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ABSTRACT

A hybrid learning algorithm consisting of a preprocessor, a k-nearest neighbors regressor, a noise generator, and a particle–wall collision
model is introduced for predicting features of turbulent single-phase and particle–liquid flows in a pipe. The hybrid learning algorithm has
the ability to learn and predict the behavior of such complex fluid dynamic systems using experimental dynamic databases. Given a small
amount of typical training data, the algorithm is able to reliably predict the local liquid and particle velocities as well as the spatial distribution
of particle concentration within and without the limits of the range of training data. The algorithm requires an order of magnitude less train-
ing data than a typical full set of experimental measurements to give predictions on the same level of accuracy (typically, 20 cf. 100 trajectories
for phase velocity distribution and 40 cf. 500 trajectories for phase concentration distribution), thus leading to huge reductions in experimen-
tation and simulation. A feature importance analysis revealed the effects of the different experimental variables on the particle velocity field
in a two-phase particulate flow, with particle–liquid density ratio and particle vertical radial position being the most influential and particle
concentration the least. The algorithm is amenable to extension by using more complex databanks to address a much more comprehensive
range of flow situations.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0172609

I. INTRODUCTION

Machine learning (ML) is an artificial intelligence technique that
allows complex systems with vast data to be studied, analyzed, and pre-
dicted.1 Theoretically, it could endow the system with the ability to
study and enhance experience automatically without extra human
labor. Thus, in the last decade, the world has been witnessing a surge
in a wide range of ML applications dealing with a variety of extensive
data such as the multimedia industry,2 image classification,3 computer
vision,4 social network analysis,5 text mining,6 and energy system opti-
mization.7,8 The basic logic of these applications is to extract insights
from the accessible data and, thus, establish intelligent models based
on the available information.

Generally, ML algorithms can be classified into four main types:
supervised, unsupervised, semi-supervised, and reinforcement learning
methods.9 By providing labeled training data to a supervised learning
algorithm, it could predict specific targets from the input.10 For exam-
ple, to efficiently classify or regress targets that match the requirements
and hobbies of customers, various automated recommender systems

(e.g., goods, news, songs, videos, and movies) associated with different
trained ML algorithms are established.11 In healthcare, it has been
applied to diagnose diseases with promising accuracy.12 For example,
an artificial neural network algorithm trained by a given database
(myocardial perfusion scintigraphy data) could classify myocardial
infarction with an accuracy of 97%.13 In the field of chemical engineer-
ing, efficiently evaluating the reactivity (e.g., activity and stability) of
catalyst surfaces has been a significant challenge in designing effective
catalysts for industrial catalytic reactions. Recently, Liu et al.14 tested
several supervised learning algorithms to discover effective catalysts.
They found that the so-called random forest models gave the best per-
formance with reasonable accuracy, faster design speed, and lower
cost.

The unsupervised learning method extracts hidden characteristics
of the data without labeled data input15 and is more likely to be used
to analyze a database with presumed trends. One of its typical applica-
tions is clustering analysis, for example, discovering clusters of arbi-
trary shapes in point databanks, which is the cornerstone of artificial
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intelligence image processing and vision.16 The semi-supervised learn-
ing approach is a hybrid of the supervised and unsupervised learning
methods and can deal with both labeled and unlabeled data. It is an
advantageous method since it can improve the efficiency of the learn-
ing system, e.g., requiring less labeled data and improving accuracy
compared with using either of the two learning algorithms alone.9 The
reinforcement learning method is widely used to train machines or
software agents under particular circumstances to improve their per-
formance by estimating errors as rewards or penalties. It is applied to
complex systems such as robotics17 and autonomous driving tasks,18

but is unsuitable for solving straightforward problems as it needs to
interact with the environment.

In the field of fluid dynamics, different ML techniques have been
exploited. For example, Li et al.19 used the k-nearest neighbors (KNN)
algorithm to learn the features of particle–liquid flows in a mixing tank
from experimental Lagrangian trajectories. They achieved promising
results, which demonstrated the ability of the KNN algorithm to deal
with such complex dynamic systems. Bukka et al.20 used the proper
orthogonal decomposition—recurrent neural networks (POD-RNN)
and convolution recurrent autoencoder network (CRAN) models to
learn and predict the behavior of a fluid flowing past one cylinder and
two side-by-side cylinders from Eulerian CFD simulation results. They
extracted the dynamic features of the full-dimensional (2D) CFD data
by projecting them onto a low-dimensional (1D) manifold via POD
and convolutional neural networks models (part of CRAN), which
reduced the calculation time and computation power. Furthermore,
with an appropriately trained generative adversarial networks (GAN)

generator, Drygala et al.21 managed to simulate the turbulent flow
around a turbine stator. A small amount of data [e.g., a random noise
vector from large eddy simulations (LES)] could generate results com-
parable to those of a full LES simulation.

Hashemizadeh et al.22 applied multiple ML algorithms to predict
the density of drilling mud by training the models with a data bank
(817 datasets from wells in the South Pars gas field) to optimize the
operating conditions of the drilling of the oil and gas wells. Ten param-
eters were analyzed by these ML algorithms, which indicated that the
plastic viscosity and true vertical depth highly influenced the drilling
mud density. As ML algorithms are very powerful in data and image
classification tasks, Liu et al.23 trained the k-nearest neighbors model
with experimental void fraction data and managed to recognize and
predict the flow pattern of gas–liquid flows in inclined tubes. Their
results were comparable to previous experimental results reported by
Dennis et al.24 and Zhu et al.25 Another common application of ML is
to be coupled with numerical methods (e.g., CFD) to improve model-
ing performance. In a previous report,26 a deep neural network was
used to solve complex fluid dynamics equations, i.e., Navier–Stokes
equations, of multiple bubble flow in a microchannel. Ouyang et al.27

used an artificial neural network algorithm to predict mesoscale drag
and solids stress in a gas-particle fluidized bed reactor. They concluded
that their hybrid model was more powerful to handle flows with high
superficial gas velocities compared with previous widespread models.

