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Abstract

Maxmin-ω dynamical systems were previously introduced as an “all-in-one
package” that can yield a solely min-plus, a solely max-plus, or a max-min-
plus dynamical system by varying a parameter ω ∈ (0, 1]. With such systems
in mind, it is natural to introduce and consider maxmin-ω linear systems of
equations of the type A⊗ω x = b. However, to our knowledge, such maxmin-
ω linear systems have not been studied before and in this paper we present
an approach to solve them. We show that the problem can be simplified by
performing normalization and then generating a “canonical” matrix which
we call the principal order matrix. Instead of directly trying to find the
solutions, we search the possible solution indices which can be identified using
the principal order matrix and the parameter ω. The fully active solutions
are then immediately obtained from these solution indices. With the fully
active solutions at hand, we then present the method to find other solutions
by applying a relaxation, i.e., increasing or decreasing some components of
fully active solutions. This approach can be seen as a generalization of an
approach that could be applied to solve max-plus or min-plus linear systems.
Our results also shed more light on an unusual feature of maxmin-ω linear
systems, which, unlike in the usual linear algebra, can have a finite number
of solutions in the case where their solution is non-unique.
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1. Introduction

Discrete event systems (DES) are a class of dynamic systems in which
the change of state is governed by events [1, 4]. Typical DES applications
include manufacturing systems [10], railway networks [9], queues [14], and
urban traffic systems [6]. Since events in a DES occur in some order, there
is often a need for synchronization, which could mean, for example, that a
new event (or process) starts as soon as all preceding processes have fin-
ished. Mathematically, this type of synchronization corresponds to the op-
eration “maximization” on the earliest starting time of an event and, since
the finishing time of an event equals the starting time plus the duration, the
operation “addition” corresponds to the duration of events. This leads to a
description that is linear in the so-called max-plus algebra (today also called
tropical linear algebra).

A more specific motivation for solving max-plus problems comes from op-
erational applications such as the following job-scheduling task [5, 3]. Sup-
pose that products P1, . . . , Pm are prepared using n machines (processors),
every machine contributing to the completion of each product by producing
a component. It is assumed that each machine can work for all products
simultaneously and that all these actions on a machine start as soon as the
machine starts to work. Let A(i, j) be the duration of the work of the jth
machine needed to complete the component for Pi (i = 1, ...,m; j = 1, ..., n).
If this interaction is not required for some i and j then A(i, j) is set to −∞.
The matrix A = (A(i, j)) is called the production matrix. Let us denote by
xj the starting time of the jth machine (j = 1, . . . , n). Then all components
for Pi (i = 1, ...,m) will be ready at time

max{x1 + A(i, 1), . . . , xn + A(i, n)}.

Hence if b1, . . . , bm are given completion times then the starting times have
to satisfy the following system of equations.

max(x1 + A(i, 1), . . . , xn + A(i, n)) = bi for all i = 1, ...,m.

Using max-plus algebra this system can be written in a compact form as a
system of linear equations:

A⊗ x = b (1)

It is easy to decide if a system of the form (1) is solvable [3] and, in the case of
solvability, to find a solution to this system. In fact, the isomorphism between
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max-plus and min-plus algebra means that the same is true if we replace the
“maximum” with the “minimum” operator (and set A(i, j) = +∞ when i
and j do not interact) [8].

In this example, the minimum operator corresponds to the dual type
of synchronization: when only the fastest machine(s) contribute towards the
completion of each product. In this paper, we consider the intermediate case:
what if completing only a proportion ω of machines was required for making
a product? In this case, we will write the system equations in a similar form
as (1):

A⊗ω x = b (2)

noting the new operator ⊗ω to indicate this new synchronization protocol,
whereby 0 < ω ≤ 1 such that ⌈ωn⌉ = 1 corresponds to the min-plus system
and ⌈ωn⌉ = n yields the original max-plus system. It turns out that such a
system as (2) is a mixture of maximum and minimum operators, that is, a
system of “max-min-plus” equations [11]. We therefore call it the “maxmin-ω
system”.

It is well-known that a max-plus system (1) can be solved; see, e.g., [2]
for a comprehensive presentation. We use an approach similar to [2], thereby
extending those methods to a generalized linear max-min-plus system, specif-
ically the maxmin-ω system.

For further context, the maxmin-ω system was introduced as a model of
a network of processors such as those described above, where each processor
requires only a fraction ω of machines to produce their component. When
seen as a classical network, whose nodes adopt some state, maxmin-ω requires
that each node has knowledge of a fraction ω of neighborhood states before
updating its own state [11]. Moreover, knowledge of the neighborhood states
is not synchronous; A(i, j) ∈ R is the time it takes for nodal state j to be
sent to node i. Thus, A ∈ Rn×n denotes the matrix of such transmission
times associated to a network of n nodes; in graph theoretical terms, this
matrix is a weighted adjacency matrix.

By construction, ω > 0; otherwise, there is no transmission of informa-
tion, that is, nothing happens. We will, therefore, write “ω ≈ 0” to represent
the smallest value that ω can take. When ω ≈ 0, we have a min-plus sys-
tem, whilst ω = 1 yields max-plus dynamics; for ω ∈ (0, 1), the system is a
mixture, i.e., a max-min-plus system. The next section will introduce max-
plus and min-plus algebra more formally but, suffice it to say that, for the
motivating application thus far discussed, a min-plus system is one whose
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nodes wait for the first neighborhood input before updating, whilst a max-
plus system requires all neighborhood inputs to arrive before a node updates
its state. The literature on such systems has primarily focused on the two
(min-plus and max-plus) extremes, as alluded to previously. Applications are
not as forthcoming for the intermediate case, but this should not preclude
the natural step towards addressing the gap. Thus, we proceed to consider
the case 0 < ω < 1 as both a purely mathematical exercise as well as in
anticipation of applications to this effect.

