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ABSTRACT 

This work reports a new composite BaxCa1-xCoyFe1-yO3-δ (BCCF) cathode material for 

advanced and low temperature solid oxide fuel cells (SOFCs). The BCCF-based composite 

material was synthesized by sol gel method and investigated as a catalytic cathode for low 

temperature (LT) SOFCs. XRD analysis of the as-prepared material revealed the dominating 

BCCF perovskite structure as the main phase accompanied with cobalt and calcium oxides as 

the secondary phases resulting into an overall composite structure.  Structure and morphology 

of the sample was observed by Field Emission Scanning Electron Microscope (FE-SEM). In 

particular, the Ba0.3Ca0.7Co0.8Fe0.2O3-δ (BCCF37) showed a maximum conductivity of 143 S 

cm
-1

 in air at 550 °C measured by DC 4 probe method. The BCCF at the optimized 

composition exhibited much higher electrical conductivities than the commercial 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) perovskite cathode material. A maximum power density of 

325 mW cm
-2

 at 550 °C is achieved for the ceria-carbonate electrolyte fuel cell with BCCF37 

as the cathode material. 
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1. Introduction 

Solid oxide fuel cell (SOFC) is one of the most promising types of fuel cells with a high 

energy efficiency and multi-fuel operating flexibility [1]. In a typical SOFC as a sustainable 

energy conversion technology [2], an operating temperature between 800-1000 
°
C is usually 

required to control the cathode over-potential but the high temperature (HT) causes 

mechanical and chemical compatibility issues for a number of materials used for different 

components in fuel cell systems [3]. Furthermore, at such a high temperature, the cell 

degradation is fast and excessive maintenance costs are required.  All of these together limit 

the successful commercialization of this technology [4]. To overcome these issues, in recent 

years, SOFCs operated at a low or intermediate temperature within 500-800
°
C have attracted 

much more attention [5]. A lower operating temperature can suppress the degradation of 

device components and increase the range of material selection, thus enhancing the system 

durability and reducing the manufacturing cost. However, the decrease in operating 

temperature also declines the electrode kinetics resulting in an increase in the interfacial 

polarization resistance for the oxygen reduction reaction (ORR) at the SOFC cathodes. To 

address these issues, cathode materials with high catalytic activities for ORR as well as good 

electronic and ionic conductivities at relatively low temperatures are highly favorable. 

 Extensive efforts have been devoted to the development of low temperature (300-600°C) 

SOFCs using ceria-based composite electrolyte materials originated by Zhu’s pioneer work, 

and many new methods have been introduced to develop high performance materials for 

LTSOFC technology [3]. A key issue in SOFCs is the poor catalytic activity of cathode 

materials causing slow oxygen reduction and the lower ionic conductivity at low 

temperatures. Perovskite cathode materials containing cobaltite have been discovered as good 

candidates as cathode materials in low temperature (LT) or intermediate temperature (IT) 

SOFCs due to their excellent electrode catalytic functions, high electronic and ionic mixed 
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conductivities at a relative low temperature. The most commonly used cathode material, 

lanthanum manganite; LaMnO3 (LMO) for HT-SOFCs is not practically possible due to its 

poor catalytic activity and lower ionic conductivity at low temperatures [5]. 

La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) perovskite has been reported as cathode material in LTSOFCs 

but with a low cell performance [6]. BaxSr1-xCoyFe1-yO3-δ (BSCF), in particular 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ has also attracted much attention due to its high conductivity as well as 

a good catalytic activity and oxygen ions transportation [5]. Similarly, Ba0.5Sr0.5Co0.2Fe0.8O3-δ 

has also been investigated advantageous for low temperature SOFC operations [8]. Despite of 

the fact, BSCF has high conductivity and catalytic activity, however, at the high 

manufacturing and operating temperatures, the diffusion of Sr contaminates the electrolyte 

thus causing a severe degradation in cell performance [9]- [11]. Furthermore, the high price of 

Strontium (Sr) with the high content in BSCF also makes it not a real commercialized 

material. It is extremely important to investigate the economical materials that have an 

excellent performance in LTSOFCs and also are acceptable for commercialization. 

