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ABSTRACT
We introduce ACEpotentials.jl, a Julia-language software package that constructs interatomic potentials from quantum mechanical ref-
erence data using the Atomic Cluster Expansion [R. Drautz, Phys. Rev. B 99, 014104 (2019)]. As the latter provides a complete description of
atomic environments, including invariance to overall translation and rotation as well as permutation of like atoms, the resulting potentials are
systematically improvable and data efficient. Furthermore, the descriptor’s expressiveness enables use of a linear model, facilitating rapid eval-
uation and straightforward application of Bayesian techniques for active learning. We summarize the capabilities of ACEpotentials.jl and
demonstrate its strengths (simplicity, interpretability, robustness, performance) on a selection of prototypical atomistic modelling workflows.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0158783

I. INTRODUCTION

Machine-learning interatomic potentials (MLIPs) continue to
revolutionize the fields of molecular and materials simulation.1,2

MLIPs provide the means to simulate atomistic systems at or close to
the accuracy of electronic structure methods, while being computa-
tionally cheaper by orders of magnitude. They make the simulation
of large-scale systems and long time-scales at high model accu-
racy accessible and have therefore become an indispensable tool for
atomic-scale simulation. Recent reviews of the field are provided
in Refs. 3–6. Of particular relevance to the present work are the
methods introduced in Refs. 2 and 7–9.

To create an MLIP, one begins with a flexible functional
form, constrained only to comply with the natural symmetries of
the potential energy in three-dimensional space, then estimates its

parameters using reference data, typically in the form of energies,
forces, and virial stresses for a set of representative atomic configu-
rations. Ordinarily, the data are generated with quantum mechanical
techniques, such as density functional theory (DFT) calculations,
which may be performed only for relatively small structures. A well-
trained MLIP is then expected to provide accurate predictions of
processes on similar but also much larger spatial scales.

The Atomic Cluster Expansion (ACE) introduced in Ref. 9 is
a particular MLIP flavor that is flexible, theoretically well founded,
interpretable, and for which it is straightforward to tune the cost-
accuracy balance. It is establishing itself as a successful MLIP
approach for a wide range of tasks, especially but not exclusively
in materials simulation; see e.g., Refs. 10–17. Linear variants of
the ACE model have been found remarkably data efficient and
computationally efficient and as such have proven particularly useful

J. Chem. Phys. 159, 164101 (2023); doi: 10.1063/5.0158783 159, 164101-1
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for active learning (AL) workflows14 as Secs. III and IV will demon-
strate. Linearity in particular enables sensitivity analysis and a path
towards reliable uncertainty quantification.

This article describes ACEpotentials.jl, which ties together
a collection of Julia-language packages to expose a user-oriented
interface facilitating the convenient construction of ACE MLIPs. To
highlight the ease of use of our package, Listing 1 provides a com-
plete Julia-language example that produces an ACE potential for a
TiAl dataset.

At the time of writing, ACEpotentials.jl provides interfaces
for linear ACE models, which give good accuracy as well as per-
formance both in parameter estimation and prediction. We have
incorporated a range of geometric and analytical priors into the
default model parameters that have proven robust in a range of tasks,
including the challenging low data regime arising in active learning
workflows. ACEpotentials.jl models can be used for molec-
ular dynamics (MD) simulation in Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS),18 the Atomic Simulation
Environment (ASE)19 and Molly.jl.20

The Julia-language codes on which ACEpotentials.jl builds
are written with ease-of-use, performance, and flexibility of model
development in mind. Several variations and extensions of the
ACE model implementations discussed in this article are under
active development. The choice of Julia as the development lan-
guage enables seamless transition from rapid prototyping to perfor-
mance optimization. Moreover, Julia is establishing itself as leader
in scientific machine learning (see, e.g., Ref. 21), facilitating highly
customized model architectures with novel computational kernels.

Finally, we emphasize that the aim of this article is to illus-
trate the capabilities of ACEpotentials.jl but not to precisely
document its use; for the latter see the reference material at
Ref. 22, which will evolve along with the software. While the exam-
ples and code snippets provided throughout this article are compat-
ible with the present version of ACEpotentials.jl, they should be
taken primarily as illustrations of how the package may be used. The
documentation will be kept up-to-date for the foreseeable future and
will continually expand to describe additional options and features.

II. METHODS
A. Review of the linear ACE framework
1. Model specification

An atomic structure is described by a collection of position-
element pairs (ri, Zi), and the computational unit cell (with open or

LISTING 1. A minimal Julia-language script for fitting an ACEpotentials.jl
potential. It first downloads a training dataset, then uses acemodel to create a model
object whose parameters are explained fully in the following sections. The model
parameters are estimated with the acefit! command, and the result is exported in
a LAMMPS compatible format.

periodic boundary conditions). In the ACE model, the total potential
energy of such a structure is decomposed into site energies,

E =∑
i

εi, (1)

where the summation ranges over all atoms belonging to the com-
putational cell and each εi depends on its atomic neighbourhood
containing all atoms within a cutoff radius rcut from ri, taking into
account the boundary conditions. The ACE framework provides
a design space to construct systematic models for the site energy
εi in terms of a complete linear basis of body-ordered symmetric
polynomials.

For convenience we introduce the new variables xi ∶= (ri, Zi)

for the state of an atom and xij ∶= (rij, Zi, Zj), where rij = rj − ri, for
the state of a bond between atoms xi, xj. In terms of these vari-
ables the site energy is expanded in body-order, in two different
formulations:

εi = V(0)(Zi) +∑
j1

V(1)(xij1) +∑
j1<j2

V(2)(xij1 , xij2)

+ ⋅ ⋅ ⋅ + ∑
j1<⋅ ⋅ ⋅<jν̄

V(ν̄ )(xij1 , . . . , xijν̄) (2a)

= V(0)(Zi) +∑
j1

U(1)(xij1) +
1
2!∑j1 ,j2

U(2)(xij1 , xij2)

+ ⋅ ⋅ ⋅ +
1
ν̄! ∑j1 ,...,jν̄

U(ν̄ )(xij1 , . . . , xijν̄). (2b)

We call the first formulation (2a) the canonical cluster expansion.
It can be transformed9 into the second formulation (2b), where the
sums run over all possible combinations of atoms, including all
permutation-equivalent clusters and even “artificial clusters” with
repeated particles. This transformation introduces unphysical self-
interaction terms such as V (2)

(xij, xij), but this counter-intuitive
choice leads to a tensor product structure that can be exploited
in constructing a highly efficient evaluation scheme. Our code is
unique in that it implements the transformation between the two
descriptions and also allows the evaluation of the canonical formu-
lation (2a). Indeed the default ACEpotentials.jl model specifi-
cation uses a combination of the two formulations. We will briefly
review the challenges involved in evaluating cluster expansion
models in the Appendix.

Both series in Sec. II A are truncated versions of an exact body-
order expansion. An exact expansion would include terms up to the
number of atoms in the system, while here the maximum body-order
is ν̄ + 1 (corresponding to a correlation order of ν̄), which constitutes
the first approximation parameter. In practice, the truncation is per-
formed at low to moderate ν̄ (typically 5 or less) for several reasons,
including control of model complexity and computational cost.

Each potential V (ν) (or, U(ν)) is parameterized by a linear model,
a process for which we give details below in the following sections.
This then results in a parameterisation of the site energy that is also
linear,

εi = c ⋅ Bi, (3)

J. Chem. Phys. 159, 164101 (2023); doi: 10.1063/5.0158783 159, 164101-2
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where c is a vector of parameters and Bi a vector of basis functions
(or, features) involved in the expansion of the many-body poten-
tials V (ν) or U(ν). The basis functions are by construction invariant
under rotations, reflections and permutations of like atoms. The rep-
resentation is also complete (or, universal) in the sense that when the
approximation parameters (body-order, cutoff radius, and expan-
sion resolution) are taken to infinity, the model can in principle
represent an arbitrary smooth site-energy potential. Linearity of the
model allows us to employ a vast range of established tools for para-
meter estimation and uncertainty quantification, and enables rapid
model development by refitting to new training data or with adjusted
hyperparameters.

The basis functions Bi specify the model. In a typical example
this can be done as demonstrated in Listing 2.

The model object specifies the model site energy potential,
from which derived properties such as potential energy, forces and
virial stresses can be computed that are used in molecular statics,
molecular dynamics or sampling algorithms.

There are many additional parameters and options available to
specify an ACE model, some of which we discuss throughout the
remainder of this paper. For a complete list of options we refer to
the documentation.22 We only remark briefly on the Eref para-
meter: We recommend the explicit specification of the one-body
term V (0). We observed in many tests that constraining V (0)

(Zi) to
be the energy of a single isolated atom with atomic number Zi yields
more chemically realistic potentials that are more robust in practi-
cal molecular dynamics and molecular statics simulations, especially
those involving breaking and forming bonds. One provides this
information to an ACE model as shown in Listing 2, line 6.

