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Abstract: Nanotechnology is the study and control of materials at length scales between 1 and
100 nanometers (nm), where incredible phenomena enable new applications. It affects all aspects of
human life and is the most active research topic in modern materials science. Among the various
metallic nanoparticles used in biomedical applications, silver nanoparticles (AgNPs) are among
the most important and interesting nanomaterials. The aim of this study was to synthesize AgNPs
from the leaf extract of Myrsine africana to investigate their antibacterial, antioxidant, and phytotoxic
activities. When the leaf extract was treated with AgNO3, the color of the reaction solution changed
from light brown to dark brown, indicating the formation of AgNPs. The UV-visible spectrum showed
an absorption peak at 438 nm, confirming the synthesis of AgNPs. Scanning electron microscopy
(SEM) showed that the AgNPs were spherical and oval with an average size of 28.32 nm. Fourier
transform infrared spectroscopy confirms the presence of bio-compound functional groups on the
surface of the AgNPs. The crystalline nature of the AgNPs was confirmed by XRD pattern. These
biosynthesized AgNPs showed pronounced antibacterial activity against Gram-positive and Gram-
negative bacteria, with higher inhibitory activity against Escherichia coli. At 40 µg/mL AgNPs, the
highest antioxidant activity was obtained, which was 57.7% and an IC50 value of 77.56 µg/mL. A
significant positive effect was observed on all morphological parameters when AgNPs were applied
to wheat seedlings under constant external conditions at the different concentrations. The present
study provides a cost-effective and environmentally friendly method for the synthesis of AgNPs,
which can be effectively used in the field of therapeutics, as antimicrobial and diagnostic agents, and
as plant growth promoters.

Keywords: AgNPs; biosynthesized; Myrsine africana; biological activities

1. Introduction

Recently, nanotechnology has attracted the attention of researchers due to its wide
range of applications in the fields of medicine, agriculture, environment, and food [1]. This
technology essentially focuses on the synthesis of tiny nanoparticles produced by chemical,
physical, and biological processes, which contribute significantly to the control of plant and
animal diseases and have shown considerable promise in improving the quality of human
life and health conditions [2]. These nanoparticles range in size from 1 to 100 nm. However,
the green synthesis of nanoparticles has become more important than chemical and physical
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methods [3]. Green synthesis involves the use of plants for the synthesis of various types
of nanoparticles [4]. Green synthesis is a simple, environmentally friendly, non-polluting,
antitoxic, and cost-effective technique. Green synthesized metal nanoparticles are the most
innovative and promising agents for a variety of biological and catalytic activities, such as
antibacterial, antiviral, anticancer, etc., without negative side effects [5]. In green synthesis,
plant extracts are used as capping agents and important stabilizers that control the growth
of nanoparticles and prevent them from aggregating or coagulating. These stabilizing
substances are essential for altering biological processes and environmental perception [6].

Common risk factors pathologically associated with various human diseases include
infection, oxidative stress, angiogenesis, and inflammation. During infection, pathogenic
microorganisms invade the host body and the host tissues respond to the spread of this
infection. Bacterial infections have become a global public health problem, resulting in
millions of infection-related illnesses and deaths each year [7]. Typical bacterial infectious
diseases include keratitis, histoplasmosis, tuberculosis, as well as dental and skin infec-
tion [8]. The effectiveness of current antibiotics is being eroded by pathogen resistance [9],
which is now a problem for everyone’s health. Due to the rapid increase in antibiotic
resistance, scientists and researchers are currently investigating the therapeutic potential of
silver and its nanoparticulate systems as potential antibacterial agents [10]. Currently, silver
nanoparticles (AgNPs) have shown their potential as alternative antibacterial agents in
many studies [11–13]. AgNPs have been found to exhibit antiseptic activity against several
bacterial species, including multidrug-resistant bacteria such as methicillin-resistant bacte-
ria, and are safe for mammalian cells at low concentrations [14]. Oxidative stress refers to
the overproduction of reactive oxygen species (ROS). These ROS react with various biologi-
cal molecules, such as DNA, protein, and lipid membranes, thereby impairing inter or intra
cellular function by inducing cellular damage which leads to different diseases [2] such as
diabetes [15], arthritis [16], cancers [17], Alzheimer’s disease [18], and cardiovascular dis-
ease [19]. Various studies have confirmed that green synthesized silver nanoparticles have
stronger antioxidant activity due to the presence of various biomolecules on their surface
and can be used as radical scavengers against the damage caused by free radicals [2,20–22].
Some of the biological uses of AgNPs include antioxidant, antibacterial, anti-inflammatory,
wound healing, anticancer, antiproliferative, antifungal, antiviral, and antidiabetic proper-
ties [23]. Because of these unique properties, silver nanoparticles (AgNPs) are extensively
used for drug delivery, therapeutic devices, sensing and diagnostics, and other applica-
tions. AgNPs are of critical importance due to their catalytic activity, optical, and thermal
properties, chemical stability, thermal stability, and antibacterial activity [24].

