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ABSTRACT
Gerrymandering is a common way to externally manipulate district-
based elections where the electorate is (artificially) redistricted with
an aim to favor a particular political party to win more districts in
the election. Formally, given a set of𝑚 possible locations of ballot
boxes and a set of 𝑛 voters (with known preferences) is it possible to
choose 𝑘 specific locations for the ballot boxes so that the desired
candidate wins in at least ℓ of them? Lewenberg et al. [AAMAS ’17]
and Eiben et al. [AAAI ’20] studied the classical and fine-grained
complexity (respectively) of the gerrymandering problem.

In recent years, the research direction of studying the algorith-
mic implications of introducing fairness in computational social
choice has been quite active. Movtiated by this, we define two natu-
ral fairness conditions for the gerrymandering problem and design
a near-optimal algorithm. Our two new conditions introduce an
element of fairness of the election process by ensuring that:

• the number of voters at each ballot box is not unbounded, i.e.,
lies in the interval [lower, upper] for some given parameters
lower, upper

• the margin of victory at each ballot box is not unbounded, i.e.,
lies in the interval [marginlow, marginup] for some given
parameters marginlow, marginup

For the real-life implementation of redistricting, i.e., when voters
are located in R2, we obtain the following upper and lower bounds
for this fair version of the gerrymandering problem:

• There is an algorithm running in (𝑚+𝑛)𝑂 (
√
𝑘) ·|C| (upper+lower+

marginup+marginlow) time where C is the set of candidates par-
ticipating in the election.

• Under the Exponential Time Hypothesis (ETH), we obtain
an almost tight lower bound by ruling out algorithms run-
ning in 𝑓 (𝑘, 𝑛, upper, lower) ·𝑚𝑜 (

√
𝑘) time where 𝑓 is any

computable function. The lower bound holds even when
marginlow = 1 = marginup, 𝑘 = ℓ and there are only 2
candidates.

KEYWORDS
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Manipulation, Parametrized complexity, Exponential Time Hypothe-
sis
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1 INTRODUCTION
Elections are a fundamental process in our lives: a group of agents
vote according to their individual preferences to select a final out-
come from a given set of outcomes. Given the high stakes, it is
highly important to preserve the sanctity of an election from manipu-
lation by either internal or external sources. A seminal result [17, 29]
shows that most standard voting rules are susceptible by (internal)
manipulation: the outcome of the election can be changed signifi-
cantly even if one agent votes differently from their true preference!
To add to the bad news, there is some evidence [11] from economics
and political science that many of the voting systems used in real
life actually incentivize voters to deviate from their true preferences.

A series of highly-influential papers [2–4] initiated the study of
manipulation in various different voting scenarios from the view-
point of computational complexity: given that (internal) manipula-
tion is possible [17, 29] how easy or hard is to actually achieve a
specific outcome in a given voting system? We refer the interested
reader to [6, 14–16] for more information about this active area of
research in computational social choice.

Internal manipulation is typically of the form where a coalition of
voters strategically vote (often different from their true preferences)
to ensure the victory (or loss) of a specific candidate [6][Chapter
6]. External manipulation on the other hand asks whether an agent
who is not even participating in the election can still manipulate
it in a way to ensure the victory (or loss) of a specific candidate.
This can be achieved in various different ways: adding or remov-
ing voters or candidates [6][Chapter 7.3], bribing voters to change
their preferences [6][Chapter 7.4], redistricting in district-based elec-
tions [13, 21], etc. In this paper, we focus on election manipulation
by redistricting in district based elections.

1.1 Gerrymandering
A well defined representative democracy requires well drawn dis-
tricts. The political boundary of the districts should be drawn in
such a manner so that the percentage of voters who vote for a par-
ticular political party in the whole state (states are divided into
districts) should be represented in the outcome of the election. There
is a long history of manipulating elections by redistricting political
boundaries in order to favour a particular political party which in
political jargon known as “Gerrymandering". The term “Gerryman-
dering is being coined after Elbridge Gerry, who as Governor of
Massachusetts in 1812, signed a bill that created a partisan district
in the Boston area whose shape was unnatural and compared to a
salamander. Gerrymandering has been used in many instances to
manipulate elections in real-life, e.g. by US political parties [13, 21].
Broadly speaking the process “Gerrymandering" is generally being
done by the following two ways: 𝑖) Packing: It includes drawing of
lines to include maximum number of voters of the opposing party
in minimum number of districts in order to minimize the strength



in most of the districts. 𝑖𝑖) Cracking: It is the method by which
the splitting up of the “influencing voters" of the opposition into
several districts with an aim not to consolidate the supporters of the
influencing voters from the opposition.
One of the natural response to such blatant manipulation via gerry-
mandering is to impose the restriction that each of the voter should
cast their vote at the ballot box placed nearest to them. Lewenberg
et al. [22] initiated the algorithmic study of election manipulation in
this setting. They showed that the gerrymandering problem in this
setting is NP-hard even if the number of candidates is restricted to
four. Later, Eiben et al. [12] analyzed on the same setting from the
parameterized complexity point of view. Inspite of restricting the
voters to cast their votes in the nearest ballot box it is not completely
free from gerrymandering. In order to further strengthen the election
process, the notion of fairness is being introduced.

1.2 Fairness
A truly democratic country must observe its election both free and
fair. Generally speaking there are eight standards that must be met
to conduct a free and fair election. Apart from conducting a free
and fair election, various political economists and social scientists
were trying to establish an ideal voting ranking system. Finally, in
1952, US Economist Kenneth J Arrow rule out the possibility of
the existence of such an ideal model which is popularly known as
“Arrow’s impossibility theorem" [1]. On the other hand, fairness oc-
curring in various form in different models is a very natural concept
integral to any computational social choice experiment including
voting. The existence of “Arrow’s impossibility theorem" theorem
further increases the systematic study of different notion of fairness
in various domains of computational social choice theory including
political system. Fairness itself is a big word in any kind of social
experiment even if we stick ourselves with democratic system, fair-
ness is not being fully characterized. We refer the reader to earlier
works [18, 23, 30] on the importance as well as characteristics of
fairness in an election. To summarize, the overall goal of fairness
in an election is to ensure the proportional representation of every
class of stakeholders.

1.3 Our Model: Fairness to combat
Gerrymandering

In this paper, we impose the following two fairness rules with a view
towards preserving the sanctity of the voting mechanism:

• The number of voters at each of the ballot box is bounded i.e.
≤ upper and ≥ lower.

• The margin on victory at each of the ballot box is also
bounded i.e. ≤ marginup and ≥ marginlow.

We bound the number of voters at each of the ballot box in order
to avoid the demography corresponding to each of the ballot box
being skewed. On the other hand, margin of victory is an important
parameter to ensure fairness in voting. It is often being noticed that
the prediction of exit poll varies widely with the real outcome of
the voting. One of the main reason behind this is the occurrence of
different malpractices like bribery, rampant rigging at the time of
voting. The “margin of victory" parameter inhibits these malpractices
to some extent by increasing the chances of recounting or in some
cases re-polling if it is found after the election result that the margin

of victory exceeds the boundaries. This parameter is also being
used to measure the number of votes that would need to change
with an aim to alter a parliamentary outcome for single member
preferential electorates. Various earlier works [5, 10, 25, 31] shows
how to compute margin of victory for different voting rules and draw
its impact in real scenario.

Here we study the impact of the above fairness rules on gerry-
mandering. Additionally, we also impose the standard condition
that a voter cast their vote at the ballot box located nearest to her.
More specifically, we study the following problem (we call it “Fair-
Gerrymandering") defined as follows.

FAIR-GERRYMANDERING-(X, 𝜌)
Input: A set of candidates C, a set V of 𝑛 voters located
at points in X whose preferences are known, a set B of 𝑚
possible ballot box locations in X and a specific candidate
“OUR" ∈ C
Parameters: 𝑘, ℓ,𝑚, 𝑛, upper, lower, marginlow, marginup
Assumptions:

• Each voter votes at the ballot box nearest to them,
where distances are calculated using the metric 𝜌 .

• The plurality rule is used: each voter votes for their
top-ranked candidate, and a ballot box is won by the
candidate who secures most votes. There are no ties.

• The number of voters voting a candidate at every ballot
box is bounded i.e., ≤ upper and ≥ lower.

• The margin of victory at every ballot box is ≤
marginup and ≥ marginlow.

Question: Is there a set P ⊆ B such that 𝑘 = |P | such that
opening ballot boxes at locations in P then “OUR" candidate
wins at least ℓ of the ballot boxes for some ℓ ≤ 𝑘 ≤ 𝑚.

1.4 Our Results
In this paper, we initiate study of the algorithmic complexity of the
FAIR-GERRYMANDERING problem. On the algorithmic side, we
obtain the following result:

THEOREM 1. If C is the set of candidates in an election, 𝑛 be the
number of voters and𝑚 be the possible ballot box locations in the
plane, then FAIR-GERRYMANDERING-

(
R2, ℓ2

)
is solvable in time

(𝑚 + 𝑛)O(
√
𝑘) · |C| (upper+lower+marginup+marginlow) where 𝑘 is the

number of ballot boxes for the election.

A brute-force search for a solution will run in𝑚𝑘𝑛𝑂 (1) . Clearly,
our algorithm is efficient than an exhaustive search. We complement
this algorithm with an almost-matching lower bound:

THEOREM 2. For any 𝑑 ≥ 2, under the Exponential Time Hypoth-
esis (ETH), the FAIR-GERRYMANDERING-

(
R𝑑 , 𝜌) problem cannot

be solved in 𝑓 (𝑘, 𝑛, upper, lower) ·𝑚𝑜 (𝑘1−1/𝑑 ) time where 𝑓 is any
computable function, 𝑛 is the number of voters, and 𝑘 is the number
of the ballot boxes opened, 𝑚 is the total number of possible loca-
tions of ballot boxes and 𝜌 is either the ℓ∞-metric or the ℓ𝑞-metric
for some 𝑞 ≥ 1. This lower bound holds even when there are only 2
candidates, 𝑘 = ℓ and marginlow = 1 = marginup.

Recall that the Exponential Time Hypothesis (ETH) is a standard
assumption [24] in parameterized complexity theory which states



that the 3-SAT problem cannot be solved in 2𝑜 (𝑁 ) time where 𝑁 is
the number of variables [19, 20].

Note that since 1 ≤ lower ≤ upper ≤ 𝑛, the terms lower and
upper are redundant in the first term of the claimed lower bound for
the running time in Theorem 2. However, we have chosen to include
them here for the sake of completeness so that the involvement
of each of the four fairness parameters (lower, upper, marginlow,
marginup) in Theorem 2 is explicitly clear.

Comparison of our results & techniques to [12]:
Eiben et al. [12] studied the “vanilla" version, i.e., without any

fairness constraints, of the GERRYMANDERING-(R2, ℓ2) problem.
Note that this “vanilla" version of the Gerrymandering problem,
i.e., the GERRYMANDERING-

(
X, 𝜌) problem studied by [12], is a

special case of the FAIR-GERRYMANDERING-
(
X, 𝜌) problem with

the following “extreme" values of some of the parameters:
• marginlow = 1 and marginup = 𝑛

• lower = 0 and upper = 𝑛

Eiben et al. [12] designed an (𝑚+𝑛)𝑂 (
√
𝑘) algorithm along with a

lower bound of 𝑓 (𝑘, 𝑛) ·𝑚𝑜 (
√
𝑘) under ETH. We now briefly compare

our results & techniques to those of Eiben et al. [12]:
• Algorithmic result: The key idea of our algorithm lies in using

the well-known separator theorem of Voronoi diagrams by
Marx and Pilipczuk [26] in recursive way. The non-trivial
part of the technique comes from the efficient handling of
partial solutions. At each step of the recursion we combine
partial solutions from the lower level. As we don’t know
how the final solution will look like we might have cut a
district several time into smaller pieces. We maintain possible
solutions for all such pieces to compute the final district
partitioning, ensuring the fairness criteria.

• Lower bound: Our reduction is similar to that of [12] for the
“vanilla" version of Gerrymandering, but reducing from the
(𝑘 × 𝑘)-GRID-TILING-≥ version of the problem (instead
of (𝑘 × 𝑘)-GRID-TILING as was done by [12]) helps us to
simplify some of the arguments. Further we able to generalize
our reduction which works well for any ℓ𝑑𝑞 where 1 ≤ 𝑞 ≤ ∞
and 𝑑 is arbitrary. This reduction is from the 𝑑-dimensional
≥-CSP problem which has been recently used to show lower
bounds for various problems in computational geometry [8,
9].
Note that if we set 𝑘 = ℓ and marginlow = 1 = marginup
in the reduction, it implies that our desired candidate has
to win each ballot box by exactly one vote. For the other
two parameters, we only need to use the naive bounds 1 ≤
lower ≤ upper ≤ 𝑛.

2 PRELIMINARIES & NOTATION
We mostly follow the denotions and notations from [7]. Given a
set of voters V = {𝑣1, 𝑣2, . . . , 𝑣𝑛} and a set of candidates C, the
preference ranking of voter 𝑣𝑖 is a total order (i.e., transitive, com-
plete, reflexive, and antisymmetric relation) ≺𝑖 over C. To represent
that the voter 𝑣𝑖 prefers candidate 𝑐1 over 𝑐2 we write 𝑐1 ≺𝑖 𝑐2.
Let 𝜋 (C) be the set of preference rankings for the set of candidate
C. For the sake of completeness we assume 𝜋 (C) also contains a
null string 𝜎0. We denote the preference rankings of 𝑛 voters by

𝜎𝑛 = (𝜎1, 𝜎2, . . . 𝜎𝑛). When 𝑘 out of 𝑛 voters participate in a voting
we write it as 𝜎𝑘 which has 𝑛 − 𝑘 null strings corresponds to the
voters not participating. A voting rule is a function r : (𝜋 (C))𝑛 → C.
An election E is comprised of a set of voters V, set of candidates C,
a preferential ranking ≺𝑖 and a voting rule r. We consider elections
where voting rule only considers the number of voters in each prefer-
ential ranking. We define a function 𝜙r : C × (𝜋 (C))𝑛 → Z+ ∪ {0}
called vote aggregator. If 𝑐𝑖 is a winner in an election E within a set
𝑆 = {𝑣 ′1, 𝑣

′
2, . . . 𝑣

′
𝑝 } of 𝑝 candidates then 𝜙r (𝑐𝑖 , 𝜎𝑛) > 𝜙r (𝑐 𝑗 , 𝜎𝑛) for

every 𝑐 𝑗 ( 𝑗 ≠ 𝑖) ∈ 𝑆 . Depending on the voting rule the function 𝜙r
can be defined in many ways such as Borda scoring rule. When r
is understood form the context we use 𝜙 instead of 𝜙r in remaining
part of the paper.