For dynamical systems such as turbulent particle-laden pipe
flows, the complexity of the detailed internal information is the pri-
mary barrier to investigating them. For example, the local liquid veloc-
ity field varies as a result of the generation and dissipation of turbulent
eddies, and particle velocities are also randomly affected by inter-
particle and particle–wall collisions.28 Moreover, the strong mutual
influence between the solid and liquid phases (highly affected by parti-
cle volume concentration and particle-to-wall distance) results in tur-
bulence modulation, which further complicates the dynamics of the
flow.28 Such phenomena are critical for understanding such complex
systems and are captured in the Lagrangian flow trajectories of both
the continuous and dispersed phases. Thus, various approaches have
been reported to analyze such Lagrangian trajectories and extract use-
ful flow information.29–31 Additionally, to consider the effects of both

TABLE I. Experimental conditions of particle–liquid flow.

Phase
Predicting
parameter

qL
(kgm�3)

qs
(kgm�3)

dp
(mm)

Cs,m

(vol. %)

Single-phase � � � 1143 � � � � � � � � �
Two-phase Cs,m 1143 1165 2, 6, and 10 6–31

dp 1143 1165 2–10 12 and 31
qs 1145 1248 4 24

FIG. 1. Experimental data processing:
estimation of local phase velocity and
concentration.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 113309 (2023); doi: 10.1063/5.0172609 35, 113309-2

VC Author(s) 2023

 08 N
ovem

ber 2023 14:09:21

pubs.aip.org/aip/phf


FIG. 2. Flowchart of hybrid machine learning framework for predicting Lagrangian flow trajectories in particle–liquid flow: (a) preprocessor; (b) training of KNN regressor; and
(c) construction of Lagrangian trajectories.
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particle and liquid velocity fluctuations while simplifying the problem,
the combination of a dominant mean velocity with a stochastic fluctu-
ation has been widely used to approximate the dynamics of particle–
liquid flow systems.32

In this work, the hybrid ML algorithm approach is used to ana-
lyze turbulent particle transport in a horizontal pipe, due to its simplic-
ity, straightforward implementation, and robustness for classification
as well as regression.23,33,34 High-quality training data are obtained
from an experimental Lagrangian technique of 3D positron imaging
particle tracking (PEPT), and the minimum amount required to accu-
rately predict phase velocity and concentration distributions in the
pipe by the hybrid ML algorithm is determined. In addition, by com-
bining datasets corresponding to different flow conditions of particle
concentration, size, and density, the hybrid ML model is trained to
predict the multiphase flow behavior under new conditions within and
without the range of experimental data available. Moreover, the impor-
tance of various flow parameters on the local velocity field of the par-
ticulate phase is also evaluated using a feature importance analysis
technique to further understand the dynamics of the multiphase flow
system.

II. EXPERIMENTAL
A. Experimental data bank acquisition

The experimental training data were obtained in a horizontal
pipe conveying a turbulent particle–liquid suspension, as illustrated in
Fig. S1 in the supplementary material. The particle–liquid mixture was
continuously well mixed in a conical tank and pumped into a 4m
Perspex pipe with an internal diameter (D) of 40mm by a vortex
pump. Visualization of the two-phase flow by PEPT was conducted
over a 400mm long pipe section, 3m downstream of the entrance
bend, where flow was fully developed. This work focuses on studying
the influence of particulate phase properties on the behavior of the
two-phase flow. Thus, the liquid phase properties [e.g., liquid viscosity
(lL), density (qL), and temperature] and mixture flow rate (um) were
kept unchanged, and the liquid Reynolds number [ReL ¼ qLumD

lL
] was

�8000. The dynamic data bank consisted of particle mean concentra-
tion (Cs,m) ranging from 6 to 31 vol. %, particle size (dp) ranging from
2 to 10mm, and particle-to-liquid density ratio (qr) ranging from 1.02
to 1.09. The particles used were nearly neutrally buoyant calcium algi-
nate beads (qr¼ 1.02). Particle density was increased by dosing silica
powder into the alginate solution used to make the beads. Full experi-
mental details and protocols can be found in our previous papers.35–38

The experimental particle–liquid flow conditions under which the data
bank utilized for training the ML algorithm as well as assessing its per-
formance was generated are listed in Table I.

B. PEPT flow imaging and data processing

PEPT is a non-intrusive measurement technique that uses
positron-emitting particle tracers to accurately track the motion of the
fluid phase or the particle phase and record its 3D locations as a func-
tion of time. Thus, long-term Lagrangian trajectories of a complex
dynamic system are obtained. The technique has the unique advantage
of visualizing opaque flows (e.g., turbid fluids or particle–liquid flows
with high solid loadings) while giving comparable accuracy with lead-
ing optical techniques such as particle image velocimetry (PIV)39 and
laser Doppler velocimetry (LDV).40 Thus, it has been widely used to

study various particle–liquid flow systems, and details can be found in
previous papers.41,42

To obtain sufficient dynamic information on the particle–liquid
flow system while reducing experimental time, several radioactive tracers
were used simultaneously, and at least 500 trajectories were determined
in each experiment. To gain high-quality dynamic information on solid
and liquid phases, tracers used in experiments were matched with their
corresponding phases as closely as possible. Small neutrally buoyant resin
particle tracers (400lm) were used to track the liquid phase.
Representative particles taken from the population of particles used in
the experiments were radiolabelled and used as tracers to track the solid
phase. Using several tracers at a time to track a particular phase produces
proportionally more data, thus reducing experimental time considerably.

The tracer instantaneous velocity is first estimated by a regression
analysis using a number of locations and time obtained from the raw
PEPT trajectory data.35 As shown in Fig. 1, the mean velocity inside a
given cell (�um) is calculated by averaging all instantaneous velocities
(ui) in the cell. Given the previously proven correlation between tracer
cell occupancy and local phase concentration, the local volume fraction
of particles (Cs) in a cell is estimated from the particle Lagrangian tra-
jectories, using the total time that a particle spends in a cell (Dt) and
the ergodic time of this cell (tE); thus,

Dt
tE

¼ Cs

Cs;m
: (1)

The theory of this occupancy method is detailed in our previous
work.43,44

III. MACHINE LEARNING MODEL THEORY

The flow chart depicted in Fig. 2 outlines the hybrid ML frame-
work used in this work, which consists of a preprocessor (blue part), a
general KNN regression learning model (yellow part), a validated
Gaussian noise model (green part), and a particle–wall collision model

FIG. 3. Preprocessor grid for random selection of PEPT trajectories allocated to
data bank.
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(pink part). The theory underpinning these models is described in
Secs. III A–III E.