In this study, AgNPs were synthesized from the leaf extract of Myrsine africana L.
(Primulaceae). The shrub M. africana is better known as African boxwood. It is widely
distributed in Asia, the Caribbean and Africa, and a wealth of traditional knowledge
relates to its use. Traditionally, its leaves are used for the treatment of cellulitis, acne,
wound healing and pigmentation disorders [25]. This is the first report on the synthesis
of AgNPs from the leaf extract of M. africana, although the environmentally friendly
production of AgNPs for use in biomedicine has been thoroughly investigated with a
variety of plant extracts [26]. Therefore, the following objectives were pursued in this study:
(i) green synthesis and characterization of AgNPs from the leaf extract of M. africana; and
(ii) evaluation of the antibacterial, antioxidant, and phytotoxic activities of AgNPs.

2. Material and Methods
2.1. Collection of Sample and Preparation of Plant Extract

The leaves of M. africana were collected from Kahutta Azad Jammu and Kashmir.
The plant was identified with the help of Flora of Pakistan and a voucher specimen was
deposited in the Herbarium of Department of Botany, Women’s College of Azad Jammu
and Kashmir Bagh. The fresh leaves were washed under running tap water to remove
impurities and dust particles and then dried in shade to prepare the powder. To prepare
the leaf extract, 10 g of powder was placed in a 250 mL conical flask containing 100 mL of
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distilled water and heated on a magnetic stirrer at 60 ◦C for 1 h. It was then filtered with
Whatman No. 1 filter paper and the leaf filtrate was used for the synthesis of AgNPs [27].

2.2. Green Synthesis of AgNPs

To prepare the silver nitrate stock solution (1 mM), 80 mL of the plant leaf extract
was mixed with 250 mL of the silver nitrate stock solution and incubated for 3 h at room
temperature. After 3 h of incubation, a visual color change of the reaction solution was
observed [27].

2.3. Characterization of Silver Nanoparticles
2.3.1. UV-Visible Spectroscopy

To determine the absorbance value of the nanoparticles in the range of 300–600 nm, a
UV-Vis spectrophotometric study was performed [28]. The UV-Vis spectrophotometer was
used to record the SPR of the biogenic AgNPs [29].

2.3.2. SEM-EDX

Scanning electron microscopy coupled with energy-dispersive X-rays (SEM-EDX) was
used to analyze the morphology and composition of Ag-NPs [30]. A histogram of the size
distribution of AgNPs was created using imageJ software.

2.3.3. XRD

The crystalline structure of the biosynthesized Ag-NPs was investigated by X-ray
diffraction (XRD). The sample was analyzed between 3 and 90 theta values. Using Cu-Ka as
the radiation source (=1.54), the XRD investigation was performed at a voltage and current
of 40 KV and 30 mA, respectively [31].

2.3.4. FT-IR

The different functional groups responsible for the reduction and stabilization of the
biosynthesized Ag-NPs were identified using FT-IR analysis (Cary 630 FTIR model, Tokyo,
Japan). The KBr technique was used to perform the following FT-IR analysis: Under high
pressure, 300 mg of biosynthesized Ag-NPs were thoroughly mixed with KBr to create a
slice that was scanned at a wave number between 400 and 4000 cm−1 [32].

2.4. Biological Activities
2.4.1. Antibacterial Activity

Five putative bacterial pathogens, i.e., Pseudomonas aeruginosa, Staphylococcus aurous,
Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis bacteria, were used for biological
activities.

