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B-SYSTEMS AND C-SYSTEMS ARE EQUIVALENT

BENEDIKT AHRENS , JACOPO EMMENEGGER , PAIGE RANDALL NORTH , AND
EGBERT RIJKE

Abstract. C-systems were defined by Cartmell as models of generalized algebraic theories. B-systems
were defined by Voevodsky in his quest to formulate and prove an initiality conjecture for type theories.
They play a crucial role in Voevodsky’s construction of a syntactic C-system from a term monad. In this
work, we construct an equivalence between the category of C-systems and the category of B-systems, thus
proving a conjecture by Voevodsky.

§1. Introduction. Vladimir Voevodsky spent the last years of his life developing a
mathematical theory of type theories. One of his main goals was to give a rigorous
statement, and proof, of an “initiality conjecture.” The “template” for any initiality
statement is as follows: One starts by defining a suitable notion of signature—an
abstract specification device describing the (types and) terms of a language. To any
signature, one then associates a category of models of that signature, in such a way
that the1 initial object in that category—if it exists—deserves to be called the syntax
generated by the signature. Finally, one aims to construct such initial objects, or
identify sufficient criteria for a signature to admit initial objects.

The use of such an initiality result is multifold:
1. it gives a mathematical characterization, up to (unique) isomorphism, of the

syntax generated by a signature; and
2. it provides a recursion principle allowing one to define interpretations from the

syntax into worlds of mathematical objects.
As part of his quest towards an initiality conjecture for type theories, Voevodsky
develops the notion of B-system [8] as one of several suitable mathematical structures
for type theory. Specifically, Voevodsky uses B-systems to build “term” C-systems
(or “term” contextual categories), for which he then aims to prove initiality. For
more details of the role of B-systems in Voevodsky’s theory of type theories, we
point the interested reader to the introduction of [15]; a summary is given in [1,
Section 1.2].

B-systems, Voevodsky conjectures in [8], are constructively equivalent to the
well-known C-systems or contextual categories first introduced by Cartmell [2].
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2 BENEDIKT AHRENS ET AL.

Furthermore, in his Templeton grant application [13], Voevodsky writes:

The theory of B-systems is conjecturally equivalent to the theory of
C-systems that were introduced by John Cartmell under the name
“contextual categories” in [2, 3]. Proving this equivalence is among
the first goals of the proposed research.

B-systems reflect very directly the way in which inference rules are written; see
Example 2.4. Inference rules are commonly used to present a type theory in terms
of generators and relations. As such, B-systems seem particularly well suited for
defining and studying the syntax generated by a signature.

§2. B-systems. Voevodsky’s definition of B-systems [8] is inspired by the
presentation of type theories in terms of inference rules. Specifically, type theories
“of Martin-Löf genus” are given by sets of five kinds of judgements, namely well-
formed context (Γ �), well-formed type in some context (Γ � A type), well-formed
term of some type in some context (Γ � a : A), equality of types (Γ � A ≡ B),
and equality of terms (Γ � a ≡ b : A). Interpreting equality of types and terms as
actual equality, and expressing Γ � A instead as Γ, A �, led Voevodsky to defining a
B-systemB to consist of families of sets (Bn)n∈N and (B̃n+1)n∈N, intuitively denoting,
for any n ∈ N, contexts of length n, and terms in a context of length n together
with their types, respectively. Furthermore, any B-system has two projection maps
ft : Bn+1 → Bn and ∂ : B̃n+1 → Bn+1 that, intuitively, map a context of length n + 1
to its initial segment of length n, and a term to its context extended with its type,
respectively. Finally, any B-system has weakening and substitution operations on
B and B̃ , as well as functions � : Bn+1 → B̃n+2 that intuitively provide assumption
variables. This intuitive explanation of B-systems is made precise in Example 2.4.

Definition 2.1. A B-frame B is a diagram of sets and functions as in the right-
hand diagram in (1), where the set B0 is assumed to be a singleton.

1̃ 2̃

0 1 2 ···

B̃1 B̃2

{∗} ∼= B0 B1 B2 ···

∂1 ∂2

ft0 ft1 ft2

(1)

Equivalently, a B-frame is a presheaf on the “comb” category, i.e., the left-hand
diagram in (1), that preserves terminal objects as a functor, namely, that maps 0 to
a singleton set.