All vectors considered in this paper have length 𝑑 . If a is a vector
then for each 𝑖 ∈ [𝑑] its 𝑖 th-coordinate is denoted by a[𝑖]. Addition
and subtraction of vectors is denoted by ⊕ and ⊖ respectively. The
unit 𝑖 th vector is denoted by e𝑖 and has e𝑖 [𝑖] = 1 and e𝑖 [ 𝑗] = 0 for
each 𝑗 ≠ 𝑖. The set {1, 2, . . . , 𝑛} is denoted by [𝑛].

3 ALGORITHM FOR FAIR
GERRYMANDERING IN (R2, ℓ2)

Our algorithm works as follows: Consider the Voronoi diagram of
𝑆 . A Voronoi diagram in the plane can be viewed as a 3-regular
planar graph with 𝑘-faces and O(𝑘) many vertices each of which
coresponds to a corner point of a voronoi cell. It is known that there
exists a polygon Γ for any 3-regular planar graph, such that it goes
alternately through O(𝑘) vertices and faces and there are at most 2

3𝑘

faces strictly inside Γ and at most 2
3𝑘 faces strictly outside Γ [27].

Our algorithm guesses all possible variants of Γ and for each Γ
it recurse into smaller subproblems defined inside and outside of
Γ. If the size of the subproblem at a recursive step reaches below
certain threshold, algorithm exhaustively searches for a solution.
The algorithm returns YES if all the “small” subproblems of size
below the threshold gets satisfied and computes a solution from the
recursion tree. If one of the “small” subproblems doesn’t satisfy its
conditions the algorithm returns NO. The depth of the recursion tree
is 𝑂 (log𝑘). More formally, we restate our main algorithmic result
as follows.

THEOREM 1. If C is the set of candidates in an election, 𝑛 be the
number of voters and𝑚 be the possible ballot box locations in the
plane, then FAIR-GERRYMANDERING-

(
R2, ℓ2

)
is solvable in time

(𝑚 + 𝑛)O(
√
𝑘) · |C| (upper+lower+marginup+marginlow) where 𝑘 is the

number of ballot boxes for the election.

Recall that the “vanilla" version, i.e., the GERRYMANDERING-(
X, 𝜌) problem, is a special case of the FAIR-GERRYMANDERING-(
X, 𝜌) problem with the parameters marginlow = 1, marginup = 𝑛,
lower = 0 and upper = 𝑛. Our algorithm also computes GERRY-
MANDERING-

(
X, 𝜌) in a little worse running time than the algorithm

in [12].
Before describing the details of our algorithm, first we state the

result by Marx and Pilipczuk about the small balanced separators in
Voronoi diagram which we use for recursive partition.

LEMMA 3. [27] Let 𝑆 be a set of 𝑘 points on the plane. Consider
the Voronoi diagram of 𝑆 , and the planar graph 𝐺 associated with
it. There is a polygon Γ which has length O(

√
𝑘) and its vertices



alternate between elements of 𝑆 and vertices of 𝐺 and each segment
of Γ lies inside a face of𝐺 . At most 2

3𝑘 faces lie strictly inside Γ, and
at most 2

3𝑘 strictly outside.

Note that since Γ passes through O(𝑘) faces, the number of faces
which lie non-strictly inside (outside) Γ is bounded by 3

4𝑘 when 𝑘

is greater than 𝛾 , where 𝛾 is some constant. Note that, we refer this
constant as the constant of Lemma 3 later in our proof.

Our algorithm takes (C,V,B, ℓ, 𝑘, “OUR", upper, lower, marginup,
marginlow) as an input and invokes a subroutine. The subroutine
first finds an equilateral triangle𝑇 such that V and B are completely
inside 𝑇 . Then it mirrors each vertex of the triangle against the
side which is non-adjacent to it. The resulting set is denoted by T .
Consider the Voronoi diagram of B ∪ T . Outerfaces of the Voronoi
diagram are precisely the three cells corresponding to T which are
disjoint from B and V. The subroutine constructs a polygon Δ in
the following way: begin from a point of T and move to the next
clockwise point of T by a sequence to two segments having their
common point on the boundary of the corresponding outerfaces;
repeat this process until the polygon returns to the starting point.

We define states which are instances of the problem. A state is
defined as 𝑅 = (V,B, ℓ, 𝑘, F , 𝑣, Δ, 𝑥,𝑦,𝑤, 𝑧) where

• F ⊂ B is a subset of ballot boxes such that for any 𝑓 ∈ F ,
𝑣 (𝜎, 𝑓 ) ∈ Z+ ∪ {0} and 𝑣 (𝜎, 𝑓 ) ≤ |V|

• For every 𝑓 ∈ F define Σ𝑓 = {𝜎 : 𝑣 (𝜎, 𝑓 ) ≠ 0}.
• Δ is a collection of segments form the boundary of the region

containing V and B.
• Parameters 𝑥,𝑦,𝑤, 𝑧 ∈ Z and 𝑦 ≤ 𝑥 , 𝑤 ≤ 𝑥 , 𝑧 ≤ 𝑤 .
• each segment 𝛿 ∈ Δ has exactly one endpoint in F , denoted

by 𝛿F .

Our algorithm recurse over states. The algorithm decides whether
a given state is valid or not. It further returns a particular subset
S ⊂ B \ F satisfying Definition 1.

Definition 1 (Valid State). A state is valid if there exists a subset
S ⊂ B \ F such that |S| + |F | = 𝑘 and where 𝑖 ∈ {1, 2, . . . 𝑛}, in the
election with voters V and ballot boxes S ∪ F , there exists 𝑟 ≥ ℓ

ballot boxes 𝑠1, 𝑠2, . . . , 𝑠𝑟 ∈ S \ F such that

• vote aggregator function evaluated on target candidate “OUR"
i.e., 𝜙 ( “OUR", 𝜎𝜉𝑖 ,𝑛) > 𝜙 (𝑐 𝑗 , 𝜎𝜉𝑖 ,𝑛)∀ 𝑐 𝑗 ∈ C\{“OUR"} and
𝑖 ∈ {1, 2, . . . , 𝑟 } where 𝜉𝑖 = |Σ𝑠𝑖 |, and

• 𝜙 (“OUR", 𝜎𝜉𝑖 ) − 𝜙 (𝑐 𝑗 , 𝜎𝜉𝑖 ) ≤ 𝑤 , ∀ 𝑐 𝑗 ∈ C \ {“OUR"} and
𝑖 ∈ {1, 2, . . . , 𝑟 } where 𝜉𝑖 = |Σ𝑠𝑖 | and ∀ 𝑐 𝑗 ∈ C, and

• 𝜙 (“OUR", 𝜎𝜉𝑖 ) − 𝜙 (𝑐 𝑗 , 𝜎𝜉𝑖 ) ≥ 𝑧, ∀ 𝑐 𝑗 ∈ C \ {“OUR"} and
𝑖 ∈ {1, 2, . . . , 𝑟 } where 𝜉𝑖 = |Σ𝑠𝑖 | and ∀ 𝑐 𝑗 ∈ C, and

• 𝜙 (𝑐 𝑗 , 𝜎𝜉𝑖 ) ≤ 𝑥 ∀ 𝑐 𝑗 ∈ C and 𝜙 (𝑐 𝑗 , 𝜎𝜉𝑖 ) ≥ 𝑦 ∀ 𝑐 𝑗 ∈ C, and
• in the Voronoi diagram of S ∪ F , each segment 𝛿 of Δ lies

completely inside the cell corresponding to the ballot box 𝛿F

The initial state is defined as 𝑅0 = (V,B ∪ T , ℓ, 𝑘 + 3, F , 𝑣,

Δ, upper, lower, marginup, marginlow) where 𝑣 (𝑓 , 𝜎) = 0 for any
𝑓 ∈ T and 𝜎 ∈ 𝜋 (𝐶). Since for any 𝑣 ∈ V any 𝑏 ∈ B is closer to
𝑣 than any 𝑓 ∈ T , 𝑅0 is valid if and only if (C,V,B, ℓ, 𝑘, “OUR",
upper, lower, marginup, marginlow) is an YES-instance.

Recursive Step On a given state 𝑅 = (V,B, ℓ, 𝑘, F , 𝑣,Δ, upper,
lower, marginup, marginlow) if 𝑘 − |F | ≤ 𝛾 , where 𝛾 is the con-
stant mentioned after the statement of Lemma 3, our algorithm tries

all possible S ⊂ B of size 𝑘 − |F | and for each set check the con-
ditions of Definition 1. Since 𝛾 = 𝑂 (1), the whole procedure takes
polynomial time. If 𝑘 = |F | > 𝛾 the algorithm tries all possible
polygons Γ of the form Lemma 3. Since a vertex of a Voronoi di-
agram constructed over any subset of B is equidistant from three
elements from this subset and is uniquely determined by these three
elements, there are at most |B|3 potential locations for a Voronoi
diagram vertex. Therefore there are at most |B|4𝛼

√
𝑘 variants for Γ.

The algorithm considers only these Γ which do not go out of the
region defined by Δ.

For each possible Γ, the algorithm splits the instance into two
parts. Let Q be the set of ballot boxes on Γ. Let V1 (V2) be the
set of voters inside (outside) of Γ, B1 (B2) be the set of possible
ballot boxes inside (outside) of Γ. In other words V = V1 ∪ V2,
V1 ∩V2 = ∅, B = B1 ∪ B2. Let F𝑖 = Q ∪ (F ∩ B𝑖 ), for 𝑖 ∈ {1, 2}
and Δ𝑖 be the set of segments 𝛿 ∈ Δ such that 𝛿F ∈ F𝑖 . It defines the
preference counts 𝑣1 and 𝑣2 as follows:

• for ballot boxes 𝑓 ∈ F \Q the value 𝑣𝑖 (𝜎, 𝑓 ) = 𝑣 (𝜎, 𝑓 ) where
𝑖 ∈ {1, 2}, the value 𝑥𝑖 = 𝑥 , 𝑦𝑖 = 𝑦 and 𝑤𝑖 = 𝑤 where
𝑖 ∈ {1, 2}

• for ballot boxes 𝑓 ∈ F ∩ Q it guesses a split 𝑣 (𝜎, 𝑓 ) into
𝑣1 (𝜎, 𝑓 ), 𝑣2 (𝜎, 𝑓 ); 𝑥 into 𝑥𝑖 ’s; 𝑦 into 𝑦𝑖 ’s; 𝑧 into 𝑧𝑖 ’s and 𝑤

into 𝑤𝑖 ’s such that 𝑥 ≥ 𝑥1 + 𝑥2, 𝑦 ≤ 𝑦1 + 𝑦2, 𝑤 ≥ 𝑤1 +𝑤2
and 𝑧 ≤ 𝑧1 + 𝑧2

• for ballot boxes 𝑓 ∈ Q \ F it additionally guesses the values
of 𝑣1 (𝜎, 𝑓 ), 𝑣2 (𝜎, 𝑓 ), 𝑥1, 𝑥2, 𝑦1, 𝑦2 and 𝑤1, 𝑤2 such that 𝑥 ≥
𝑥1 + 𝑥2, 𝑦 ≤ 𝑦1 + 𝑦2, 𝑤 ≥ 𝑤1 +𝑤2 and 𝑧 ≤ 𝑧1 + 𝑧2

Finally, the algorithm guesses how 𝑘 + |Q \ F | can be split into
two parts 𝑘1 and 𝑘2 such that each of 𝑘𝑖 ≤ 3

4𝑘 where 𝑖 ∈ {1, 2}. It
also guesses how ℓ − 𝑤 can be split between ℓ1 and ℓ2, where 𝑤

is the number of boxes in Q \ F where target candidate “OUR"
wins if voters from 𝑉1 and 𝑉2 vote according to 𝑣1 and 𝑣2. Next,
it recurs on the state 𝑅1 = (V1,B1, ℓ, 𝑘, F1, 𝑣1,Δ, 𝑥1, 𝑦1,𝑤1, 𝑧1) and
𝑅2 = (V2,B2, ℓ, 𝑘, F2, 𝑣2,Δ, 𝑥2, 𝑦2,𝑤2, 𝑧2). If both 𝑅1 and 𝑅2 are
reported to be valid states, it returns that 𝑅 is valid and take S =

S1 ∪ S2 ∪ (Q \ F ). Otherwise, it continues to the next choice of Γ.
If for all choices of Γ it does not succeed, the algorithm returns that
𝑅 is not valid.