The rest of this paper is structured as follows. Section 2 presents the basic
descriptions on max-plus and min-plus algebra and also maxmin-ω operation.
The problem formulation and the preliminary results are also described in
this section. Section 3 discusses the problem when each column of the matrix
is distinct while Section 4 addresses the general case by considering the ex-
istence of duplicates in each column. The method presented in Sections 3-4
is to find the so-called “fully active” solution. Then, in Section 5, we discuss
the approach to find other solutions by applying “relaxation” i.e., increasing
or decreasing some components of each fully active solution. This section
also presents the discussion related to the number of solutions. Unlike the
classical linear equations in max-plus or min-plus algebra, it is possible that
the number of solutions is not unique but finite. Finally, we present the
concluding remarks and the direction for future work in Section 6.

2. Preliminaries

This section presents the notations, definitions and some basic results
which will be used in the next sections.

Throughout this paper, we always assume that m,n ≥ 1 are integers and
define M := {1, . . . ,m} and N := {1, . . . , n}. The tuple (a1, a2, . . . , an) with
n elements is a permutation of N if {a1, a2, . . . , an} = N . For each multiset
(i.e., a set with possible repetitions of elements) S, the notation |S| refers
to the cardinality (i.e., the number of elements) of S. For 0 ≤ k ≤ |S|, we
define P(S, k) as the set of all k-(multi)subsets of S.

The notations ε and Rmax stand for −∞ and R ∪ {ε}, respectively. For
each a, b ∈ Rmax, we set

a⊕ b = max{a, b} and a⊗ b := a+ b. (3)

The so-called max-plus algebra is a semiring (Rmax,⊕,⊗) with ε and 0 as the
zero and unit elements, respectively [1]. We denote Rm×n

max as the set of m×n
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matrices over max-plus algebra. Similarly, Rm
max refers to the set of vectors

with m elements in max-plus algebra.
For a matrix A, the notation A(i, j) represents the entry of matrix A at i-

th row and j-th column. Furthermore, A(i, ·) and A(·, j) are the i-th row and
j-th column of A, respectively. The operation (3) can be extended to matrices
and vectors as in conventional linear algebra. For A,B ∈ Rm×n

max , C ∈ Rn×p
max

and α ∈ Rmax,

[A⊕B](i, j) = A(i, j)⊕B(i, j) = max{A(i, j), B(i, j)},

[A⊗ C](i, j) =
n⊕

k=1

A(i, k)⊗ C(k, j) = max
1≤k≤n

{A(i, k) + C(k, j)},

[α⊗ A](i, j) = α⊗ A(i, j) = α + A(i, j).

Min-plus algebra, the dual of max-plus algebra, is a semiring (Rmin,⊕′,⊗′)
where Rmin := R ∪ {ξ := +∞},

a⊕′ b := min{a, b} and a⊗′ b = a+ b. (4)

The notations and operations with matrices in min-plus algebra are defined
similarly to those of max-plus algebra. Observe that a⊕′ b = −((−a)⊕(−b)),
under the convention that −(+∞) = −∞ ∈ Rmax and −(−∞) = +∞ ∈
Rmin.

Given a multiset of real numbers S = {s1, s2, . . . , sn}, the maxmin-ω
operation ⊕

ω S (5)

yields the ⌈ωn⌉-th smallest element of S for 0 < ω ≤ 1. One can say that
(5) is the generalisation for ⊕ and ⊕′ operations. It is straightforward to see
that when ⌈ωn⌉ = 1 (ω ≈ 0), operation (5) corresponds to min-plus addition.
On the other hand, if ⌈ωn⌉ = n (ω = 1) then (5) is a max-plus addition.

The following proposition shows that (5) can be expressed as the combi-
nation of ⊕ and ⊕′ operations.

Proposition 2.1 ([11]). Given a multiset S ⊆ R with |S| = n and suppose
p = ⌈ωn⌉, then ⊕

ω S =
⊕

P∈P(S, p)

′
{⊕

P
}

(6)

=
⊕

P∈P(S, n+1−p)

{⊕
′P

}
(7)
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We call (6) and (7) as the conjunctive normal form (CNF) and disjunctive
normal form (DNF) of maxmin-ω operation. The forms (6) and (7) show
that the operator A⊗ω is a min-max function, i.e., it belongs to the class of
functions considered in [7, 8, 12, 13].

2.1. Linear Equations for Maxmin-ω Systems

Given a matrix A ∈ Rm×n and b ∈ Rm, the corresponding linear equation
for the maxmin-ω systems is a problem to find vectors x ∈ Rn such that

A⊗ω x = b. (8)

Algebraically, due to Proposition 2.1, the above equation can be written
as a system of equations where maxmin-ω operations are in CNF

⊕
P∈P(N, p)

′

{⊕
j∈P

A(i, j) + xj

}
= bi for i ∈ M,

or in DNF ⊕
P∈P(N, n+1−p)

{⊕
j∈P

′A(i, j) + xj

}
= bi for i ∈ M.

Definition 2.2. The linear equation (8) is called normalised if b = 0, where
0 is a vector whose all elements are 0.

Any linear equation (8) can be normalised by defining a matrix A∗ where

A∗(i, ·) = −bi ⊗ A(i, ·).

It is easy to see that A ⊗ω x = b if and only if A∗ ⊗ω x = 0. For the rest
of this paper, unless otherwise stated, we always consider that the linear
equation (8) is normalised i.e., b = 0. The following proposition asserts a
trivial condition in which a normalised linear equation (8) is not solvable.

Proposition 2.3. Given a normalised linear equation (8). If there are i, j ∈
M such that A(i, ·) > A(j, ·), then (8) is not solvable for any ω.

