.

Proof. This follows from Proposition 6.4 and Lemma 4.18. □

As 𝐹R
(𝑢,𝑢′ ,𝑢′′)(𝑄) ∶ → is Scott-continuous, we may define the Runge-Kutta Euler operator using its fixpoint:

Definition 6.7 (Runge-Kutta Euler operator: 𝐸R). Assume that 𝑄 ≡ (𝑞0, … , 𝑞𝑘) ∈ ℚ is a partition of [0, 𝑎], (𝑢, 𝑢′, 𝑢′′) ∈ �̂�(2), and ⊥
denotes the bottom element of . We define 𝐸R

(𝑢,𝑢′ ,𝑢′′)(𝑄) ∶= 𝜓∗, where:

𝜓 ∶= f ix𝐹R
(𝑢,𝑢′ ,𝑢′′)(𝑄) =

⨆
𝑚∈ℕ

(
𝐹R
(𝑢,𝑢′ ,𝑢′′)(𝑄)

)𝑚
(⊥).

Similar to Theorem 5.7, we can prove that:⨆
𝑚∈ℕ

(
𝐹R
(𝑢,𝑢′ ,𝑢′′)(𝑄)

)𝑚
(⊥) =

(
𝐹R
(𝑢,𝑢′ ,𝑢′′)(𝑄)

)𝑘+1
(⊥),

which provides us with a validated Euler operator based on Runge-Kutta theory.

For any fixed 𝑄 ∈ ℚ, computability of the map 𝐹(⋅,⋅,⋅)(𝑄)(⋅) ∶ �̂�(2) × → can be proven using an approach similar to that 
taken in Section 5.1. The key fact is that 𝛼𝑥3 +𝛽𝑥2 + 𝛾𝑥 +𝜌 < 𝛿 is semi-decidable over an interval [𝑝, 𝑞], with 𝛼, 𝛽, 𝛾, 𝜌, 𝛿 ∈ℚ, and with 𝑝
and 𝑞 computable. In fact, using the approach of Section 5.1, one may prove computability of any Runge-Kutta variant as long as the 
bounds within each interval are polynomials with rational coefficients. This is because the proof of computability essentially reduces 
to deciding ∑𝑚

𝑖=0 𝛼𝑖𝑥
𝑖 < 𝛿 over intervals of the form [𝑝, 𝑞], where 𝛼0, … , 𝛼𝑚, 𝛿 ∈ℚ, and with 𝑝 and 𝑞 computable. When 𝑝, 𝑞 ∈ℚ, this is 

decidable according to Tarski’s theorem [74]. When 𝑝 and 𝑞 are computable, the problem becomes semi-decidable.

Soundness and completeness follow from the relevant error analysis as presented in [47], where error analyses of several variants 
of Runge-Kutta method may be found. As for convergence analysis, it is well-known that the Runge-Kutta formulation of the Euler 
operator provides a first-order convergence rate [46, Theorem 5.4], a fact which will be verified by our experiments in Section 7 as 
well (in particular, Fig. 3).

7. Experiments

The domain theoretic framework of the current article makes it possible to use effective data-types, i.e., it is possible to implement 
32

the operators directly on digital computers. We have indeed implemented the following operators for IVP solving:
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(1) The first-order Euler operator 𝐸𝑐 of [22];

(2) The second-order Euler operator 𝐸2 of Definition 5.1.

(3) The Runge-Kutta (Euler) operator 𝐸R of Definition 6.7.

The source code is available on GitHub.11 We have used the arbitrary-precision interval arithmetic library MPFI [65] for our imple-

mentations. Specifically, we have used the C++ Boost library implementation which provides a wrapper around the original MPFI 
types.12 This is an ideal library for our purposes as operations such as matrix/vector arithmetic can be implemented seamlessly over 
the underlying MPFI types.

