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Key Points

• Engineering CAR T
cells to express
SLC7A5/SLC7A11 or
downstream arginase
enzymes enhances
CAR T-cell activity in
the cancer
environment.
/9/1754/2049083/blooda
Cancer cells take up amino acids from the extracellular space to drive cell proliferation and

viability. Similar mechanisms are applied by immune cells, resulting in the competition

between conventional T cells, or indeed chimeric antigen receptor (CAR) T cells and tumor

cells, for the limited availability of amino acids within the environment. We demonstrate

that T cells can be re-engineered to express SLC7A5 or SLC7A11 transmembrane amino acid

transporters alongside CARs. Transporter modifications increase CAR T-cell proliferation

under low tryptophan or cystine conditions with no loss of CAR cytotoxicity or increased

exhaustion. Transcriptomic and phenotypic analysis reveals that downstream,

SLC7A5/SLC7A11–modified CAR T cells upregulate intracellular arginase expression and

activity. In turn, we engineer and phenotype a further generation of CAR T cells that express

functional arginase 1/arginase 2 enzymes and have enhanced CAR T-cell proliferation and

antitumor activity. Thus, CAR T cells can be adapted to the amino acid metabolic

microenvironment of cancer, a hitherto recognized but unaddressed barrier for successful

CAR T-cell therapy.
_adv-2022-008272-m
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Introduction

Chimeric antigen receptor (CAR) T cells are being increasingly used in clinical practice for relapsed
B-cell malignancies. However, significant numbers of patients still relapse after CAR T-cell therapy.1 In
acute myeloid leukemia (AML) or solid cancers, meaningful clinical activity is rarer.2 The expansion of
CAR T cells is often poor, with CAR T cells becoming rapidly undetectable.3-6 Thus, to optimize these
therapies to adapt and be functional in patients remains a major and exciting challenge.7

One of the critical factors regulating T-cell proliferation and phenotype is the access to sufficient
nutrients within the environment.8,9 Amino acids are key components for metabolic, signaling, and
protein synthesis pathways in multiple cells. Uptake by cancer cells or myeloid-derived suppressor cells
mean CAR T cells must compete for the limited availability of semiessential or essential amino acids.
We investigated how re-engineering CAR T-cell amino acid uptake or catabolism can improve function.
vember 2022; prepublished online on
2022; final version published online 27
vances.2022008272.

dy.

d shared according to the University of
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The full-text version of this article contains a data supplement.
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Methods

Vectors & CAR T-cell constructs

T cells expressing CAR for GD2 or CD33 were generated as
previously described in the study by Fultang et al.10 Modification of
the 3’ end of the base CAR expression cassette was performed to
include the full coding sequence (CDS) of either human SLC7A5
or SLC7A11 or arginase 1 (Arg1) or arginase 2 (Arg2). The
resulting codon-optimized CDSs were synthesized and subcloned
downstream of and within the same open reading frame of the
base CAR expression cassettes (GenScript), with each CDS
separated by a self-cleaving P2A peptide. All the sequences were
validated by restriction enzyme analysis and DNA sequencing.

Results and discussion

We and others have previously shown that AML provides a model
of the amino acid–depleted immunosuppressive environment for
testing T-cell immunotherapies.11,12 Neutral amino acids such as
tryptophan are transported into cells through the expression of
SLC7A5 whereas cystine, the oxidized form of cysteine, is trans-
ported through SLC7A11.13,14 Transcriptomic profiling of 562
patient samples identified the expression of SLC7A5 or SLC7A11
by AML blasts (supplemental Figure 1A), which we reconfirmed at
the protein level (supplemental Figure 1B).15 Culture in tryptophan
or cystine-depleted conditions reduced the AML viability
(supplemental Figure 1C). The inhibition of SCL7A5 (supplemental
Figure 1D) or SLC7A11 (supplemental Figure 1E) led to a
decreased AML viability confirming blasts consumed tryptophan or
cystine from the microenvironment.16,17