Definition 2.4. Suppose we have a normalised linear equation (8). If each
column of A has distinct elements, then we call it column distinct ; otherwise
it is column indistinct.
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We define

S(A, ω) = {x ∈ Rn | A⊗ω x = 0} (9)

as the set of solutions for normalised system (8). If x = [x1 . . . xn]
⊤ ∈ S(A, ω),

then for each i ∈ M there exists at least one j ∈ N such that A(i, j)+xj = 0.
The corresponding A(i, j) is called as an “active element” of A w.r.t. x and
ω. We call a solution x of (8) as “fully active” if there is at least one active
element in each column of A.

We define a set of tuples corresponding to the active elements as follows

I(A, ω, x) = {(i1, i2, . . . , in) | A(ik, k) + xk = 0 for all k ∈ N}.

It should be noted that we may have |I(A, ω, x)| > 1 because, for some
ik ∈ M , we may have many distinct k such that A(ik, k) + xk = 0. It is
also possible that |I(A, ω, x)| = 0; that is, only when x is not a fully active
solution. Finally, we define the set of “solution indices” for (8) as follows

I(A, ω) =
⋃

x∈S(A,ω)

I(A, ω, x). (10)

It is straightforward to see that |I(A, ω)| ≤ |S(A, ω)|. Furthermore, if
S(A, ω) is not empty then so is I(A, ω).

The linear equation problem has been well studied for min-plus and max-
plus setups; that is, when ω ≈ 0 or ω = 1 in (8). As discussed in [3], the
solvability of the problem can be determined from a principal (candidate)
solution x̄ = [x̄1 · · · x̄n]

⊤ defined1 by

x̄k = −
⊕

ω A(·, k) (11)

and the sets M1, . . . ,Mn defined by

Mk =
{
i ∈ M | A(i, k) =

⊕
ω A(·, k)

}
. (12)

Proposition 2.5 ([3]). Given a normalised linear equation (8) for ω ≈ 0 or
ω = 1. Suppose x̄ is defined by (11) and M1, . . . ,Mn defined by (12). The
following statements are equivalent

1In [3], only the max-plus case is formally considered. However, similar results can be
obtained in the min-plus case due to the isomorphism between the max-plus and min-plus
semirings.
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(a) S(A, ω) ̸= ∅,
(b) x̄ ∈ S(A, ω),
(c)

⋃
k∈N

Mk = M .

Proposition 2.6 ([3]). Given a normalised linear equation (8) for ω ≈ 0
or ω = 1. Suppose x̄ is defined by (11) and M1, . . . ,Mn defined by (12).
S(A, ω) = x̄ if and only if

(i)
⋃
k∈N

Mj = M .

(ii)
⋃
k∈N ′

Mj ̸= M for any N ′ ⊆ N,N ′ ̸= N .

In Sections 3-4, we will discuss the methods to solve (8) for any ω ∈ (0, 1]
in which the matrices have only finite elements i.e., A ∈ Rm×n. As expected,
the resulting technique coincides with the ones discussed in [3] for ω ≈ 0
(min-plus algebra) or ω = 1 (max-plus algebra).

Note that in max-plus algebra it is easy to allow A and b to have −∞
entries (and in min-plus algebra, +∞ entries can be similarly allowed). In
particular, if bi = −∞ then all xj with A(i, j) ∈ R have to be set to −∞
which effectively deletes all the corresponding columns of A and reduces
the system to one where b has finite entries only. Similarly, allowing A to
have −∞ entries does not lead to any extra complications for the theory of
A⊗ x = b.

In our case, allowing for both −∞ and +∞ entries seems to be natural,
but it is ambiguous in several ways. Firstly, it is unclear what the result of
−∞⊗ (+∞) should be and this confusion (in our case) cannot be resolved
by defining two operations ⊗ and ⊗′ like in the minimax algebra of [5].
Secondly, in dynamical maxmin-ω systems [11], finite A(i, j) indicates that
there exists an input from node i to node j, with some time lag expressed by
this coefficient. The absense of such input in the case of maxmin-ω systems
cannot be modelled by setting A(i, j) = −∞ or A(i, j) = +∞, but rather by
leaving an empty space in the place of A(i, j).

Allowing infinite entries would also present a number of theoretical com-
plications. One can observe, in particular, that if some bi are infinite then,
when attempting to reduce the system to the case of finite b, one would have
to consider a number of special cases, which would then blow up with the
growth of dimension. Also, there is an ambiguity of whether or not to include
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the infinite entries into computing the p-th smallest or the p-th largest term:
note that in [11] the threshold ω is used to determine the p-smallest finite
term of {A(i, 1) + x1, . . . , A(i, n) + xn} for each i ∈ M . If ni denotes the
number of finite elements at A(i, ·), then to find the solution of (8) we need
to consider pi = ⌈ωni⌉ for each i ∈ M . Thus, the linear equation (8) will be
non-uniform with respect to the number of finite elements in each row of A
and the theory described in the present paper will not apply.

Due to these complications and ambiguities, in the present paper we are
not going to allow A, x or b to have infinite entries and will leave it for
possible future research.

3. Column Distinct Cases

This section discusses the strategies to solve (8) when A ∈ Rm×n is a
column distinct matrix. Instead of directly trying to find x ∈ S(A, ω), our
methods will look for the tuple (i1, . . . , in) ∈ I(A, ω). Notice that, such
a tuple corresponds to a fully active solution. Propositions 3.2-3.4 provide
the conditions for such tuples while Proposition 3.1 shows the uniqueness of
solution index for each fully active solution.

Proposition 3.1. Given a normalised (8) where A ∈ Rm×n is a column
distinct matrix. If x ∈ S(A, ω) is a fully active, then |I(A, ω, x)| = 1. □

Proof. Let us define a matrix C where C(i, j) = A(i, j)+xj for i ∈ M and
j ∈ N . Notice that, the active elements of A w.r.t. x and ω corresponds to
the zeros of C. Since A is column distinct, there is exactly one zero element
in each column of C. Hence, |I(A, ω, x)| = 1. □

Proposition 3.2. Consider a normalised system (8) where A ∈ Rn×n is a
column distinct matrix and suppose that a matrix B is generated by modifying
a single element of A (say A(k, l)). If the ordering of elements for A(·, l) and
B(·, l) is the same, then I(A, ω) = I(B,ω) for each ω ∈ (0, 1].