Replacement of Sr by the cheaper Calcium (Ca) being an A-site dopant has been reported as a 

possible solution [9]. Recently, use of composite materials for electrolytes and perovskite 

cathode materials has been demonstrated as a practical approach to address the faced 

challenges for LT and IT (400-700 ⁰C) fuel cells and has attracted huge efforts to develop 

high performance devices [12]. 

In this work, we demonstrate BaxCa1-xCoyFe1-yO3-δ (BCCF) (x = 0.3; y = 0.8) with composite 

structure prepared by an auto-combustion process as a potential cathode material for 

LTSOFCs. Calcium is used to replace Strontium at A-site in ABO3 structure formula for 

perovskite materials, and some secondary phases are also created in addition to the perovskite 

main phase to enhance the conductivity. The optimized composition was identified at x = 0.3 

and y = 0.8 and tested in the temperature range of 300-600 °C. The conductivity of the as-
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prepared material is measured and compared with the commercially available cathode 

material BSCF and its potential as cathode candidate for LTSOFCs is discussed based on the 

excellent performance achieved in fuel cell tests. 

2. Experimental 

2.1. Materials and preparations 

Sol gel method was adapted to synthesis the composite Ba0.3Ca0.7Co0.8Fe0.2O3-δ (BCCF37). 

Stoichiometric amounts of the nitrate salts, Ba(NO3)2.H2O,  Ca(NO3)2.4H2O, Co(NO3)2.6H2O 

and Fe(NO3)3.9H2O were dissolved into de-ionized water with a molar ratio of Ba:Ca:Co:Fe = 

0.3:0.7:0.8:0.2 to prepare the starting solution. Another appropriate composition 

Ba0.9Ca0.1Co0.8Fe0.2O3-δ (BCCF91) with the molar ratio of Ba:Ca:Co:Fe = 0.9:0.1:0.8:0.2 was 

also prepared in the same way. All chemicals were used as received from Sigma-Aldrich 

(USA) without any further purification. 

The details for the preparation of both BCCF composites are illustrated in the flow chart 

shown in Fig.1. Solution A of chemical compounds of Ba:Ca in molar ratios 0.3:0.7 for 

BCCF37 and 0.9:0.1 for BCCF91, respectively, and solution B of Co:Fe in molar ratios of 

0.8:0.2 were prepared separately. Solutions A and B are then mixed together to make a 100 ml 

combined aqueous solution C for each composition. After stirring for 30 minutes, an 

appropriate amount (10% by weight) of citric acid was added into solution C and continued 

stirring for 2 hours at 80 °C. As a result, a gel type material was obtained. The auto-

combustion process was employed by firing the material at 250°C in air for combustion to 

obtain ash like powder material. The ash was then ground and sintered at 1000 °C for 9 hours 

to get the proper composite structure of the material. The heating and the cooling rates were 2 

°C min
-1

. 

2.2. Compaction into pellets 
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The Ba0.3Ca0.7Co0.8Fe0.2O3-δ powder was compacted into pellets with a diameter of 13 mm and 

2.4 mm in thickness under 300 MPa pressure for 5-10 minutes. The pellets were further 

sintered at 600 °C for 1 hour before testing. Silver paste was coated on both sides of the 

pellets as the current collector for the conductivity measurement. The conductivities of as-

prepared materials Ba0.3Ca0.7Co0.8Fe0.2O3-δ, Ba0.9Ca0.1Co0.8Fe0.2O3-δ and the commercial BSCF 

were measured and compared.  The thickness and active area of Ba0.9Ca0.1Co0.8Fe0.2O3-δ pellet 

were taken as 2.6 mm and 0.64 cm
2
 respectively with 13 mm diameter under 300 MPa. 