We consider the following IVPs for our experiments:

(A) To begin with, we consider the simple scalar IVP:{
𝑦′(𝑡) = 𝑦(𝑡),
𝑦(0) = 1. (72)

This IVP has the closed-form solution 𝑦′(𝑡) = exp(𝑡) over the entire real line. We solve this equation over the interval [0, 1], over 
which we may take 𝑀 = 3, 𝑀1 = 1, and 𝑀2 = 0.

(B) Next, we consider another scalar IVP:{
𝑦′(𝑡) = cos(𝑦(𝑡)),
𝑦(0) = 0, (73)

which has the following closed form solution over the entire real line:

𝑦(𝑡) = 2atan
(
tanh

(
𝑡

2

))
.

We solve this IVP over the interval [0, 5]. As the vector field is 𝑓 (𝑥) = cos(𝑥), we take 𝑀 =𝑀1 =𝑀2 = 1.

(C) The next IVP is slightly more complicated:{
�̂�′(𝑡) = 10cos(10𝑡)�̂�(𝑡),
�̂�(0) = 1. (74)

This IVP also has a closed-form solution �̂�(𝑡) = exp(sin(10𝑡)) over the entire real line. The equation (74) is non-autonomous. By 
assigning 𝑦(𝑡) ∶= (𝑡, �̂�(𝑡)), we obtain an autonomous non-scalar equation with the vector field 𝑓 (𝛼, 𝛽) = (1, 10 cos(10𝛼)𝛽) and initial 
value 𝑦(0) = (0, 1). As the autonomous equation is non-scalar, the Runge-Kutta operator is not applicable. We seek a solution in 
the interval [0, 0.1] for which we take 𝑀 = 30 for the Euler operators.

(D) We also consider an IVP with a non-differentiable vector field:{
�̂�′(𝑡) = | sin(𝑡+ �̂�(𝑡)) |,
�̂�(0) = 1. (75)

We are not aware if this IVP has a closed form solution. Equation (75) is also non-autonomous. By assigning 𝑦(𝑡) ∶= (𝑡, �̂�(𝑡)), we 
obtain an autonomous equation with the vector field 𝑓 (𝛼, 𝛽) = (1, | sin(𝛼 + 𝛽) |) and initial value 𝑦(0) = (0, 1). We seek a solution 
in the interval [0, 5] for which we take 𝑀 = 1 for the Euler operators.

Over the interval [0, 5], the presence of the absolute value function does indeed make a difference, as shown in Fig. 1.

In our experiments, we consider a parameter depth, which denotes how many times the domain [0, 𝑎] must be bisected. For 
instance, when running any of the operators at depth 4, the domain [0, 𝑎] is discretized into 24 = 16 equal sized subintervals. We ran 
the first-order operator 𝐸𝑐 of [22] and the second-order Euler operator 𝐸2 on all of the IVPs, and ran the Runge-Kutta operator 𝐸R

on the scalar IVPs (72) and (73), for a range of depths from 2 to 16.

Fig. 2 contains three plots related to the IVP (72) with 𝑦′(𝑡) = 𝑦(𝑡):

• The left plot shows that at each depth, the width of the solution obtained from 𝐸2 is noticeably smaller than the widths obtained 
from the Runge-Kutta 𝐸R and the first-order operator 𝐸𝑐 .

• The middle plot shows that at equal depths, the second-order and Runge-Kutta methods take more time compared with the 
first-order method. This is expected due to the overhead of handling derivatives.

• The right plot shows that, in the particular case of the IVP (72), the overall performance of the first-order operator 𝐸𝑐 is better. 
In simple terms, by spending the same amount of CPU time, the first-order method provides tighter enclosures of the solution.

Fig. 3 contains the plots related to the IVP (73). The right plot demonstrates that at lower depths, the first-order operator 𝐸𝑐 is the 
most efficient. Nonetheless, at higher depths, the second-order operator outperforms both the first-order and Runge-Kutta operators 
due to its superior convergence rate.