Proof. We only provide the proof for I(A, ω) ⊆ I(B,ω). The proof for the
relation I(B,ω) ⊆ I(A, ω) can be written similarly.

Suppose that (i1, . . . , in) ∈ I(A, ω). Then, there exists a vector x =
[x1 · · · xn]

⊤ ∈ S(A, ω) such that xj = −A(ij, j) for j ∈ N . Let us define two
matrices C1, C2 where C1(i, j) = A(i, j) + xj and C2(i, j) = B(i, j) + xj for
i ∈ M and j ∈ N . Indeed, observe that the ordering of C1(·, l) and C2(·, l) is
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also the same. Notice that for each i ∈ N there is at least one zero element
in C1(i, ·). Furthermore, there are at most p− 1 negative values and at most
n − p positive values in C1(i, ·) for any i, where p = ⌈ωn⌉. Since matrices
A and B only differ at the k-th row, we only need to consider C1(k, ·) and
C2(k, ·). We have two possible cases: il ̸= k and il = k.

The first case happens when A(k, l) is not active element. Furthermore,
C1(k, l) and C2(k, l) have the same sign (either both positive or both nega-
tive), since the ordering of C1(·, l) and C2(·, l) is the same and 0 occurs in
both columns in the same positions. Consequently, the number of positive
(resp. negative) elements at C2(k, ·) is at most p − 1 (resp. n − p), respec-
tively. Thus, x ∈ S(B,ω) and (i1, . . . , in) ∈ I(B,ω). For the second case,
we have C1(il, l) = 0 but C2(il, l) ̸= 0. In this case, it can be seen that the
vector y = [y1 · · · yn] where

yj =

{
xj if j ̸= l,
−B(il, l) if j = l,

satisfies B ⊗ω y = 0 and (i1, . . . , in) ∈ I(B,ω). □

Assuming A ∈ Rm×n, we define matrix Ā as follows: for each j ∈ N

Ā(i, j) = k if
⊕

k
m
A(·, j) = A(i, j), (13)

where k ∈ M . For further reference, we call Ā the principal order matrix
associated with A. Notice that, Ā(i, j) = k implies that A(i, j) is the k-
smallest element of A(·, j). Furthermore, since the elements of A(·, j) are
distinct we have

{Ā(1, j), Ā(2, j), . . . , Ā(n, j)} = N.

We observe that replacing A by the associated principal order matrix does
not change the set of solution indices for (8). Furthermore, it allows to add
an additional necessary condition for such solution indices.

Proposition 3.3. For a normalised (8) where A ∈ Rm×n is a column distinct
matrix, we have I(A, ω) = I(Ā, ω) for all ω ∈ (0, 1].

Proof. Notice that, the order of the elements at A(·, l) is the same as that
of Ā(·, l) for l ∈ N . Moreover, Ā can be generated first by adding a big
enough constant to A and then by lowering of entries in each column in the
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order of their ascendance, which can be interpreted as the ‘composition’ of
modifications (at most n2 times) of matrix A mentioned in Proposition 3.2.
As a result, the set of solution indices remains the same. □

Proposition 3.4. For a normalised (8) where A ∈ Rm×n is a column distinct
matrix, if a tuple (i1, . . . , in) ∈ I(Ā, ω) then the following conditions hold

(i) {i1, i2, . . . , in} = M ,

(ii) mp ≤
∑
k∈N

Ā(ik, k) ≤ mp+ n−m, where p = ⌈ωn⌉.

Proof. Suppose (i1, . . . , in) ∈ I(Ā, ω) and x = [x1 · · · xn]
⊤ ∈ S(Ā, ω) is

the corresponding fully active solution such that xk = −Ā(ik, k) for k ∈ N .
(i) The first condition follows from the fact that, for each i ∈ M there must
be at least one active elements w.r.t x and ω in Ā(i, ·).
(ii) Let us define a matrix C where C(i, j) = Ā(i, j) + xj for i ∈ M, j ∈ N .
Notice that, there are at most p − 1 negative elements in each row of C.
Furthermore, there are exactly −xk − 1 = Ā(ik, k) − 1 negative elements in
the k-th column of C. Hence, we obtain∑

k∈N

(Ā(ik, k)− 1) ≤ m(p− 1).

On the other hand, there are at most n− p positive element in each row
C and exactly m + xk = m − Ā(ik, k) positive elements in the k-column of
C. These conditions implies that∑

k∈N

(m− Ā(ik, k)) ≤ m(n− p).

By simple algebraic manipulations with the above inequalities, one can obtain
the desired lower and upper bounds for

∑
k∈N Ā(ik, k). □

Proposition 3.4 is important since it gives a number of candidates for
solution indices. We further provide the conditions for such indices when
m > n and m = n.

Corollary 3.5. Suppose we have a normalised (8) where A ∈ Rm×n is a
column distinct matrix. If m > n then I(A, ω) = S(A, ω) = ∅.
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Proof. The non-solvable condition when m > n is due to the fact the
lower and upper bounds for

∑
k∈N Ā(ik, k) given by Proposition 3.4 are not

consistent. □

Corollary 3.6. Suppose we have a normalised (8) where A ∈ Rm×n is a
column distinct matrix. If m = n then the following conditions hold

(i) if (i1, . . . , in) ∈ I(A, ω) then
∑

k∈N Ā(ik, k) = ⌈ωn⌉n,

(ii) each (i1, . . . , in) ∈ I(A, ω) is a permutation of N ,

(iii) all solutions x ∈ S(A, ω) are fully active,

(iv) |S(A, ω)| = |I(A, ω)| for each ω ∈ (0, 1].