A homomorphism of B-frames H : A → B is a natural transformation of B-frames;
it consists of maps Hn : An → Bn and H̃n+1 : Ãn+1 → B̃n+1 such that

ftn(Hn+1(X )) = Hn(ftn(X )) and ∂n+1(H̃n+1(x)) = Hn+1(∂n+1(x))

for any X ∈ An+1 and x ∈ Ãn+1.
For m, n ∈ N, we denote the composition ftn ◦ ··· ◦ ftn+m : Bn+m+1 → Bn by ftmn .

However, we often omit subscripts as these are usually clear from context.
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B-SYSTEMS AND C-SYSTEMS ARE EQUIVALENT 3

We refer to elements in Bn as contexts and elements in B̃n+1 as terms. We say that
b is an element of a B-frame B, and write b ∈ B, to mean that b is either a context or
a term.

Remark 2.2. Given a B-frame B and a context X ∈ Bn in that B-frame, we
construct the slice of B over X, i.e., the B-frame that consists only of the contexts
and terms of B that depend on X. More precisely, for everyX ∈ Bn, the slice B-frame
B/X consists of the sets

(B/X )m := {Y ∈ Bn+m | ftm(Y ) = X},
(B̃/X )m+1 := {y ∈ B̃n+m+1 | ftm+1(∂(y)) = X}

together with the restriction of the ft and ∂ maps from B.
A homomorphism H : A → B induces in the obvious way a homomorphism

H/X : A/X → B/H (X ).

Definition 2.3. A B-system B consists of a B-frame B together with:

1. for every x ∈ B̃n+1, a homomorphism of B-frames Sx : B/∂(x) → B/ft(∂(x))
called substitution,

2. for every X ∈ Bn+1, a homomorphism of B-frames WX : B/ft(X ) → B/X
called weakening, and

3. for every n, a function �n : Bn+1 → B̃n+2 called generic element such that
∂(�(X )) =WX (X ), for every X ∈ Bn+1.

These functions are subject to the following equations:

1. For every x ∈ B̃n+1, the substitution Sx distributes over substitution and
over weakening in the slice B-system B/∂(x), meaning that, for every y ∈
(B̃/∂(x))m+1, Y ∈ (B/∂(x))k+1, b ∈ B/ft(∂(y)), and b′ ∈ B/ft(Y )

Sx(Sy(b)) = SS̃x (y)(Sx(b)) and Sx(WY (b′)) = WSx (Y )(Sx(b′)).

2. For every X ∈ Bn+1, the weakening WX distributes over substitution and
weakening in the slice B-system B/X , meaning that, for every y ∈ (B̃/X )m+1,
Y ∈ (B/X )k+1, b ∈ B/ft(∂(y)), b′ ∈ B/ft(Y )

WX (Sy(b)) = SW̃X (y)(WX (b)) and WX (WY (b′)) = WWX (Y )(WX (b′)).

3. For everyx ∈ B̃n+1 andX ∈ Bn+1, substitutionSx and weakeningWX preserve
generic elements in B/∂(x) and B/ft(X ), respectively, meaning that, for every
m ∈ N, Y ∈ (B/∂(x))m+1, and Z ∈ (B/ft(X ))m+1

S̃x(�n+m+1(Y )) = �n+m(Sx(Y )) and W̃X (�n+m(Z)) = �n+m+1(WX (Z)).

4. Substitution into a dummy variable does nothing, i.e., Sx(W∂(x)(b)) = b, for
every x ∈ B̃n+1 and b ∈ B/ft(∂(x)).

5. Substituting a term into the generic element on its context yields the term, i.e.,
S̃x(�(∂(x))) = x, for every x ∈ B̃n+1.

6. Substituting a generic element into a duplicated variable contracts it, i.e.,
S�(X )(WX (b)) = b, for every X ∈ Bn+1 and b ∈ B/X .

A homomorphism of B-systems, or B-homomorphism for short, is a homomor-
phism of B-frames H : A → B that distributes over substitution and weakening, and

https://doi.org/10.1017/jsl.2023.41 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.41


4 BENEDIKT AHRENS ET AL.

that commutes with generic elements, meaning that, for every x ∈ Ãn+1, X ∈ An+1,
a ∈ A/∂(x), and a′ ∈ A/ft(X )

H(Sx(a)) = SH̃ (x)(H(a)), H(WX (a′)) = WH (X )(H(a′))

and H̃ (�n(X )) = �n(H (X )).

We denote the category of B-systems by Bsys.