A. Preprocessor

Since the performance of the hybrid ML framework relies highly
on the quality of the input data, a preprocessor [Fig. 2(a)] was designed
to obtain representative high-quality data of the dynamic two-phase
flow system studied. First, accurate Lagrangian phase trajectories were
obtained from the raw experimental PEPT data (t, x, y, z) using a
regression analysis.35 Combining these Lagrangian PEPT trajectory
data (x, y, z, ux, uy, uz) with the associated experimental conditions
(Cs,m, qr, dp,), a new data array was generated. Since the flow in the
pipe section visualized by PEPT was steady and fully developed, the

axial x position was irrelevant. Thus, the preprocessor provided the
database with y, z, Cs,m, qr, and dp as input features and ux, uy, and uz
as predicted targets. As discussed further below, one of the aims was to
determine the minimum amount of experimental data needed in the
preprocessor data bank to efficiently train the ML algorithm. Thus, dif-
ferent size datasets were tested, and the algorithm predictions evalu-
ated against the full set of experimental data. To construct a data bank
consisting of input data, which are uniformly distributed and could
represent the full flow domain, the cross section of the pipe was
divided into 24 cells of equal volume (Fig. 3). Starting from the first
central cell and working radially outward toward the wall, the process
consists of identifying the first random trajectory whose mean position
(�yi, �z i) is situated within the cell. Such a trajectory is then selected and
put into the data bank, before moving to the next cell. When all 24 cells

FIG. 4. Validation of Gaussian noise model against PEPT measurements in x, y, and z directions: (a) single-phase flow (ReL� 8000); (b) liquid phase; and (c) particulate phase
of particle–liquid flow (ReL� 8000, Cs,m¼ 12 vol. %, dp¼ 2mm, and qr¼ 1.02).
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have been allocated their first trajectory, the preprocessor goes back to
the first cell, and so on. The random selection stops when the target
number of selected trajectories across the pipe is reached.

B. k-nearest neighbors model

The k-nearest neighbors (KNN) model has a faster modeling
speed, and the prediction results are robust. KNN tends to have a better
root mean square error (RMSE) compared to support vector regression
(SVR), linear regression, and artificial neural network (ANN).45 The
basic mechanism of the KNNmodel is straightforward. Instead of estab-
lishing an internal model from the input training data, it stores the train-
ing data in n-dimensional space and predicts an unknown data point by
evaluating its similarity to other nearest data points (k) in the training
data using a weight function (w).46 As shown in Eq. (2), the predicted
mean velocity (�upred

i ) is computed by the weighted average of the local
instantaneous velocities at k nearest neighboring training data points,

�upred
i ¼

Xk
j¼1

wij � uj; (2)

where uj is the jth instantaneous velocity of the training data, which in
this case comes from raw PEPT data; k is the number of the nearest
neighbors used to predict �upred

i ; and wij is the weight function, such as
the distance weight function, which evaluates the importance of a
training data point (uj) by the inverse of the distance to the predicted
data point (�upred

i ).
Due to the existence of dimension and unit differences, all varia-

bles in the feature space are normalized to avoid the multiple features
spanning effect, as follows:

X� ¼ X � Xmin

Xmax � Xmin
; (3)

where X�, X, Xmin, and Xmax are the normalized, original, minimum,
and maximum values of the feature considered. Thus, all the variables
are scaled between 0 and 1. The distance function used to evaluate the
similarity of the data in this work is the Euclidean distance given by

L2 X�
i ;X

�
j

� �
¼

Xn
l¼1

X� lð Þ
i � X� lð Þ

j

��� ���2
 !1

2

; (4)

where l is the number of feature dimensions, which is equal to 5 (y, z,
Cs,m, qr, dp). Due to the simplicity of the KNN model, k and w are the
only critical parameters that need to be optimized. The optimization of
these parameters and the validation of the model are discussed further
below. As shown in Fig. 2(b), 70% of data randomly selected from the
preprocessor data bank were used for training the KNN regressor and
the remaining data (30%) were used for testing it.

C. Experimental validation of Gaussian noise model

To predict instantaneous velocities by the ML algorithm, the
Gaussian noise model was used to predict the local fluctuation velocity
(uf ); thus,

FIG. 5. Schematic illustration of tracer-wall collision model.

FIG. 6. Optimization of KNN algorithm parameters (k and w) based on (a) RMSE and (b) R2.
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uf � N li; r
2
i

� �
; (5)

where li and ri are the mean and standard deviation of the local fluc-
tuation velocity. The model was successfully validated in 3D by com-
paring with real experimental PEPT fluctuation velocities, as shown in
Fig. 4, for single-phase flow and particle–liquid flow. Thus, the
Gaussian noise model was used to generate velocity fluctuations for
the ML algorithm.

D. Particle-wall collision model

A particle-wall collision model, illustrated in Fig. 5, was added to
the hybrid learning system to avoid physically unrealistic predictions
of the particle tracer leaving the pipe flow domain. The model uses a
restitution coefficient to readjust the velocity magnitude and direction
of the tracer once it crosses the pipe wall; thus,

u2;n ¼ en � u1;n;

u2;t ¼ et � u1;t ;
(6)

where u2;n and u1;n are the tracer velocities in the normal direction
before and after collision, while u2;t and u1;t are the tracer velocities in
the tangential direction before and after collision. A sensitivity analysis
showed that the ML predictions were not sensitive to the value of the
restitution coefficient within the range [0, 1], so a value of 1 (i.e., per-
fectly elastic collisions) was adopted; details of the analysis can be
found in our previous work.19,47

E. Generation of long-term Lagrangian trajectories

To obtain the Lagrangian trajectory of a given phase (liquid or
particle) over a specific time length, the first step is to generate the
instantaneous velocity of the initial zero position. By combining
Eqs. (2) and (5), the instantaneous velocity is expressed as follows:

upredi ¼ �upred
i þ uf ¼

Xk
j¼1

wij � uj þ N li; r
2
i

� �
: (7)

Once the current value in the computation process of the 3D instanta-
neous velocity (upredi ) is predicted from Eq. (7), the next location of the
tracer is estimated by calculating its displacement during a given time
step (dt); thus,

Ptþdt
i ¼ Pt

i þ ut;predi � dt; (8)

where Pt
i , u

t;pred
i , and Ptþdt

i are, respectively, the current location, cur-
rent instantaneous velocity, and the next tracer location. Thus, a full
Lagrangian trajectory is generated, as depicted by the flow chart in
Fig. 2(c).