The agar well diffusion method was used to evaluate the bactericidal activity of
Myrisine africana AgNPs. For the bacterial culture, nutrient broth media (Oxide: CM1) was
utilized, and nutrient agar (Oxide: CMO337) was used for the bactericidal activity. The
overnight culture was combined with freshly made nutrient agar medium and placed into
sterile petri plates at 45 ◦C. For solidification, all petri dishes were placed in a laminar
flow at room temperature. The striking of bacterial strains was performed in each plate
then different concentrations (0.03, 0.05, 0.09, 0.11, and 0.13 mg/mL) of AgNPs was used
and 100 uL of each concentration was put into respective well and was kept at 37 ◦C for
24 h. The diameter of the inhibition zone after 24 h was measured in millimeters (mm) to
determine microbial growth. With the help of scale, the diameter of the clear zones around
each well was measured [20,33].

2.4.2. Antioxidant Assay

The DPPH assay was used to determine the antioxidant potential of Ma-extract and
Ma- AgNPs [20,34]. The stock solution was prepared by dissolving DPPH (12.5 mg) in
50 mL of methanol, and kept in the refrigerator. The plant sample solution was also
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prepared in methanol. The serial dilution of the solution was also prepared with different
concentration (100, 50, 25, and 12.5 µg/mL). Further, 0.1 mL of each dilution was mixed
with 3.0 mL of DPPH in a test tubes in kept them in to the incubator for half an hour
at 37 ◦C. Ascorbic acid was used as standard. UV-Vis spectrophotometer was used to
determine the absorbance against the standard at 517 nm. All the test tubes were repeated
3 times for the absorbance. The control sample was also prepared by using 2 mL of DPPH
solution + 1 mL of methanol. The result Percentage inhibition was calculated by using
given formula.

Percentage inhibition =
Absorbance o f test

Absorsbance o f control
× 100

2.5. Phytotoxicity Assesement of AgNPs

To study the phytotoxicity of AgNPs, morphological parameters of wheat cultivar
Bakhtawar-38 were evaluated under the application of AgNPs. Healthy seeds collected
from the National Agriculture Research Center (NARC) in Islamabad, Pakistan, were
surface sterilized with 3% sodium hypochlorite for 5 min and then washed three times with
distilled water. Seeds were then sown in sand under optimal conditions (65% humidity,
+25 ◦C temperature, and an 8/16-h dark and light period). Eight-day-old wheat seedlings
(two-leaf stage) were treated with AgNPs at concentrations of 10, 20, 40, and 80 mg/L.
Plant roots were treated with nanoparticle solutions and the effects on morphology (plant
fresh weight, root/shoot fresh weight, and root/shoot length) were recorded on the three
consecutive days after treatment (i.e., day 9, 10, and 11). Root/shoot length was measured
in cm using a measuring scale, while fresh weight was recorded in mg using an electric
balance. The experiment was performed in triplicate.

2.6. Statistical Analysis

Data were statistically analyzed using Origin Pro version 9.1 software. All tests were
performed in triplicate. Analysis of variance (ANOVA) was performed using the least
significant differences (LSD) test to compare the significant differences (p ≤ 0.05) between
groups.

3. Results and Discussion
3.1. Green Synthesis and Characterization of AgNPs

The plant extract and silver nitrate salt solution were mixed and incubated for 3 h.
During this time, there was a visible color change in the reaction mixture. The apparent color
of the solution changed from yellow-orange to dark brown, confirming the phytosynthesis
of silver nanoparticles (Figure 1). This color change was due to the surface plasmon
resonance (SPR) activity of the NPs [35,36]. The amount of color is determined by the
number of electrons that are released during the reduction of NO3 to NO2, which reduces
Ag+ to metallic ions (Ag0) [37]. Our work was supported by the findings of [38], which
were identical to ours in terms of the visual change of the color of the solution.

The color change of the reaction solution was further investigated using the UV-Vis
spectrum of the plant extract and AgNPs. The AgNPs showed an absorption peak at
438 nm caused by SPR due to the excitation of the free electrons of the metal during the
formation of the AgNPs (Figure 2). However, the plant extract did not show an absorption
peak in this region. In general, these spectra provide information about the properties
and formation of colloidal AgNPs. An absorption peak in the range of 400–500 nm is a
characteristic feature of AgNPs [39].
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SEM is a powerful technique for evaluating surface structures, including nanoparticle
size, morphology, and shape. A SEM image of these AgNPs shows their spherical and
generally uniform shape (Figure 3a). According to the particle size distribution histogram,
the average size of AgNPs is 28.32 nm (Figure 3b). Previous studies also support our
results [30].