2.3. X-ray diffraction of as-prepared cathode 

A number of studies for mixed perovskite conductors have reported the existence of 

secondary phases but mostly have been left unidentified [15]. Most of the cathode materials in 

SOFCs are composite in nature because no single material can fulfill every requirement for 

fuel cell activities [18]. Composite cathodes provide high catalytic property; activation of the 

reaction sites takes place due to the addition of ionic conductors in the material structure for 

improvement in oxide ion transportation [19]. The phase structure of sintered as-prepared 

BCCF37 was examined at room temperature by X-ray diffractometer using Cu-Kα radiation 

at 45 kV and 35 mA. 

2.4. Thermogravimetric Analysis 

Thermogravimetric analysis (TGA) was carried out on a Mettler Toledo TGA/SDTA 851
e
 

(Greifense, Switzerland) from 30 to 1100 ºC with a heating rate of 10 ºC min
-1

 and a constant 

air flow (50 ml min
-1

). 

2.5. Fourier Transform Infrared Spectroscopy (FTIR) 

Fourier transform infrared spectroscopy (FTIR) analysis was performed on a Mid-infrared 

spectra Perkin-Elmer Spectrum 2000 FTIR spectrometer (Waltham, MA, USA) equipped with 

an ATR system, Spectra MKII Golden Gate (Creekstone Ridge, GA, USA). The region 
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between 4000 and 600 cm
-1

 with a resolution of 4 cm
-1

 and 16 scans was recorded. The 

software Spectrum (Molecular Spectroscopy) version 3.02.01 (Perkin Elmer Instrument) was 

used to process the spectra. 

2.6. FE-SEM characterization 

Microstructures analysis of the as prepared BCCF37 and BCCF91 samples was studied with a 

field emission scanning electron microscope (FE-SEM, JEOL 7000F) operating at 20 kV. 

2.7. Conductivity measurements 

The resistance R in ohms of the samples was measured in air atmosphere as a function of 

temperature from room temperature to 550
°
C by DC 4 probe technique. The heating rate of 

the tubular furnace was 5 
°
C min

-1
. Data for electrical conductivity was taken after equal 

intervals of 50 °C. 

2.8. Fuel cell fabrication and testing 

The as-prepared BCCF37 powder was mixed with sodium carbonate-samarium doped ceria 

(NSDC) at a volume ratio of 1:1 and calcined at 600 °C for 2 hours. The resulting material 

was further used as the cathode component in fuel cell devices and tested in the ‘‘Fuel Cell 

Rig’’ for I-V measurements. 

The fuel cell devices with 3-layers assembly consisting of anode, electrolyte and cathode were 

fabricated. Nickel foam was used as a substrate and current collector before anode layer then 

NiO (nickel oxide) was spread homogeneously as anode layer which was prepared by the heat 

treatment of nickel carbonate basic at 700 ⁰C, a thin layer of NSDC (samarium doped ceria) 

was used as an electrolyte prepared according to the literature [20]. The ratio between 

samarium (Sm) and cerium (Ce) was considered 1: 4 (20%: 80%) for this electrolyte.  0.02 

mole of cerium nitrate Ce(NO3)3. 6 H2O (Sigma Aldrich, USA) was prepared in 0.5L distilled 
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water and stirred for 2 minutes  at a frequency of 800 rev/min at 80 
o
C. 0.005 mole of 

Sm(NO3)3.6H2O (Sigma Aldrich, USA) was added into the cerium nitrate solution and 

continued stirring with the same speed for further 30 minutes to get samarium doped ceria 

(SDC) solution to be used in all samples.  