IV. RESULTS AND DISCUSSION

The results of this study are divided into four parts: (i) the optimiza-
tion of the k andw values used in the KNN learning model; (ii) using the
optimized KNN regressor, the tests conducted to determine the mini-
mum size of training dataset of Lagrangian phase trajectories needed to
reliably predict the full flow field for single-phase flow and for particle–li-
quid flow including spatial phase distribution, are presented; (iii) the abil-
ity of this hybrid learning algorithm to predict flow characteristics under
new conditions within and without the range of experiments pertaining
to the training PEPT data bank; and (iv) a feature importance analysis of
the particle velocity based on the entire PEPT data bank is discussed.

A. Parameter tuning and model validation

To make the KNN learning model achieve the best performance
in predicting the flows considered, the number of nearest datapoints
(k) and weighting functions (w) were optimized by evaluating the root
mean square error (RMSE) and coefficient of determination (R2) of
the prediction results, which are defined as follows:

FIG. 7. Effects of the number of liquid PEPT-determined trajectories N used to
obtain the experimentally measured radial liquid velocity distribution in single-phase
flow (ReL� 8000).

FIG. 8. Effects of the number of liquid PEPT-determined trajectories N used to train
the ML algorithm on the predicted radial liquid velocity distribution in single-phase
flow (ReL� 8000).
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNp

np¼1

unp � uprednp

��� ���2
Np

vuuuut
;

R2 ¼ 1�

XNp

np¼1

unp � uprednp

� �2
XN
np¼1

unp � �unpð Þ2
;

(9)

where Np is the number of training data samples. un, upredn , and �un are,
respectively, the real experimentally measured local velocity of the npth
sample in the database, the corresponding predicted velocity given by
the KNN regressor and the statistical mean velocity at the location
considered (i.e., the particular grid cell, Fig. 1). Ideally, the RMSE value
of the ML predictions should tend to zero, while the R2 value should
tend to one. Different sizes of a dynamic dataset require different k val-
ues; thus, the optimal hyperparameters need to be determined for each
database input.19,46 The variations of RMSE and R2 are plotted in

Fig. 6 as a function of the number of neighbors k and the type of
weighting function w, namely, distance and uniform weight functions.
The two weight functions perform equally well at lower k values, but
the distance weight function outperforms the uniform weight function
at higher k values. Thus, the distance weight function was adopted. In
this case, the optimal value for k extracted from Fig. 6 was�50.

B. Minimum training data requirement

For complex dynamic systems like turbulent fluid systems, a fre-
quently asked question concerns the minimum amount of training
data required to faithfully represent the majority characteristics of such
systems. Specifically, for PEPT experiments, if the minimum number
of tracer passes in the pipe capable of embodying the studied dynamic
system can be determined, the experimental time can be optimized.

1. Single-phase flow

The radial distribution of liquid velocity in single-phase tur-
bulent pipe flow is plotted in Fig. 7 as a function of the number N

FIG. 9. Effects of number of PEPT-determined trajectories N used to train the ML algorithm on the predicted radial distribution of (a) particle velocity; (b) particle concentration;
and (c) liquid velocity; dp¼ 2mm; qr¼ 1.02; and Cs,m¼ 21 vol. %.
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FIG. 10. ML algorithm predictions under conditions of larger particle size and concentration: (a) particle velocity distribution; (b) particle concentration distribution; and (c) liquid
velocity distribution; dp¼ 6mm; qr¼ 1.02; and Cs,m¼ 31 vol. %.

FIG. 11. ML algorithm predictions under conditions of denser particles: (a) particle velocity distribution; (b) particle concentration distribution; dp¼ 4mm; qr¼ 1.09; and
Cs,m¼ 24 vol. %.
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of experimentally measured liquid PEPT trajectories used. The
results show that at least 100 experimentally measured trajectories
are required to accurately represent the radial velocity profile.
Using these data and by considering 40 annular rings, the local
mass flow rate was calculated in each ring and summed up across
the pipe section to check for mass continuity at eight axial posi-
tions along the pipe. The total mass flow rate, thus, obtained was
within 3% of the value obtained by measuring the flow rate deliv-
ered at the end of the pipe using a stop watch and bucket method,
which confirms the accuracy of the PEPT measurements.

In Fig. 8, a similar test is depicted where different numbers of
experimental trajectories are used as data bank to train the KNN
regressor and generate new Lagrangian trajectories from which the
radial velocity profile is derived. The results show that feeding the ML
hybrid algorithm with 20 experimental trajectories is sufficient to pre-
dict an accurate radial velocity profile. Larger input datasets do not sig-
nificantly improve predictions, whereas less data lead to a significant
deterioration in results.

2. Particle–liquid flow

A similar investigation was conducted to establish the minimum
number of PEPT trajectories needed for the solid and liquid phases to
give accurate radial distributions of particle/liquid velocity and particle
concentration. The results plotted in Fig. S2 in the supplementary
material show that at least 100 experimental trajectories are needed for
accurate determination of the particle/liquid velocity profiles (identical
to liquid in single-phase flow, as discussed above), but 500 experimen-
tal trajectories are needed for the concentration profile. Thus, to obtain
a reliable representation of particle concentration distribution, a much
greater number of experimental PEPT trajectories are required than
for velocity. It should be noted that all these velocity profiles and parti-
cle concentration profiles verified the mass continuity in the pipe to
within 3%.

To investigate the prediction capability of the hybrid learning
algorithm, the effects of using different sample sizes of PEPT trajecto-
ries as training databanks to predict the particle and liquid velocity

FIG. 12. ML algorithm predictions under conditions within the range of experimental measurements: (a) particle velocity distribution; (b) particle concentration distribution; and
(c) liquid velocity distribution; dp¼ 6mm; qr¼ 1.02; and Cs,m¼ 21 vol. %.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 113309 (2023); doi: 10.1063/5.0172609 35, 113309-10

VC Author(s) 2023

 08 N
ovem

ber 2023 14:09:21

pubs.aip.org/aip/phf


profiles as well as the particle volume concentration distribution are
depicted in Fig. 9. In this case, the particle–liquid flow consists of
36wt. % sugar solution conveying 2mm alginate beads (qr¼ 1.02,
Cs,m¼ 21 vol. %). With 20 trajectories or more, the particle velocity
profile is well predicted [Fig. 9(a)]. The predicted particle concentration
distribution also agrees reasonably well with the full set of experimental
PEPT data with only slight deviations near the center and bottom
region of the pipe, when 40 trajectories or more are used [Fig. 9(b)].