Metallic silver ions were confirmed by energy dispersive X-ray detector. The EDX spectrum
showed a strong absorption peak of the metallic silver ions in the range of 2.5–3.7 keV, while
the silver nanocrystal showed absorption peaks in the range of 2.5–3.7 keV. Different types of
elements in the form of peaks were detected together with silver ions. These elements were
carbon and oxygen together with metallic silver (Figure 4).
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The XRD pattern of AgNPs showed peaks at 38.44, 44.50, 64.80, and 77.94◦ corre-
sponding to 111, 200, 220, and 311 levels, respectively (Figure 4). These diffraction patterns
indicate the crystalline nature of the AgNPs [30]. Additional peaks at 30◦, 54◦, 56◦, and
84 ◦C were also observed, but these were due to biomolecules in the silver nanoparticles
involved in the capping and reduction of AgNPs (Figure 5).
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FTIR spectroscopy is an essential technique for molecular figure printing, which can
detect the functional group of plant secondary metabolites that act as capping or reducing
agents [40]. Various bands appeared in the FTIR spectrum between 400 and 4000 cm−1. The
bands at 1699, 1558, 1479, 1392, 1245, 1116, 1047, 723, 646, and 534 cm−1 correspond to C=C,
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C=O, C-C, C=C, -OH, C-N, and C-X stretching, respectively (Figure 6). These functional
groups indicate the presence of plant biocomponents as capping and stabilizing agents of
AgNPs. These biomolecules are responsible for the reduction process of Ag+ to AgNPs [41].
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3.2. Biological Activities
3.2.1. Anti-Bacterial Activity

The antibacterial activity of Myrisine africana AgNPs was evaluated by the agar well
diffusion method. Different concentrations of plant based AgNPs were used. When
we increased the amount of ANPs, the growth of all bacterial strains was suppressed
(Figure 7). All strains showed the greatest inhibition at a dosage of 0.13 mg/mL. The
highest antibacterial activity was observed against E. coli, a Gram-negative bacterium. It
has already been described that even a very low concentration of AgNPs suppresses the
growth of bacteria [42]. It is believed that the antibacterial effect of AgNPs is primarily
due to the destruction of cell membranes. The antibacterial effect of AgNPs is inhibited
by blocking intracellular signaling pathways [43]. In addition, studies revealed that the
antibacterial mechanism of biogenic AgNPs is associated with cell membrane disruption,
followed by the production of reactive oxygen species, which can alter normal functioning
and cause DNA damage and protein denaturation [44]. Furthermore, Ag+ ions generated
by AgNPs disrupt the bacterial cell cycle, cause mitochondrial dysfunction, and induce
apoptosis [45].
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3.2.2. Antioxidant Activity

When 2,2-diphenyl-1-picrylhydrazyl accepts an electron or a hydrogen radical, it
transforms from a stable synthetic free radical to a stable molecule. Antioxidants convert
the DPPH radical to the non-radical form in the DPPH test [46]. As a result, there is less
absorption, and the DPPH solution turns yellow instead of purple. The different amounts
of phytosynthesized AgNPs (10, 20, 30, 30, and 40 ug/mL) were used and compared with
comparable concentrations of ascorbic acid as reference. At 40 ug/mL AgNPs, the highest
antioxidant activity was obtained, which was 57.7%, while the standard (ascorbic acid)
showed 67.29% at this concentration (Figure 8). Similar results were reported in a previous
study [47].
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The study of antioxidant activity was conducted because free radicals are the main
cause of most human diseases. In the human body, free radicals are the cause of many
diseases. Antioxidant monitoring substances control the free radicals produced by our body.
Numerous types of antioxidants that are harmful to human health are replaced by natural
antioxidants [48]. Antioxidants help reduce oxidative stress in cells and are useful in a
variety of human diseases, including inflammation, cardiovascular disease, and cancer [49].
More accessible, bioactive, and safe antioxidants from plants have been explored as an
alternative to synthetic antioxidants [50]. AgNPs exhibit potent antioxidant activity by
reducing oxidative stress in cells, which is beneficial for the treatment of many diseases such
as cancer, lung infections, cardiovascular disease, and inflammatory infections. Previous
researchers have studied, contrasted, and verified these findings [51].

4. Phytotoxicity of AgNPs

When AgNPs were applied to wheat seedlings, a significant positive effect was ob-
served for all morphological parameters at the different concentrations under constant
external conditions. Shoot length was significantly increased by AgNPs at a concentration
of 10 mg/L on days 2 and 3 of treatment and at a concentration of 80 mg/L on days 1 and
3 of treatment. On the other hand, shoot length was increased by 20 mg/L AgNPs and
decreased by 40 mg/L AgNPs on each of the first three days after treatment. However,
there was no detectable difference between the effect and the control (Figure 9).