The examination of T cells from patients with AML shows that both
CD4+ and CD8+ T cells also express SLC7A5 or SLC7A11
(supplemental Figure 1F-G).18 The absence of tryptophan or
cystine impairs conventional T cell and CAR T-cell proliferation
(Figure 1A-B). We hypothesized that enhancing amino acid import
would improve CAR T-cell function. A third generation of CAR
Figure 1. Insertion of SLC7A5 or SLC7A11 amino acid transporters upregulates

impaired by tryptophan or cystine-free culture conditions, in vitro as measured by CSFE dilut

in response to CD33+ THP1 leukemia cells is significantly reduced by tryptophan or cystine-

T cells produced from 3 individual human donors are shown. (C) Expression of SLC7A5 o

CD33+ THP1 in vitro. The percentage of dead THP1 cells measured by flow cytometry after

of SLC7A5 or SLC7A11 after CAR T-cell culture with target CD33+ THP1 in vitro. IFN-γ co
hours. (E) SLC7A5 or SLC7A11–modified anti-CD33 CAR T cells have enhanced prolife

compared with unmodified CAR T cells, in vitro. CAR T-cell proliferation was measured by

CD33+ HL60 AML. Following confirmed engraftment mice were injected with modified or

SLC7A5- or SLC7A11–modified anti-CD33 CAR T cells in NOD-SCID mice with establishe

T-cell frequency was determined by qPCR. Pooled data from 3 human donors. (H) SLC7A5

in the bone marrow of murine xenografts, compared with those treated with unmodified C

administration. Pooled data from 3 human donors. (I) Heatmap of the differential gene expre

unmodified anti-CD33 CAR T cells from n = 5 human donors. Top 500 genes shown. Th

significantly increased in SLC7A5- or SLC7A11–modified anti-CD33 CAR T cells compare

low (75% free), or cystine-low (75% free) conditions. Intracellular ARG1 staining as measu

enzyme expression is significantly increased in SLC7A5- or SLC7A11–modified anti-CD33

tryptophan-low (75% free) or cystine-low (75% free) conditions. Intracellular Arg2 staining

enzyme activity, measured by catabolism of arginine into ornithine and urea, is increased in

CAR T cells. CAR T cells were cultured with CD33+ THP1 for 48 hours, before sorting a

carboxyfluorescein succinimidyl ester; qPCR, quantitative polymerase chain reaction.
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T cells expressing SLC7A5 or SLC7A11 alongside an anti-CD33
adaptor were engineered (supplemental Figure 2A-E) with an
enhanced uptake of tryptophan or cystine respectively
(supplemental Figure 2F-G).10,14,19 Modified CAR T cells retained
antigen-specific cytotoxicity (Figure 1C) and the activation-induced
interferon-γ (IFN-γ) release (Figure 1D). The activation marker
CD69 was more highly expressed in transporter-modified CAR T
cells over time (supplemental Figure 3A-B). No significant changes
in exhaustion markers LAG3, PD-1, and TIM3 were observed
(supplemental Figure 3C-H). A significant reduction in tumor
necrosis factor-α (TNF-α) was observed in transporter-modified
CAR T cells (supplemental Figure 4A-F).

The proliferation of modified CAR T cells was compared in low
amino acid conditions. Anti-CD33 SLC7A5 or SLC7A11–modified
CAR T cells proliferated better in vitro, in low-tryptophan or low-
cystine conditions (Figure 1E). In vivo AML-engrafted mice were
treated with CAR T cells from 3 human donors (Figure 1F;
supplemental Figure 4G). Although CAR T cells can be detected
equally in the bone marrow (Figure 1G), transporter-modified CAR
T cells significantly increased AML clearance (Figure 1H).