As depicted in Fig. 9(c), the minimum number of trajectories
required to generate an accurate liquid-phase velocity field is 20, simi-
lar to the solid-phase velocity field [Fig. 9(a)] and to the velocity field
in single-phase flow (Fig. 8). Therefore, for single-phase or particle–
liquid dynamics systems, the minimum number of phase trajectories for
the hybrid learning model to learn and accurately predict a given phase
velocity field is the same. However, a somewhat larger training dataset is
required to obtain a reliable particle concentration distribution. This
may be attributed to the complex behavior of particles, including

settling, margination, particle–particle, and particle–wall interactions,
which affect their spatial distribution. Nevertheless, the results demon-
strate the predictive power of the ML algorithm, which only requires a
relatively small input dataset compared to what is experimentally
required to predict either the phase velocity distribution (20 cf. 100) or
phase concentration distribution (40 cf. 500 trajectories). Nevertheless,
in the rest of the study, we opted to use 40 trajectories to predict local
particle and liquid velocities as well as local particle concentration.

To further investigate the prediction ability of the hybrid learning
algorithm to handle more challenging flow conditions, the algorithm
was trained using dynamic data produced by experiments with higher
solid loadings and larger particle sizes. The ML predictions for a two-
phase flow with dp¼ 6mm, Cs,m¼ 31 vol. %, and qr¼ 1.02 are pre-
sented in Fig. 10, based on a training data bank of 40 trajectories, as
pointed out above. The agreement with the full set of PEPT data is
excellent for both particle and liquid velocity distributions. The
trend of particle concentration profile prediction also matches the

FIG. 13. ML algorithm predictions under conditions outside the range of experimental measurements: (a) particle velocity distribution; (b) particle concentration distribution; and
(c) liquid velocity distribution; dp¼ 6mm; qr¼ 1.02; and Cs,m¼ 6 vol. %.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 113309 (2023); doi: 10.1063/5.0172609 35, 113309-11

VC Author(s) 2023

 08 N
ovem

ber 2023 14:09:21

pubs.aip.org/aip/phf


experimental results but with some slight discrepancies near the central
and bottom regions of the pipe. Another case with an even larger parti-
cle size (10mm) is presented in the supplementarymaterial (Fig. S3).

Another case using denser particles (qr¼ 1.09, Cs,m¼ 24 vol. %,
and dp¼ 4mm) is depicted in Fig. 11, showing very good ML predic-
tions of particle velocity and concentration fields. Thus, trained by a
small amount of experimental data, the hybrid learning algorithm can
learn and generate numerical dynamic data (Lagrangian trajectories)
for single-phase or two-phase particle–liquid flows of various particle
sizes, concentrations, and densities, which are close to detailed experi-
mental measurements.

C. Model investigation of predicting new
particle–liquid flows

Since the ML technique seems to be able to extract inherent hid-
den information of a complex dynamic system, in the Secs. IVC1

and IVC2, the ability of the predictive hybrid algorithm will be tested
for flow conditions, which are not covered by the information con-
tained in the training data bank, i.e., new conditions not specifically
measured but which are within the limits of the range of experimental
measurements, or conditions which are outside the range of experi-
ments, thus extending its application range to interpolate or extrapo-
late flow conditions.

1. Predicting flows with different particle concentration

As shown in Fig. 12, given a training dataset corresponding to
nearly neutrally buoyant particles with dp¼ 6mm and Cs,m¼ 6 and
31vol. %, the two-phase velocity field and the solid distribution corre-
sponding to dp¼ 6mm and Cs,m¼ 21 vol. % are well predicted by the
hybrid learning algorithm. There are some discrepancies in the particle
concentration profile, but the predictions follow the trend of the exper-
imental profile closely with most of the predictions being within the

FIG. 14. ML algorithm predictions under conditions within the range of experimental measurements: (a) particle velocity distribution; (b) particle concentration distribution; and
(c) liquid velocity distribution; dp¼ 4mm; qr¼ 1.02; and Cs,m¼ 31 vol. %.
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error bars. Another example of a successfully predicted flow case with
a different particle size of dp¼ 2mm and Cs,m¼ 21 vol. %, based on
input data from the cases corresponding to dp¼ 2mm, Cs,m¼ 6, and
31 vol. %, is presented in the supplementary material (Fig. S4).

The case presented in Fig. 13 attempts to predict flow conditions
of particle concentration, which are outside the range of experimental
measurements. In other words, training data corresponding to
dp¼ 6mm and Cs,m¼ 12 and 21 vol. % were fed to the ML algorithm
to predict the behavior of a flow with dp¼ 6mm and Cs,m¼ 6 vol. %.
The two-phase velocity profiles are very well predicted. The concentra-
tion distribution is also well predicted with only small discrepancies. A
different case corresponding to dp¼ 2mm and Cs,m¼ 6 vol. %, based
on input data from the cases corresponding to dp¼ 2mm and
Cs,m¼ 12 and 21 vol. %, is included in the supplementary material
(Fig. S5), showing very good predictions by the ML algorithm.

FIG. 15. ML algorithm predictions under conditions outside the range of experimental measurements: (a) particle velocity distribution; (b) particle concentration distribution; and
(c) liquid velocity distribution; dp¼ 6mm; qr¼ 1.02; and Cs,m¼ 31 vol. %.

FIG. 16. Feature importance analysis of particle velocity using experimental PEPT
data.
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2. Predicting flows with different particle size

As shown in Fig. 14, providing the hybrid learning algorithm
with data corresponding to flow with Cs,m¼ 31vol. % and dp¼ 2 and
6mm, it manages to properly predict both liquid and particle velocity
profiles as well as the particle concentration distribution for flow with
Cs,m¼ 31 vol. % and dp¼ 4mm. Predictions for a different flow case
with Cs,m¼ 12 vol. % and dp¼ 6mm is presented in the supplemen-
tary material (Fig. S6) based on training data pertaining to flows with
Cs,m¼ 12 vol. % and dp¼ 2 and 10mm, which is further evidence of
the predictive power of the ML algorithm.