Correctness We prove the correctness of the algorithm by apply-
ing induction on 𝑘 . In the base case 𝑘 − |F | ≤ 𝛾 the algorithm tries
all possible ways to select the ballot boxes and then checks the condi-
tions. In the case 𝑘 − |F | > 𝛾 , first assume that the algorithm reports
a given state 𝑅 = (V,B, ℓ, 𝑘, F , 𝑣,Δ, 𝑥,𝑦,𝑤, 𝑧) as valid. So for some
Γ, two splitting states 𝑅1 = (V1,B1, ℓ, 𝑘, F1, 𝑣1,Δ, 𝑥1, 𝑦1,𝑤1, 𝑧1) and
𝑅2 = (V2,B2, ℓ, 𝑘, F2, 𝑣2,Δ, 𝑥2, 𝑦2,𝑤2, 𝑧2) reported to be valid states
by the algorithm. By the induction hypothesis these two states are
valid since both 𝑘1 and 𝑘2 are at most 3

4𝑘 . Consider sets S1 ⊂ B1\F1
and S2 ⊂ B2 \ F2 returned by the recursive calls. By induction S1
and S2 also satisfy Definition 1 on the validity of 𝑅1 and 𝑅2 , respec-
tively. As before, denote S1 ∪ S2 ∪ (Q \ F ) by S. We claim that S
satisfies Definition 1 for 𝑅, and therefore 𝑅 is valid. By construction
of 𝑅1 and 𝑅2, 𝑘 = 𝑘1 + 𝑘2 − |Q \ F |, and since S1,S2 , and Q \ F
are pairwise disjoint, the size of 𝑆 is indeed equal to 𝑘 − |F |. We use
the Claim 1 from [12] to show that for voters in each part, the box
where they vote is the same as the election with boxes S𝑖 ∪ F𝑖 and
in the election with boxes S ∪ F .



Claim 1. [12] For 𝑖 ∈ {1, 2} and any voter 𝑣 ∈ V𝑖 , the closest box
to 𝑣 in S ∪ F is also the closest box in S𝑖 ∪ F𝑖 .

Next, we show that in the election with boxes S ∪ F the target
candidate “OUR" wins in at least ℓ ballot boxes of S and that the
votes in districts of F are distributed according to 𝑣 .

By Claim 1, for each 𝑖 ∈ {1, 2} and for each box in S𝑖 , the voters
who votes in the election with ballot boxes S ∪ F and the election
with ballot boxes S𝑖 ∪ F𝑖 are exactly same. This implies the target
candidate “OUR" wins in exactly ℓ1 + ℓ2 boxes out of the boxes in
𝑆1 and 𝑆2. For each 𝑖 ∈ {1, 2} and each ballot box 𝑏 ∈ F𝑖 \ Q, the
set of voters who votes in the ballot box 𝑏 remains same in both the
instance of the election, with boxes S ∪ F and with boxes S𝑖 ∪ F𝑖 .
Since 𝑣 (𝑏, 𝜎) = 𝑣𝑖 (𝑏, 𝜎) for any 𝜎 ∈ 𝜋 (𝐶), the vote distribution on
F𝑖 \Q is as desired. This also implies 𝜙 (𝑐, 𝜎𝜉 ) ≤ upper for all 𝑐 ∈ C
and 𝜙 (𝑐, 𝜎𝜉 ) ≥ lower, where 𝜉 = |Σ𝑏 |. If 𝑐∗ wins the ballot box 𝑏

then 𝜙 (𝑐∗, 𝜎𝜉 ) −𝜙 (𝑐∗, 𝜎𝜉 ) ≤ marginup and 𝜙 (𝑐∗, 𝜎𝜉 ) −𝜙 (𝑐∗, 𝜎𝜉 ) ≥
marginlow for all 𝑐 ∈ C.

For each ballot box 𝑞 ∈ Q and each preference 𝜎 ∈ 𝜋 (𝐶),
𝑣 (𝑞, 𝜎) = 𝑣1 (𝑞, 𝜎) + 𝑣2 (𝑞, 𝜎) by construction. Since voters from
V1 and V2 who vote in ballot box 𝑞 are exactly preserved, 𝑣 (𝑞, 𝜎)
is indeed equal to the number of voters with preference list 𝜎

who vote in the ballot box 𝑞. This additionally implies 𝜙 (𝑐, 𝜎𝜁 ) ≤
upper for all 𝑐 ∈ C and 𝜙 (𝑐, 𝜎𝜁 ) ≥ lower where 𝜁 = |Σ𝑞 |. If 𝑐∗

wins the ballot box 𝑞 then 𝜙 (𝑐∗, 𝜎𝜁 ) − 𝜙 (𝑐∗, 𝜎𝜁 ) ≤ marginup and
𝜙 (𝑐∗, 𝜎𝜁 ) − 𝜙 (𝑐∗, 𝜎𝜁 ) ≥ marginlow for all 𝑐 ∈ C. This finishes the
proof that 𝑅 is valid and 𝑆 satisfies Definition 1.

Finally, we show that for each 𝛿 ∈ Δ, 𝛿 lies inside the cell of 𝛿F
in the Voronoi diagram of S ∪ F . If 𝛿F ∈ Q, 𝛿 lies inside the cell of
𝛿F in the Voronoi diagram of S𝑖 ∪ F𝑖 for 𝑖 ∈ {1, 2}. This is because
𝑅1 and 𝑅2 are valid. As a consequence, no other point in S ∪ F is
closer to each point on 𝛿 than 𝛿F . If 𝛿F ∉ Q, 𝛿 is completely inside
or outside of Γ, and the same argument as in Claim 1 shows that for
any point on 𝛿 the closest ballot box is preserved, then it has to be
𝛿F , since 𝛿 is in Δ𝑖 for some 𝑖 ∈ {1, 2}, and 𝑅𝑖 is valid.

Conversely, assume that 𝑅 is valid. We show that the algorithm
correctly outputs YES. Consider a particular S from Definition 1. By
Lemma 3 there exists a polygon Γ of length 𝑂 (

√
𝑘) for the Voronoi

diagram of S ∪ F that is a balanced separator for S ∪ F . Since the
algorithm tries all polygons of this form, it eventually find Γ as well,
or report that 𝑅 is valid earlier. When the algorithm considers the
polygon Γ, in one of the instances the algorithm guesses the correct
values of 𝑘1, 𝑘2, ℓ1, ℓ2, 𝑣1, 𝑣2, 𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧1, 𝑧2 and 𝑤1, 𝑤2 on
the ballot boxes of Q \ F , according to the elections on S ∪ F . The
new states 𝑅1 and 𝑅2 are valid since the elections on S ∩ F exactly
induce conditions on 𝑅𝑖 . There exists a valid selection of ballot boxes
S𝑖 = (S ∪ F ) ∩ B𝑖 \ Q, for each 𝑖 ∈ {1, 2}. Therefore the recursive
call finds 𝑅𝑖 valid by induction. That finishes the proof.

Running Time The running time analysis of our algorithm is sim-
ilar to the running time analysis of the algorithm in [12]. For the sake
of completeness we included the proof. Let 𝑇 (𝑘) be the worst-case
running time of our algorithm where 𝑘 be the size of the solution that
the algorithm received as a parameter of the input state. In the case
𝛾 ≤ 𝑘, the algorithm does an exhaustive search in polynomial time.
That implies for each of the candidates the parameters upper, lower,
marginup and marginlow can take at most the maximum of its value
and we have to check instances for all such possible combinations of

the parameters. So𝑇 (𝑘) = (𝑚+𝑛)𝛾+upper+lower+marginup+marginlow .
If 𝑘 > 𝛾 , we try at most𝑚4𝛼

√
𝑘 polygons Γ. For each of the polygons,

we spent at most 𝑘ℓ𝑛2𝛼
√
𝑘+upper+lower+marginup+marginlow time to

guess the parameters of two new instances 𝑘1, ℓ1, 𝑣1, 𝑥1, 𝑦1,𝑤1 and
𝑘2, ℓ2, 𝑣2, 𝑥2, 𝑣2,𝑤2. We run the algorithm on the two instances recur-
sively and in both in both instances the value of the parameter is
bounded by 3𝑘

4 . So we obtain the following recurrence relation:

• 𝑇 (𝑘) ≤ (𝑚 +𝑛)𝛾 · |C| (upper+lower+marginup+marginlow) when
𝑘 ≤ 𝛾

• 𝑇 (𝑘) ≤ (𝑚 + 𝑛)𝐹
√
𝑘 · |C| (upper+lower+marginup+marginlow) ·

𝑇 ( 34𝑘) (for some constant 𝐹 ) when 𝑘 > 𝛾

Solving this recurrence relation, we obtain𝑇 (𝑘) ≤ (𝑚+𝑛)𝑂 (
√
𝑘) ·

|C| (upper+lower+marginup+marginlow) .

4 LOWER BOUND FOR FAIR
GERRYMANDERING IN (R𝑑 , 𝜌)

The goal of this section is to prove Theorem 2 which is restated
below:

THEOREM 2. For any 𝑑 ≥ 2, under the Exponential Time Hypoth-
esis (ETH), the FAIR-GERRYMANDERING-

(
R𝑑 , 𝜌) problem cannot

be solved in 𝑓 (𝑘, 𝑛, upper, lower) ·𝑚𝑜 (𝑘1−1/𝑑 ) time where 𝑓 is any
computable function, 𝑛 is the number of voters, and 𝑘 is the number
of the ballot boxes opened, 𝑚 is the total number of possible loca-
tions of ballot boxes and 𝜌 is either the ℓ∞-metric or the ℓ𝑞-metric
for some 𝑞 ≥ 1. This lower bound holds even when there are only 2
candidates, 𝑘 = ℓ and marginlow = 1 = marginup.

We prove Theorem 2 via a reduction from the 𝑑-dimensional ≥-CSP
problem for which a lower bound was shown in [28].

The rest of this section is organized as follows: Section 4.1 intro-
duces the framework of≥-CSP along with the relevant definitions.
The construction describing the reduction from ≥-CSP to FAIR-
GERRYMANDERING-

(
R𝑑 , ℓ2

)
is outlined in Section 4.2. The two

directions showing the correctness of the aforementioned reduction
are described in Section B.1 and Section B.2 respectively. Finally,
everything is tied together in Section 4.4 to complete the proof
of Theorem 2.

4.1 Hardness of the 𝑑-dimensional ≥-CSP
problem

In this section, which closely follows [28], we give a brief introduc-
tion and necessary definitions of the 𝑑-dimensional ≥-CSP frame-
work before stating the formal theorem (Theorem 4) that will be
used in our reduction.

Constraint Satisfaction Problems (CSPs) are a general way to
represent several important problems in theoretical computer science.
In this paper, we only deal with binary CSPs:

Definition 2 (binary CSPs). An instance of a binary constraint
satisfaction problem (CSP) is a triple I = (𝑉 , 𝐷,𝐶) where𝑉 is a set
of variables, 𝐷 is a domain of values and 𝐶 is a set of constraints.
There are two types of constraints:

• Unary constraints: For some 𝑣 ∈ 𝑉 there is a unary constraint
⟨𝑣, 𝑅𝑣⟩ where 𝑅𝑣 ⊆ 𝐷 .



• Binary constraints: For some 𝑢, 𝑣 ∈ 𝑉 there is a binary con-
straint ⟨(𝑢, 𝑣), 𝑅𝑢,𝑣⟩ where 𝑅𝑢,𝑣 ⊆ 𝐷 × 𝐷 .

Solving a given CSP instance I = (𝑉 , 𝐷,𝐶) is to check whether
there exists a satisfying assignment for it, i.e., a function 𝑓 : 𝑉 → 𝐷

such that all the constraints are satisfied. For a binary CSP, a sat-
isfying assignment 𝑓 has the property that for each unary con-
straint ⟨𝑣, 𝑅𝑣⟩ we have 𝑓 (𝑣) ∈ 𝑅𝑣 and for each binary constraint
⟨(𝑢, 𝑣), 𝑅𝑢,𝑣⟩ we have

(
𝑓 (𝑢), 𝑓 (𝑣)

)
∈ 𝑅𝑢,𝑣 .

The constraint graph of a CSP instance I = (𝑉 , 𝐷,𝐶) is an undi-
rected graph 𝐺I whose vertex set is 𝑉 and the adjacency relation
is defined as follows: two vertices 𝑢, 𝑣 ∈ 𝑉 are adjacent in 𝐺I if
there is a constraint in I which contains both 𝑢 and 𝑣 . The size |I |
of a binary CSP I = (𝑉 , 𝐷,𝐶) is the combined size of the variables,
domain and the constraints. With appropriate preprocessing (for
example, combining different constraints on the same variables) we
can assume that |I | =

(
|𝑉 | + |𝐷 |

)𝑂 (1) . Marx and Sidiropoulos [28]
observed that considering binary CSPs whose primal graph is a sub-
graph of the 𝑑-dimensional grid is useful in showing lower bounds
for geometric problems in 𝑑-dimensions.

Definition 3 (grids). The 𝑑-dimensional grid R[𝜅,𝑑] is an undi-
rected graph with vertex set [𝜅]𝑑 and two vertices a, b are adjacent
if and only if

∑𝑑
𝑖=1

��a[𝑖] − b[𝑖]
�� = 1.

Definition 4 (geometric CSPs). A 𝑑-dimensional geometric ≥-CSP
I = (𝑉 , 𝐷,𝐶) is a binary CSP whose

• set of variables 𝑉 is a subset of R[𝜅,𝑑] for some 𝜅 ≥ 1
• domain is [𝑁 ]𝑑 for some integer 𝑁 ≥ 1
• constraint graph 𝐺I is an induced subgraph of R[𝜅,𝑑]
• binary constraints are of the following type: if a, a′ ∈ 𝑉

such that a′ = a ⊕ e𝑖 for some 𝑖 ∈ [𝑑] then there is a bi-
nary constraint

〈
(a, a′), 𝑅a,a′

〉
with 𝑅a,a′ =

{(
(𝑥1, 𝑥2, . . . , 𝑥𝑑 ),

(𝑦1, 𝑦2, . . . , 𝑦𝑑 )
)
| 𝑥𝑖 ≥ 𝑦𝑖

}
Since the constraint graph𝐺I is an induced subgraph of R[𝜅,𝑑], it

follows that the set of unary constraints of a 𝑑-dimensional geometric
≥-CSP is sufficient to completely define it. We now formally state the
result of Marx and Sidiropoulos [28] which gives a lower bound on
the complexity of checking whether a given𝑑-dimensional geometric
≥-CSP has a satisfying assignment or not.

THEOREM 4. Theorem 2.10 in [28] If for some fixed 𝑑 ≥ 2,
there is an 𝑓 ( |𝑉 |) · |I |𝑜 ( |𝑉 |1−1/𝑑 ) time algorithm for solving a 𝑑-
dimensional geometric ≥-CSP I for some computable function 𝑓 ,
then the Exponential Time Hypothesis (ETH) fails.