Next, we investigated the intracellular mechanisms through which
SLC7A5/SLC7A11 insertions adapt CAR T cells. A Jurkat model
system generated through transduction with the same CAR T
adaptors was used (supplemental Figure 5A-B).20,21 Basal mito-
chondrial respiration linked to adenosine diphosphate (ADP)
phosphorylation increased in SLC7A11 Jurkat-CAR T cells starved
from cystine (supplemental Figure 5C-D), whereas glycolytic
proton-efflux rate (glycoPER) was elevated in tryptophan starved
SLC7A5 Jurkat-CAR T cells (supplemental Figure 5E). Collectively,
these data confirm a significant increase in ATP supply rates within
transporter-modified Jurkat-CAR T cells, despite amino acid star-
vation (supplemental Figure 5F).

To further examine which intracellular pathways are altered,
modified human CAR T cells were cultured with tumor cells in
tryptophan/cystine-low media, flow sorted, and subjected to RNA
arginase expression in CAR T cells. (A) The proliferation of T cells is significantly

ion using flow cytometry after 72 hours. (B) The proliferation of anti–CD33-CAR T cells

free conditions in vitro as measured by flow cytometry after 72 hours. Anti–CD33-CAR

r SLC7A11 has no detrimental effect on the cytotoxicity of CAR T cells against target

72 hours. (D) Activation–induced IFN-γ release remains unchanged by the expression

ncentration was measured by bead immunoassay in cell culture supernatants after 72

ration under tryptophan- or cystine-low (75% free) culture conditions respectively,

flow cytometry after 72 hours. (F) Schematic showing NOD-SCID mice engrafted with

control CAR T cells from 3 human donors. (G) The proliferation of unmodified or

d engraftment of CD33+ AML blasts (HL60). Data from the day of euthanization. CAR

- or SLC7A11–modified anti-CD33 CAR T cells reduce the expansion of CD33+ HL60

AR T cells. Fold change in AML on the day of euthanization from the day of CAR T

ssion analysis comparing SLC7A5 or SLC7A11–modified anti-CD33 CAR T cells with

e red arrow indicates the ARG2 gene. (J) Intracellular Arg1 enzyme expression is

d with unmodified CAR T cells cultured with CD33+ THP1, under R10%, tryptophan-

red by flow cytometry in CAR T cells from n = 3 human donors. (K) Intracellular Arg2

CAR T cells compared with unmodified CAR T cells cultured with CD33+ THP1, under

as measured by flow cytometry in CAR T cells from n = 3 human donors. (L) Arginase

SLC7A5- or SLC7A11–modified anti-CD33 CAR T cells compared with unmodified

nd enzyme activity analysis. Data from n = 4 human donors is shown. CFSE,
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sequencing. Differential gene expression analysis revealed signifi-
cant changes between standard and transporter-modified CAR
T cells (Figure 1I). For both transporter-modified CAR T cells,
compared with controls, genes such as E2F2, EPHA4, and SLFN5
were downregulated, consistent with their known mechanisms in
regulating T-cell activation. Genes associated with T-cell activation
including EGR1, TNFRSF18, DUSP2, SLC3A2 are also upregu-
lated. Interestingly, we identified that both SLC7A5- and
SLC7A11-modified CAR T cells upregulated Arg2 expression, an
enzyme we have shown to drive cellular proliferation and not
regulated by tryptophan/cystine uptake. The analysis of SLC7A5/
SLC7A11–modified CAR T cells demonstrated an increased
intracellular arginase protein expression (Arg1 and Arg2) following
crosstalk with target tumor cells under both complete and amino
acid–restricted conditions (Figure 1J-K; supplemental Figure 6A-
B). Consistent with this, transporter-modified CAR T cells had
increased enzyme activity converting arginine into ornithine and
urea (Figure 1L).

We hypothesized that Arg2 lies downstream of SLC7A5/
SLC7A11 function and signaling and may be a central regulator of
CAR T-cell activity. To answer this question, a further series of CAR
T-cell constructs were generated in which Arg2 or its homolog
Arg1 were inserted in anti-CD33 or anti-GD2 CAR T cells
(Figure 2A; supplemental Figure 7A). Arg1 or Arg2 proteins were
expressed (Figure 2B) and were functional in converting arginine to
urea (Figure 2C). No negative effects on cytotoxicity (Figure 2D),
exhaustion (supplemental Figure 7B-D), or activation-induced IFN-γ
release (supplemental Figure 7E-F) were seen.