In the remainder of this section we maintain a focus on high
level intuitive understanding of options and parameters and avoid
details and technicalities of the ACE framework as much as pos-
sible. For those details we refer to the Appendix. and to the many
publications now available on the subject.6,9,11,12

2. Parameter estimation
Having specified a physically reasonable model architecture,

we must now estimate its parameters. To that end we require
a training set, which typically consists of a list of atomic struc-
tures, R = {R}, for which the total potential energy ER ∈ R, forces
FR ∈ R3×NR (with NR the number of atoms in the computational
unit cell) and possibly also virial stresses VR ∈ R6 (in Voigt notation)
have been evaluated with an electronic structure model. We define
E(c; R), F(c; R), V(c; R) as the corresponding energies, forces and

LISTING 2. A typical construction of an ACE model and description of parameters.

virials for the structure R in the ACE model, with parameters c. The
simplest way to estimate those parameters is then to minimize the
least squares loss function

L(c) =∑
R∈R
(w2

E,R∣E(c; R)−ER∣
2
+w2

F,R∣F(c; R)−FR∣
2

+w2
V ,R∣V(c; R)−VR∣

2
). (4)

The weights wE,R,wF,R,wV ,R can be used to give more or less rel-
ative “importance” to certain structures or observations. They are
usually highly structured (e.g., wE,R,wV ,R are scaled with the num-
ber of atoms in a structure R), which will be discussed in more detail
in Sec. II E. Since the ACE model is linear in c it follows that L(c)
is quadratic, which means that minimizing L is a linear least squares
problem. A wide range of efficient numerical techniques exist for
its solution. In particular we will normally employ regularized or
Bayesian variations of the naive least squares minimization, which
are discussed in Secs. II E and II F.

In Listing 3 we read in such a prepared training set provided in
the extended XYZ format and then estimate the model parameters
with a default solver (Bayesian Linear Regression; cf. Sec. II F). Sev-
eral steps are combined and hidden from the user in the acefit!
convenience function, but all these steps can in principle also be
performed manually, e.g., to explore different parameter estimation
algorithms that are currently not interfaced by ACEpotentials.jl.
In line 5 of the listing, the fitted model is exported to a format that
can be used for molecular dynamics simulations in LAMMPS.

In the remainder of Sec. II we will dive slightly deeper into some
the steps we outlined above. Then, in Sec. III we will demonstrate
how the framework can be used to fit potential energy models for
realistic materials and molecular systems of scientific interest.

B. Choice of basis functions and geometric priors
The parameters in the model specification in Listing 2 spec-

ify a basis in which the V (ν) potentials are expanded. In the current
section we will detail the basis functions that are employed, while in
Sec. II C we will then explain how to select a finite subset from the
infinite complete basis set.

1. One-particle basis
To begin we must select a one-particle basis ϕk in which all

smooth functions f (xij) = f (rij, Zi, Zj) can be expanded. The most
general form we consider is

ϕznlm(rij , Zi, Zj) = Rnl(rij , Zi, Zj)Ym
l (r̂ij)δzZj , (5)

LISTING 3. A representative example loading a training dataset and estimating ACE
model parameters.
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where δ denotes the Kronecker symbol and we have identified
k = (z, n, l, m). The Ym

l are the standard complex spherical harmon-
ics, while Rnl is called the radial basis. The choice of Ym

l to embed
the angular component r̂i j facilitates the exact symmetrization of
the parameterisation with respect to rotations. Since (rij, Zi, Zj) is
already invariant under rotations, the choice of Rnl is extremely
general. Nevertheless we will below outline a heuristic that leads
to a narrow class of choices that have proven successful in many
applications. However, we note that the optimal choice of Rnl
remains an active area of research and will likely also evolve within
ACEpotentials.jl.

Once ϕk is selected, each potential V (ν) (or, U(ν)) is expanded in
terms of a tensor product many-body basis,

V(1)(xij1) =∑
k1

c(Zi)

k1
ϕk1(xij1)

V(2)(xij1 , xij2) = ∑
k1 ,k2

c(Zi)

k1k2
ϕk1(xij1)ϕk2(xij2)

⋮ ⋮

V(ν̄ )(xij1 , . . . , xijν̄) = ∑
k1 ,...,kν̄

c(Zi)

k1 ⋅ ⋅ ⋅kν̄
ϕk1(xij1) ⋅ ⋅ ⋅ϕkν̄(xijν̄)

(6)

The model parameters c(Zi)

k1 ⋅ ⋅ ⋅kν
will be estimated from data. Note

that we choose individual model parameters for each center-atom
element Zi. During the parameter estimation, the parameters will
be constrained to guarantee invariance of the resulting potentials
under rotations and reflections of an atomic environment. Invari-
ance under permutations is already ensured through the summation
in Sec. II A. The Appendix reviews additional details of this invari-
ant basis construction, resulting in the specification of Bi in terms of
which site energy is defined in (3).

To complete the model specification two steps remain: (i) the
choice of radial basis Rnl; and (ii) the selection of basis functions
(k1, . . . , kν) that we employ in the expansions (6). In the remainder
of this section we discuss (i) while (ii) will be discussed in Sec. II C.

2. Radial basis
There is considerable freedom in the choice of the radial basis

Rnl, which can be thought of as a geometric prior. For example, it
incorporates the interaction range (cutoff radius, rcut) and can be
tuned to capture rough qualitative information about interacting

atoms. In the following we describe a class of radial bases, available
through ACEpotentials.jl, that require no data-driven optimiza-
tion and thus leads to genuinely linear models. At the time of writing
this article, ACEpotentials.jl supports radial bases indexed by n
only, i.e. Rnl = Rn for all l. This class is described by

Rn(rij , Zj , Zi) = fenv(rij , Zj , Zi)Pn(y(rij , Zj , Zi)), (7)

with the following components (Listing 4):

● y is an element-dependent distance transform, which can be
used to impose increased spatial resolution where needed,
especially near the equilibrium bond-length. We typically
employ

y(rij , Zi, Zj) = (1 + a
(r/r0)

q

1 + (r/r0)
q−p )

−1

,

where r0 is an estimate of the equilibrium bond-length in
the system and a is chosen to maximize the gradient of y at
r = r0, thereby maximizing resolution for nearest-neighbour
interaction. The idea behind this transform is that it behaves
as r−q for large r and as 1 − rp

/a for small r thereby decreas-
ing resolution in those two limits at rates determined by the
parameters p, q. The reduction in resolution in the small r
regime is desirable when no data is available to specify the
model in that regime; see also Fig. 1.

● Pn is an orthogonal basis in y-coordinates. Our
default choice is the Legendre orthogonal polyno-
mial basis, which implicitly assumes equidistribu-
tion of resolution in y-coordinates.

● Finally, fenv is an envelope that specifies the cutoff
radius rcut.

– The default and canonical choice for the many-
body basis is

fenv(rij , Zi, Zj) = y2
(y − ycut)

2,

where ycut = y (rcut, Zi, Zj).

– The default choice of envelope for the pair
potential U(1) or V (1) is Coulomb potential tilted
to ensure a smooth cutoff,

LISTING 4. A example demonstrating more fine-grained control over the choice of radial basis Rnl . The function
transformed_jacobi_env constructs the polynomial basis from which the radial basis is constructed, which can be
within the general class of Jacobi polynomials, but is normally taken to be the Legendre basis in transformed y coordinates.
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FIG. 1. Center: a typical interaction potential V(r), plotted in r-coordinates. Left: a coordinate transform y = y(r) to a non-dimensional variable y that increases resolution
near r = r0 where the potential minimum is located and decreases resolution below rmin (the radial distance occuring in the training dataset), to zero near r = 0 where
there is no data (and the envelope fenv becomes relevant) and near r = rcut where the potential converges to a constant. The histograms show the distribution of a typical
dataset in both r- and y-coordinates. Right: the interaction potential plotted (i) in transformed coordinates V(r(y)), (ii) with the default pair envelope removed and (iii) with
the theoretically optimal, typically unknown, envelope removed. The parameterisation and the smoothness priors are not applied to the original potential V(r) but to the
transformed potential V(y)/ fenv(y).

fenv(rij , Zi, Zj) = (
rij

r0
)
−1
− (

rcut

r0
)
−1

+ (
rcut

r0
)
−2
(

rij

r0
−

rcut

r0
),

which is repulsive as r−1
i j as r → 0 but continuously

differentiable at the cutoff.