Remark 1. The problem defined in [28] is actually 𝑑-dimensional
geometric ≤-CSP which has ≤-constraints instead of the ≥-constraints
in the 𝑑-dimensional geometric ≤-CSP problem. However, it is easy
to see that 𝑑-dimensional geometric ≤-CSP and 𝑑-dimensional geo-
metric ≥-CSP are equivalent by the following operation: replace
each unary constraint (𝑥1, 𝑥2, . . . , 𝑥𝑑−1, 𝑥𝑑 ) ∈ 𝑅a by (𝑁 +1−𝑥1, 𝑁 +
1 − 𝑥2, . . . , 𝑁 + 1 − 𝑥𝑑−1, 𝑁 + 1 − 𝑥𝑑 ) for each a ∈ 𝑉 .

4.2 Construction of the
FAIR-GERRYMANDERING-

(
R𝑑 , ℓ2

)
instance

Let I = (𝑉 , 𝐷,𝐶) be an instance of 𝑑-dimensional geometric ≥-
CSP. From this, we will now construct an instance U =

(
C =

{“OUR", “OTHER"}, V,B, 𝑘 = |𝑉 |, ℓ = |𝑉 |, marginlow = 1 =

marginup, “OUR"
)

of FAIR-GERRYMANDERING-
(
R𝑑 , ℓ2

)
such that

I is satisfiable if and only if U has a solution (see Figure 1 for an
illustration).

Fix the following three values

𝜖 =
1
4
; 𝐷 = 2𝑑 · 𝑁 2; 𝐶 = 2𝐷 + (𝑁 − 1) (1)

We assume 𝑑, 𝑁 ≥ 2 and so Equation 1 ⇒ 𝐷 ≥ 8𝑁 (2)

4.2.1 Adding internal vertices: For each a ∈ 𝑉 we define a set
of points denoted by INTERNAL1 (a) as follows:

• The temp-origin(a) is 1𝑑 = (1, 1, . . . , 1).
• For each x ∈ 𝑅a ⊆ [𝑁 ]𝑑 we add a point located at x =

temp-origin(a) ⊕
(
x ⊖ 1𝑑

)
.

We now perform the following three operations (in order) to obtain
our final set of points P:

4.2.2 Mirroring: For each 𝑖 ∈ [𝜅] we define the function flip𝑖 :
[𝑁 ] → [𝑁 ] as follows: for each 𝑞 ∈ [𝑁 ]

flip𝑖 (𝑞) =
{
𝑁 + 1 − 𝑞 if 𝑖 is even
𝑞 if 𝑖 is odd

(3)

Observation 1. Note that ∀ 𝑖 ∈ [𝜅] and ∀ 𝑞 ∈ [𝑁 ] we have
flip𝑖

(
flip𝑖 (𝑞)

)
= 𝑞.

For each a ∈ 𝑉 , we make “mirroring" changes to all the points of
INTERNAL1 (a) as follows: If x ∈ INTERNAL1 (a) then we replace it
with y such that y[𝑖] = flipa[𝑖 ]

(
x[𝑖]

)
for each 𝑖 ∈ [𝑑]. We call this

set of points as INTERNAL2 (a).

4.2.3 Translation: We now fix the location of the origin of each
grids by translation as follows: for each a ∈ 𝑉 set

orig(a) = temp-origin(a) ⊕ 𝐶 ·
(
a ⊖ 1𝑑

)
= 1𝑑 ⊕ 𝐶 ·

(
a ⊖ 1𝑑

)
(4)

Note that this also shifts all points of INTERNAL2 (a) accordingly:
each point y ∈ INTERNAL2 (a) is shifted to the point orig(a) ⊕(
y ⊖ 1𝑑

)
= 𝐶 ·

(
a ⊖ 1𝑑

)
⊕ y. We denote this new set of points by

INTERNAL3 (a).
We are now ready to add the voters. For this, we start by fixing a

bijective function 𝜙 : 𝑉 →
[
|𝑉 |

]
.

4.2.4 Adding “OUR" voters at origin points. For each a ∈ 𝑉 ,
we define

INTERNAL4 (a) = INTERNAL3 (a)
⋃{
orig(a)

}
(5)

For each a ∈ 𝑉 we place 1 + 2𝑑 · (2𝑑 + 1)𝜙 (a) “OUR" voters at
the point origin(𝑎).

4.2.5 Adding “OTHER" voters at border points: For each a ∈
𝑉 , we define a set of “border" points by adding points corresponding
to the adjacencies in 𝐺I . Since 𝐺I is an induced subgraph of the
𝑑-dimensional grid R[𝜅,𝑑], an edge b-b′ in 𝐺I is of the following
form: there exists 𝑗 ∈ [𝑑] such that b′ = b ⊕ e𝑗 .
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Figure 1: An illustration of the construction (Section 4.2) of the GERRYMANDERING-
(
R𝑑 , ℓ2

)
instance when 𝜅 = 2 = 𝑑, 𝑁 = 4 and

𝑉 = R[𝜅, 2] =
{
(1, 1), (1, 2), (2, 1), (2, 2)

}
. For each a ∈ 𝑉 , we first add (Section 4.2.1) the point (𝑥,𝑦) ∈ [4] × [4] to INTERNAL1 (a) if

(𝑥,𝑦) ∈ 𝑅a.
The second step is the mirroring (Section 4.2.2) to obtain the set of points INTERNAL2 (a) for each a ∈ 𝑉 . For example, the 𝑥-
coordinate of every point in INTERNAL1

(
(2, 1)

)
is flipped while the 𝑦-coordinate stays the same: the black vertex shows how if

(1, 4) ∈ INTERNAL1
(
(2, 1)

)
then it gets flipped to (4, 4).

The third and final step is the translation (Section 4.2.3) which moves the [4]× [4] grids corresponding to the different a ∈ 𝑉 according
to Equation 4.
Note that the gray points show all possible locations of the [4] × [4] grid for the points of INTERNAL3 each a ∈ 𝑉 . The actual points
are shown in black color: for each of the four grids we show one point. For a = (1, 1) we show the location of the point which gets
placed due to (2, 3) ∈ 𝑅 (1,1) . For a = (2, 1) we show the location of the point which gets placed due to (1, 4) ∈ 𝑅 (2,1) . For a = (1, 2) we
show the location of the point which gets placed due to (1, 4) ∈ 𝑅 (1,2) . For a = (2, 2) we show the location of the point which gets placed
due to (3, 4) ∈ 𝑅 (2,2) .

For each a ∈ 𝑉 and each 𝑖 ∈ [𝑑], we have two cases depending
on the parity of a[𝑖]:

(1) a[𝑖] is odd:
(i) If a and (a ⊕ e𝑖 ) form an edge in 𝐺I then introduce (2𝑑 +

1)𝜙 (a) “OTHER" voters at the point mid+𝑖a := orig(a) ⊕
e𝑖 ·

(
(𝑁 − 1) + (𝐷 − 𝜖)

)
. See Figure 2 (Appendix A) for an

illustration.
(ii) Otherwise if a and (a ⊕ e𝑖 ) do not form an edge in 𝐺I

then introduce (2𝑑 + 1)𝜙 (a) “OTHER" voters at the point
mid+𝑖a := orig(a) ⊕ e𝑖 ·

(
(𝑁 −1) + (𝐷 −2𝑁 )

)
. See Figure 3

(Appendix A) for an illustration.

(iii) If a and (a ⊖ e𝑖 ) form an edge in 𝐺I then introduce (2𝑑 +
1)𝜙 (a) “OTHER" voters at the point mid−𝑖a := orig(a) ⊖
e𝑖 ·

(
𝐷 − 𝜖

)
.

(iv) Otherwise if a and (a ⊖ e𝑖 ) do not form an edge in 𝐺I
then introduce (2𝑑 + 1)𝜙 (a) “OTHER" voters at the point
mid−𝑖a := orig(a) ⊖ e𝑖 ·

(
𝐷 − 2𝑁

)
.

(2) a[𝑖] is even:
(i) If a and (a ⊕ e𝑖 ) form an edge in 𝐺I then introduce (2𝑑 +

1)𝜙 (a) “OTHER" voters at the point mid+𝑖a := orig(a) ⊕
e𝑖 ·

(
(𝑁 − 1) + (𝐷 + 𝜖 − 𝑁 )

)
.

(ii) Otherwise if a and (a ⊕ e𝑖 ) do not form an edge in 𝐺I
then introduce (2𝑑 + 1)𝜙 (a) “OTHER" voters at the point



mid+𝑖a := orig(a) ⊕ e𝑖 ·
(
(𝑁 − 1) + (𝐷 − 2𝑁 )

)
.

(iii) If a and (a ⊖ e𝑖 ) form an edge in 𝐺I then introduce (2𝑑 +
1)𝜙 (a) “OTHER" voters at the point mid−𝑖a := orig(a) ⊖
e𝑖 · (𝐷 + 𝜖 − 𝑁 ).

(iv) Otherwise if a and (a ⊖ e𝑖 ) do not form an edge in 𝐺I
then introduce (2𝑑 + 1)𝜙 (a) “OTHER" voters at the point
mid−𝑖a := orig(a) ⊖ e𝑖 · (𝐷 − 2𝑁 ).

For each a ∈ 𝑉 , we define

BORDER(a) =
𝑑⋃
𝑖=1

{
mid+𝑖a , mid−𝑖a

}
(6)

Hence, it follows that
��BORDER(a)

�� = 2𝑑 for each a ∈ 𝑉 .

Observation 2. For each a ∈ 𝑉 we have

• There are exactly 1 + 2𝑑 · (2𝑑 + 1)𝜙 (a) “OUR" voters at the
point orig(𝑎)

• There are exactly 2𝑑 · (2𝑑 +1)𝜙 (a) “OTHER" voters combined
at the points in BORDER(𝑎)

Hence the total number of voters is given by

𝑛 : =
∑
a∈𝑉

(
1 + 4𝑑 · (2𝑑 + 1)𝜙 (𝑎) )

≤ |𝑉 | + 4𝑑 · |𝑉 | · (2𝑑 + 1) |𝑉 | = 𝜏 ( |𝑉 |, 𝑑) (7)

for some function 𝜏 where we have used the fact that 𝜙 : 𝑉 →
[
|𝑉 |

]
.

The set of possible locations of ballot boxes is given by B =⋃
a∈𝑉 INTERNAL3 (a). Hence, from Section 4.2.1-Section 4.2.3 we

have that
𝑚 := |B

�� ≤ 𝐶 (8)

We set the total number of ballot boxes to be allocated and won
to both be equal to |𝑉 |, i.e.

𝑘 = |𝑉 | = ℓ (9)

Finally, for each a ∈ 𝑉 we use the notation

P(a) := INTERNAL4 (a)
⋃

BORDER(a) (10)

This completes the construction of the instance U =
(
C =

{“OUR", “OTHER"},V,B, 𝑘 = |𝑉 |, ℓ = |𝑉 |, “OUR"
)

of the FAIR-
GERRYMANDERING-

(
R𝑑 , ℓ2

)
problem from an instance I = (𝑉 , 𝐷,𝐶)

of 𝑑-dimensional geometric ≥-CSP.

4.3 FAIR-GERRYMANDERING-
(
R𝑑 , ℓ2

)
has a

solution ⇔ 𝑑-dimensional geometric ≥-CSP is
satisfiable

The proof of the forward and reverse directions is deferred to Sec-
tion B.1 and Section B.2 respectively.

4.4 Proof of Theorem 2
Finally, we are ready to prove Theorem 2 which is restated below:

THEOREM 2. For any 𝑑 ≥ 2, under the Exponential Time Hypoth-
esis (ETH), the FAIR-GERRYMANDERING-

(
R𝑑 , 𝜌) problem cannot

be solved in 𝑓 (𝑘, 𝑛, upper, lower) ·𝑚𝑜 (𝑘1−1/𝑑 ) time where 𝑓 is any
computable function, 𝑛 is the number of voters, and 𝑘 is the number

of the ballot boxes opened, 𝑚 is the total number of possible loca-
tions of ballot boxes and 𝜌 is either the ℓ∞-metric or the ℓ𝑞-metric
for some 𝑞 ≥ 1. This lower bound holds even when there are only 2
candidates, 𝑘 = ℓ and marginlow = 1 = marginup.

PROOF. Fix any 𝑑 ≥ 2. Given an instance I = (𝑉 , 𝐷,𝐶) of a
𝑑-dimensional ≥-CSP, we obtained a reduction (described in Sec-
tion 4.2) to build an instance of FAIR-GERRYMANDERING-

(
R𝑑 , ℓ2

)
given by U =

(
C = {“OUR", “OTHER"},V,B, 𝑘 = |𝑉 |, ℓ = |𝑉 |,

“OUR"
)
. The correctness of this reduction follows from the two di-

rections shown in Section B.1 and Section B.2: I = (𝑉 , 𝐷,𝐶) has a
satisfying assignment if and only if U has a solution.