11 https://github .com /afarjudian /IVP _MPFI.
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12 https://www .boost .org /doc /libs /1 _76 _0 /libs /multiprecision /doc /html /boost _multiprecision /tut /interval /mpfi .html.

https://github.com/afarjudian/IVP_MPFI
https://www.boost.org/doc/libs/1_76_0/libs/multiprecision/doc/html/boost_multiprecision/tut/interval/mpfi.html
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Fig. 1. The solution of 𝑦′(𝑡) = sin(𝑡 + 𝑦(𝑡)) in red versus that of 𝑦′(𝑡) = | sin(𝑡+ 𝑦(𝑡)) | in blue, over the domain [0, 5]. Around 𝑡 = 1.295, the two solutions diverge. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. Comparison of the first-order, second-order, and Runge-Kutta Euler methods on the IVP (72), with 𝑦′(𝑡) = 𝑦(𝑡).

Fig. 4 contains the plots related to the IVP (74). As the IVP is converted to a non-scalar one, we may only apply the first-order 
and second-order operators 𝐸𝑐 and 𝐸2, respectively. The left and middle plots have the same quality as those of Fig. 2. The right 
plot, however, shows that, in this case, the second-order method outperforms the first-order Euler method in overall efficiency.

Fig. 5 contains the relevant plots for the IVP (75). As the IVP is converted to a non-scalar one, and the vector field is not 
continuously differentiable, we may only apply the first-order and second-order operators 𝐸𝑐 and 𝐸2, respectively. The middle 
plot is as expected, but the left and right plots demonstrate the effect of the overhead of handling derivatives in the second-order 
method. In lower depths, the first-order Euler operator performs better, but as the depth is increased, the faster convergence of the 
second-order operator makes it overall more efficient.

As we have already pointed out in Section 5.3.1, although Theorems 5.21 and 5.22 require the vector field to be continuously 
differentiable, we conjecture that the second-order convergence is retained over non-differentiable vector fields as well. As a witness 
to this conjecture, we compare the convergence of the second-order Euler method for solving the IVP (75)–with a non-differentiable 
vector field—with those obtained from solving IVPs (73) and (74), with vector fields that are continuously differentiable. Fig. 6

suggests that the convergence has the same order in this case.

7.1. Static analysis

The bound (53) (obtained in [27]) and those obtained in the current work (i.e., Corollary 5.20 and Theorem 5.22) make it possible 
34

to perform a static convergence analysis. These bounds, however, are usually very conservative, and result in unnecessarily small 
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Fig. 3. Comparison of the first-order, second-order, and Runge-Kutta Euler methods on the IVP (73), with 𝑦′(𝑡) = cos(𝑦(𝑡)).

Fig. 4. Comparison of the first-order and second-order Euler methods on the IVP (74) with �̂�′(𝑡) = 10cos(10𝑡)�̂�(𝑡).

partition norms for obtaining a required accuracy. In practice, it is more efficient to just run the Euler operators for various depths, 
in increasing order, until the required accuracy is obtained.

Take the IVP (74) as an example. A static analysis based on the bound (53) would indicate that, in order to obtain 𝜖 > 0 accuracy, 
one must take the partition norm small enough to satisfy:

|𝑄| ≤ 𝜖

15(e60 − 1)
≤ 𝜖

1.72 × 1027
.

As an example, according to this estimate, to obtain an accuracy of 𝜖 ≤ 10−4, we must partition [0, 0.1] to at least the depth of 100, 
resulting in 2100 subintervals, which is prohibitively large. Instead, we start from a small depth of 2, and increase the depth until 
the accuracy is reached. With this approach, the accuracy reaches the target of 10−4 at depth 16, in under 30 seconds on a personal 
35

laptop, with an Intel® Core™ i7-8550U CPU at 1.80 GHz and 16 GB RAM, under Ubuntu 20.04 LTS environment.
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Fig. 5. Comparison of the first-order and second-order Euler methods on the IVP (75), with a non-differentiable vector field: �̂�′(𝑡) = | sin(𝑡+ �̂�(𝑡)) |.

Fig. 6. Comparison of the convergence of the second-order Euler method on the IVP (75), with a non-differentiable vector field (in red), and the IVPs (73) and (74), 
with vector fields that are continuously differentiable (in blue and black). The second-order convergence seems to be retained for the IVP (75).