While the envelope for the many-body potential is canonical, for
the pair potential envelope there is significant scope for inserting
prior modelling knowledge of the system of interest. For example,
one could replace the r−1 type behaviour with r−p

+ r−q to obtain
different behaviour as r → 0 and r → rcut, or in fact one could incor-
porate the Ziegler-Biersack-Littmark (ZBL) potential23 to obtain
asymptotically exact repulsion.

The effect of the distance transform y = y(r) and of the
envelope function are visualized in Fig. 1.

● Repulsion restraint: The construction outlined above means
that, in the canonical cluster expansion formulation, the pair
potential is given by

V(1)(rij , Zi, Zj) = fenv(rij , Zi, Zj)pZiZj(yij),

where pZiZ j is a polynomial in transformed y coordi-
nates. By imposing the constraint that pZiZ j(y0) = 1, where
y0 = y(0, Zi, Zj), we ensure that E ∼ fenv(rij) as rij → 0. This
guarantees repulsive behaviour of the total energy, inde-
pendently of whether or not this is provided through the
training data. In practice we enforce this weakly through a
mild restraint to give the potential more flexibility.

C. A priori sparsification and smoothness prior
We now turn towards the second aspect of basis construction:

how to select which of the infinitely many tensor product basis
functions

ϕk1 ⊗ ⋅ ⋅ ⋅ ⊗ ϕkν , (8)

specified by the tuples (k1, . . . , kν), we wish to incorporate into the
expansion of the (ν + 1)-body potential V (ν).

1. Sparse basis selection
Recall that kt = (zt , nt , lt , mt), and that the bound ∣mt ∣ ≤ lt on mt

automatically gives a selection of possible mt values once lt bounds
are chosen. Roughly speaking, nt , lt measure how oscillatory the cor-
responding basis functions are in, respectively, the radial rt and
angular r̂t coordinates. Therefore one typically puts upper bounds
nt ≤ nmax and lt ≤ lmax in the basis selection, i.e. one chooses all basis
functions (k1, . . . , kν) in the expansion for which these bounds are
satisfied. Lower bounds lead to a smaller basis, but also less flexibility
and correspondingly lower accuracy on the training set.

This simple strategy is available in ACEpotentials.jl but the
default usage takes the notion of regularity a step further and bounds
the mixed regularity of the basis functions we select. This is done
by choosing a maximum total degree totaldegree(ν) for each cor-
relation order ν and choosing all basis functions (k1, . . . , kν) such
that

1 ≤ ν ≤ ν̄ and
ν
∑
t=1

nt +wLlt ≤ totaldegree(ν). (9)

J. Chem. Phys. 159, 164101 (2023); doi: 10.1063/5.0158783 159, 164101-5

© Author(s) 2023

 26 O
ctober 2023 11:48:43

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

The additional weight wL allows us to select whether we require
lower or higher resolution of the angular vs radial components of
the interaction. Note that a higher weight wL decreases the angu-
lar resolution. The resulting selected basis is much sparser and
is appropriate for parameterising very smooth functions in high
dimension.

The default usage is that totaldegree(ν) takes the same value
for all ν but one may also specify a separate total degree for each cor-
relation order ν. For example, Listing 5 demonstrates how to select
a stronger weight wL = 2.0 thus providing less angular resolution,
as well as how to select total polynomial degrees 25, 23, 20, 10 for,
respectively, parameterising V (1), V (2), V (3), V (4).

Significant further fine-tuning of the basis specification is
possible, e.g. choosing different total degrees and wL parameters
for different interacting species. This is explained in the package
documentation.22

2. Smoothness prior
The foregoing discussion concludes the model architecture

specification. An issue closely related to the sparse basis selection
(9) is the definition of a smoothness prior that may be employed
for ridge regression (regularized least squares) which we discuss in
Sec. II E or in the Bayesian framework of Sec. II F. As explained
above, the value

ν
∑
t=1

nt +wLlt

is a qualitative estimate for how oscillatory or smooth a basis func-
tion (8) is. We can extend this definition slightly by adding another
parameter p and defining

γznlm ∶=
ν
∑
t=1

np
t +wLlpt , (10)

where z = (zt)
ν
t=1, n = (nt)

ν
t=1, l = (lt)ν

t=1 and m = (mt)
ν
t=1. We then

collect these parameters into a diagonal matrix Γ with Γkk = γk. If
c are the model parameters then ∥Γc∥2 will be a rough estimate for
how smooth the potential energy surface (PES) is.

The matrix Γ also serves as a smoothness prior within the
Bayesian interpretation of ridge regression: the prior distribution for
the model parameters c is given by a multivariate normal distribu-
tion that is centered at the origin and has variance proportional to
Γ−2; see Secs. II E and II F. In ACEpotentials.jl this operator can
be constructed as shown in Listing 6, with p = 4,wL = 1 the default.

The resulting operator Γ may now be used to specify the
regularizer (or prior) of parameter estimation algorithms, e.g., in
Listing 3, line 2 and explained in more detail in Secs. II E and II F.
A key point is that Γ is a rigorous smoothness prior for the canoni-
cal cluster expansion (2a) but only a heuristic for the self-interacting
expansion (2b).

It is interesting in general, but in particular in the low-data
regime, to explore different choices of priors. Two particular variants
that are also available in ACEpotentials.jl are the exponential
and Gaussian priors

γexp
znlm = exp(αl∑

t
lt + αn∑

t
nt),

and

γgauss
znlm = exp(σl∑

t
l2
t + σn∑

t
n2

t ),

which enforce even stronger smoothness requirements than the
algebraic prior (10) and are currently still experimental features.

D. Training data
In the foregoing sections we discussed in some depth how an

ACE interatomic potential architecture can be conveniently speci-
fied. The next task is to estimate the parameters matching the model
to training data.

A training dataset consists of a collection of reference struc-
tures, R = {R}, each with associated potential energy ER ∈ R, forces
FR ∈ R3×NR and, when appropriate, virials VR ∈ R6 (Voigt nota-
tion). The reference energies, forces and virials are typically obtained
by evaluating a “high fidelity” reference potential energy surface
for which we wish to obtain an ACE surrogate model. Density
Functional Theory is a common choice, but higher levels of the-
ory such as Coupled-Cluster methods are also used, especially for
non-periodic systems. In addition each training structure should be
given a label that specifies related sub-groups. For example, these
subgroups could indicate different phases of a material, and the
resulting labels might be “bcc,” “fcc,” “liquid.” The label could also
indicate the MD temperature from the which the structures were
generated, e.g. “fcc500K” or “liquid2500K.” This allows convenient
filtering of the training set, e.g., for assigning training weights (cf.
Sec. II E) or fitting to subsets.

Acquisition of training data need not be performed within the
ACEpotentials.jl package, but can be undertaken in any simula-
tion software that makes it convenient to generate and manipulate
atomic structures, perform molecular dynamics or Monte Carlo
simulations, and to evaluate structures using a high fidelity elec-
tronic structure model. Because of the general ease of use and in par-
ticular ease of interoperability with the Julia molecular simulation
eco-system, we often use the Atomic Simulation Environment.19

The standard format for storing and retrieving a training set in
ACEpotentials.jl is the extended XYZ format and can be read as
shown in Listing 7. This results in a list of atomic structures storing
the structure information as well as the training data.

1. Overview of training set acquisition
The acquisition of training data is often the most time-

consuming aspect of MLIP development. An in-depth discussion
goes beyond the scope of this software review article; important
details can be found for example in Refs. 5, 12, and 24–26. In the
remainder of this section we give an outline of general strategies to
consider, while in Sec. III we go into practical aspects how training
sets can be constructed in a few prototypical applications and what
kind of tools ACEpotentials.jl provide to support that task.

The overarching requirements are that training sets (1) must
contain small enough atomic structures that they can be evaluated
using high-fidelity electronic structure models; and (2) must contain
snapshots of all possible local atomic configurations one expects to
encounter during simulation and prediction tasks. Thus, generating
a training set reduces to generating representative atomic structures
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LISTING 5. Construct an ACE model with finer control on the sparse selection of basis functions.

LISTING 6. Construct an operator that estimates the smoothness of the MLIP model,
to be used as a Tikhonov regulariser, or prior in a Bayesian framework.

LISTING 7. Reading a training set from an extended XYZ file.

which are then evaluated with the reference model to obtain tar-
get potential energies, forces and virials. While the latter is usually
straightforward and varies little between projects, there is no stan-
dard way yet to generate the training structures. The choice will
depend on the atomic system at hand, and the simulation tasks
that the model must be able to perform reliably, e.g. which system
properties (observables) are to be modelled.