Theorem 4 states that assuming the Exponential Time Hypoth-
esis (ETH) there is no computable function 𝑓 such that instances
I = (𝑉 , 𝐷,𝐶) of 𝑑-dimensional geometric ≥-CSP can be solved in
𝑓 ( |𝑉 |) · |I |𝑜 ( |𝑉 |1−1/𝑑 ) time. The reduction from Section 4.2 con-
verts an instance of I = (𝑉 , 𝐷,𝐶) of 𝑑-dimensional geometric
≥-CSP in |I |𝑂 (1) time into an equivalent instance U =

(
C =

{“OUR", “OTHER"},V,B, 𝑘 = |𝑉 |, ℓ = |𝑉 |, “OUR"
)

of FAIR-
GERRYMANDERING-

(
R𝑑 , ℓ2

)
such that

• 𝑘 = |𝑉 | (from Equation 9)
• 𝑛 = |C| = 𝜏 ( |𝑉 |, 𝑑) for some function 𝜏 (from Equation 7)
• 𝑚 = |B| ≤ |𝐶 | ≤ |𝐼 | (from Equation 8)

Hence, it follows that assuming the Exponential Time Hypoth-
esis (ETH) there is no computable function 𝑓 such that the FAIR-
GERRYMANDERING-

(
R𝑑 , ℓ2

)
problem can be solved in 𝑓 (𝑘, 𝑛) ·

𝑚𝑜 (𝑘1−1/𝑑 ) time where 𝑛 is the number of voters, 𝑚 is the total num-
ber of possible ballot box locations and 𝑘 is the size of the actual
ballot boxes which are opened. Note that our reduction (similar to
that of [12]) has only two candidates: “OUR" and “OTHER". Our
lower bound extends to the ℓ∞-metric with exactly the same con-
struction: in fact some of the proofs are simpler for ℓ∞ as compared
to ℓ2. The only minor change needed to make the lower bound work
for the ℓ𝑞-metric (for 𝑞 ≥ 1) is to change the value of 𝐷 in Equation 1
to 2𝑑𝑁𝑞 instead of 2𝑑𝑁 2. □

Remark 2. Our lower bound is stated for the case when 𝑘 = ℓ , but
can easily be made to also work when ℓ < 𝑘 by placing some dummy
voters far away.

5 CONCLUDING REMARKS
In this paper, we have studied the Gerrymandering problem in the
presence of some newly introduced natural fairness conditions from
algorithm and computational hardness point of view. Our algorithm
is almost near-optimal and our hardness framework which works
well for any arbitrary dimension can be of independent interest in
proving ETH based hardness for other various “nearest-neighbor"
type of problems. We hope this will lead to more algorithmic work
on fairness in elections and more generally in computational social
choice.
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A MISSING FIGURES

𝑖 th dimension

INTERNAL3 (a) INTERNAL3 (a ⊕ e𝑖 )

mid+𝑖a

𝐷 − 𝜖 𝐷 + 𝜖

2𝐷

Figure 2: This figure illustrates how the location of the point mid+𝑖a is decided when a[𝑖] is odd and the two vertices a, a ⊕ e𝑖 form
an edge in 𝐺I . This corresponds to Case 1(i) from Section 4.2.5. The left hand side shows the points of INTERNAL(a) with the point
orig(a) highlighted in green color. The right hand side shows the points of INTERNAL(a ⊕ e𝑖 ) with the point orig(a ⊕ e𝑖 ) highlighted
in green color. The point mid+𝑖a is then placed at orig(a) ⊕ e𝑖 ·

(
(𝑁 − 1) + (𝐷 − 𝜖)

)
.

𝑖 th dimension

INTERNAL3 (a) INTERNAL3 (a ⊕ e𝑖 )

mid+𝑖a

𝐷 − 2𝑁 𝐷 + 2𝑁

2𝐷

Figure 3: This figure illustrates how the location of the point mid+𝑖a is decided when a[𝑖] is odd and the two vertices a, a⊕e𝑖 do not form
an edge in 𝐺I . This corresponds to Case 1(ii) from Section 4.2.5. The left hand side shows the points of INTERNAL(a) with the point
orig(a) highlighted in green color. The right hand side shows the points of INTERNAL(a ⊕ e𝑖 ) with the point orig(a ⊕ e𝑖 ) highlighted
in green color. The point mid+𝑖a is then placed at orig(a) ⊕ e𝑖 ·

(
(𝑁 − 1) + (𝐷 − 2𝑁 )

)
.



B MISSING PROOFS FROM SECTION 4
B.1 FAIR-GERRYMANDERING-

(
R𝑑 , ℓ2

)
has a

solution ⇒ 𝑑-dimensional geometric ≥-CSP is
satisfiable

Suppose that the instance U =
(
C = {“OUR", “OTHER"},V,B, 𝑘 =

|𝑉 |, ℓ = |𝑉 |, “OUR"
)

has a solution. In this section we show that the
𝑑-dimensional geometric ≥-CSP I = (𝑉 , 𝐷,𝐶) has a satisfying as-
signment 𝑓 : 𝑉 → 𝐷 .

Let P ′ be the set of |𝑉 | ballot box locations opened in the solution
to the instance U. Since the set of ballot boxes P ′ provides a solution
to the instance U with 𝑘 = |𝑉 | = ℓ it follows that “OUR" wins each
of the ballot boxes in P ′. The next claim shows that the margin
of victory for “OUR" over “OTHER" in each ballot box of P ′ is
exactly one vote.

Claim 2. Each of the ballot boxes in P ′ is won by “OUR" by exactly
one vote.

PROOF. Since the instance U of FAIR-GERRYMANDERING-
(
R𝑑 , ℓ2

)
has a solution it follows that each of the 𝑘 = |𝑉 | ballot boxes is won
by “OUR" candidate by at least one vote. Since marginlow = 1 =

marginup, it follows that each of the 𝑘 = |𝑉 | ballot boxes is won by
“OUR" candidate by exactly one vote. □

Claim 3. If a, a′ ∈ 𝑉 are such that 𝜙 (a′) > 𝜙 (a) then the number of
“OTHER" voters at any point in BORDER(a′) is more than the sum of
“OTHER" voters over all points in BORDER(a), i.e., (2𝑑 + 1)𝜙 (a′) >
2𝑑 · (2𝑑 + 1)𝜙 (a) .

PROOF. By Section 4.2.5, the number of “OTHER" voters at
any point in BORDER(a′) is (2𝑑 + 1)𝜙 (a′) and the total number of
“OTHER" voters over all points in BORDER(𝑎) is 2𝑑 · (2𝑑 + 1)𝜙 (a) .
Since 𝜙 : 𝑉 →

[
|𝑉 |

]
is a bijection and 𝜙 (a′) > 𝜙 (a) we have (2𝑑 +

1)𝜙 (a′) ≥ (2𝑑 + 1)𝜙 (a)+1 = (2𝑑 + 1) · (2𝑑 + 1)𝜙 (a) > 2𝑑 · (2𝑑 + 1)𝜙 (a)

since (2𝑑 + 1) > 2𝑑 . □

Claim 4. For each a ∈ 𝑉 the number of “OTHER" voters at any
point in BORDER(a) is more than the sum of “OTHER" voters over
all points from the set

⋃
𝜙 (x)<𝜙 (a) BORDER(x), i.e., (2𝑑 + 1)𝜙 (a) >∑

x : 𝜙 (x)<𝜙 (a) 2𝑑 · (2𝑑 + 1)𝜙 (x) .

PROOF. By Section 4.2.5, the number of “OTHER" voters at any
point in BORDER(a) is (2𝑑 + 1)𝜙 (a) . By Section 4.2.5 and the fact
that 𝜙 : 𝑉 →

[
|𝑉 |

]
is a bijection, it follows that the total number of

“OTHER" voters over all points from the set
⋃

𝜙 (x)<𝜙 (a) BORDER(x)
is
∑𝜙 (a)−1
𝑖=1 2𝑑 · (2𝑑 + 1)𝑖 . Hence, we have

∑
x : 𝜙 (x)<𝜙 (a) 2𝑑 · (2𝑑 +

1)𝜙 (x) = 2𝑑 ·∑𝜙 (a)−1
𝑖=1 (2𝑑+1)𝑖 = 2𝑑 · (2𝑑+1) ·∑𝜙 (a)−2

𝑖=0 (2𝑑+1)𝑖 = 2𝑑 ·
(2𝑑+1) · (2𝑑+1)

𝜙 (a)−1−1
(2𝑑+1)−1 = (2𝑑+1) ·

(
(2𝑑+1)𝜙 (a)−1−1

)
< (2𝑑+1)𝜙 (a) .

□

Now we show that any solution to P ′ opens exactly one ballot box
from among the locations given by the points from INTERNAL3 (a)
for each a ∈ 𝑉 .

LEMMA 5. For each a ∈ 𝑉 , we have
��P ′ ∩ INTERNAL3 (a)

�� = 1.

PROOF. Since |P ′ | = |𝑉 | and the set of possible locations of
ballot boxes is given by B =

⋃
a∈𝑉 INTERNAL3 (a), it follows that

P ′ =
⋃

a∈𝑉
(
P ′∩INTERNAL3 (a)

)
. Observe that to prove the lemma

it is enough to show that
��P ′ ∩ INTERNAL3 (a)

�� ≥ 1 for each a ∈ 𝑉 .
This is because then we would have |𝑉 | = |P ′ | =

∑
a∈𝑉

��P ′ ∩
INTERNAL3 (a)

�� ≥ |𝑉 | which implies that
��P ′∩ INTERNAL3 (a)

�� = 1
for each a ∈ 𝑉 .

It remains to show that the existence of a variable a′ ∈ 𝑉 such
that

��P ′ ∩ INTERNAL3 (a′)
�� = 0 leads to a contradiction. In this

case since |P ′ | = |𝑉 | there must exist a variable b ∈ 𝑉 such that
|P ′ ∩ INTERNAL3 (b) | ≥ 2. Let {b1, b2, . . . , b𝑟 } ⊆ INTERNAL3 (b)
be the set of ballot boxes opened in P ′ for some 𝑟 ≥ 2. Without
loss of generality, let b1 be the closest1 ballot box to origin(b)
from the set {𝑏1, 𝑏2, . . . , 𝑏𝑟 }. This means that the 1+ 2𝑑 · (2𝑑 + 1)𝜙 (b)

“OUR" voters located at origin(b) vote at the ballot box located
at b1. Since there are exactly |𝑉 | locations where “OUR" voters are
placed, viz. the set of points

{
origin(a) : a ∈ 𝑉

}
, and we need

to win |P ′ | = |𝑉 | ballot boxes it follows that each ballot box is
voted at by exactly one location having “OUR" voters. Therefore,
the total number of votes for “OUR" at the ballot box b1 is exactly
1 + 2𝑑 · (2𝑑 + 1)𝜙 (b) . By Claim 2, it follows that

The number of votes for “OTHER" at b1

is exactly 2𝑑 · (2𝑑 + 1)𝜙 (b) (11)

We now show that the “OTHER" voters from at least one of the
points in BORDER(b) do not vote at b1. Since b1 ≠ b2 there exists
ℓ ∈ [𝑑] such that b1 [ℓ] ≠ b2 [ℓ]. Without loss of generality, let
b2 [ℓ] > b1 [ℓ]. Let b1 = orig(b) + t1 and b2 = orig(b) + t2. Since
b1, b2 ∈ INTERNAL3 (b) it follows that (𝑁 − 1) ≥ t1 [ 𝑗], t2 [ 𝑗] ≥ 0
for each 𝑗 ∈ [𝑑]. Since b2 [ℓ] > b1 [ℓ] we have

(
t2 [ℓ] − t1 [ℓ]

)
≥ 1.

Claim 5. dist
(
b2, mid+ℓb

)
< dist

(
b1, mid+ℓb

)
PROOF. There are two cases to consider depending on whether

or not b and b ⊕ eℓ form an edge in 𝐺I :

(1) b and b ⊕ eℓ form an edge in 𝐺I : We have two subcases de-
pending on the parity of b[ℓ]

1(i) b[ℓ] is odd: From Section 4.2.5, we have

dist
(
b2, mid+ℓb

)2
=

(
(𝑁 − 1) + (𝐷 − 𝜖) − t2 [ℓ]

)2
+

𝑑∑
𝑗=1, 𝑗≠ℓ

t2 [ 𝑗]2

<

(
(𝑁 − 1) + (𝐷 − 𝜖) − t2 [ℓ]

)2
+ 𝑑𝑁 2

(since 𝑁 > t2 [ 𝑗] ∀𝑗 ∈ [𝑑])

<

(
(𝑁 − 1) + (𝐷 − 𝜖) − t1 [ℓ]

)2
(from Equation 1, Equation 2 &

(
t2 [ℓ] − t1 [ℓ]

)
≥ 1)

≤
(
(𝑁 − 1) + (𝐷 − 𝜖) − t1 [ℓ]

)2
+

𝑑∑
𝑗=1, 𝑗≠ℓ

t1 [ 𝑗]2

= dist
(
b1, mid+ℓb

)2
1If there are two or more ballot boxes which are closest to origin(b) then we can
perturb location of origin(b) very slightly to ensure that there is exactly one ballot
box from {b1, b2, . . . , b𝑟 } which is closest to it



1(ii) b[ℓ] is even: From Section 4.2.5, we have

dist
(
b2, mid+ℓb

)2
=

(
(𝐷 + 𝜖 − 1) − t2 [ℓ]

)2
+

𝑑∑
𝑗=1, 𝑗≠ℓ

t2 [ 𝑗]2

<

(
(𝐷 + 𝜖 − 1) − t2 [ℓ]

)2
+ 𝑑𝑁 2

(since 𝑁 > t2 [ 𝑗] for each 𝑗 ∈ [𝑑])

<

(
(𝐷 + 𝜖 − 1) − t1 [ℓ]

)2
(from Equation 1, Equation 2 and

(
t2 [ℓ] − t1 [ℓ]

)
≥ 1)

≤
(
(𝐷 + 𝜖 − 1) − t1 [ℓ]

)2
+

𝑑∑
𝑗=1, 𝑗≠ℓ

t1 [ 𝑗]2

= dist
(
b1, mid+ℓb

)2
(2) b and b ⊕ eℓ do not form an edge in 𝐺I : We have two sub-

cases depending on the parity of b[ℓ]
2(i) b[ℓ] is odd: From Section 4.2.5, we have

dist
(
b2, mid+ℓb

)2
=

(
(𝐷 − 𝑁 − 1) − t2 [ℓ]

)2
+
( 𝑑∑
𝑗=1, 𝑗≠ℓ

t2 [ 𝑗]2
)

<

(
(𝐷 − 𝑁 − 1) − t2 [ℓ]

)2
+ 𝑑𝑁 2

(since 𝑁 > t2 [ 𝑗] for each 𝑗 ∈ [𝑑])

<

(
(𝐷 − 𝑁 − 1) − t1 [ℓ]

)2
(from Equation 1, Equation 2 &

(
t2 [ℓ] − t1 [ℓ]

)
≥ 1)

≤
(
(𝐷 − 𝑁 − 1) − t1 [ℓ]

)2
+
( 𝑑∑
𝑗=1, 𝑗≠ℓ

t1 [ 𝑗]2
)

= dist
(
b1, mid+ℓb

)2
2(ii) b[ℓ] is even: The argument for this case is exactly the same

as in Case 2(i).