Solution of sodium carbonate (Na2CO3) was added drop wise into the SDC solution and was 

stirred for 2 minutes. The molar ratio between SDC and Na2CO3 was taken 1:2. After stirring 

for 30 minutes, the solution was filtered to get precipitates. The wet precipitates were dried 

in an oven at 150oC for 2 hours. Then the powdered precipitates were sintered in a furnace 

at 800oC for 4 hours. After sintering, the nanocomposite of the electrolyte was obtained 

which was grinded for further use. BCCF37 as cathode material was spread over the 

electrolyte surface. Cathode was painted with silver paste as the current collector. These three 

components of fuel cells, with electrolyte sandwiched between the anode and the cathode 

were assembled layer by layer. This structure with anode supported was uniaxial pressed 

under a pressure of 250 MPa with a diameter of 13 mm and about 1 mm in thickness 

consisting of 0.60 mm anode, 0.15 mm electrolyte and 0.25 mm cathode. The fabricated fuel 

cells with an active area of 0.64 cm
2
 were tested between 500 to 600 ⁰C. Hydrogen and air 

were used at the anode and the cathode side, respectively, with a flow rate of ca. 110 ml min
-1

 

at 1 atm. 

3. Results and discussion 

3.1. XRD analysis of BCCF37 material 

Fig. 2 shows XRD pattern of the synthesized BCCF37 material. By comparing this pattern 

with the perovskite material peaks of BSCF, it is obvious that the perovskite is the main 

phase, dominating in the pattern with the diffraction peaks at 2θ = 21°,30°, 38°, 50°, 

56°,65°,74° and 78°. These peaks observed are identified as barium iron oxide as JCPDS 75-
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0426. In addition, some traces of cobalt oxide are observed at diffraction angles 27.5°, 33°, 

33.5°, 52.2°, 52.7°, 64.5°, 65.4°, 68.8°, and calcium oxide also exists besides the perovskite 

phase at 26°,31°, 48°, 58°, 61.5°, 73.5°. The analysis indicates that as-prepared BCCF37 is 

actually the composite-type material due to cobalt and calcium oxides present as secondary 

phases. The presence of the secondary phases additional to the perovskite phase turns the 

material into its composite nature, which enhances the properties of the BCCF37 material 

with higher conductivity and cell performance which is in agreement with the composite type 

materials for intermediate temperatures fuel cells [12]. Since the observed cobalt oxide and 

calcium oxides peaks co-exist with the perovskite phase, therefore the enhancement may be 

due to the composite effect. Irrespective of the exact composition, the presence of a BCCF-

related perovskite phase might also provide the observed performance as for other sub-

stoichiometric electrode materials with the same structure often used in SOFCs. The average 

sizes of the crystallite of each phase are calculated from each phase peaks. The grain size of 

the cubic perovskite, cubic calcium oxide and tetragonal cobalt oxide are 36, 42 and 39 nm, 

respectively, which is comparable to the reported work [8]. 

3.2. TGA Analysis of BCCF37  

Thermogravimetric analysis (TGA) was widely used to investigate the decomposition of the 

as-prepared material. Fig. 3 shows the TGA profiles of BCCF37 in air atmosphere performed 

with a heating rate of 10 ºC /min. The weight of BCCF37 can be observed as decreased 

gradually with increase in temperature. However, weight loss below 200°C is due to the 

emission of adsorbed water molecules, the initial loss and subsequent gain of weight are 

clearly caused by evolution of oxygen and adsorption of CO2, respectively. The second 

weight loss is mainly due to the CO2 emission from the oxides. Continued heating from ∼400 

to 1100 °C resulted in a steady weight loss, ranging from 0.8% to 4.5%.  According to the 

literature, the mixed Ba and Ca perovskite oxides adsorb CO2 easily but other perovskite 
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oxides excluding either Ba or Ca cannot adsorb significantly [9],[21]. From TGA results, 

actually a slight weight increases at temperatures between 450-620⁰C. This may be due to 

adsorption and interaction of CO2 molecules with the as-prepared material; it causes the 

formation of some carbonates due to reaction kinetics of CaO-CO2 [22]. The carbonate phases 

as secondary phases show even better property of the material in electrolytes, which have 

been extensively studied in various ceria-carbonate composite electrolytes for low and 

intermediate SOFCs, typically such a work is reported by Zhu et al [23], the barium and 

calcium carbonate composites with the ceria create an excellent material property and the fuel 

cell performance. In case of cathode material BCCF37, carbonate phases are not identified in 