As a first step, one should “sketch out” the parts of the potential
energy landscape that are of interest, e.g. construct one represen-
tative structure for each distinct energy minimum of interest. This
might include different phases or material defects that the final
model should be able to describe. Next, one generates random sam-
ples from those sketches for example by displacing the atom posi-
tions (randomly, along normal modes, volume scans, and so forth),
or by subsampling an ab initio molecular dynamics trajectory. After
collecting a seemingly adequate number of training structures (the
total number of observations should normally exceed that number of
parameters) one can fit a first model and test that model’s accuracy
with respect to some target property. If the accuracy is inadequate,
or the model not robust (e.g., an MD simulation is unstable), then a
good strategy is to proceed with an iterative model refinement pro-
cess. In each iteration additional training structures are selected to
converge the model’s accuracy with respect to the target properties
of interest. One might add hand-crafted structures to fix a particu-
lar flaw (e.g. to improve description of inter-molecular interaction
in a molecular liquid or include supercells with vacant atomic sites)
or model-driven MD to less computationally expensively explore
relevant parts of Potential Energy Surface (for example, low poten-
tial energy regions to bring potential-Boltzmann-sample closer to
reference-Boltzmann-sample and wider temperature/pressure range
than intended for application of interest to make the model-driven
simulations more stable).

Iterative model refinement is closely related to active learn-
ing. That strategy assumes that there is an accurate and efficient
way available to estimate model uncertainty. During a simulation
task, for example a molecular dynamics simulation, when a structure
with high uncertainty is encountered it is evaluated with a reference
method and added to the training data. To accelerate this process, we
developed Hyper-Active Learning,14 which biases molecular dynam-
ics simulation towards high-uncertainty and high predicted error
regions. This strategy is sometimes capable of more rapidly gener-
ating many independent training samples. Section III will go into
some details how this strategy is used in practice.

E. Parameter estimation: Ridge regression
Recall from Sec. II A that the linear ACE models are parame-

terized linearly as shown in (3). As described in Sec. II D we estimate
parameters by matching the model to observations of total ener-
gies, forces and virials evaluated via a high fidelity reference model
on different training structures R ∈ R, where R denotes the train-
ing set. To estimate the parameters we minimize the loss function
(4). In the current section, we go into further details of the para-
meter estimation process once the model and training set have been
specified.

First, we discuss the regression weights wE,R, wF,R and wV ,R,
which allow users to specify the relative importance of different
observations and structures. In principle one could specify individ-
ual weights for each structure R and observation type E, F, V . In
practice, it has proven convenient to label all structures R with a
configuration type as described in Sec. II D and to assign weights
according to such groups. In addition the weights wE,R,wV ,R should
scale like 1/

√
NR where NR denotes the number of atoms in the

structure R.2,12 Thus, the weights wE,R,wV ,R take the form

wE,R =
w̃E,cfgtype(R)
√

NR
, wF,R = w̃F,cfgtype(R),

wV ,R =
w̃V ,cfgtype(R)
√

NR
,

with w̃∗,cfgtype defined by the user as follows: Suppose, for example,
that a training set contains several solid phase structures as well as
liquid structures, then we may wish to demand a higher fit accuracy
on the solid structures. In addition we typically find that energies
must be given higher weights in order to achieve the best possible
balance of accuracy. This might result in weight specifications as
shown in Listing 8, lines 4 and 5.
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LISTING 8. Prototypical parameter estimation script, using some simple control over regression weights and solver parameters.

Next we discuss the minimization of the loss. Since all observa-
tions we consider here are linear, the minimization of L(c) can be
rewritten in the form

arg min
c

∥W(y −Ac)∥2, (11)

where y is a vector containing the observation values ER, FR, VR,
A is the design matrix containing the ACE basis values corre-
sponding to those observations and W a diagonal matrix containing
the weights wE,R,wF,R,wV ,R. Solving the linear least squares system
(11) often results in overfitting, hence one almost always employs
regularized methods, for example the ridge regression formulation,

arg min
c

∥W(y −Ac)∥2
+ λ∥Γc∥2, (12)

where Γ specifies the form of the regularizer and λ a scaling para-
meter determining the relative weight of the regularisation. This
formulation of the least squares problem is often also called regu-
larized least squares, and the λ∥Γc∥2 term is often called generalized
Tikhonov regularisation. The default for Γ is zero or the identity,
depending on the choice of solver. Our recommendation is to use
the smoothness prior introduced in (10) instead for most solvers.
Automatic relevance determination (ARD) is unique amongst the
ridge regression solvers available in ACEpotentials.jl in that it
estimates a regularizer Γ from the sensitivity of the parameters to
the training data, at additional computational cost; see Sec. II F for
more details.

To solve the ridge regression problem (12),
ACEpotentials.jl employes the package ACEfit.jl
(https://github.com/ACEsuit/ACEfit.jl), which offers a range
of such algorithms. In the simplest setting, it can be used as shown
in Listing 8, lines 6 and 7. For a list of the most important solvers,
see Table I. For large models and/or large datasets, the parameter
estimation task can be computationally challenging and may have
to be performed on a cluster.

For small and moderate datasets we normally recommend the
BLR method. For large datasets. when finely tuned regularisation
is often less important, the random matrix sketching RRQR and
iterative LSQR may be more appropriate.

Once the model parameters are determined as shown above, we
typically wish to perform two tasks: (1) confirm the model accuracy

on a test set; and (2) export the model to a format that can be used
in standard MD codes, e.g., LAMMPS and ASE. Suppose that we are
provided with a test data set testdata, then we can determine the
model errors on that test set as seen in Listing 8, lines 9–11. This will
print tables of root-mean-square error (RMSE) and mean absolute
error (MAE) errors for individual configuration types. If we wish
to store and/or export the fitted potential for later use, we typically
save it in .json format which can be read by ACEpotentials.jl
as well as its Python interface to ASE, and in .yace format which
can be read by the pace extension to LAMMPS; cf. Listing 8,
lines 13–15.

F. Bayesian framework for parameter estimation
Uncertainty estimates of model predictions are highly sought

after tools to judge the accuracy of a prediction during simulation
with a fitted model, but can also be employed to great effect during
the model development workflow, e.g., in an active learning context.
Such uncertainty estimates can be derived in a principled way by
recasting the ridge regression problem (12) in a Bayesian framework
where inference is based on the Bayesian posterior distribution

post(c) = p(c ∣A, y)∝ p(A, y ∣ c) p(c). (13)

Here, p(A, y∣c) denotes the likelihood of the observed data, and p(c)
the prior distribution on the model parameters. The Bayesian ana-
logue of (12) is a Bayesian Linear Regression model with Gaussian
observational noise and prior,

p(A, y ∣ c)∝ exp(−
1
2
(y −Ac)T

(βW2
)(y −Ac)), (14)

and

p(c)∝ exp(−
1
2

cTΣ−1
0 c), (15)

where the covariance β−1W−2 of the observation noise depends on
the regression weight matrix W and a hyper-parameter β > 0. This
choice of prior and noise model yields a Gaussian posterior distri-
bution, p(c ∣A, y) = N (c; μ, Σ), with mean and covariance given,
respectively, by μ = βΣATW2y and Σ = (βATW2A + Σ−1

0 )
−1

. We
assume that the prior covariance Σ0 is of the form of a diagonal
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TABLE I. Table of solvers for the ridge regression problem (12).

QR QR decomposition: Direct solution of the ridge regression problem (12). Tikhonov regularisation is imposed by extending the
linear system. This method should rarely be used in practice and is included mostly for theoretical interest and the sake of
completeness.
solver = QR(lambda = 0.0)

LSQR Krylov method: The standard iterative Krylov algorithm to solve the ridge regression problem (12). Tikhonov regularisation is
imposed implicitly in the algorithm, with damp corresponding to the parameter λ. Early termination, by adjusting atol provides an
additional and different form of regularisation. This algorithm is suitable for very large-scale parameter estimation problems.
solver = LSQR(damp = 1 × 10−4, atol = 1 × 10−6)

RRQR Rank-revealing QR decomposition: A random matrix sketching approach, which is computationally more efficient than the
standard QR decomposition. In addition, the parameter rtol is closely related to λ in (12) but not identical. Instead of adding a
Tikhonov term, RRQR regularisation is imposed by removing highly sensitive subspaces as determined by rtol. For large problems,
this algorithm is more performant than the standard QR decomposition.
solver = RRQR(rtol = 1e−5)

BLR Bayesian linear regression: (or, Bayesian ridge regression) specifies a class of solvers that estimate regularisation hyperparameters,
depending on the setting it estimates the scaling parameter λ or the entire Tikhonov matrix Γ. This solver also determines
a posterior model distribution that can be used for uncertainty quantification. See Section II F. for further details. This algorithm is
more robust than QR, LSQR, RRQR, but computationally more intensive. It is highly recommended for relatively small datasets.
solver = BLR()

matrix. The above Bayesian model can be connected to the ridge
regression formulation of Eq. (12) by noticing that maximising the
posterior density (13) is equivalent to minimizing the regularized
loss in (12) when Σ−1

0 = ζΓ2 for some ζ > 0 and λ = ζ/β.