This concludes the proof of Claim 5. □

From Claim 5, there is at least one point in BORDER(b) such that
the (2𝑑 + 1)𝜙 (b) “OTHER" voters located at this point do not vote at
b1. We now calculate how many “OTHER" voters could have voted
at the ballot box b1:

• From Claim 5, the “OTHER" voters from at most (2𝑑 − 1) of
the points in BORDER(b) vote at the ballot box b1.

• From Claim 3 and Equation 11, there is no point in
⋃

b′ : 𝜙 (b′)>𝜙 (b)
BORDER(b′) such that the “OTHER" voters at this point can
vote at the ballot box b1.

• From Claim 4, the total number of “OTHER" voters located at
points in the set

⋃
x : 𝜙 (x)<𝜙 (b) BORDER(𝑥) is < (2𝑑+1)𝜙 (b) .

Since “OTHER" voters are located only at the points from the set⋃
a∈𝑉 BORDER(a), we have that the maximum number of “OTHER"

votes at the ballot box b1 is < (2𝑑 − 1) · (2𝑑 + 1)𝜙 (b) + (2𝑑 + 1)𝜙 (b) =
2𝑑 · (2𝑑 + 1)𝜙 (b) . This contradicts Equation 11, and concludes the
proof of Lemma 5. □

Since |P ′ | = |𝑉 |, from Lemma 5 it follows that

∀ a ∈ 𝑉 , ∃ 𝛽 (a) ∈ INTERNAL3 (a)
such that

(
P ′ ∩ P(a)

)
=
{
𝛽 (𝑎)

}
(12)

The next claim gives a lower bound on the distance between
internal points corresponding to different variables.

Claim 6. Let a, a′ ∈ 𝑉 such that a ≠ a′. For any q ∈ INTERNAL4 (a)
and any s ∈ INTERNAL4 (a′) we have dist(q, s) ≥ 2𝐷 .

PROOF. Since a ≠ a′ there exists some 𝑗 ∈ [𝑑] such that a[ 𝑗] ≠
a′[ 𝑗]. Let q = orig(a) ⊕ q′ and s = orig(a′) ⊕ s′. Then it follows
from Section 4.2.1, Equation 4 and Equation 5 that for each 𝑖 ∈ [𝑑]
we have 0 ≤ q′[𝑖], s′[𝑖] ≤ (𝑁 − 1).
dist

(
q, s

)
= dist

(
orig(a) ⊕ q′, orig(a′) ⊕ s′

)
≥
���𝐶 ·

(
a[ 𝑗] − a′[ 𝑗]

)
+
(
q′[ 𝑗] − s′[ 𝑗]

) ���
(only considering the 𝑗 th-coordinate)

≥
���𝐶 ·

(
a[ 𝑗] − a′[ 𝑗]

) ��� − ��� (q′[ 𝑗] − s′[ 𝑗]
) ���

(by triangle inequality)

≥ 𝐶 − (𝑁 − 1)
(since a[ 𝑗] ≠ a′[ 𝑗] and 0 ≤ q′[ 𝑗], s′[ 𝑗] ≤ (𝑁 − 1))

= 2𝐷 (from Equation 1)

□

LEMMA 6. For each a ∈ 𝑉 , the exact set of voters who vote at
the ballot box 𝛽 (a) are

• the “OUR" voters at location origin(a), and
• the “OTHER" voters at each of the 2𝑑 points in BORDER(a)

PROOF. Fix a ∈ 𝑉 . We first show that the only point from⋃
b∈𝑉 origin(b) that votes at 𝛽 (a) is origin(a). Since 𝛽 (a) ∈

INTERNAL3 (a), Section 4.2.1- Section 4.2.3 and Equation 1 together
imply that dist

(
origin(a), 𝛽 (a)

)
≤
√
𝑑𝑁 2 =

√
𝐷/2 ≤ 𝐷 . If a′ ≠ a

then Claim 6 implies that dist
(
origin(a), 𝛽 (a′)

)
≥ 2𝐷 since

𝛽 (a′) ∈ INTERNAL3 (a′) ⊆ INTERNAL4 (a′) and origin(a) ∈
INTERNAL4 (a). Hence, for each x ∈ 𝑉 the set of “OUR" voters who
vote at the ballot box 𝛽 (x) is exactly those located at origin(x). Ob-
servation 2 implies that the total number of “OUR" votes at the ballot
box 𝛽 (a) is exactly 1 + 2𝑑 · (2𝑑 + 1)𝜙 (a) . Claim 2 implies that

the number of “OTHER" votes at 𝛽 (a)

is exactly 2𝑑 · (2𝑑 + 1)𝜙 (a) (13)

By Claim 3, no point from BORDER(a′) can vote at 𝛽 (a) if
𝜙 (a′) > 𝜙 (𝛽). We now claim that all points from BORDER(a)
must vote at 𝛽 (a): suppose to the contrary that at least one of
the 2𝑑 points from BORDER(a) does not vote at 𝛽 (a). Note that
(Section 4.2.5) each of the 2𝑑 points in BORDER(a) has exactly
(2𝑑 + 1)𝜙 (a) “OTHER" voters, i.e., we need at least (2𝑑 + 1)𝜙 (a)

“OTHER" voters from outside BORDER(a) to vote at 𝛽 (a). How-
ever, Claim 4 implies that the sum of all “OTHER" voters from the
set of points

⋃
x : 𝜙 (x)<𝜙 (a) BORDER(x) is < (2𝑑 + 1)𝜙 (a) leading

to a contradiction. Hence, each of the 2𝑑 points from BORDER(a)
votes at 𝛽 (a) which gives a total of 2𝑑 · (2𝑑 + 1)𝜙 (a) “OTHER" votes



at 𝛽 (a). By Equation 13, it follows that the exact set of “OTHER"
voters who vote at 𝛽 (a) are those located at points from the set
BORDER(a). □

We now construct a satisfying assignment for the instance I =

(𝑉 , 𝐷,𝐶) of 𝑑-dimensional geometric ≥-CSP.

LEMMA 7. The instance I = (𝑉 , 𝐷,𝐶) of 𝑑-dimensional geomet-
ric ≥-CSP has a satisfying assignment.

PROOF. For each a ∈ 𝑉 let

𝛾 (a) = 𝛽 (a) ⊖ 𝐶 · (a − 1𝑑 ) = 𝛽 (𝑎) ⊖ orig(a) ⊕ 1𝑑 (14)

where have used Equation 4. We claim that the function 𝑓 : 𝑉 → 𝐷

given by 𝑓 (𝑎) [𝑖] = flipa[𝑖 ]
(
𝛾 (a) [𝑖]

)
for each 𝑖 ∈ [𝑑] is a satis-

fying assignment for the instance I = (𝑉 , 𝐷,𝐶) of 𝑑-dimensional
geometric ≥-CSP.

First we show that 𝑓 satisfies each unary constraint. For a ∈ 𝑉 we
have

𝛽 (a) ∈ INTERNAL3 (a) (from Equation 12)
⇒ 𝛾 (a) ∈ INTERNAL2 (a) (from Section 4.2.3 and Equation 14)
⇒ 𝑓 (a) ∈ INTERNAL1 (a) (from Section 4.2.2 & Observation 1)
⇒ 𝑓 (a) ∈ 𝑅a (from Section 4.2.1)

Next we show that 𝑓 satisfies each binary constraint. By Def-
inition 4, every binary constraint in 𝐶 has the following struc-
ture: there exists a variable b ∈ 𝑉 and an index 𝑖 ∈ [𝑑] such
that the binary constraint is

〈
(b, b ⊕ e𝑖 ), 𝑅b,b⊕e𝑖

〉
where 𝑅b,b⊕e𝑖 ={(

(𝑥1, 𝑥2, . . . , 𝑥𝑑 ), (𝑦1, 𝑦2, . . . , 𝑦𝑑 )
)

⊆ 𝑅b × 𝑅b⊕e𝑖 | 𝑥𝑖 ≥ 𝑦𝑖

}
. If

𝑓 (b) [𝑖] ≥ 𝑓 (b⊕e𝑖 ) [𝑖] then the binary constraint
〈
(b, b⊕e𝑖 ), 𝑅b,b⊕e𝑖

〉
is satisfied. We have two cases depending on the parity of b[𝑖]:

(1) b[𝑖] is odd: By Lemma 6, the “OTHER" voters at mid+𝑖b vote
at the ballot box 𝛽 (b) instead of the ballot box 𝛽 (b ⊕ 𝛽𝑖 ).
Hence, we have

dist
(
mid+𝑖b , 𝛽 (b)

)
< dist

(
mid+𝑖b , 𝛽 (b ⊕ e𝑖 )

)
(15)

Recall from Section 4.2.5 that mid+𝑖b := orig(b) ⊕ e𝑖 ·
(
(𝑁 −

1) + (𝐷 − 𝜖)
)
. From Equation 4, we get that orig(b ⊕ e𝑖 ) =

orig(b) ⊕ e𝑖 · (𝑁 − 1 + 2𝐷). Hence, Equation 14 and Equa-
tion 15 together imply that(
𝑁 − 𝛾 (b) [𝑖 ]

)
+ (𝐷 − 𝜖)

)2
+

𝑑∑
𝑗=1, 𝑗≠𝑖

(
𝛾 (b) [ 𝑗 ] − 1

)2
<

( (
𝛾 (b ⊕ e𝑖 ) [𝑖 ] − 1

)
+ (𝐷 + 𝜖)

)2
+

𝑑∑
𝑗=1, 𝑗≠𝑖

(
𝛾 (b ⊕ e𝑖 ) [ 𝑗 ] − 1

)2
(16)

Since b[𝑖] is odd, by Equation 3 we have 𝑓 (b) [𝑖] = 𝛾 (b) [𝑖]
and 𝑓 (b ⊕ e𝑖 ) [𝑖] = (𝑁 + 1) − 𝛾 (b ⊕ e𝑖 ) [𝑖]. Equation 16 can
be rewritten as(

𝑁 − 𝑓 (b) [𝑖 ]
)
+ (𝐷 − 𝜖)

)2
+

𝑑∑
𝑗=1, 𝑗≠𝑖

(
𝛾 (b) [ 𝑗 ] − 1

)2
<

( (
𝑁 − 𝑓 (b ⊕ e𝑖 ) [𝑖 ]

)
+ (𝐷 + 𝜖)

)2
+

𝑑∑
𝑗=1, 𝑗≠𝑖

(
𝛾 (b ⊕ e𝑖 ) [ 𝑗 ] − 1

)2
(17)

We now claim that 𝑓 (b) [𝑖] ≥ 𝑓 (b ⊕ e𝑖 ) [𝑖]. Suppose to the
contrary that 𝑓 (b) [𝑖] < 𝑓 (b ⊕ e𝑖 ) [𝑖]. Since 𝑓 (b) [𝑖], 𝑓 (b ⊕
e𝑖 ) [𝑖] ∈ [𝑁 ] it follows that

(
𝑓 (b ⊕ e𝑖 ) [𝑖] − 𝑓 (b) [𝑖]

)
≥ 1.

Then from Equation 17 we have

(2𝑑 − 2)𝑁 2 = (𝑑 − 1)𝑁 2 + (𝑑 − 1)𝑁 2

>

𝑑∑
𝑗=1, 𝑗≠𝑖

(
𝛾 (b ⊕ e𝑖 ) [ 𝑗] − 1

)2 − 𝑑∑
𝑗=1, 𝑗≠𝑖

(
𝛾 (b) [ 𝑗] − 1

)2
(since 𝛾 (b) [ 𝑗], 𝛾 (b ⊕ e𝑖 ) [ 𝑗] ∈ [𝑁 ] for each 𝑗 ∈ [𝑑])

>

(
(𝑁 − 𝑓 (b) [𝑖]) + (𝐷 − 𝜖)

)2
−
(
(𝑁 − 𝑓 (b ⊕ e𝑖 ) [𝑖]) + (𝐷 + 𝜖)

)2
=

(
2𝐷 + (𝑁 − 𝑓 (b) [𝑖]) + (𝑁 − 𝑓 (b′) [𝑖])

)
×
(
𝑓 (b ⊕ e𝑖 ) [𝑖] − 𝑓 (b) [𝑖] − 2𝜖

)
≥ 2𝐷 · 1

2
= 𝐷

which is a contradiction since 𝐷 = 2𝑑 · 𝑁 2 (Equation 1). To
derive the last line we have used 1 ≤ 𝑓 (b) [𝑖], 𝑓 (b ⊕ e𝑖 ) [𝑖] ≤
𝑁 and

(
𝑓 (b ⊕ e𝑖 ) [𝑖] − 𝑓 (b) [𝑖]

)
≥ 1 and 𝜖 = 1

4 .
(2) b[𝑖] is even: By Lemma 6, the “OTHER" voters at mid−𝑖b⊕e𝑖

vote at the ballot box 𝛽 (b ⊕ e𝑖 ) instead of the ballot box 𝛽 (b).
Hence, we have

dist
(
mid−𝑖b⊕e𝑖 , 𝛽 (b ⊕ e𝑖 )

)
< dist

(
mid−𝑖b⊕e𝑖 , 𝛽 (b)

)
(18)

Recall from Section 4.2.5 that mid−𝑖b⊕e𝑖 := orig(b⊕ e𝑖 ) ⊖ e𝑖 ·
(𝐷 − 𝜖). From Equation 4, we get that orig(b) = orig(b ⊕
e𝑖 ) ⊖ e𝑖 · (𝑁 − 1 + 2𝐷). Hence, Equation 14 and Equation 18
together imply that( (

𝛾 (b ⊕ e𝑖 ) [𝑖 ] − 1
)

+ (𝐷 − 𝜖)
)2

+
𝑑∑

𝑗=1, 𝑗≠𝑖

(
𝛾 (b ⊕ e𝑖 ) [ 𝑗 ] − 1

)2
<

( (
𝑁 − 𝛾 (b) [𝑖 ]

)
+ (𝐷 + 𝜖)

)2
+

𝑑∑
𝑗=1, 𝑗≠𝑖

(
𝛾 (b) [ 𝑗 ] − 1

)2
(19)

Since b[𝑖] is even, by Equation 3 we have 𝑓 (b) [𝑖] = 𝑁 + 1 −
𝛾 (b) [𝑖] and 𝑓 (b ⊕ e𝑖 ) [𝑖] = 𝛾 (b ⊕ e𝑖 ) [𝑖]. Equation 19 can be
rewritten as( (

𝑓 (b ⊕ e𝑖 ) [𝑖 ] − 1
)
+ (𝐷 − 𝜖)

)2
+

𝑑∑
𝑗=1, 𝑗≠𝑖

(
𝛾 (b ⊕ e𝑖 ) [ 𝑗 ] − 1

)2
<

( (
𝑓 (b) [𝑖 ] − 1

)
+ (𝐷 + 𝜖)

)2
+

𝑑∑
𝑗=1, 𝑗≠𝑖

(
𝛾 (b) [ 𝑗 ] − 1

)2
(20)

We now claim that 𝑓 (b) [𝑖] ≥ 𝑓 (b ⊕ e𝑖 ) [𝑖]. Suppose to the
contrary that 𝑓 (b) [𝑖] < 𝑓 (b ⊕ e𝑖 ) [𝑖]. Since 𝑓 (b) [𝑖], 𝑓 (b ⊕
e𝑖 ) [𝑖] ∈ [𝑁 ] it follows that

(
𝑓 (b ⊕ e𝑖 ) [𝑖] − 𝑓 (b) [𝑖]

)
≥ 1.