Proof. (i) Direct result of Proposition 3.4 when m = n.

(ii) Suppose that (i1, . . . , in) ∈ I(A, ω) and x ∈ S(A, ω) such that xk =
−A(ik, k) for each k ∈ N . Since A is column distinct and m = n, there
is exactly one active element w.r.t. x in each row of A. Consequently,
i1, . . . , in must be distinct.

(iii) Suppose that x ∈ S(A, ω). Since A is column distinct, in each column
of A there is at most one active element w.r.t. x. The condition m = n
enforces that all columns of A to contain one active element.

(iv) By part (ii) and (iii), for each x ∈ S(A, ω) we have |I(A, ω, x)| = 1.
This condition implies that there is one-to-one correspondence between
S(A, ω) and I(A, ω). □

As we are going to see in examples (for square and non-square cases)
below, it often happens that (8) has several solutions stemming from these
“candidates”. Recall that, the case when ⌈ωn⌉ = 1 and ⌈ωn⌉ = n correspond
to the max-plus and min-plus linear equations, respectively.

Example 3.7. Suppose we have a normalised linear equation (8) where

A =

5 5 −2 3
2 4 6 1
6 −1 7 2

 and ω ∈
{
1

4
,
1

2
,
3

4
, 1

}
.
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We will find the solutions of (8) for each ω. The principal order matrix is

Ā =

2 3 1 3
1 2 2 1
3 1 3 2

 .

By Proposition 3.4, if (i1, i2, i3, i4) ∈ I(Ā, ω) then

{i1, i2, i3, i4} = {1, 2, 3} and 12ω ≤
4∑

j=1

Ā(ij, j) ≤ 12ω + 1. (14)

(i) For ω = 1
4
, the only tuple satisfying (14) is (2, 3, 1, 2) which corresponds

to a vector x̄ = [−1 − 1 − 1 − 1]⊤. One could check that Ā ⊗ x̄ =
0. Consequently, we have I(A, 1

4
) = I(Ā, 1

4
) = {(2, 3, 1, 2)} which

implies that
[
−2 1 2 −1

]⊤ ∈ S(A, 1
4
). Notice that, in terms of min-

plus algebra, all conditions of Proposition 2.5 are satisfied, because the
tuple (2, 3, 1, 2) indicates where the column minima of A are attained
ensuring that every row has column minima in it.

(ii) For ω = 1
2
, there are 9 tuples satisfying (14), namely,

(1, 2, 1, 3), (1, 3, 2, 2), (1, 3, 2, 3), (2, 1, 1, 3), (2, 2, 1, 3),
(2, 3, 1, 1), (2, 3, 2, 1), (3, 2, 1, 2), (3, 3, 1, 2),

which respectively corresponds a vector

x̄ ∈



−2
−2
−1
−2

,

−2
−1
−2
−1

,

−2
−1
−2
−2

,

−1
−3
−1
−2

,

−1
−2
−1
−2

,

−1
−1
−1
−3

,

−1
−1
−2
−3

,

−3
−2
−1
−1

,

−3
−1
−1
−1


.

One could check that only the last four vectors satisfy Ā ⊗ 1
2
x̄ = 0.

Hence, from the same tuples, one can obtain the set of fully active
solutions x ∈ S(A, 1

2
), namely,
−2
1
2
−3

 ,


−2
1
−6
−3

 ,


−6
−4
2
−1

 ,


−6
1
2
−1

.
13



(iii) For ω = 3
4
, there are 12 tuples satisfying (14), namely

(1, 1, 2, 3), (1, 1, 3, 2), (1, 2, 3, 1), (1, 2, 3, 3), (2, 1, 3, 1), (2, 2, 3, 1)
(3, 1, 2, 2), (3, 1, 2, 3), (3, 1, 3, 2), (3, 2, 1, 1), (3, 2, 2, 1), (3, 3, 2, 1).

However, only the last three vectors which belongs to I(Ā, 3
4
). From the

same tuples, one can obtain the set of fully active solutions x ∈ S(A, 3
4
),

namely 
−6
−4
2
−3

 ,


−6
−4
−6
−3

 ,


−6
1
−6
−3

 .

(iv) For ω = 1, there is only one tuple that satisfies the inequalities of (14)
namely (3, 1, 3, 1). However, since {i1, . . . , i4} ̸= {1, 2, 3} we obtain
that I(Ā, 1) = I(A, 1) = S(A, 1) = ∅. Note that, in terms of max-plus
algebra, we have thus found that condition (c) of Proposition 2.5 does
not hold in this case.

Example 3.8. Suppose we have a normalised linear equation (8) where

A =

4 7 2
5 2 5
8 3 1

 and ω ∈
{
1

3
,
2

3
, 1

}
.

We will find the solutions of (8) for each ω. The principal order matrix is

Ā =

1 3 2
2 1 3
3 2 1

 .

(i) For ω = 1
3
, the only candidate for a solution index is (1, 2, 3) which

corresponds to a vector x̄ =
[
−1 −1 −1

]⊤
. One could check that

Ā ⊗ 1
3
x̄ = 0. Consequently, we have I(A, 1

3
) = I(Ā, 1

3
) = {(1, 2, 3)}

which implies S(A, 1
3
) = {

[
−4 −2 −1

]⊤}.
(ii) For ω = 1, the only candidate for a solution index is (3, 1, 2) which

corresponds to a vector x̄ =
[
−3 −3 −3

]⊤
. One could check that

Ā ⊗ x̄ = 0. Consequently, we have I(A, 1) = I(Ā, 1) = {(3, 1, 2)}
which implies S(A, 1) = {

[
−8 −7 −5

]⊤}.
14



(iii) For ω = 2
3
, we have four candidates of solution indices, i.e., (1, 3, 2),

(2, 1, 3), (2, 3, 1), (3, 2, 1). They correspond to vectors

x̄ ∈


−1
−2
−3

 ,

−2
−2
−2

 ,

−2
−3
−1

 ,

−3
−1
−2

 .