XRD pattern because material was sintered at 1000 ⁰C therefore no carbonates remained at 

such high temperature and material was converted into its oxide phase. So it means that CO2 

adsorbed at lower temperatures is automatically emitted from as-prepared BCCF37 material at 

high temperatures during sintering process as observed in TGA analysis and secondary phases 

of CaO and CoO were identified therefore is considered that these  CaO and CoO phases have 

contributed to the perovskite phase for enhanced conductivity of BCCF37 and overall cell 

performance. 

3.3. FTIR Analysis 

The FTIR spectrum of BCCF37 is shown in Fig. 4. IR shows that CO2 band is due to the 

adsorption of CO2 from air atmosphere which is agreed with the above TGA results. The 

analysis further confirms that the as-prepared material is a composite type. In the FTIR 

spectrum, three peaks at 1430, 857 and 695 cm
−1

 can be assigned to the vibrational band of 

the carbonic acid radical [9]. The peaks located at 692 and 857 cm
−1

 (barium carbonate), and 

712 and 872 cm
−1

 (calcium carbonate) correspond to the in-plane bending modes of CO3
−2

, 

and the strong peaks at 1444 cm
−1

 (barium carbonate) and 1432 cm
−1

 (calcium carbonate) are 

the C–O stretching mode of carbonate [24]. It should be noted that from the TGA and FTIR 
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analysis, though there is such possibility to form carbonate phases in air CO2-containing 

atmosphere at lower temperatures, which are converted into oxide phases at high temperature 

(1000⁰C) therefore could not be detected by XRD. 

 

3.4. Microstructure analysis of the as-prepared BCCF37 

The sintered BCCF37 cathode material is examined by SEM analysis to investigate the 

microstructure as shown in Fig. 5a-c. The particle size varies in a certain range from 80 nm to 

200 nm and the agglomeration of the particles can be widely observed. According to the 

literature, porosity level increases with Ca content that tends to cause agglomeration giving 

rise to the coarsening in the morphology Error! Reference source not found.. Hence the 

composite material particles have been observed in the shape of clusters due to nano-particles 

agglomeration. It is demonstrated that the conductivity can be improved by decreasing the 

particles size with NANOCOFC approach [25]5, [26] which can be realized by carefully 

adjusting the synthesizing method. For the composition BCCF91, Fig. 5d shows its SEM 

image. Morphology of this composition shows that particle size varies in a range of 200-500 

nm, particles distribution is uniform only in a certain region. It has been observed that 

BCCF37 has better conductivity due to smaller particle size as compared to BCCF91. 

3.5. Conductivity Measurement 

The conductivities of the BCCF37, BCCF91 and the commercial BSCF samples were 

measured by DC 4 probe method and the conductivity results versus 1000/T are plotted in 

Fig. 6. The conductivity increases rapidly with temperature. BCCF37 shows the highest 

electronic conductivity of 143 S cm
-1

 at 550°C. BCCF91 and BSCF show the maximum 

conductivity of 25 and 33 S cm
-1

 at 550 °C. Although the as-prepared BCCF based material 

has mixed conductivity (both electronic and ionic), the measured value is referred to as 
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electronic because it is dominant over ionic conductivity. The later measurements, with two 

probe method did not show too much difference and also the two-probe results can be easily 

repeated. Comparison of both BCCF compositions and the commercial BSCF shows that 

BCCF37 has the better conductivity than that of BCCF91 and commercially available BSCF. 