The case presented in Fig. 15 shows predictions for flow condi-
tions of particle size, which are outside the range of experimental mea-
surements. In this case, training data corresponding to flows with
Cs,m¼ 31 vol. % and dp¼ 2 and 4mm are fed to the ML algorithm to
predict results for flow conditions of Cs,m¼ 31 vol. % and dp¼ 6mm.
Another case using training data corresponding to Cs,m¼ 12 vol. %
and dp¼ 6 and 8mm, to predict results for flow conditions of
Cs,m¼ 12 vol. % and dp¼ 4mm, is reported in the supplementary
material (Fig. S7). In both cases, the ML performance is very good.

Thus, the hybrid learning algorithm is able to reliably predict phase
velocity fields and spatial phase distribution within and without the
range of experimental data used for training the algorithm. Such a
capability has important implications for facilitating and improving
the design and operation of processes involving particulate flows.

D. Feature importance analysis

Permutation feature importance is a technique to estimate how
useful the features are at predicting targets or the degree of dependence
of the dataset and model on each input feature.48 The feature impor-
tance score is defined as the drop in model performance when a single
feature is completely shuffled, because reducing the input of a single
feature can weaken the model relationship between feature space and
prediction. This technique is model independent and can be calculated
multiple times using different feature permutations.

In this study, five features are considered in the training database,
which are particle loading (Cs,m), particle size (dp), particle-to-liquid
density ratio (qr), particle vertical position (y), and horizontal position
(z) in the pipe (Fig. 1). The permutation feature importance analysis

FIG. 17. Effects of different features on particle velocity distribution: (a) Cs,m (dp¼ 4mm, qr¼ 1.02); (b) qr (Cs,m¼ 21 vol. %, dp¼ 4 mm); and (c) dp (Cs,m¼ 31 vol. %,
qr¼ 1.02).
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was conducted five times to assess the feature influence on determining
the solid phase velocity, as shown in Fig. 16. To make it easier to
understand, Fig. 17 is plotted to show the influence of different features
on the solid phase velocity distribution. The feature analysis in Fig. 16
shows that Cs,m has the minimum influence on the particle velocity
distribution and Fig. 17(a) shows that changing particle concentration
from 6 to 31 vol. % has a minimal effect on the normalized particle
velocity profile. Moreover, qr has the most substantial influence on the
particle velocity (Fig. 16), which is corroborated by Fig. 17(b), showing
that the particle velocity distribution changes significantly by varying
qr from 1.02 to 1.09. The influence of particle size (dp) is moderate, as
indicated by both Figs. 16 and 17(c). For a solid phase, which is denser
than the liquid phase, the vertical position (y) of a tracer particle in the
pipe will always play a more important role than its horizontal position
(z) (Fig. 1). Thus, considering the flow conditions considered in this
study (Table I), qr and y are the most influential parameters on the
spatial particle velocity distribution, while Cs,m has the smallest effect.

V. CONCLUSION

A machine learning hybrid algorithm for predicting turbulent
single-phase and two-phase particle–liquid flows has been trained and
validated using 3D Lagrangian phase flow trajectories determined by
PEPT. Large experimental datasets consisting of hundreds of phase
trajectories are required to accurately determine the phase velocity
fields in single-phase flow and two-phase particle–liquid flow, as well
as the spatial phase distribution. The algorithm, however, requires rela-
tively small datasets (an order of magnitude less) for training to give
predictions on the same level of accuracy for the velocity fields and
spatial distributions of the phases. Furthermore, the hybrid algorithm
is capable of extracting hidden inherent information to reliably predict
such characteristics for flows under different conditions within and
outside the limits of the range of the original experimental data bank,
which has potential for facilitating and improving process design and
operation.

The feature importance analysis showed that the particle velocity
field is mostly influenced by particle-to-liquid density ratio and particle
vertical radial position. Particle horizontal radial position and particle
size have moderate effects, while particle concentration has the small-
est effect. Thus, the hybrid learning algorithm presented in this work is
powerful and capable of dealing with complex dynamic flow systems.
The algorithm could potentially be enhanced further by using more
complex training databanks to tackle a much more comprehensive
range of flow situations, leading to huge reductions in the cost of
experimentation and numerical simulation.

SUPPLEMENTARY MATERIAL

See the supplementary material for illustration of the experimen-
tal flow loop and additional validation results of the presented hybrid
ML algorithm.
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NOMENCLATURE

Symbols

Cs Local particle volume concentration (–)
Cs,m Mean particle volume concentration (–)
dp Particle diameter (mm)
D Pipe diameter (m)
k Number of nearest neighbors used in KNN regressor (–)
N Number of PEPT-determined trajectories
r Radial position (m)
R Pipe radius (m)

ReL Liquid Reynolds number (–)
uf Local fluctuation velocity predicted by the hybrid model

(ms�1)
upredi Instantaneous velocity predicted by the hybrid model

(ms�1)
�upred
i Mean velocity predicted by the hybrid model (ms�1)
uL Liquid phase velocity (ms�1)
um Mean mixture velocity (ms�1)
us Particle velocity (ms�1)
w Weight function of the KNN regressor (–)

x, y, z Cartesian coordinates corresponding to the pipe flow
direction, gravity direction, and horizontal direction,
respectively (m)

Greek symbols

lL Liquid phase dynamic viscosity (Pa s)
qL Liquid phase density (kgm�3)
qr Particle-to-liquid density ratio (–)
qs Particle density (kgm�3)

Abbreviations

CFD Computational fluid dynamics
KNN k-nearest neighbors
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ML Machine learning
PEPT Positron emission particle tracking
RMSE Root mean square error

REFERENCES
1S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M.-L. Shyu, S.-C.
Chen, and S. S. Iyengar, “A survey on deep learning: Algorithms, techniques,
and applications,” ACM Comput. Surv. 51, 1 (2019).
2S. Raza and C. Ding, “News recommender system: A review of recent progress,
challenges, and opportunities,” Artif. Intell. Rev. 55, 749 (2022).

3P. Wang, E. Fan, and P. Wang, “Comparative analysis of image classification
algorithms based on traditional machine learning and deep learning,” Pattern
Recognit. Lett. 141, 61 (2021).

4M. Q. Huang, J. Nini�c, and Q. B. Zhang, “BIM, machine learning and
computer vision techniques in underground construction: Current status and
future perspectives,” Tunnelling Underground Space Technol. 108, 103677
(2021).