1. Solvers and model selection via evidence
maximisation

The reliability of uncertainty estimates critically depends on the
values of the model hyper-parameters, the noise and prior covari-
ance matrices β−1W−2 and Σ0. In ACE, it is sometimes difficult to
make informed guesses of explicit values of these hyper-parameters
that lead to good fits. We therefore commonly employ empirical
Bayes approaches that infer appropriate values of these parameters
directly from the training data by virtue of maximising the model
evidence

p(A, y ∣Σ0, Λ−1
) = ∫ p(A, y ∣ c, Λ−1

)p(c ∣Σ0)dc

=

¿
Á
ÁÀ(2π)−Nobs ∣Σ∣

∣Σ0∣∣Λ∣

× exp(−
1
2
(y −Aμ)TΛ−1

(y −Aμ) −
1
2

μTΣ−1
0 μ)

(16)

as a function of Σ0, β. Intuitively, maximising the model evidence
results in a model where the regularising effect of the covariance
matrix Σ0 and the degree of penalization of model misfit—modelled
by the noise covariance matrix β−1W−2—are balanced against the
degree to which the regression coefficients are determined by the
data.

Within ACEpotentials.jl this is implemented in the BLR
solver (cf. Table I). Different solver options result in different con-
straints on the form of the prior covariance Σ0, and we refer to the
documentation22 for further details.

2. Uncertainty estimates via committees
Formally, the Bayesian ridge solver provides not an optimal

parameter vector c but a posterior parameter distribution p(c). In
practice, one then selects the mean parameter vector μ to specify
the model. However, the posterior distribution remains important
to estimate the uncertainty of predictions. Evaluating such uncer-
tainties from the exact posterior distribution is computationally
expensive; instead, ACEpotentials draws K samples {ck}

K
k=1 from

post(c) resulting in a committee of ACE models which can be used
to obtain computationally efficient uncertainty estimates for pre-
dictions. For example, the standard deviation σ of a total energy
prediction can be approximated by a committee via

σ̃ 2
=

1
λ
+

1
K

K

∑
k=1
(Ek
− Eμ
)

2, (17)

where Eμ is the prediction made by the mean model with para-
meters μ, while Ek are the committee predictions from models with
parameters ck. Similarly, uncertainty estimates can be made for
any partial derivative of the potential energy surface such as for
committee forces Fk

= ck ⋅ ∇Bi, or the mean force Fμ
= μ ⋅ ∇Bi.

The first term in (17) refers to the aleatoric, or irreducible,
uncertainty arising due to randomness of the system which is dom-
inated by the complexity of the linear ACE convergence parameters
such as correlation order, polynomial degree and cutoff. The sec-
ond term is the epistemic, or reducible, uncertainty arising due to a
lack of data or rather information. An example how a variance esti-
mate of the epistemic uncertainty can be obtained in the linear ACE
framework is shown in Listing 9.

III. WORKFLOW EXAMPLES
In this section, we present several practical examples of

ACE usage, including simple benchmarks, practical potentials
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for materials and liquids to examples illustrating the hyperac-
tive learning workflow. The scripts we used to generate the
reported results are made available in a separate git repository
(https://github.com/ACEsuit/ACEworkflows) that will be regularly
updated as the ACEpotentials.jl package evolves.

A. Tests with pre-existing data sets
1. Benchmarks with limited-diversity datasets

We test ACEpotentials.jl with default parameters on an
early single-element benchmark dataset taken from Ref. 27. This
dataset was originally used to assess the relative strengths and
weaknesses of four important MLIPs, the high-dimensional neural
network potential (NNP),1 the Gaussian approximation potential
(GAP),2 the Spectral Neighbor Analysis Potential (SNAP),7 and
moment tensor potentials (MTP).8 The benchmark contains six sep-
arate datasets corresponding to the six elements Li, Mo, Ni, Cu,
Si and Ge, spanning a variety of chemistries (main group metal,
transition metal and semiconductor), crystal structures (bcc, fcc,
and diamond) and bonding types (metallic and covalent). For each
element, the dataset contains the ground-state crystal structure,
strained structures with strains of −10%–10%, slab structures up
to a maximum Miller index of three, and NVT ab initio molecu-
lar dynamics simulations of the bulk supercells with and without a
single vacancy. These datasets contain a relatively large number of
training structures, but only limited diversity.

In Table II we see the comparison of the MAEs in energies and
forces for the best performing potentials in the benchmark (GAP
and MTP) with two linear ACE models trained with the default
parameters and total degrees chosen to reach basis sizes of, respec-
tively, 300 basis functions for ACE(s) and ∼1000 basis functions
for ACE(l). We optimized none of the hyperparameters and solved
used RRQR to estimate the parameters. We chose RRQR since the
datasets are very large, hence a highly tuned regularisation is less
important. This results in competitive accuracy across the entire
benchmark. The only small exception is the slightly larger energy
error for Mo-ACE(l), which suggests some fine-tuning of the model
parameters could be beneficial in this particular case. Our aim with
this experiment was to demonstrate that, with only minimal effort,
linear ACE models can perform with (near-) best accuracy in a data
set geared towards testing statistical generalization.

2. Silicon
We used ACEpotentials.jl to fit a linear ACE potential to

the silicon dataset introduced by Bartók et al.25 for fitting a Gaussian
approximation potential (GAP). This extensive database contains
a wide range of configurations ranging from several bulk crystal
structures (diamond, hcp, fcc, etc.), amorphous structures as well
as liquid MD snapshots, aiming to cover as much of the silicon
energy landscape as possible. The corresponding GAP model was

LISTING 9. Example how to use a committee to estimate the uncertainty of a
prediction. (Note that model.potential gives access to the calculator object.)
Analogously, one can obtain committees of forces and virials.

TABLE II. Mean absolute test errors in predicted energies and forces of two
ACE models, ACE(sm) with ∼300 basis functions and ACE(lge) with ∼1000 basis
functions, compared against the two best performing MLIPs published in.27

Energy (meV) Forces (eV/Å)

ACE(sm) ACE(lge) GAP MTP ACE(sm) ACE(lge) GAP MTP

Ni 0.416 0.34 0.42 0.48 0.018 0.015 0.02 0.01
Cu 0.292 0.228 0.46 0.41 Ni 0.007 0.005 0.01 0.01
Li 0.231 0.165 0.49 0.49 Cu 0.006 0.005 0.01 0.01
Mo 2.597 2.911 2.24 2.83 Li 0.123 0.097 0.09 0.09
Si 3.501 1.985 2.91 2.21 Mo 0.086 0.066 0.07 0.06
Ge 2.594 2.162 2.06 1.79 Si 0.064 0.051 0.05 0.05

shown to outperform a wide range of other (classical) interatomic
potentials on a large selection of accuracy and property or generali-
sation tests ranging from surface formation energies as well as liquid
and radial distribution functions. The current work benchmarks an
ACEpotentials.jl model, with default model parameters, con-
taining basis functions up to order ν̄ = 4, polynomial total degree
Dmax

= 20 and 6 Å cutoff against this silicon GAP potential. The
model was fitted using generalised Tikhonov regularisation (12)
of λΓ, where Γ was constructed using an algebraic smoothness
prior (10) with p = 5, whilst the BLR solver was used to estimate
the scaling parameter λ. This benchmark is formed of a series of
property tests including bulk diamond elastic constants, vacancy
formation energies, surface formation energies for the (100), (110),
(111) surfaces and hexagonal, dumbbell and tetragonal point defect
energies for bulk diamond. These results of these property tests
for the CASTEP28 DFT reference, GAP and ACE are shown in
Fig. 2 and indicate good accuracy across the range of property tests.
Percentage errors relative to the DFT reference are also included,
confirming similarly accurate performance between the GAP and
the ACEpotentials.jl frameworks.

We also used this silicon ACE potential to carry out a more
challenging test, namely to simulate fracture in the (111)[11̄0]
cleavage system. We used the matscipy package to setup a 12 × 11
× 1 supercell containing 1586 atoms and to carry out structural opti-
mizations with a Mode I crack anisotropic continuum linear elastic
displacement field29 applied with stress intensity factors ranging
from 0.6KG to 1.5KG (where KG is the Griffith load at which fracture
becomes thermodynamically favorable). We observed spontaneous
formation of the Pandey 2 × 1 reconstructed (111) surface behind
the crack tip, in good agreement with previous studies using DFT30

and GAP.25 The critical stress intensity factor was determined to be
KI = 1.0 ± 0.02KG, which is very close to the expected Griffith value,
indicating minimal lattice trapping. Overestimating the extent of
lattice trapping is a common failure mode of previous interatomic
potentials when applied to model fracture.31 The total simulation
time was around 30 minutes on a 28-core workstation.