Example 2.4 (B-systems from signatures). An important class of examples of B-
systems arises by considering “restricted 2-sorted binding signature” à la Voevodsky
[15]. Intuitively, such a signature specifies expressions of two sorts, Type and Term.
Expressions can depend on variables, where each variable is again either of sort Type
or Term. The signatures are “restricted” in the sense that variable binding is only
allowed for variables of sort Term, not of variables of sort Type.

Such a signature is used to specify the presyntax (or raw syntax) of Martin-Löf
type theory, specifying that, say, there is a term “zero” of sort Term and a term “nat”
of sortType.2 The presyntax serves to formally specify judgements and inference rules,
which in turn specify the typing relation between types and terms of a type system
such as Martin-Löf type theory. Typically, we demand a (term) judgement to have
the following shape:

A0, A1, ... , An � t : A. (2)

This judgement is built from expressions generated by a two-sorted binding
signature:Ai and A are expressions of sort Type, with a suitable number of variables,
and t is an expression of sort Term, depending on n variables.

Formally, any restricted two-sorted binding signature generates a monad R
of terms relative to the inclusion of finite sets into sets, and a module LM
of types over R. Here, if we let [n] denote the standard set {0, ... , n – 1} with
n elements, R([n]) and LM ([n]) are the set of terms and types depending on
n variables, respectively. The monad R comes with a map from variables to
terms, � : [m] → R([m]), for any m, and with a monadic substitution of type
([m] → R([n])) → R([m]) → R([n]), for any m and n. Similarly, LM comes with a
module substitution of type ([m] → R([n])) → LM ([m]) → LM ([n]). The module
substitution of LM substitutes term expressions (from R) for variables occurring in
type expressions. Note that the “simultaneous” substitution above can be specialized
to a “single-variable” substitution by mapping any variable x that should not be
substituted to �(x).

From such a pair (R,LM ), Voevodsky constructs a B-system as follows. The
families B and B̃ are defined by

Bn :=
n–1∏
i=0

LM ([i ]) B̃n+1 :=

(
n–1∏
i=0

LM ([i ])

)
×R([n]) × LM ([n])

2A two-sorted binding signature does not specify a typing relation between expressions of sort Term
and expressions of sort Type. For the purpose of carving out the syntax of a type theory from the
presyntax generated by a two-sorted binding signature, Voevodsky uses sub-systems and quotients of
B-systems and of C-systems (see [12]).
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B-SYSTEMS AND C-SYSTEMS ARE EQUIVALENT 5

with the obvious maps for ft and ∂ . Intuitively, the sets B̃n represent term judgements
such as (2). The sets Bn represent context judgements.

The definition of substitution for the B-system uses the monad and module
substitution operations on R and LM . Specifically, given an element x ∈ B̃n+1, and
hence in particular, a term t ∈ R([n]), we obtain a substitution map Sx : B/∂(x) →
B/ft(∂(x)) that substitutes the term t for the “last” free variable in any element of
B lying “over” ∂(x). For instance, taking x to be A0 � t1 : A1, the substitution Sx

maps the element A0, A1 � s : A2 to A0 � s[t1] : A2[t1].
Weakening for R and LM is simply given by the functorial action of R and LM

on inclusions of the form [m] → [m + 1]. For weakening in the B-system, consider
X ∈ B1+1 to be a context A0 � A1. The weakening WX maps any context of the
form A0, A

′
1, ... , A

′
n � A′

n+1 to the weakened context A0, A1, A
′
1, ... , A

′
n � A′

n+1, and
similar for elements in B̃ .

For the generic element, consider, for instance, a contextX = A0 � A1 inB2. This
context induces the generic element A0, A1 � �(1) : A1, where �(1) ∈ R([2]) is the
“de Bruijn” variable 1 bound byA1 in the context, and considered as a term by being
wrapped in an application of the monadic unit � of the monad R (the inclusion of
variables into terms). We have

∂(A0, A1 � var(1) : A1) = A0, A1 � A1 = WA0�A1(A0 � A1).

We omit the proof of some of the axioms of a B-frame, which correspond to standard
laws of substitution.

Example 2.5 (B-system on finite sets). Let [n] denote the set {0, ... , n – 1} and
consider the B-frame defined, for each n ∈ N, by Bn := {n} and B̃n+1 := [n]. This
B-frame admits the structure of a B-system as follows.