5T. K. Balaji, C. S. R. Annavarapu, and A. Bablani, “Machine learning algo-
rithms for social media analysis: A survey,” Comput. Sci. Rev. 40, 100395
(2021).

6L. Hickman, S. Thapa, L. Tay, M. Cao, and P. Srinivasan, “Text preprocessing
for text mining in organizational research: Review and recommendations,”
Organ. Res. Methods 25, 114 (2022).

7H. Ma, L. Xu, Z. Javaheri, N. Moghadamnejad, and M. Abedi, “Reducing the
consumption of household systems using hybrid deep learning techniques,”
Sustainable Comput. 38, 100874 (2023).

8B. Wang, X. Wang, N. Wang, Z. Javaheri, N. Moghadamnejad, and M. Abedi,
“Machine learning optimization model for reducing the electricity loads in resi-
dential energy forecasting,” Sustainable Comput. 38, 100876 (2023).

9I. H. Sarker, “Machine learning: Algorithms, real-world applications and
research directions,” SN Comput. Sci. 2, 160 (2021).

10I. H. Sarker, A. Kayes, S. Badsha, H. Alqahtani, P. Watters, and A. Ng,
“Cybersecurity data science: An overview from machine learning perspective,”
J. Big Data 7(1), 41 (2020).

11S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based recommender
system: A survey and new perspectives,” ACM Comput. Surv. 52(1), 1
(2020).

12S. Safdar, S. Zafar, N. Zafar, and N. F. Khan, “Machine learning based decision
support systems (DSS) for heart disease diagnosis: A review,” Artif. Intell. Rev.
50, 597 (2018).

13J. Ellenius and T. Groth, “Dynamic decision support graph—visualization of
ANN-generated diagnostic indications of pathological conditions developing
over time,” Artif. Intell. Med. 42, 189 (2008).

14X. Liu, C. Cai, W. Zhao, H.-J. Peng, and T. Wang, “Machine learning-assisted
screening of stepped alloy surfaces for C1 catalysis,” ACS Catal. 12, 4252
(2022).

15S. M. Mousavi, W. Zhu, W. Ellsworth, and G. Beroza, “Unsupervised clustering
of seismic signals using deep convolutional autoencoders,” IEEE Geosci.
Remote Sens. Lett. 16, 1693 (2019).

16M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for
discovering clusters in large spatial databases with noise,” in KDD-96
Proceedings (AAAI, 1996).

17L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and A. P.
Schoellig, “Safe learning in robotics: From learning-based control to safe rein-
forcement learning,” Annu. Rev. Control Rob. Auton. Syst. 5, 411 (2022).

18H. Fujiyoshi, T. Hirakawa, and T. Yamashita, “Deep learning-based image rec-
ognition for autonomous driving,” IATSS Res. 43, 244 (2019).

19K. Li, C. Savari, H. A. Sheikh, and M. Barigou, “A data-driven machine learning
framework for modelling of turbulent mixing flows,” Phys. Fluids 35, 015150
(2023).

20S. R. Bukka, R. Gupta, A. R. Magee, and R. K. Jaiman, “Assessment of unsteady
flow predictions using hybrid deep learning based reduced-order models,”
Phys. Fluids 33, 013601 (2021).

21C. Drygala, B. Winhart, F. di Mare, and H. Gottschalk, “Generative modeling of
turbulence,” Phys. Fluids 34, 035114 (2022).

22A. Hashemizadeh, A. Maaref, M. Shateri, A. Larestani, and A. Hemmati-
Sarapardeh, “Experimental measurement and modeling of water-based drilling
mud density using adaptive boosting decision tree, support vector machine,
and K-nearest neighbors: A case study from the South Pars gas field,” J. Pet.
Sci. Eng. 207, 109132 (2021).

23L. Liu, B. Hu, S. Liu, K. Wang, and H. Gu, “Recognition of gas-liquid flow
regimes in helically coiled tube using wire-mesh sensor and KNN algorithm,”
Int. J. Multiphase Flow 154, 104144 (2022).

24S. Dennis, S. Singh, and D. Ingham, “The steady flow due to a rotating
sphere at low and moderate Reynolds numbers,” J. Fluid Mech. 101, 257
(1980).

25H. Zhu, Z. Li, X. Yang, G. Zhu, J. Tu, and S. Jiang, “Flow regime identification
for upward two-phase flow in helically coiled tubes,” Chem. Eng. J. 308, 606
(2017).

26H. Zhai, Q. Zhou, and G. J. Hu, “BubbleNet: Inferring micro-bubble dynamics
with semi-physics-informed deep learning,” arXiv:2105.07179 (2021).

27B. Ouyang, L.-T. Zhu, Y.-H. Su, and Z.-H. Luo, “A hybrid mesoscale closure
combining CFD and deep learning for coarse-grid prediction of gas-particle
flow dynamics,” Chem. Eng. Sci. 248, 117268 (2022).

28R. Zisselmar and O. Molerus, “Investigation of solid-liquid pipe flow with
regard to turbulence modification,” Chem. Eng. J. 18, 233 (1979).

29C. Savari and M. Barigou, “Lagrangian wavelet analysis of turbulence modula-
tion in particle–liquid mixing flows,” Phys. Fluids 34, 115121 (2022).

30H. A. Sheikh, C. Savari, and M. Barigou, “Lagrangian stochastic modelling of
liquid flow in a mechanically agitated vessel,” Chem. Eng. Sci. 249, 117318
(2022).

31K. Li, C. Savari, and M. Barigou, “Computation of Lagrangian coherent struc-
tures from experimental fluid trajectory measurements in a mechanically agi-
tated vessel,” Chem. Eng. Sci. 254, 117598 (2022).

32S. Heinz, R. Mokhtarpoor, and M. Stoellinger, “Theory-based Reynolds-
averaged Navier–Stokes equations with large eddy simulation capability for
separated turbulent flow simulations,” Phys. Fluids 32, 065102 (2020).

33Z. Wei, J. Zhang, R. Jia, and J. Gao, “An improved method for coherent struc-
ture identification based on mutual K-nearest neighbors,” J. Turbul. 23, 655
(2022).

34A.-J. Gallego, J. Calvo-Zaragoza, J. J. Valero-Mas, and J. R. Rico-Juan,
“Clustering-based k-nearest neighbor classification for large-scale data with
neural codes representation,” Pattern Recognit. 74, 531 (2018).