To successfully carry out the fracture test it was crucial to pro-
duce a highly regular (smooth) ACE potential. To illustrate the effect
of changing the smoothness prior, a sequence of ACE potentials
(order ν̄ = 4, total degree Dmax

= 21 and 6 Å cutoff), was fitted using
no smoothness prior (Γ = 1) and increasing strengths of algebraic
smoothness prior (10), p = 1, 2, 5 and 10. In all cases the model para-
meters were estimated using generalized Tychonov regularisation
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FIG. 2. Benchmark of the silicon GAP25 and ACE model presented in this work. Percentage relative errors against the DFT reference are provided in the Table.

(12) with the scale factor λ tuned such that all potentials achieved
a force RMSE of ∼0.075 eV/Å, which is ∼5% larger than with-
out any regularisation. The effect of the prior on predicted Si–Si
dimer curves and rigid bulk Si decohesion curves, which respectively
probe smoothness of two-body and many-body terms, is shown in
Fig. 3. Applying a moderate smoothness prior aids extrapolation into
the close-approach region and reduces the amplitude of spurious
oscillations seen in the stress (S) during decohesion.

3. Water
We investigated the ability of ACEpotentials.jl to capture

the interactions in complex molecular liquids and to perform robust
molecular dynamics simulations in such systems, fitting a linear
ACE potential to a dataset containing 1593 liquid water configura-
tions.32 We chose only default model parameters, containing basis
functions up to correlation order ν̄ = 3, polynomial total degree
Dmax

= 15 and rcut = 5.5 Å cutoff. Parameter estimation was per-
formed using ARD with relevance threshold set by minmising the
Bayesian Information Criterion (BIC).33 The training RMSE were
1.732 meV/atom for energies and 0.099 eV/Å for forces. To inves-
tigate the performance and robustness of the fitted ACE model, a
series of mean squared displacement (MSD) simulation were per-
formed under 1 bar NPT conditions at 300 K. The simulations were
performed using 5184 atom simulation boxes, shown in Fig. 4 below,
with the pace pair style in LAMMPS.12 The total simulation time
for each of these simulation was 20 min utilising 1280 cores on
ARCHER2, illustrating the efficiency of ACE potentials. The dif-
fusion constant predicted by this simulation was 1.20 ± 0.03 m/s2.
It should be noted that diffusion constants are notoriously difficult

to accurately determine especially considering the absence of long-
range interactions into these ACE models. This example is therefore
mostly an illustration of robustness and performance.

B. The hyperactive learning (HAL) workflow
While fitting ACE potentials to pre-existing or “manually”

assembled datasets is a common task, as discussed in Sec. III A,
the real benefit of the linear ACE framework is in the construc-
tion robust and computationally inexpensive ACE potentials from
the ground up with automated dataset assembly. This is achieved
through the use of an iterative loop employing an active learning
(AL) type approach,34,35 where relevant training configurations are
sampled to form a training database. To accelerate this AL process,
we introduced hyperactive learning (HAL),14 which adds a biasing
term to a molecular dynamics simulation towards predicted high
uncertainty σ, as shown in (18). A tunable parameter τ controls
the strength of the biasing and thus the balance between physical
exploration (molecular dynamics) and discovery of new structures
(biasing).

EHAL
= EACE

− τσ. (18)

The HAL framework shares similarities with Bayesian Opti-
mization (BO) as the biasing term is formally equivalent to a
Lower Confidence Bound (LCB) acquisition function.36 Similarly
to BO, the parameter τ adjusts the tradeoff between exploration
and exploitation during the generation of training configura-
tions using HAL. HAL-generated configurations are both energet-
ically reasonable, guided by EACE (exploitation), and informative,
predicted by a relatively large value of σ (exploration). The bias
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FIG. 3. Top Left: The predicted energy of the Si–Si dimer is shown for a sequence of ACE potentials trained with varying strengths of smoothness prior but equal accuracy
(Force RMSE ≈ 0.075 eV/Å). Γ = 1 corresponds to an equal prior for all basis functions whilst p indicates the strength of the algebraic smoothness prior defined in (10).
The black curve shows the corresponding result using GAP. All curves are shifted for clarity. Bottom: The evolution of stress (S) as a function of separation (z) during rigid
decohesion of bulk silicon into the unrelaxed (110) and (100) surfaces is shown for the same sequence of potentials. Top Right: Snapshot from Si(111)[11̄0] quasi-static
fracture simulation at a stress intensity factor of 1.8KG using our ACE potential. The lower fracture surface shows a 2 × 1 Pandey reconstruction (alternating pentagons and
heptagons), consistent with previous studies using DFT and GAP models, but at much reduced cost. The critical fracture toughness is very close to KG, showing minimal
lattice trapping.

towards uncertainty, mediated by an emerging biasing force during
HAL dynamics, can be viewed as a strategy to acquire informa-
tion (gain) by seeking out unseen (local) environments. The HAL
approach can also be viewed as an adversarial attack, aimed to
destabilize a fitted ACE potential such that, after iteratively adding
sufficiently many new configurations, the linear ACE model is
robust to such attacks which all but guarantees stable dynamics over
long timescales.

The biasing parameter τ in HAL necessitates careful tuning,
which HAL achieves through an adaptive scheme14 that tunes τ on
the fly by balancing the magnitude of the biasing force relative to the
forces obtained by EACE. The relative biasing parameter τr used in

this scheme is typically set to 0.1–0.2 and ensures that the biasing
strength is reduced or increased depending on the degree of
predicted uncertainty explored during the dynamics.

To initiate HAL, an initial database is typically constructed con-
sisting of 1–10 configurations that sketch out some aspects of the
energy landscape that are of interest to the application at hand. An
ACE potential is fitted using a variant of the BLR solver, after which
committee parameterisations {ck}

K
k=1, typically K = 8, are sampled

from the posterior as discussed in Sec. II F. Biased MD/MC dynam-
ics are then performed on EHAL, using the dynamically tuned τ
parameter. During the dynamics the relative force uncertainty fi

is recorded and once it exceeds a predefined tolerance f tol a DFT
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FIG. 4. Mean squared displacement (MSD) for three liquid water simulation at 1 bar
NPT simulations and 300 K. The simulation cell contained 5184 atoms.

calculation is triggered, and the training database is extended. This
relative force uncertainty fi is defined as

fi =

1
K∑

K
k=1 ∥F

k
i − Fμ

i ∥

∥Fμ
i ∥ + ε

, (19)

where Fk
i are the forces as obtained by the committee and Fμ

i the
forces predicted by the mean μ of the posterior over the coefficients
as outlined in Sec. II F. ε is a regularising constant used to regular-
ize the fraction typically set to 0.2–0.4 eV/Å. Careful tuning of ftol
is required as it tunes the degree of extrapolation when adding new
(unseen) configurations to the training database. Too large ftol may
lead to the sampling of energetically unreasonable configurations,
whereas too small ftol leads to suboptimal information gain during
the HAL scheme resulting in sampling unnecessarily many configu-
rations. The HAL scheme is outlined in Fig. 5 illustrating how from
a small initial training database containing a handful of configura-
tions of interest a stable ACE potential is generated by performing
biased MD and MC steps and iteratively triggering DFT calculations.
For future reference, we define a HAL iteration to consist of (i) a
biased MD simulation run until a new unseen structure is flagged,
(ii) evaluating energies, forces and virials on the new structure, and
(iii) updating the ACE potential model.

1. AlSi10 melting temperature
The HAL framework was used to create an ACE potential for

determining the melting temperature of the AlSi10 alloy. An initial
dataset consisted of 32-atom random fcc lattice configurations, each
containing 98 aluminium and 10 silicon atoms. This initial dataset
was composed of five fcc random alloy configurations with lattice
constants ranging from 14.3 to 16.6 Å3/atom. The ACE basis set
included interactions up to correlation order ν̄ = 2 (three-body), and
employed a cutoff of 5.5 Å. The model was fitted using Automatic
Relevance Determination (ARD) and its sparsity set by minimising
BIC which resulted in increasingly complex ACE models as more
configurations (or information) were added. The chosen maximum
polynomial degree Dmax during the HAL procedure increased from
4 to 12. The parameter estimation was carried out using ARD. The

FIG. 5. Hyperactive Learning (HAL) protocol. Linear ACE potentials are fitted using
BRR or ARD after which biased MD/MC steps are performed controlled by bias-
ing parameter τ. Once the uncertainty metric fi exceeds f tol a DFT calculation is
triggered a HAL iteration is completed and the training database extended.