For everyn ∈ N andx ∈ B̃n+1, the substitution homomorphismSx : B/(n + 1) →
B/n consists of a family of functions Sx,j : [n + 1 + j] → [n + j], for j ∈ N, each of
which lists all elements in [n + j] repeating the element x in position n + 1.

A weakening homomorphism Wn : B/n → B/(n + 1), for n ∈ N, consists of a
family of functions Wn,j : [n + j] → [n + 1 + j], for j ∈ N, each of which lists all
elements in [n + 1 + j] except for n.

Finally, the generic elements are the largest elements in each finite set, that is,
�n := n ∈ B̃n+2.

To see how substitution acts on weakening in this setting, take x ∈ B̃3 = [2] and
consider Sx : B/3 → B/2, W2+k for k ∈ N and the composite

[2 + k + j] [3 + k + j] [2 + k + j].
W2+k,j Sx,k+j

(3)

For each j ∈ N, W2+k,j misses 2 + k in the image and Sx,k+j fixes 0 and 1, maps
2 to x, and maps 3 + i to 2 + i for all i < k + j. It is then clear that if k = 0 the
composite in (3) is the identity function. When k > 0, the composite in (3) is (one
of the functions of) the left-hand side of the right-hand equation in Definition 2.3.1.
The equation itself holds since, when k > 0, the functions Sx,k+j and W2+k,j act
non-trivially on disjoint segments of each set [2 + k + j]. In practice, the composite
is the function that repeats x and misses 2 + k.
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6 BENEDIKT AHRENS ET AL.

§3. C-systems. C-systems were originally introduced by Cartmell with the name
contextual categories [3]. A C-system C consists of a (strict) category C with a
distinguished terminal object 1 such that:

1. There is a wide subcategory RT(C) of C which has the structure of (a category
freely generated by) a rooted tree, where the terminal object 1 of C is the root
of RT(C). In particular, each object X comes equipped with a length �(X ) ∈ N

such that �(X ) = 0 if and only if X = 1. Otherwise, there is a distinguished
arrow pX with domain X such that �(cod(pX )) = �(X ) – 1.

2. For every object X 	= 1 and arrow f : Y → cod(pX ) there are an object f∗X
and an arrow q(f,X ) : f∗X → X such that cod(pf∗X ) = Y and the square
below is a pullback in C.

f∗X X

Y cod(pX )

p
f∗X

q(f,X )

pX

f

Moreover the choice of f∗X and q(f,X ) is functorial in f.
A morphism of C-systems C → C

′ consists of a functor F : C → C′ between the
underlying categories that preserves the rooted tree and the choice of pullbacks.

Let Csys denote the category of C-systems and their morphisms.

Example 3.1 (C-systems from Lawvere theories). Fiore and Voevodsky [4]
construct an isomorphism of categories between the category of Lawvere theories
and the category of �-bijective C-systems, that is, of C-systems whose length function
is a bijection. Intuitively, such a C-system can be seen as modelling an untyped (or
single-sorted) language.

Example 3.2 (C-systems and contextual categories). C-systems are equivalent
to Cartmell’s contextual categories. In his Ph.D. dissertation, Cartmell [3, Section
2.4] constructs an equivalence between the category of contextual categories and
homomorphisms between them and the category of Generalized Algebraic Theories
(GATs) and (equivalence classes of) interpretations between them. Hence C-systems
are equivalent to GATs.

Example 3.3 (C-system from a universe category). Voevodsky [9, Construction
2.12] describes a way to construct C-systems out of what he calls universe categories.
A universe category is a category with a chosen terminal object and a universe, that is,
a morphism p : Ũ → U together with a choice of pullback of p along any morphism
X → U . Roughly, the C-system constructed from a universe category has, as objects
of length n, sequences of n morphismsf1, ... , fn intoU such that the domain offi+1

is the chosen pullback of p alongfi . Such a sequence can be thought of as a sequence
of (dependent) types (A1, A2, ... , An) such that A1, ... Ai � Ai+1. Furthermore, any
small C-system can be obtained via this construction; given a C-system C, a universe
can be constructed [9, Construction 5.2] on the presheaf category Ĉ such that the
C-system obtained from that universe is isomorphic to the C-system C. For a brief
overview of these constructions, see [6, Section 1.3].