35Z. Yang, C. Savari, and M. Barigou, “Numerical and experimental investiga-
tions of horizontal turbulent particle–liquid pipe flow,” Ind. Eng. Chem. Res.
61, 12040 (2022).

36M. Eesa and M. Barigou, “Horizontal laminar flow of coarse nearly-neutrally
buoyant particles in non-Newtonian conveying fluids: CFD and PEPT experi-
ments compared,” Int. J. Multiphase Flow 34, 997 (2008).

37P. G. Fairhurst, M. Barigou, P. J. Fryer, J. P. Pain, and D. J. Parker, “Using
positron emission particle tracking (PEPT) to study nearly neutrally buoyant
particles in high solid fraction pipe flow,” Int. J. Multiphase Flow 27, 1881
(2001).

38C. Savari, K. Li, and M. Barigou, “Multiscale wavelet analysis of 3D Lagrangian
trajectories in a mechanically agitated vessel,” Chem. Eng. Sci. 260, 117844
(2022).

39P. Pianko-Oprych, A. Nienow, and M. Barigou, “Positron emission particle
tracking (PEPT) compared to particle image velocimetry (PIV) for studying the
flow generated by a pitched-blade turbine in single phase and multi-phase sys-
tems,” Chem. Eng. Sci. 64, 4955 (2009).

40M. Barigou, “Particle tracking in opaque mixing systems: An overview of the
capabilities of PET and PEPT,” Chem. Eng. Res. Des. 82, 1258 (2004).

41L. Liu and M. Barigou, “Experimentally validated computational fluid dynamics
simulations of multicomponent hydrodynamics and phase distribution in agi-
tated high solid fraction binary suspensions,” Ind. Eng. Chem. Res. 53, 895
(2014).

42A. Guida, A. W. Nienow, and M. Barigou, “PEPT measurements of solid–liquid
flow field and spatial phase distribution in concentrated monodisperse stirred
suspensions,” Chem. Eng. Sci. 65, 1905 (2010).

43A. Guida, A. W. Nienow, and M. Barigou, “Mixing of dense binary suspensions:
Multi-component hydrodynamics and spatial phase distribution by PEPT,”
AIChE J. 57, 2302 (2011).

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 113309 (2023); doi: 10.1063/5.0172609 35, 113309-16

VC Author(s) 2023

 08 N
ovem

ber 2023 14:09:21

https://doi.org/10.1145/3234150
https://doi.org/10.1007/s10462-021-10043-x
https://doi.org/10.1016/j.patrec.2020.07.042
https://doi.org/10.1016/j.patrec.2020.07.042
https://doi.org/10.1016/j.tust.2020.103677
https://doi.org/10.1016/j.cosrev.2021.100395
https://doi.org/10.1177/1094428120971683
https://doi.org/10.1016/j.suscom.2023.100874
https://doi.org/10.1016/j.suscom.2023.100876
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1186/s40537-020-00318-5
https://doi.org/10.1145/3285029
https://doi.org/10.1007/s10462-017-9552-8
https://doi.org/10.1016/j.artmed.2007.10.002
https://doi.org/10.1021/acscatal.2c00648
https://doi.org/10.1109/LGRS.2019.2909218
https://doi.org/10.1109/LGRS.2019.2909218
https://doi.org/10.1146/annurev-control-042920-020211
https://doi.org/10.1016/j.iatssr.2019.11.008
https://doi.org/10.1063/5.0136830
https://doi.org/10.1063/5.0030137
https://doi.org/10.1063/5.0082562
https://doi.org/10.1016/j.petrol.2021.109132
https://doi.org/10.1016/j.petrol.2021.109132
https://doi.org/10.1016/j.ijmultiphaseflow.2022.104144
https://doi.org/10.1017/S0022112080001656
https://doi.org/10.1016/j.cej.2016.09.100
http://arxiv.org/abs/2105.07179
https://doi.org/10.1016/j.ces.2021.117268
https://doi.org/10.1016/0300-9467(79)80045-3
https://doi.org/10.1063/5.0127698
https://doi.org/10.1016/j.ces.2021.117318
https://doi.org/10.1016/j.ces.2022.117598
https://doi.org/10.1063/5.0006660
https://doi.org/10.1080/14685248.2022.2159421
https://doi.org/10.1016/j.patcog.2017.09.038
https://doi.org/10.1021/acs.iecr.2c02183
https://doi.org/10.1016/j.ijmultiphaseflow.2008.06.003
https://doi.org/10.1016/S0301-9322(01)00038-6
https://doi.org/10.1016/j.ces.2022.117844
https://doi.org/10.1016/j.ces.2009.08.003
https://doi.org/10.1205/cerd.82.9.1258.44160
https://doi.org/10.1021/ie3032586
https://doi.org/10.1016/j.ces.2009.11.005
https://doi.org/10.1002/aic.12456
pubs.aip.org/aip/phf


44X. Lian, C. Savari, K. Li, and M. J. P. O. F. Barigou, “Coupled smoothed particle
hydrodynamics and discrete element method for simulating coarse food
particles in a non-Newtonian conveying fluid,” Phys. Fluids 35, 043325
(2023).

45E. Ulker and M. Sorgun, “Comparison of computational intelligence models for
cuttings transport in horizontal and deviated wells,” J. Pet. Sci. Eng. 146, 832
(2016).

46X. Zhang, H. Xiao, R. Gao, H. Zhang, and Y. Wang, “K-nearest neighbors rule
combining prototype selection and local feature weighting for classification,”
Knowl.-Based Syst. 243, 108451 (2022).

47K. Li, C. Savari, and M. Barigou, “Predicting complex multicomponent parti-
cle–liquid flow in a mechanically agitated vessel via machine learning,” Phys.
Fluids 35, 053301 (2023).

48L. Breiman, “Random forests,” Mach. Learn. 45, 5 (2001).

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 113309 (2023); doi: 10.1063/5.0172609 35, 113309-17

VC Author(s) 2023

 08 N
ovem

ber 2023 14:09:21

https://doi.org/10.1063/5.0144992
https://doi.org/10.1016/j.petrol.2016.07.022
https://doi.org/10.1016/j.knosys.2022.108451
https://doi.org/10.1063/5.0142198
https://doi.org/10.1063/5.0142198
https://doi.org/10.1023/A:1010933404324
pubs.aip.org/aip/phf