HAL relative biasing strength was set to τr = 0.2, and the relative
uncertainty threshold to f tol

= 0.2.
The HAL dynamics was used to melt the random alloy crystal

structure, by ramping the temperature from 0 to 1500 K at 1 GPa
using a 1 fs timestep. Cell swapping and volume adjusting HAL-MC
steps were taken to facilitate exploration of the (biased) energy land-
scape. After 18 HAL iterations, the ACE potential was already able to
consistently perform 5000 HAL MD/MC timesteps without encoun-
tering new structures with high uncertainty. This final ACE potential
contained 79 basis functions as selected using ARD pruning.

During these 18 HAL iterations the dimer curves are typi-
cally examined to ensure the potentials exhibit attraction at typical
interatomic distances and short range repulsion as illustrated in
Fig. 6.

The ACE potential obtained after HAL iteration 18 (fitted to 22
structures in total) was subsequently used to perform nested sam-
pling (NS) simulations to model the liquid-solid phase transition.
NS simulations were performed using 384 NS walkers, using a total
decorrelation length of 512 formed by volume/shear/stretch/swap
MC steps at a ratio of 4:4:4:4. The resulting heat capacity curves
obtained by NS are presented in Fig. 7 and are in close agreement
to the melting temperature of 867 K as given by Thermo-Calc using
the TCAL4 database.37

2. Polyethylene glycol
The HAL framework38 was used to create a polyethylene glycol

(PEG) model. To initilize HAL, 18 structures of PEG (n = 32) formed
of 32 monomer units in vacuum were evaluated using the ORCA
code39 with the ωB97X DFT exchange correlation functional40 and
the 6-31G(d) basis set. ACE models were fitted to the initial and sub-
sequent datasets with correlation order ν̄ = 3, total degree Dmax

= 12
and a cutoff radius 5.5 Å, using the ARD algorithm. The HAL
protocol used relative biasing parameter τr = 0.1 and uncertainty
tolerance f tol

= 0.3 and performed at 500 K. Unlike the previous
AlSi10 example, no cell adjusting or atom swapping HAL-MC steps
were performed as the configurations are isolated molecules in vac-
uum. It was also chosen to not change the ACE basis throughout
the HAL procedure but rather to keep it constant (e.g. Dmax

= 12) as
the initial database was relatively diverse. After 50 HAL iterations an
ACE potential was generated that was deemed stable as it completed
104 HAL biased MD steps without triggering a DFT calculation. It
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FIG. 6. ACE dimer curves for pair interactions for several HAL iterations. Stronger colours indicate later HAL iterations. They key observation to be drawn from this figure
is that even in the early stages of the HAL process with very little available data, our priors ensure that the dimer curves are physically sensible, in particular smooth and
repulsive.

FIG. 7. NS AlSi10 heat capacity curves for several runs indicating the liquid-solid
transition as predicted by the HAL generated ACE potential.

was then used to determine the density of a PEG polymer formed of
n = 200 monomer units in LAMMPS under periodic boundary con-
ditions using the PACE evaluator.12 The PEG (n = 200) density was
determined at 300, 350 and 400 K at 1 bar pressure over a timescale
of 0.5 ns as shown in Fig. 8. The density at 300 K is in good agreement
with the experimental density of 1.2 g/cm341 at 293 K. This illustrates
remarkable extrapolative performance by the linear ACE framework
as the DFT reference (ORCA) does not support periodic boundary
conditions itself, making determining the PEG density purely from
first principles impossible.

3. Perovskite CsPbBr3

We used the HAL framework38 to create a training dataset
for the lead-halide perovskite CsPbBr3, which shows three relevant
phases: orthorhombic at low temperatures, tetragonal at intermedi-
ate temperatures, and cubic at high temperatures, with experimental
transition temperatures of 361 and 403 K.42 The HAL process was

FIG. 8. PEG (n = 200) density for HAL generated ACE potential under periodic
boundary conditions using LAMMPs.

designed to sample all of these phases so that the resulting poten-
tial accurately represents energy and entropy of each phase and is
hence capable of predicting the transition temperatures. To ensure
consistent DFT energies and effective vibrational mode sampling,
approximately cubic 40 atom supercells were created for all three
phases.

This problem required some refinement of the standard HAL
procedure, and careful testing of fitted ACE potentials for several
basis sizes. We therefore give more detail about the process than in
the previous cases.

The initial fit starting the HAL process used a set of 15 ran-
domly perturbed (unit cell and atomic positions) 40-atom configu-
rations, three from each of the high symmetry phases. The default
ACE basis was used, with a cutoff of 8 Å, a smoothness prior with
p = 3, and the sklearn BayesianRidge linear solver. Automated
basis selection was applied every 10 HAL iterations, with a maxi-
mum basis size of 2000, ν̄ = 3, a maximum total polynomial degree
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of 16, and the model score as the selection criterion. To encourage
exploration of a wide range of temperatures and configurations, over
a maximum of 104 1 fs HAL MD steps the temperature was ramped
from 200 to 600 K, and τr from 0.1 to 0.5. New fitting configurations
were selected when the fractional force error f tol exceeded 0.4. After
20 iterations starting from the three unperturbed high-symmetry 40-
atom cells at fixed unit cell shape and size, the process was restarted
from 9 80-atom high symmetry cells, doubling each of the three 40-
atom cells along each cell vector, for 20 additional iterations. Then
20 additional iterations were carried out with variable unit cell and
an applied pressure of 0.

At this point the model appeared to be stable enough for 105

steps without a HAL bias, so we switched to an unbiased sampling
process to gather more data and improve the model accuracy. Start-
ing the fit from the complete set of configurations from the HAL
process, we generated fitting configurations from 2000 step runs
with a maximum basis size of 4000. These used the same 80 atom
starting configurations, but at fixed temperatures of 200–500 K at
100 K intervals, and fixed shape but variable unit cell volume. To
further refine the performance of the low energy parts of the PES
around each high symmetry structure, we sampled 36 more config-
urations, each with 160 atoms (the three 40 atom supercells doubled
along each of the three pairs of lattice vectors) at a range of lower
temperatures, 150–300 K at 50 K intervals.

The original set of 15 randomly perturbed configurations,
another similar set of 15, and the 168 HAL configurations were used
as the reference database for a set of fits to explore the performance
of the model for a wide range of basis sizes. At this stage we filtered
out physically unreasonable fitting data, as defined by a criterion that
excluded any force larger than 10 eV/Å, as well as the energies and
virials from such configurations. To fit the model and evaluate its
predictive accuracy we split the set of configurations into 75% fitting
and 25% testing, stratifying the split by the HAL iteration (or ini-
tial random perturbation set) that produced the configuration. The
same fitting procedure and basis as in the HAL run were used, with
ν̄ = 2 and ν̄ = 3 and maximum polynomial degree 4–16, up to a max-
imum basis size of 2 × 104. We also compared three choices for the
smoothness prior: none, p = 2, and p = 4.

The training set residuals, test set residuals, and
BayesianRidge score (log marginal likelihood) are plotted as
a function of basis size in Fig. 9. For each value of ν̄ the fitting error
improves monotonically as the basis size (and polynomial degree)
increases, but at equal basis size the ν̄ = 2 residuals are lower by

FIG. 10. Effective cubic lattice constants at fixed temperature simulated using the
ACE model with ν̄ = 2, maximum polynomial degree 12, and p = 4. All three val-
ues are identical (to within the estimated error) at T > 255 K indicating a cubic
structure. At lower temperatures these split into a single value and a group of two,
consistent with a tetragonal structure, and at T < 240 K they split further into three
distinct values, consistent with an orthorhombic structure.

as much as 25% (especially for moderately sized bases), indicating
that for this system increasing the polynomial degree provides the
basis with more useful flexibility as compared to increasing ν̄. For
the basis size range where the error is minimized, the testing set
residuals are larger than the fitting set by at least about a factor
of 2, indicating that some amount of overfitting is occurring.
The smoothness prior is successful at limiting the extent of this
overfitting.

The generally lower training and test errors for the ν̄ = 2 models
relative to the correlation order three models are reflected in their
Bayesian ridge scores (log marginal likelihoods). However, within
each correlation order the optimal choice of polynomial degree and
corresponding basis size indicated by the minimum test error are not
consistent with the score. Indeed, the results displayed in Fig. 9 lead
us to conclude that the Bayesian ridge score is not always a reliable
tool for optimal basis selection and other options should be explored
in the future.