Then from Equation 20 we have

(2𝑑 − 2)𝑁 2 = (𝑑 − 1)𝑁 2 + (𝑑 − 1)𝑁 2

≥
𝑑∑

𝑗=1, 𝑗≠𝑖

(
𝛾 (b) [ 𝑗] − 1

)2 − 𝑑∑
𝑗=1, 𝑗≠𝑖

(
𝛾 (b ⊕ e𝑖 ) [ 𝑗] − 1

)2
(since 𝛾 (b) [ 𝑗], 𝛾 (b ⊕ e𝑖 ) [ 𝑗] ∈ [𝑁 ] for each 𝑗 ∈ [𝑑])

>

(
(𝑓 (b ⊕ e𝑖 ) [𝑖] − 1) + (𝐷 − 𝜖)

)2
−
(
(𝑓 (b) [𝑖] − 1) + (𝐷 + 𝜖)

)2
=

(
2𝐷 + (𝑓 (b) [𝑖] − 1) + (𝑓 (b ⊕ e𝑖 ) [𝑖] − 1)

)
×
(
𝑓 (b ⊕ e𝑖 ) [𝑖] − 𝑓 (b) [𝑖] − 2𝜖

)
≥ 2𝐷 · 1

2
= 𝐷

which is a contradiction since 𝐷 = 2𝑑 · 𝑁 2 (Equation 1). To
derive the last line we have used 1 ≤ 𝑓 (b) [𝑖], 𝑓 (b ⊕ e𝑖 ) [𝑖] ≤
𝑁 and

(
𝑓 (b ⊕ e𝑖 ) [𝑖] − 𝑓 (b) [𝑖]

)
≥ 1 and 𝜖 = 1

4 .
This concludes the proof of Lemma 7. □

B.2 𝑑-dimensional geometric ≥-CSP is satisfiable
⇒ FAIR-GERRYMANDERING-

(
R𝑑 , ℓ2

)
has a

solution
Suppose that the 𝑑-dimensional geometric ≥-CSP I = (𝑉 , 𝐷,𝐶)
has a satisfying assignment 𝑓 : 𝑉 → 𝐷. In this section we show
that the instance U =

(
C = {“OUR", “OTHER"},V,B, 𝑘 = |𝑉 |, ℓ =

|𝑉 |, “OUR"
)

has a solution.
Since 𝑓 : 𝑉 → 𝐷 is a satisfying assignment for I,

∀ a ∈ 𝑉 , we have 𝑓 (a) ∈ 𝑅a (21)

∀ a ∈ 𝑉 ,∀ 𝑖 ∈ [𝑑] if a-(a ⊕ e𝑖 ) is an edge in 𝐺I
then 𝑓 (a) [𝑖] ≥ 𝑓 (a ⊕ e𝑖 ) [𝑖] (22)

We now construct a set of locations P ′′ where the ballot boxes
are opened. For each a ∈ 𝑉 , we define the following two vectors let

𝑔(a) ∈ R𝑑 such that 𝑔(a) [𝑖] = flipa[𝑖 ]
(
𝑓 (a) [𝑖]

)
(23)

ℎ(a) =
(
orig(a) ⊖ 1𝑑

)
⊕ 𝑔(a) = 𝐶 · (a ⊖ 1𝑑 ) ⊕ 𝑔(a) (24)

Let P ′′ =
{
ℎ(a) | a ∈ 𝑉

}
. The next lemma shows that ℎ(a) ∈

INTERNAL3 (a) for each a ∈ 𝑉 .

LEMMA 8.
��P ′′ ∩ INTERNAL3 (a)

�� = 1 for each a ∈ 𝑉 .

PROOF. We prove the lemma by showing thatℎ(a) ∈ INTERNAL3 (a)
for each a ∈ 𝑉 . Fix any b ∈ 𝑉 . Then we have

𝑓 (b) ∈ 𝑅b (from Equation 21)
⇒ 𝑓 (b) ∈ INTERNAL1 (b) (from Section 4.2.1)
⇒ 𝑔(b) ∈ INTERNAL2 (b) (from Section 4.2.2 and Equation 23)
⇒ ℎ(b) ∈ INTERNAL3 (b) (from Section 4.2.3 and Equation 24)

□

Opening a ballot box at each point from the set P ′′ is feasible
from Lemma 8 and the fact that B =

⋃
a∈𝑉 INTERNAL3 (a). Since

|P ′′ | = |𝑉 | we have opened exactly 𝑘 = |𝑉 | ballot boxes. It remains
to show that each ballot box in P ′′ is won by “OUR". The proof

strategy is as follows: for each a ∈ 𝑉 we will show that the “OUR"
voters located at the point origin(a) and the “OTHER" voters
located at each of the 2𝑑 points in BORDER(a) vote at the ballot
box opened at ℎ(a). By Observation 2, this would imply that the
ballot box opened at ℎ(a) is won by “OUR".

LEMMA 9. For each a ∈ 𝑉 , the following set of voters vote at the
ballot box ℎ(a)

• the “OUR" voters at origin(a), and
• the “OTHER" voters at each of the 2𝑑 points in BORDER(a).

PROOF. Fix any variable a ∈ 𝑉 . We will prove the lemma by
showing that for any point p ∈

(
BORDER(a)⋃ origin(a)) and any

a′ ∈ 𝑉 such that a′ ≠ a, we have dist
(
p, ℎ(a)

)
< dist

(
p, ℎ(a′)

)
.

Let ℎ(a) = orig(a) + t and ℎ(a′) = orig(a′) + t′. By Equation 24,
we have that

t = 𝑔(a) ⊖ 1𝑑 and t′ = 𝑔(a′) ⊖ 1𝑑 (25)

If p = origin(a), then Section 4.2.1- Section 4.2.3 imply that

(𝑁 −1) ≥
(��p[ℓ]−ℎ(a) [ℓ]��) ≥ 0 for each ℓ ∈ [𝑑]. Hence, Equation 1

and Equation 2 imply that dist
(
p, ℎ(a)

)
≤

√
𝑑𝑁 2 < 2𝐷. Since

a ≠ a′, p ∈ INTERNAL4 (a) and ℎ(a′) ∈ INTERNAL4 (a′), Claim 6
implies dist

(
p, ℎ(a′)

)
≥ 2𝐷. Hence, we have dist

(
p, ℎ(a′)

)
≥

2𝐷 > dist
(
p, ℎ(a)

)
.

Henceforth, we assume that p ∈ BORDER(a). By Equation 6,
there exists 𝑖 ∈ [𝑑] such that p ∈

(
mid+𝑖a

⋃
mid−𝑖a

)
. We argue the

case when p = mid+𝑖a : the case when p = mid−𝑖a is analogous. There
are four cases to consider depending on the parity of a[𝑖] and whether
or not the two points a and (a ⊕ e𝑖 ) form an edge in 𝐺I :

(1) a[𝑖] is odd and a-(a ⊕ e𝑖 ) form an edge in 𝐺I : By Section 4.2.5,
it follows that p = mid+𝑖a = orig(a) ⊕ e𝑖 ·

(
(𝑁 −1) + (𝐷 −𝜖)

)
.

Then from Equation 1 and Equation 2 we have

dist
(
(p, ℎ(a)

)
=

√√√√(
(𝐷 − 𝜖) + (𝑁 − 1) − 𝑡 [𝑖]

)2
+

𝑑∑
𝑗=1, 𝑗≠𝑖

𝑡 [ 𝑗]2

<
√
(𝐷 + 𝑁 )2 + 𝑑𝑁 2 < 2𝐷 (26)

where we have used the bounds 0 ≤ t[ℓ] ≤ (𝑁 − 1) for each
ℓ ∈ [𝑑].
If there exists 𝑗 ∈ [𝑑] such that 𝑗 ≠ 𝑖 and a[ 𝑗] ≠ a′[ 𝑗], then

dist
(
p, ℎ(a′)

)
= dist

(
mid+𝑖a , orig(a′) ⊕ t′

)
≥
���𝐶 ·

(
a′[ 𝑗] − a[ 𝑗]

)
+ t′[ 𝑗]

���
(only counting along 𝑗 th-coordinate)

≥
���𝐶 ·

(
a[ 𝑗] − a′[ 𝑗]

) ��� − ��t′[ 𝑗]�� (by triangle inequality)

≥ 𝐶 − (𝑁 − 1) (since a[ 𝑗] ≠ a′[ 𝑗] and 0 ≤ t′[ 𝑗] ≤ (𝑁 − 1))
= 2𝐷 (from Equation 1)

> dist
(
(p, ℎ(a)

)
(from Equation 26)

Hence, we can assume that a[ 𝑗] = a′[ 𝑗] for each 𝑗 ∈ [𝑑]
such that 𝑗 ≠ 𝑖. We have three subcases now:



• a′[𝑖] ≤ a[𝑖] − 1: In this subcase we have

dist
(
p, ℎ(a′)

)
≥ 𝐶 ·

(
a[𝑖] − a′[𝑖]

)
+
(
(𝐷 − 𝜖) + (𝑁 − 1) − t′[𝑖]

)
(only counting along 𝑖 th-coordinate)

≥ 𝐶 +
(
𝐷 − 𝜖

)
(since 0 ≤ t′[𝑖] ≤ 𝑁 − 1 and

(
a[𝑖] − a′[𝑖]

)
≥ 1)

≥ 2𝐷 (from Equation 1 and Equation 2)

> dist ((p, ℎ(a)) (from Equation 26)

• a′[𝑖] ≥ a[𝑖] + 2: In this subcase we have

dist
(
p, ℎ(a′)

)
≥ 𝐶 ·

(
a′[𝑖] − a[𝑖]

)
+
(
t′[𝑖] − (𝐷 − 𝜖) − (𝑁 − 1)

)
(only counting along 𝑖 th-coordinate)

≥ 2𝐶 −
(
𝐷 + 𝑁

)
(since

(
a′[𝑖] − a[𝑖]

)
≥ 2 and 0 ≤ t′[𝑖] and 𝜖 = 1

4 )

≥ 2𝐷 (from Equation 1 and Equation 2)

> dist
(
(p, ℎ(a)

)
(from Equation 26)

• a′[𝑖] = a[𝑖] + 1: In the last remaining subcase we have
a′ = a ⊕ e𝑖 . Hence, by Equation 22 we have that 𝑓 (a) [𝑖] ≥
𝑓 (a′) [𝑖]. Since a[𝑖] is odd, by Equation 23 and Equation 3
we have 𝑔(a) [𝑖] = flipa[𝑖 ]

(
𝑓 (a) [𝑖]

)
= 𝑓 (a) [𝑖]. Since

a′[𝑖] = a[𝑖] + 1 is even, by Equation 23 and Equation 3 we
have 𝑔(a′) [𝑖] = flipa′ [𝑖 ]

(
𝑓 (a′) [𝑖]

)
= 𝑁 + 1 − 𝑓 (a′) [𝑖].