For root length, a favorable effect was observed on 40 mg/L and 80 mg/L AgNPs
compared to control plants on all three days after treatment. However, at an exposure level
of 20 mg/L, root length initially increased on the first and second days before decreasing
on the third day. In response to 10 mg/L AgNPs, root length was significantly increased on
days one and three compared to control plants (Figure 10).

The fresh weight of plants was also strongly affected by different concentrations of
AgNPs. A significant decrease in seedling fresh weight was observed at the 10 mg/L and
40 mg/L exposure levels compared with the control on all three days after treatment.
Control plants and plants treated with AgNPs at 20 mg/L showed a similar trend in fresh
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biomass. In contrast, only 80 mg/L AgNPs increased plant fresh weight on the second
and third days after treatment compared to the other exposure levels and control plants
(Figure 11).
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Shoot fresh weight was significantly decreased in response to concentrations of
10 mg/L and 40 mg/L AgNPs on all three days after treatment. The highest increases and
decreases in shoot weight were recorded on the first and third days of plants treated with
10 mg/L AgNPs compared with all other treatments and control plants. In contrast, at a
concentration of 20 mg/L AgNPs, shoot fresh weight increased continuously on all three
days after treatment. In the plants treated with 80 mg/L AgNPs, shoot weight was also
increased on the second and third days (Figure 12).

Different concentrations of AgNPs also showed a significant effect on the fresh weight
of roots of eight-day-old wheat seedlings. On the first day, root fresh weight was signifi-
cantly lower in plants treated with 80 mg/L AgNPs compared to all other treatments on the
first day and to the control. On the second day, root weight decreased only in plants treated
with 40 mg/L, while it increased in plants treated with 10, 20, and 80 mg/L compared
to untreated plants. On the third day, the highest root weight was recorded in the plants
treated with 20 mg/L AgNPs compared to the third day of all other treatments and control
plants (Figure 13).
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Previous studies also reported that AgNPs had a positive effect on plant morphology,
including increased fresh weight and longer roots and shoots [20,52]. In our study, the
most significant effects were observed on root weight, with all four concentrations showing
significant differences compared to the control. Moreover, root weight gradually decreased
with increasing concentration on the third day after treatment, suggesting that these effects
were dose-dependent. Similar results were obtained by Mirzajani et al. (2013), who found
that root growth of Orzya sativa L. increased up to 30 g/mL but decreased at 60 g/mL [53]. In
our study, a concentration of 10 mg/L AgNPs was found to be non-toxic for all parameters.
This finding suggests that lower concentration of AgNPs could be beneficial for plant growth
by improving plant growth parameters [54]. Similar results were reported by Mustafa et al.,
(2020), who found that 10 mg/L AgNPs increased soybean root growth, while 50 mg/L
decreased root length and weight [55]. Hasan et al. also reported the same results on
lettuce [56]. Our results indicate that 80 mg/L AgNPs at higher concentrations decreased
morphological parameters compared with the control, but the effects gradually increased after
three days in all treatments. Thus, it appears that the beneficial effects of higher doses are time-
dependent. These results are consistent with those of Mustafa et al., (2015, 2016) on soybean,
who found that AgNPs at a concentration of 80 mg/L initially increased seedling weight
and root length before decreasing under flood conditions [56,57]. Higher concentrations of
AgNPs (50 mg/L) also increased hypocotyl weight in a time-dependent manner [55]. This
suggests that the phytotoxicity of AgNPs is dose-dependent, while higher concentrations may
be time-dependent for their beneficial effects.

5. Conclusions

In this study, a sustainable, green approach was adopted for efficient synthesis using
the leaf extract of M. africana., which yielded spherical shaped AgNPs with an average
size of 28.32 nm. Myrisins africana-AgNPs showed significant bactericidal activity with
a higher zone of inhibition against E. coli. They also showed remarkable antioxidant
activity in the form of DPPH radical scavenger. Under the different concentrations and
constant external conditions, a noticeable positive effect was observed on all morphological
parameters of wheat seedlings. The results of the present study suggest that AgNPs can be
used as antibiotics, antioxidants, and phytotoxic agents in the future as they are non-toxic,
inexpensive, and highly effective.
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