Voevodsky’s simplicial model of univalent foundations [6] is built on top of a
C-system obtained from a universe in the category of simplicial sets. Also Shulman’s
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B-SYSTEMS AND C-SYSTEMS ARE EQUIVALENT 7

interpretation into an (∞, 1)-topos [7] uses this construction to define a C-system
out of an (∞, 1)-topos.

Remark 3.4. C-systems are not invariant under equivalence of categories, only
under isomorphism of categories. Indeed, the terminal category has a structure of
C-system, namely the trivial one. Its equivalent category that consists of two objects
and an isomorphism between them does not have the structure of a C-system since
taking pullbacks along an arrow of the form p always increases lengths by one.

§4. An equivalence between B-systems and C-systems. In this section we briefly
sketch a proof of the following result. All details can be found in [1].

Theorem 4.1. The category Bsys of B-systems and the category Csys of C-systems
are equivalent.

Given a C-system C, we can partition the objects of its underlying category C
into sets (Bn)n according to their length. The rooted tree then provides the maps
ft that take an object X of length n + 1 to the context it depends on, namely the
codomain of the arrow pX . This gives rise to a B-frame by taking as elements of
B̃n+1 the sections of the maps pX for X ∈ Bn+1. Note that pullback along an arrow
f : Y → ft(X ) maps sections of pX into sections of pf∗X :

Y ft(X )

f∗X X

Y ft(X )

f∗s

id

f

s

idpf∗X

q(f,X )

pX

f

Thus the choice of pullbacks along f induces a homomorphism of B-frames.
With this observation we obtain substitution and weakening homomorphisms:
substituting a term t ∈ B̃n+1 is defined by taking a pullback along the section t
in C, and weakening by (a variable of) X ∈ Bn+1 is defined by taking a pullback
along pX . Finally, generic elements are defined by the universal property of the
pullback of pX along itself. We thus obtain a B-system B(C) (see [1, Section 5.1]).

Conversely, letBbe a B-system. Note first that the functions ftpresent the elements
of the sets Bn as nodes of a rooted tree RT(B). More precisely, there is an edge
X → Y if and only if X ∈ Bn+1, Y ∈ Bn and ft(X ) = Y . Thus every vertex has a
unique outgoing edge, except for the vertex ∗ ∈ B0, which is the root of the tree
and has no outgoing edge. The arrow pX of the C-system we are constructing
corresponds to the edge X → ft(X ). We briefly describe how to construct a suitable
category “around” the rooted tree RT(B), and how to equip it with the structure of
a C-system C(B). For details we refer to [1, Sections 4.3.1 and 5.2]. As we already
have the objects, we construct arrows using elements of the sets B̃n+1. Readers
familiar with the construction of the syntactic category of a dependent type theory
([5, Section 2.2 and Example 2.4.2] or [2, Sections 13 and 14]) will recognise the
strategy. We first define finite lists of typed terms (a.k.a. context morphisms) out of
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8 BENEDIKT AHRENS ET AL.

the elements of the sets B̃n+1. This is done by defining, at the same time, the action
on the sets of B of what we can think of as the simultaneous substitution of the
terms in the list. Simultaneous substitution yields, in particular, a “pre-composition”
homomorphism for each such context morphism. The action of pre-composition on
terms allows us to define composition of context morphisms, whereas its action on
contexts, together with generic elements, allows us to construct a functorial choice
of pullbacks.

These two constructions extend to functors C : Bsys � Csys : B. To briefly justify
the fact that these functors form an equivalence of categories, note that a context
morphism in CB(C) is completely determined by its last component. This establishes
a bijection between context morphisms and arrows in C which then extends to a
natural isomorphism of C-systems CB(C) ∼= C. Details are in [1, Construction 5.39].
Conversely, given a B-system B, a context morphism which is also a section of a pX
in C(B) is, in particular, a list of length one, i.e., it is a term of B. This observation
establishes an isomorphism of B-frames, which then can be extended to a natural
isomorphism of B-systems BC(B) ∼= B.

§5. Conclusion. We have constructed an equivalence between the category of
C-systems and the category of B-systems. The equivalence does not rely on
classical reasoning principles such as the axiom of choice or excluded middle. This
equivalence constitutes a crucial piece in Voevodsky’s research program on the
formulation and solution of an initiality conjecture.

Voevodsky has studied different types of constructions on C-systems, in
particular, dependent function types [11,14] and identity types [10]. The equivalence
constructed in the present paper should be extended to type and term constructors
on C-systems and B-systems.
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