Therefore, 𝑓 (a) [𝑖] ≥ 𝑓 (a′) [𝑖] implies that 𝑔(a) [𝑖] ≥ 𝑁 +
1−𝑔(a′) [𝑖]. From Equation 25 we can conclude that t[𝑖] ≥
𝑁 + 1 − t′[𝑖]. Then we have

dist
(
p, ℎ(a)

)2
=

(
(𝐷 − 𝜖) + (𝑁 − 1) − t[𝑖]

)2
+
( 𝑑∑
𝑗=1, 𝑗≠𝑖

t[ 𝑗]2
)

(since p = mid+𝑖a )

≤
(
(𝐷 − 𝜖) + (𝑁 − 1) − t[𝑖]

)2
+ 𝑑𝑁 2

(since t[ 𝑗] ≤ 𝑁 − 1 for each 𝑗 ∈ [𝑑])

<

(
(𝐷 + 𝜖) + t′[𝑖]

)2
(from Equation 1, Equation 2 and

(
t′[𝑖] + t[𝑖]

)
≥ 𝑁 + 1)

≤
(
(𝐷 + 𝜖) + t′[𝑖]

)2 + ( 𝑑∑
𝑗=1, 𝑗≠𝑖

t′[ 𝑗]2
)

= dist
(
p, ℎ(a′)

)2
(2) a[𝑖] is odd and a-(a ⊕ e𝑖 ) do not form an edge in 𝐺I : By Sec-

tion 4.2.5, it follows that p = mid+𝑖a = orig(a) ⊕ e𝑖 ·
(
(𝑁 −

1) + (𝐷 − 2𝑁 )
)
. Then from Equation 1 and Equation 2 we

have

dist
(
(p, ℎ(a)

)
=

√√√√(
(𝐷 − 2𝑁 ) + (𝑁 − 1) − 𝑡 [𝑖]

)2
+

𝑑∑
𝑗=1, 𝑗≠𝑖

𝑡 [ 𝑗]2

<
√
(𝐷 − 𝑁 )2 + 𝑑𝑁 2 < 2𝐷 − 𝑁 (27)

where we have used the bounds 0 ≤ t[ℓ] ≤ (𝑁 − 1) for each
ℓ ∈ [𝑑].
If there exists 𝑗 ∈ [𝑑] such that 𝑗 ≠ 𝑖 and a[ 𝑗] ≠ a′[ 𝑗], then

dist
(
p, ℎ(a′)

)
= dist

(
mid+𝑖a , orig(a′) ⊕ t′

)
≥
���𝐶 ·

(
a′[ 𝑗] − a[ 𝑗]

)
+ t′[ 𝑗]

���
(only counting along 𝑗 th-coordinate)

≥
���𝐶 ·

(
a[ 𝑗] − a′[ 𝑗]

) ��� − ��t′[ 𝑗]�� (by triangle inequality)

≥ 𝐶 − (𝑁 − 1) (since a[ 𝑗] ≠ a′[ 𝑗] and 0 ≤ t′[ 𝑗] ≤ (𝑁 − 1))
= 2𝐷 (from Equation 1)

> dist
(
(p, ℎ(a)

)
(from Equation 27)

Hence, we can assume that a[ 𝑗] = a′[ 𝑗] for each 𝑗 ∈ [𝑑]
such that 𝑗 ≠ 𝑖. We have three subcases now:
• a′[𝑖] ≤ a[𝑖] − 1: In this subcase, we have

dist
(
p, ℎ(a′)

)
≥ 𝐶 ·

(
a[𝑖] − a′[𝑖]

)
+
(
(𝐷 − 2𝑁 ) + (𝑁 − 1) − t′[𝑖]

)
(only counting along 𝑖 th-coordinate)

≥ 𝐶 +
(
𝐷 − 2𝑁

)
(since 0 ≤ t′[𝑖] ≤ 𝑁 − 1 and

(
a[𝑖] − a′[𝑖]

)
≥ 1)

≥ 2𝐷 (from Equation 1 and Equation 2)

> dist
(
(p, ℎ(a)

)
(from Equation 27)

• a′[𝑖] ≥ a[𝑖] + 2: In this subcase, we have

dist
(
p, ℎ(a′)

)
≥ 𝐶 ·

(
a′[𝑖] − a[𝑖]

)
+
(
t′[𝑖] − (𝐷 − 2𝑁 ) − (𝑁 − 1)

)
(only counting along 𝑖 th-coordinate)

≥ 2𝐶 −
(
𝐷 − 𝑁

)
(since

(
a′[𝑖] − a[𝑖]

)
≥ 2 and 0 ≤ t′[𝑖])

≥ 2𝐷 (from Equation 1 and Equation 2)

> dist
(
(p, ℎ(a)

)
(from Equation 27)

• a′[𝑖] = a[𝑖] + 1: In the last remaining subcase, we have
a′ = a ⊕ e𝑖 .

dist
(
p, ℎ(a)

)2
=

(
(𝐷 − 2𝑁 ) + (𝑁 − 1) − t[𝑖]

)2
+

𝑑∑
𝑗=1, 𝑗≠𝑖

t[ 𝑗]2

≤
(
(𝐷 − 2𝑁 ) + (𝑁 − 1) − t[𝑖]

)2
+ 𝑑𝑁 2

(since t[ 𝑗] ≤ 𝑁 − 1 for each 𝑗 ∈ [𝑑])

<

(
(𝐷 + 2𝑁 )

)2
(from Equation 1, Equation 2 and since 0 ≤ t[𝑖] ≤ 𝑁 − 1)

≤
(
(𝐷 + 2𝑁 ) + t′[𝑖]

)2 + 𝑑∑
𝑗=1, 𝑗≠𝑖

t′[ 𝑗]2 (since t′[𝑖] ≥ 0)

= dist
(
p, ℎ(a′)

)2
(3) a[𝑖] is even and a-(a ⊕ e𝑖 ) form an edge in 𝐺I : By Section 4.2.5,

it follows that p = mid+𝑖a = orig(a)⊕e𝑖 ·
(
(𝑁−1)+(𝐷+𝜖−𝑁 )

)
.



Then from Equation 1 and Equation 2 we have

dist
(
(p, ℎ(a)

)
=

√√√√(
𝐷 + 𝜖 − 1 − 𝑡 [𝑖]

)2
+

𝑑∑
𝑗=1, 𝑗≠𝑖

𝑡 [ 𝑗]2

≤
√
𝐷2 + 𝑑𝑁 2 < 2𝐷 (28)

where we have used the bounds 0 ≤ t[ℓ] ≤ (𝑁 − 1) for each
ℓ ∈ [𝑑].
If there exists 𝑗 ∈ [𝑑] such that 𝑗 ≠ 𝑖 and a[ 𝑗] ≠ a′[ 𝑗], then

dist
(
p, ℎ(a′)

)
= dist

(
plus+𝑖a , orig(a′) ⊕ t′

)
≥
���𝐶 ·

(
a′[ 𝑗] − a[ 𝑗]

)
+ t′[ 𝑗]

���
(only counting along 𝑗 th-coordinate)

≥
���𝐶 ·

(
a[ 𝑗] − a′[ 𝑗]

) ��� − ��t′[ 𝑗]�� (by triangle inequality)

≥ 𝐶 − (𝑁 − 1) (since a[ 𝑗] ≠ a′[ 𝑗] and 0 ≤ t′[ 𝑗] ≤ (𝑁 − 1))
= 2𝐷 (from Equation 1)

> dist
(
(p, ℎ(a)

)
(from Equation 28)

Hence, we can assume that a[ 𝑗] = a′[ 𝑗] for each 𝑗 ∈ [𝑑]
such that 𝑗 ≠ 𝑖. We have three subcases now:
• a′[𝑖] ≤ a[𝑖] − 1: In this subcase, we have

dist
(
p, ℎ(a′)

)
≥ 𝐶 ·

(
a[𝑖] − a′[𝑖]

)
+
(
𝐷 + 𝜖 − 1 − t′[𝑖]

)
(only counting along 𝑖 th-coordinate)

≥ 𝐶 +
(
𝐷 + 𝜖 − 𝑁

)
(since

(
a[𝑖] − a′[𝑖]

)
≥ 1 & t′[𝑖] ≤ 𝑁 − 1)

> 2𝐷 (from Equation 1 and Equation 2)

> dist
(
(p, ℎ(a)

)
(from Equation 28)

• a′[𝑖] ≥ a[𝑖] + 2: In this subcase, we have

dist
(
p, ℎ(a′)

)
≥ 𝐶 ·

(
a′[𝑖] − a[𝑖]

)
+
(
t′[𝑖] − (𝐷 + 𝜖 − 1)

)
(only counting along 𝑖 th-coordinate)

≥ 2𝐶 − 𝐷 (since
(
a′[𝑖] − a[𝑖]

)
≥ 2 and 0 ≤ t′[𝑖] and 𝜖 = 1

4 )

> 2𝐷 (from Equation 1 and Equation 2)

> dist
(
(p, ℎ(a)

)
(from Equation 28)

• a′[𝑖] = a[𝑖] + 1: In the last remaining subcase, we have
a′ = a ⊕ e𝑖 .

dist
(
p, ℎ(a)

)2
=
(
𝐷 + 𝜖 − 1 − t[𝑖]

)2 + 𝑑∑
𝑗=1, 𝑗≠𝑖

t[ 𝑗]2

(since p = mid+𝑖a )

<
(
𝐷 + 𝜖 − 1 − t[𝑖]

)2 + 𝑑𝑁 2

(since t[ 𝑗] ≤ (𝑁 − 1) for each 𝑗 ∈ [𝑑])
< (𝐷 + 𝑁 − 1)2

(from Equation 1, Equation 2 and since t[𝑖] ≥ 0)

<
(
𝐷 − 𝜖 + 𝑁 + t′[𝑖]

)2 (since 𝜖 = 1
4 and t′[𝑖] ≥ 0)

≤
(
𝐷 − 𝜖 + 𝑁 + t′[𝑖]

)2 + 𝑑∑
𝑗=1, 𝑗≠𝑖

t′[ 𝑗]2

= dist
(
p, ℎ(a′)

)2
(4) a[𝑖] is even and a-(a ⊕ e𝑖 ) do not form an edge in 𝐺I : By Sec-

tion 4.2.5, it follows that p = mid+𝑖a = orig(a) ⊕ e𝑖 ·
(
(𝑁 −

1) + (𝐷 − 2𝑁 )
)
. Then from Equation 1 and Equation 2 we

have

dist
(
(p, ℎ(a)

)
=

√√√√(
𝐷 − 𝑁 − 1 − 𝑡 [𝑖]

)2
+

𝑑∑
𝑗=1, 𝑗≠𝑖

𝑡 [ 𝑗]2

≤
√
𝐷2 + 𝑑𝑁 2 < 2𝐷 − 𝑁 < 2𝐷 (29)

where we have used the bounds 0 ≤ t[ℓ] ≤ (𝑁 − 1) for each
ℓ ∈ [𝑑].
If there exists 𝑗 ∈ [𝑑] such that 𝑗 ≠ 𝑖 and a[ 𝑗] ≠ a′[ 𝑗], then

dist
(
p, ℎ(a′)

)
= dist

(
plus+𝑖a , orig(a′) ⊕ t′

)
≥
���𝐶 ·

(
a′[ 𝑗] − a[ 𝑗]

)
+ t′[ 𝑗]

���
(only counting along 𝑗 th-coordinate)

≥
���𝐶 ·

(
a[ 𝑗] − a′[ 𝑗]

) ��� − ��t′[ 𝑗]�� (by triangle inequality)

≥ 𝐶 − (𝑁 − 1) (since a[ 𝑗] ≠ a′[ 𝑗] and 0 ≤ t′[ 𝑗] ≤ (𝑁 − 1))
= 2𝐷 (from Equation 1)

> dist
(
(p, ℎ(a)

)
(from Equation 29)

Hence, we can assume that a[ 𝑗] = a′[ 𝑗] for each 𝑗 ∈ [𝑑]
such that 𝑗 ≠ 𝑖. We have three subcases now:
• a′[𝑖] ≤ a[𝑖] − 1: In this subcase we have

dist
(
p, ℎ(a′)

)
≥ 𝐶 ·

(
a[𝑖] − a′[𝑖]

)
+
(
𝐷 − 𝑁 − 1 − t′[𝑖]

)
(only counting along 𝑖 th-coordinate)

≥ 𝐶 +
(
𝐷 − 𝑁 − 1 − t′[𝑖]

)
(since

(
a[𝑖] − a′[𝑖]

)
≥ 1)

> 2𝐷 − 𝑁

(from Equation 1, Equation 2 and since t′[𝑖] ≤ 𝑁 − 1)

> dist
(
(p, ℎ(a)

)
(from Equation 29)



• a′[𝑖] ≥ a[𝑖] + 2: In this subcase we have

dist
(
p, ℎ(a′)

)
≥ 𝐶 ·

(
a′[𝑖] − a[𝑖]

)
+
(
t′[𝑖] − (𝐷 − 𝑁 − 1)

)
(only counting along 𝑖 th-coordinate)

≥ 2𝐶 − (𝐷 − 𝑁 − 1) (since
(
a′[𝑖] − a[𝑖]

)
≥ 2 and 0 ≤ t′[𝑖])

> 2𝐷 − 𝑁 (from Equation 1 and Equation 2)

> dist
(
(p, ℎ(a)

)
(from Equation 29)

• a′[𝑖] = a[𝑖] + 1: In the last remaining subcase we have
a′ = a ⊕ e𝑖 .

dist
(
p, ℎ(a)

)2
=
(
𝐷 − 𝑁 − 1 − t[𝑖]

)2 + 𝑑∑
𝑗=1, 𝑗≠𝑖

t[ 𝑗]2 (since p = mid+𝑖a )

<
(
𝐷 − 𝑁 − 1 − t[𝑖]

)2 + 𝑑𝑁 2

(since t[ 𝑗] ≤ (𝑁 − 1) for each 𝑗 ∈ [𝑑])
≤ (𝐷 + 2𝑁 )2

(from Equation 1, Equation 2 and since 0 ≤ t[𝑖] ≤ 𝑁 − 1)

≤
(
𝐷 + 2𝑁 + t′[𝑖]

)2 (since t′[𝑖] ≥ 0)

≤
(
𝐷 + 2𝑁 + t′[𝑖]

)2 + 𝑑∑
𝑗=1, 𝑗≠𝑖

t′[ 𝑗]2

= dist
(
p, ℎ(a′)

)2

This concludes the proof of Lemma 9. □

From Lemma 9 and Observation 2, it follows that for each a ∈
𝑉 the number of “OUR" voters at the ballot box ℎ(a) is exactly
1+ 2𝑑 · (2𝑑 + 1)𝜙 (a) and the number of “OTHER" voters at the ballot
box ℎ(a) is exactly 2𝑑 · (2𝑑 + 1)𝜙 (a) , i.e., “OUR" wins the ballot box
ℎ(a). Therefore, each of the ballot boxes from the set P ′′ is won
by “OUR", and since |P ′′ | = |𝑉 | it follows that P ′′ is a solution
for the instance U =

(
C = {“OUR", “OTHER"},V,B, 𝑘 = |𝑉 |, ℓ =

|𝑉 |, “OUR"
)

of FAIR-GERRYMANDERING-
(
R𝑑 , ℓ2

)
.
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