One can check that all above vectors satisfy Ā ⊗ 2
3
x̄ = 0. Hence, we

have I(A, 2
3
) = I(Ā, 2

3
) = {(1, 3, 2), (2, 1, 3), (3, 1, 2), (3, 2, 1)} and

S(A, 2
3
) =


−4
−3
−5

 ,

−5
−3
−2

 ,

−5
−7
−1

 ,

−8
−2
−2

 .

The linear equation A⊗ω x = 0 is thus solvable for all possible ω. Note that
for ω = 2

3
, the number of solutions is more than 1 but finite.

Remark 3.9. The previous example shows that A⊗ω x = 0 can have a finite
number of different solutions. This shows that for general ω the solution set
to this equation can be disconnected in the topological sense. This is in
contrast with solution sets of A ⊗ x = b in max-plus or min-plus algebras,
which are not only connected but also tropically convex (with respect to the
convexities induced by max-plus and min-plus segments, respectively).

Corollary 3.10. Consider a normalized system (8) where A ∈ Rn×n is a
column distinct matrix. If ⌈ωn⌉ ∈ {1, n}, then |S(A, ω)| ∈ {0, 1}. Moreover,
if n = 3 and |S(A, ω)| = 1 for ⌈ωn⌉ ∈ {1, 3}, then |S(A, ω)| = 4 for ⌈ωn⌉ =
2.

Proof. By Proposition 3.4, if (i1, . . . , in) ∈ I(Ā, ω) then Ā(i1, 1) + . . . +
Ā(in, n) = ⌈ωn⌉n . For ⌈ωn⌉ ∈ {1, n}, there is only one possibility for such
tuple i.e., when Ā(ik, k) = ⌈ωn⌉ for k ∈ N . Furthermore, Corollary 3.6(ii)
asserts that |I(Ā, ω)| = 1 if and only if (i1, . . . , in) is a permutation of N .
Hence, |I(Ā, ω)| ∈ {0, 1}. Finally, Proposition 3.3 and Corollary 3.6(iv)
implies that |I(Ā, ω)| = |I(A, ω)| = |S(A, ω)|, which completes the proof.

Notice that, for n = 3 and when |S(A, ω)| = 1 for ⌈3ω⌉ ∈ {1, 3}, the
elements at each row of Ā are distinct. Example 3.8 demonstrates that, for
such Ā, |I(Ā, ω)| = |I(A, ω)| = |S(A, ω)| = 4 when ⌈3ω⌉ = 2. Notice that,
if one permute the rows or columns of Ā, the number of solutions for each ω
remains the same. □
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4. General Case

This section presents the approach to solve (8) when A is not necessarily
column distinct i.e., there are may be duplicates on several columns of A.
Inspired by the method described in Section 3, we develop a technique to
solve (8) by first finding a tuple (i1, . . . , in) which belongs to I(A, ω).

To allow for the the possibility of equal entries in the columns, the gen-
eration of the principal order matrix Ā has to be slightly different. Suppose
now colj is the set of elements at the j-th column of A after removing the
duplicates2. Furthermore, for a matrix A and r ∈ R, we define idxj(A, r) as
the set of indices where r appears at A(·, j). In other words,

idxj(A, r) = {i ∈ M | A(i, j) = r}. (15)

The principal order matrix from a non-column distinct matrix Ā is generated
as follows

Ā(i, j) = 1 +
k−1∑
l=1

|idxj(A,
⊕

l
|colj |

colj)| if
⊕

k
|colj |

colj = A(i, j), (16)

for 1 ≤ k ≤ |colj|, i ∈ M and j ∈ N . Intuitively, if A(i, j) is the k-th smallest
element at colj, then Ā(i, j) − 1 corresponds to the sum of the number of
appearances for other elements in colj which are smaller than A(i, j). Notice
that, since A is not column distinct in general, neither is Ā. Suppose now fj
denotes the largest number of appearances of elements at Ā(·, j); that is

fj = max{|idxj(Ā, 1)|, |idxj(Ā, 2)|, . . . , |idxj(Ā,m)|}. (17)

It is evident that f1 + . . . + fn ≥ n. The following proposition presents a
necessary condition for a tuple (i1, . . . , in) to belong to I(Ā, ω).

Proposition 4.1. For a normalized system (8) with A ∈ Rm×n, if (i1, . . . , in) ∈
I(Ā, ω) then the following conditions hold:

(i) idx1(Ā, Ā(i1, 1)) ∪ . . . ∪ idxn(Ā, Ā(in, n)) = M ,

(ii) mp+ n− f ≤ Ā(i1, 1) + . . .+ Ā(in, n) ≤ mp+ n−m, where p = ⌈ωn⌉
and f = f1 + . . .+ fn.

2For instance, if A(·, j) = [4 5 5]⊤ then colj = {4, 5}.
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Proof. (i) The proof for the first part can be done similarly as in Proposi-
tion 3.4.
(ii) Suppose that (i1, . . . , in) ∈ I(Ā, ω) and x = [x1 · · · xn]

⊤ ∈ S(Ā, ω)
such that xk = −Ā(ik, k) for k ∈ N . Let us define a matrix C where
C(i, j) = Ā(i, j) + xj for i ∈ M and j ∈ N . Notice that, the number of
zeros at C is equal to d1(Ā, Ā(i1, 1)) + . . . + dn(Ā, Ā(in, n)). Hence, several
columns and rows of C may have multiple zeros. Since

⊕
ω C(i, ·) = 0 for all

i ∈ M , there are at most p− 1 negative elements and at most n− p positive
elements at C(i, ·). In total, there are at most m(p − 1) negative elements
and m(n− p) positive elements at C.