This indicates that BCCF37 is very useful for LTSOFCs operated between 500-600°C. This is 

a novel material and is expected to have higher conductivity by using other better methods for 

preparation e.g. co-precipitation. It has also been observed that BCCF37 has no distinct 

material degradation during the conductivity and fuel cell testing which shows that the 

material is thermally and electrically useful. This demonstrates the high potential of BCCF37 

as the candidate for cathode materials in LTSOFC applications 

3.6. Fuel Cell Performance 

Three-component configuration SOFC was fabricated with the anode (NiO-NSDC), 

electrolyte (NSDC) and cathode (BCCF37-NSDC) using as-prepared BCCF37 composite 

cathode. Fig. 7 displays the obtained I-V (current density-voltage) and I-P (current density-

power density) curves tested at 550 °C. A maximum power density of 325 mW cm
-2

 is 

achieved at 550°C. Composite anode provided the catalytic activity to hydrogen oxidation, 

uniform distribution of ions and electrons for promoting the electrode electrochemical 

reactions, and the electrolyte provides conduction as well as transportation of oxide ions to 

realize the electricity generation.  

Fuel cell was operated with uniform performance for ten hours in the Lab. The BCCF37-

based cathode in the cell operation shows a very good catalytic activity.  In addition, by 

changing the composition of the mixed anode and cathode, the fuel cell performance can still 

be improved. 
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The electrochemistry of cell reactions occurring in the low temperatures conventional SOFC 

using as-prepared material for the cathode is in line with our earlier work [27]. It can be 

expected with even better performance by controlling the size of the particles. In addition, by 

changing the composition of the mixed anode and cathode, the fuel cell performance can still 

be improved. The ionic conductivity of the electrolyte material allows oxide ions to travel 

through the electrolyte to complete the fuel cell redox reactions and electricity generation. 

4. Conclusion 

Ba0.3Ca0.7Co0.8Fe0.2O3-δ (BCCF37) based material was prepared by a sol-gel method followed 

by an auto-combustion process. The as-prepared materials showed the composite feature with 

more than one phase included, where perovskite was the dominated phase in the structure 

accompanied with trace of oxide phases, i.e. calcium and cobalt oxides as secondary phases. 

BCCF37 displayed a conductivity of 143 S cm
-1

 at 550 °C which was much higher than 25 S 

cm
-1

 of the Ba0.9Ca0.1Co0.8Fe0.2O3-δ (BCCF91) and 33 S cm
-1

 in case of the commercial BSCF 

cathode materials. A maximum power density of 325 mW cm
-2

 was achieved for the LT-

SOFC operated at 550°C using the as-prepared BCCF37 material as the cathode. The results 

achieved from this work have demonstrated the new opportunity to use novel BCCF37 

composite materials for the high performance LT-SOFCs. In particular, considering the high 

conductivity, we may expect even higher fuel cell performances by the continuous 

improvement of fuel cell technologies with other compatible materials and combinations in 

anode and electrolyte components. 
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Fig. 1. Sol gel synthesis process for BCCF 
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Barium iron oxide, particle size (36 nm), Cubic structure  

Calcium oxide, particle size (42 nm), Cubic structure 

Cobalt oxide, particle size (39 nm), Tetragonal structure 

 

 

 

 

 

 

 

 

 Fig. 2. XRD Pattern for Sample Ba0.3Ca0.7Co0.8Fe0.2O3-δ (BCCF37) 
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Fig. 3. Thermogravimetric analysis (TGA) curve of BCCF37 material 
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Fig. 4. FTIR spectra of the BCCF37 material 
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Fig. 5. FE-SEM images for sample BCCF37 (a, b and c) and 2nd composition of the sample BCCF91 (d) 
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Fig. 6. Conductivity vs temperature for samples BCCF37, BCCF91 and BSCF 
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Fig. 7. Fuel cell performance 

 

 

 