FIG. 9. Fitting set residual (left), testing set residual (center), and log marginal likelihood (right) as a function of basis size for CsPbBr3 ACE model fit to a database generated
with HAL. Symbol indicates correlation order ν̄, and color indicates smoothness prior exponent p.
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We used the model with lowest test set error, generated by
the fit with ν̄ = 2, maximum polynomial degree 12, and smooth-
ness prior p = 4, to simulate larger unit cells of CsPbBr3 at a range
of temperatures spanning its expected range of phase transition
temperatures. We simulated 32 independent constant temperature,
constant pressure, MD trajectories at temperatures from 200 to
355 K and zero pressure for 104 10 fs time steps. Each trajectory
started from an 8 × 8 × 6 supercell (7680 atoms) of the orthorhom-
bic structure. To analyze the resulting structure we reconstructed
the effective cubic lattice vectors and averaged their magnitudes
over the last 8000 steps of each trajectory. A plot of these effective
cubic cell lattice vector magnitudes as a function of temperature is
shown in Fig. 10. We see the three expected phases as indicated
by the degeneracy of the lattice constants: cubic at high tempera-
ture, tetragonal at intermediate temperatures, and orthorhombic at
low temperatures. The transition temperatures are 240 and 255 K,
which are substantially shifted relative to the experimental results of
361 and 403 K.42 We expect that this deviation from experiment is
primarily due to our choice of exchange correlation functional, the
Perdew–Burke–Enzerhof generalized-gradient approximation,43 as
has been seen in similar simulations.44 A direct comparison to DFT
would be useful, but it would require an accurate calculation of the
predicted phase transition temperatures directly from the DFT PES,
which is too computationally demanding to be practical without
additional approximations.

IV. COMPUTATIONAL PERFORMANCE
The linearity of ACE potentials renders them not only inter-

pretable but also efficient in terms of computational performance.
To demonstrate this, a performance test was conducted on various
linear ACE potentials referenced in this paper. The evaluation times,
as well as some ACE hyperparameters used, are shown in Table III
for the AlSi10, CsPbI3, H2O, PEG and Si potential developed in this
work. The number of basis functions for each model is given too
and may be fewer than a complete ACE basis parameterized by ν̄
and Dmax due to ARD pruning basis functions with low relevance.
The timings were obtained using the LAMMPs-PACE implementa-
tion12 using a 128 core ARCHER2 node, equivalent to two seperate
AMD EPYC 7742 64-core at 2.25 GHz. The 106 steps/day figures
are equivalent to a ns/day and were obtained for varying cell sizes
to illustrate scaling. A standardized performance figure in the form
of core-μs/atom figure is also provided. The silicon database fitted

originates from the silicon GAP potential, whereas the AlSi10, PEG
and CsPbBr3 potentials were fitted using HAL generated databases
containing 22, 68 and 198 configurations respectively as discussed in
the previous subsections.

V. CONCLUSION AND OUTLOOK
We introduced ACEpotentials.jl, a front-end for several

Julia-language packages that implement Atomic Cluster Expansion
(ACE) MLIPs and related functionality. This front-end provides a
user-oriented interface, while the backend packages combine excel-
lent performance with the flexibility for rapid model development
and experimentation that is typical for the Julia language. The front-
end ACEpotentials.jl exposes a relatively simple subset of ACE
type models, linear models with robust priors, that we consider reli-
able in every-day use, especially in the context of an active learning
type workflow.

However, we emphasize that the ACE framework allows for a
much richer MLIPs design space9,12,45–47 as well as parameterisation
of many other types of particle systems.48–51 We therefore conclude
by mentioning some of those extensions, as well as current short-
comings, that require further development.

● Robust parameter estimation, in particular hyperparameter
tuning, remains under-investigated in the MLIPs context.
We regularly experience that hand-tuned hyperparameters
can give superior results, basis sparsification remains poorly
understood, and uncertainties are often only indicative of
actual errors. Further research is required to resolve these
closely related issues.

● The design space of the ACEpotentials.jl ACE mod-
els can be expanded to admit trainable radial embeddings,
composition of ACE features with nonlinearities, or even
multi-layer architectures such as.45,46 This comes at the cost
of highly nonlinear and less efficient models, but some of
those extensions, such as trainable radial embeddings, can
be undertaken while keeping the spirit of our current ACE
models: small models for rapid iterative development and
low evaluation cost.

● The extension to highly nonlinear models would likely
require that the computational kernels on which
ACEpotentials.jl is built also be made graphics
processing unit (GPU)-capable. Towards that end a deep
learning framework such as MACE46 [see also the mace

TABLE III. Performance of linear ACE potentials for various systems using an ARCHER2 node utilising 128 cores for the 106

steps/day figures (equivalent ns/day using a 1 fs timestep). Core-μs/atom figures were obtained by performing simulations in
serial.

ACE parameters Performance

ν̄ Dmax rcut No. basis func. 106 steps/day (atoms) Core-μs/atom

AlSi10 2 7 5.5 79 636 (32) 23
CsPbBr3 2 12 5.5 544 334 (20) 93
PEG 3 12 5.5 4897 10 (1400) 227
Si 4 20 6 5434 7 (250) 744
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(https://github.com/ACEsuit/mace) code] may be better
suited.

● Finally, we note that there are already several
related ACE software packages within ACEsuit
(https://github.com/ACEsuit) that implement a variety of
models for other particle systems at different stages of devel-
opment: Hamiltonians (Ref. 48, ACEhamiltonians.jl);
wave functions (Ref. 50 and 51, ACEpsi.jl); jet tagging
models (Ref. 49, BIPs.jl). These build on an experimental
and significantly expanded Julia-language ACE package
ACE.jl.
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APPENDIX: LINEAR SCALING COST
AND COMPUTATIONAL KERNELS

In Secs. II A and II B we outlined some basic ideas behind the
ACE model, in particular expressing the potential energy model in
terms of the many-body expansion (Sec. II A). A naive implemen-
tation of the many-body expansion results in prohibitive compu-
tational cost due to the exponential cost of the sums over clusters
(j1, . . . , jν). However, after discretizing the U(ν)-body potential of the
self-interacting many-body expansion (2b) the sum can be rewritten
to result in linear scaling cost. This is presented in detail, for exam-
ple, in.9,11,12 hence we shall not review this process in full detail here.
In order to outline what is involved in an implementation of an ACE
potential, we only recall the form that the ACE model takes after this
re-organisation of the many-body summation. The evaluation of the
self-interacting ACE basis then results in the following stages:

1. Evaluation of the embeddings, Rnl (rij, Zi, Zj) and Ym
l (r̂i j).

2. A pooling operation; also called called the atomic basis,9 or the
density projection,2

Ai
znlm = ∑

j∈N(i)
ϕznml(rij , Zj , Zi), (A1)

where N (i) denotes the set of indices of all atoms within the
cutoff radius from atom i.

3. Product basis: for lexicographically ordered tuples
(z, n, l, m) = (zt , nt , lt , mt)

ν
t=1 we define

Ai
znlm =

ν
∏
t=1

Ai
zt nt lt mt

. (A2)
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This operation can be thought of as a sparse symmetric tensor
product, or as taking ν-correlations.

4. Symmetrization: To ensure invariance one averages Ai over all
rotations, resulting in the O(3)-invariant basis

Bi
= CAi, (A3)

employed in the definition of the linear ACE model (3). Here,
Ai is the vector of (Ai

znlm) basis functions while C a sparse
matrix.

For each of these stages efficient computational kernels are
implemented, designed in a modular way so that they can be inde-
pendently optimized or composed into new model architectures.

1. Canonical many-body expansion
Under the condition that the radial basis and envelope function

are pure polynomials, it is possible to transform the self-interacting
ACE basis Bi defined in (A3) into a basis for the canonical many-
body expansion (2a). The idea behind this procedure is sketched out
in Ref. 11. The precise details of the implementation and a detailed
study is not the purpose of this review. Here, we only mention that,
upon slightly extending the Rnl, Ai and Ai bases, one can obtain a
“purification operator” P such that the linearly transformed PAi

becomes a basis for the canonical many-body expansion (2a). The
symmetrisation C can then be applied to obtain an O(3)-invariant
basis Bi

∶= CPAi.
An important variation of the “purification operation” P is to

only purify the two-body interaction. This entails replacing the fully
self-interacting basis functions

Ai
k = ∑

j1 ,...,jν

ν
∏
t=1

ϕkt(xijt) with ∑
j1 ,...,jν

ja≠jb

ν
∏
t=1

ϕkt(xijt)

All three options (i) fully self-interacting, (ii) purified pair
interaction, and (iii) canonical cluster expansion are available
in ACEpotentials.jl. The package documentation should be
reviewed on how to select the different basis sets.
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