On the other hand, at the k-column of C, there are exactly −xk − 1 =
Ā(ik, k)− 1 negative elements. Consequently,∑

k∈N

Ā(ik, k)− n ≤ m(p− 1)

which yields
∑

k∈N Ā(ik, k) ≤ mp+ n−m. Similarly, at the k-column of C,
there are exactly

m− Ā(ik, k)− gk + 1

positive elements where gk is the number of appearance of Ā(ik, k) at Ā(·, k)
i.e., gk = |idxk(Ā, Ā(ik, k))|. Hence,∑

k∈N

(m− Ā(ik, k)− gk + 1) ≤ m(n− p)

which yields
∑

k∈N Ā(k, jk) ≥ mp + n − gk. Furthermore, since gk ≤ fk for
k ∈ N , we have ∑

k∈N

Ā(k, jk) ≥ mp+ n−
∑
k∈N

fk.

This completes the proof. □

Unlike the column distinct cases, the condition that the number of rows
is greater than that of columns does not necessarily imply that the problem
(8) is not solvable. Instead, the magnitude of the sum of fj defined in (17)
may lead to the unsolvability. Furthermore, unlike in column distinct case,
1 ≤ |S(A, ω)| < +∞ may happen even when the matrix is not square.

Corollary 4.2. Suppose we have a normalized (8) with A ∈ Rm×n. If m >
f1 + . . .+ fn then I(A, ω) = S(A, ω) = ∅.
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Corollary 4.3. Suppose we have a normalized (8) with A ∈ Rm×n. If m =
f1 + . . .+ fn then the following conditions hold

(i) if (i1, . . . , in) ∈ I(A, ω) then
∑

k∈N Ā(ik, k) = ⌈ωn⌉m+ n−m;

(ii) if (i1, . . . , in) ∈ I(A, ω) then i1, . . . , in are distinct elements;

(iii) all solutions x ∈ S(A, ω) are fully active;

(iv) |S(A, ω)| = |I(A, ω)| for each ω ∈ (0, 1].

Proof. The proofs are similar to those of Corollary 3.6. It is important to
note that, for a fully active solution x, if m = f1 + . . . + fn then there is
exactly one active element w.r.t ω and x at each row of A. □

Remark 4.4. One can see that, (16) is the generalisation of (13); that is,
if A is distinct-column, then |coli| = n and |idxi(A,

⊕
l

|coli|
coli)| = 1 for

each i ∈ N . Following this, Proposition 4.1 is also the generalisation of
Proposition 3.4 due to the fact that if A is column distinct, then f1 = f2 =
· · · = fn = 1. □

Example 4.5. Suppose we have a normalised linear equation (8) where

A =


1 4 2
1 2 4
3 1 3
4 3 1

 and ω ∈
{
1

3
,
2

3
, 1

}
.

We will find the fully active solutions of (8) for each ω. Notice that, Ā =
A. Furthermore, f1 = 2, f2 = f3 = 1 and m = f1 + f2 + f3 = 4. By
Proposition 3.4, if (i1, i2, i3) ∈ I(Ā, ω) then

idx1(A,A(i1, 1)) ∪ idx2(A,A(i2, 2)) ∪ idx3(A,A(i3, 3)) = {1, 2, 3, 4}

and A(i1, 1) + A(i2, 2) + A(i3, 3) = 12ω − 1.

(i) For ω = 1
3
, the only tuples satisfying the constraints are (1, 3, 4) and

(2, 3, 4), which correspond to the same vector vector x = [−1 −1 −1]⊤.
One can check that A ⊗ x̄ = 0. Consequently, we have I(Ā, 1

3
) =

{(1, 3, 4), (2, 3, 4)} which implies that S(A, 1
3
) = {[−1 − 1 − 1]⊤}.
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(ii) For ω ∈ {2
3
, 1}, there is no tuple that satisfies the requirements. There-

fore, I(A, ω) = S(A, ω) = ∅.

Example 4.6. Suppose we have a normalised system (8) for

A =

−3 2 6
−3 4 3
5 4 0

 and ω =
2

3
.

The principal-order matrix for A is

Ā =

1 1 3
1 2 2
3 2 1

 .

Furthermore, from Ā, we obtain f1 = f2 = 2 and f3 = 1. By Proposition 4.1,
if (i1, i2, i3) ∈ I(Ā, 2

3
) then

idx1(Ā, Ā(i1, 1)) ∪ idx2(Ā, Ā(i2, 2)) ∪ idx3(Ā, Ā(i3, 3)) = {1, 2, 3}

and 4 ≤ Ā(i1, 1) + Ā(i2, 2) + Ā(i3, 3) ≤ 6. Since Ā(1, 1) = Ā(2, 1) and
Ā(2, 2) = Ā(3, 2), we can restrict i1 ̸= 2 and i2 ̸= 3. Without providing the
details, the are 4 tuples satisfying the constraints:

(1, 2, 1), (1, 2, 2), (1, 2, 3), (3, 1, 2),

which respectively corresponds to vectors

x̄ ∈


−1
−2
−3

 ,

−1
−2
−2

 ,

−1
−2
−1

 ,

−3
−1
−2

 .

All above vectors satisfy Ā⊗ 2
3
x̄ = 0. Hence, from the same tuples, we have

found four fully active solutions for A⊗ 2
3
x = 0

x ∈


 3
−4
−6

 ,

 3
−4
−3

 ,

 3
−4
0

 ,

−5
−2
−3

 ⊆ S(A, 2
3
).
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5. Relaxations

Propositions 3.4 and 4.1 describe the steps to find the fully active solutions
for (8), which are emulated in Examples 3.7 and 4.6. We recall that, for
⌈ωn⌉ = n (max-plus case), if the principal vector x̄ (11) is a solution for
(8) then it is the greatest solution [2]: if x is also a solution, then x ≤ x̄.
Likewise, for ⌈ωn⌉ = 1 (min-plus case), such principal vector is the least
solution. Inspired by those, we provide procedures to generate other solutions
for (8) by applying “relaxation” to a fully active solution x, i.e., increasing
or decreasing some elements of x. Such modification may produce another
fully active solution or even non fully active one. Note that for general ω
we need to consider the possibility that some of the components of x are
increased and some of the components of x are decreased, which motivates
the following definition.