Next, downstream effects on intracellular metabolism were exam-
ined. Arg2 modified–Jurkat-CAR T cells (supplemental Figure 8A-
C) displayed increased maximal respiratory capacity and conse-
quent spare respiratory capacity under Seahorse Analysis
(supplemental Figure 9A-F). Furthermore, intracellular metabolite
detection by gas chromatography–mass spectrometry (GC-MS)
revealed a significantly increased concentration of the glycolytic
end-products pyruvate (Arg1) and lactate (both Arg1/2) within the
modified Jurkat-CAR T (supplemental Figure 9G).22 No tricarbox-
ylic acid cycle intermediates were overrepresented, consistent with
the observed enhanced basal mitochondrial respiration rates.
Moreover, a marked Arg1-linked increase in most amino acid
concentrations was recorded; and an increase in tyrosine,
Figure 2. Insertion of arginase enzymes enhances CAR T-cell activity in vitro and

scFv-CD8 hinge-41BB-CD3ζ or the basic anti-GD2-CAR scFv with CH2CH3 spacer-CD8

for CAR T identification and purification. (B) Representative expression of Arg1 or Arg2 b

Representative of N = 3 individual donors. (C) Arginase enzyme activity, measured by catab

GD2 or anti-CD33 CAR T cells compared with unmodified CAR T cells. Data from n = 20 h

on CAR T-cell–specific cytotoxicity against anti-GD2+ tumor cell targets, as measured by c

Arg1- or Arg2–modified anti-GD2 CAR T-cells with unmodified anti-GD2 CAR T-cells from

cells have enhanced proliferation in the presence of anti-GD2 tumor target cells, compared

cytometry after 72 hours. (G) Arginase–modified anti-GD2 CAR T cells have enhanced prol

compared with unmodified CAR T cells, in vitro. CAR T-cell proliferation was measured by 3

enhanced proliferation when culture conditions are supplemented with 100μM arginine, com
3H-thymidine uptake after 96 hours. (I) Diagram illustrating subcutaneous engraftment of GD

(J) Proliferation of unmodified control or Arg1- or Arg2–modified anti-GD2 CAR T cells in nu

of euthanization. CAR T-cell copies determined by qPCR. (K) Arg1- or Arg2–modified anti-G

CAR T cells. qPCR, quantitative polymerase chain reaction.
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tryptophan, glutamine, and glutamate were found in the Arg2–
expressing Jurkat-CAR-T cells. This suggests that arginase activity,
through the impact on mitochondrial bioenergetics, supports
higher levels of intracellular amino acid pools, and thereby, down-
stream protein synthesis. RNA sequencing of human CAR T cells
revealed several significant changes (Figure 2E). Notably, higher
expression of genes associated with T-cell activation such as
TOB1, KLRB1, or CCR7 were seen (supplemental Figure 9H-I).

To investigate functional benefits, Arg1/Arg2–modified CAR T
cells were cultured with target tumor cells in multiple conditions.
The antigen-dependent proliferation of modified CAR T cells was
improved compared with unmodified CAR T cells (Figure 2F).
Notably, modified CAR T cells are more proliferative under low-
arginine or tumor-conditioned media cultures (Figure 2G).
Consistent with specific enzyme activity supplementation of media
with additional arginine-enhanced–modified CAR T-cell prolifera-
tion (Figure 2H). Next, CAR T cells from human donors were tested
in mice bearing GD2+ tumors (Figure 2I). Compared with control
anti-GD2 CAR T cells, increased Arg1- or Arg2-modified CAR T
cells were detectable in the tumor tissue of all mice (Figure 2J).
Correspondingly, tumors were significantly smaller in mice treated
with Arg1/Arg2–modified CAR T cells (Figure 2K). In summary, we
suggest that increasing amino acid influx or downstream catabo-
lism is a clinically applicable and technologically advanced process
that overcomes the negative impact of the tumor metabolic
microenvironment on CAR T-cell function (supplemental
Figure 10).
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