Remark 7.1. Although we have reported the timing of our experiments and the hardware that has been used, the numbers should be 
considered only in the context of comparison between the algorithms that we have implemented. The Euler operator 𝐸2 is second-

order, and as such, over IVPs with highly smooth vector fields, it may not exhibit the efficiency of the high-order methods such as 
COSY [5], VNODE [62] or ValEncIA-IVP [64]. On the other hand, our method is superior in its generality as it can provide validated 
solution of IVPs with non-differentiable vector fields as well, while the high-order methods available in the literature invariably 
require the vector field to be continuously differentiable.

8. Concluding remarks

The analyses presented in the current article are applicable to any operator that follows the general schema presented in Section 4. 
Given the superiority of the Euler operator 𝐸2 over the Runge-Kutta variant 𝐸R, one immediate candidate is higher-order extensions 
of 𝐸2. In fact, the foundations are in place for such an extension. These include the domain model  of the current article, the 
domain of Lipschitz functions developed in [21], and an extension of the Taylor’s theorem, as presented in [27, Corollary 2.14]. To 
obtain a full formulation for the 𝑚-th order variant 𝐸𝑚 of 𝐸2, the (non-scalar) differential equation 𝑦′ = 𝑓 (𝑦) must be differentiated 
(𝑚 − 1) times, and the right hand side written solely in terms of the vector field 𝑓 and its derivatives. This may be done using, e.g., 
the well-known Faà di Bruno formula [11]. Although of practical importance, this extension will require careful handling of lengthy 
36

formulas, and may not require any significant theoretical novelty.
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A similar extension may also be considered for higher-order Runge-Kutta methods. Again, the foundation is available, not just 
based on the domain model of the current paper and that of [21], but also based on the catalogue of validated Runge-Kutta methods 
available in [47].

We have proved that the operator 𝐸2 has a second-order convergence when the vector field of the IVP is continuously dif-

ferentiable. The definition of the operator, however, only requires the vector field to be Lipschitz continuous. One direction for 
further investigation is convergence analysis of the operator 𝐸2 under the assumption that the vector field is Lipschitz continuous 
but not differentiable. As we have demonstrated, there is strong evidence that the rate of convergence is not jeopardized by non-

differentiability of the Lipschitz vector field. This is potentially significant because, to the best of our knowledge, all the higher-order 
validated methods in the literature require the vector field to be at least (once) continuously differentiable.

We presented the construction of a continuous domain for function spaces [𝑋 →𝐷], for any topological space 𝑋 and bounded-

complete continuous domain 𝐷. When 𝑋 is core-compact, the dcpo [𝑋 →𝐷] is continuous. Thus, in practice, our general construction 
may be more relevant when 𝑋 is not core-compact. We exemplified this claim via the concrete case of differential equation solving 
with temporal discretization, where the relevant topology is the upper limit topology, which is not core-compact. It will be interesting 
to see if the construction is useful for other applications as well, e.g., stochastic processes with right-continuous jumps.

Probabilistic power domains have been used previously for analysis of stochastic processes. Specifically, in [15], domain-theoretic 
models of finite-state discrete stochastic processes have been introduced, while in [7] a more general approach has been taken 
for continuous time, continuous space stochastic processes. The construction of the current article can be modified for stochastic 
processes with right-continuous jumps. To be more precise, while the upper limit topology had to be used for temporal discretization 
in differential equation solving, the suitable topology for analysis of processes with right-continuous jumps is the lower limit topology, 
which is not core-compact either. Furthermore, while the rational 𝑃 -functions satisfying (28) are left continuous with right limits, in 
the study of stochastic processes, one must work with the so-called càdlàg functions, which are right-continuous with left limits [6, 
Chapter 3].

Acronyms

dcpo directed-complete partial order

IVP initial value problem

ODE ordinary differential equation

PDE partial differential equation

poset partially ordered set

TTE Type-II Theory of Effectivity

UIC uniform ideal continuity
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