Consider subsets Q,R ⊆ N with Q ∩ R = ∅. We say that a fully active
solution x admits (Q,R)-relaxation, if there exists an ϵ > 0 such that every
x̂ = [x̂1 · · · x̂n]

⊤, where xj − ϵ ≤ x̂j < xj for j ∈ Q, xk + ϵ ≥ x̂k > xk for
k ∈ R, and x̂l = xl for l ∈ N\(Q ∪R).

Suppose C is a matrix whose entries are C(i, j) = A(i, j) + xj, for all
i ∈ M and j ∈ N . Let us also introduce the following notations

Si = {j ∈ N : C(i, j) = 0}, Qi = Q ∩ Si, Ri = R ∩ Si, (18)

for i ∈ M . Furthermore, we denote by qi the number of negative elements
in the i-th row of C and by ri the number of positive elements in the same
row. As before, we have p = ⌈ωn⌉.

Proposition 5.1. Let Q,R ⊆ N be such that Q ∩ R = ∅. Suppose x =
[x1 · · · xn]

⊤ is a fully active solution for normalised linear equation (8) and
C is a matrix defined as C(i, j) = A(i, j) + xj. Then x admits (Q,R)-
relaxation if and only if the following two conditions hold for all i ∈ M :

(i) |Qi| ≤ p− 1− qi,

(ii) |Ri| ≤ n− p− ri

Proof. Conditions (i) and (ii) are sufficient to ensure that, after decreasing
the components in Q and increasing the components in R and modifying
matrix C accordingly,
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(i) there are less than p negative elements in C(i, ·) (using the first condi-
tion of the theorem),

(ii) there are no more than n − p positive elements in C(i, ·) (using the
second condition of the theorem).

Also observing that by choosing small enough ϵ the signs of all nonzero entries
of C remain unchanged, we obtain that the p-th smallest element is 0 in each
row of the (modified) matrix C, thus A⊗ω x̂ = 0.

The conditions are also necessary. Indeed, if the first one does not hold,
then in some row there are more than p−1 negative elements in the modified
matrix C implying that the p-th smallest element in that row of C becomes
negative, a contradiction. Similarly, if the second condition does not hold,
then the p-th smallest element becomes positive in one of the rows of C. □

Observe that if we add up the inequalities in conditions (i) and (ii) of
Proposition 5.1, then we obtain |Qi| + |Ri| ≤ n − qi − ri − 1, which is the
same as

|Qi|+ |Ri| ≤ |Si| − 1. (19)

In words, we obtain a natural condition that at least one zero should remain
in each row of C after a relaxation.

Important special cases of (Q,R)-relaxations appear when Q = ∅ (thus we
increase a number of components simultaneously) and R = ∅ (so we decrease
a number of components simultaneously). Further if Q = ∅, R = {j} and x
admits such (Q,R)-relaxation then j is called increasable with respect to x.
Similarly if Q = {j}, R = ∅ and x admits such (Q,R)-relaxation then j is
called decreasable with respect to x. We then have two important corollaries
of Proposition 5.1

Corollary 5.2. An index j ∈ N is decreasable with respect to a fully active
solution x if and only if the following conditions hold: for each i ∈ N such
that C(i, j) = 0

(i) there are at least two zero elements at C(i, ·),

(ii) qi ≤ p− 2.

Proof. We need to show that the conditions of the present claim are equiv-
alent to the conditions of Proposition 5.1, for the special case which is con-
sidered.
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The first condition of the present claim can be expressed as n−ri−qi ≥ 2.
So for each i with C(i, j) = 0 we have n − ri − qi ≥ 2 and qi ≤ p − 2. It is
easy to see that both of these inequalities are implied by n− p− ri ≥ 0 and
p− 1− qi ≥ 1 is obtained from the first condition of Proposition 5.1. On the
other hand, p − 1 − qi ≥ 1 is the same as qi ≤ p − 2, while n − p − ri ≥ 0
follows since x is a solution. □

Corollary 5.3. An index j ∈ N is increasable with respect to a fully active
solution x if and only if the following conditions hold: for each i ∈ N such
that C(i, j) = 0

(i) there are at least two zero elements in C(i, ·),

(ii) ri ≤ n− p− 1

Proof. The first condition of the present claim can be expressed as n−ri−
qi ≥ 2. So for each i with C(i, j) = 0 we have n−ri−qi ≥ 2 and ri ≤ n−p−1.
It is easy to see that both of these inequalities are implied by p− 1− qi ≥ 0
and n − p − ri ≥ 1 obtained from the second condition of Proposition 5.1.
On the other hand, n − p − ri ≥ 1 is the same as ri ≤ n − p − 1, while
p− 1− qi ≥ 0 follows since x is a fully active solution. □

Note that the above results do not describe by how much xj can be
increased or decreased. By taking the largest increment and decrement for xj,
we then express the “possibly relaxed solutions” w.r.t a fully active solution
x as a vector of intervals

rel(x) =


[x1 + δ1, x1 + ϵ1]
[x2 + δ2, x2 + ϵ2]

...
[xn + δn, xn + ϵn]

 , (20)

where δj ≤ 0 and ϵj ≥ 0 for j ∈ N . Indeed, if j is neither increasable nor
decreasable, then δj = ϵj = 0. In some cases, it is possible that there are
multiple increasable or decreasable indices but the corresponding variables
cannot be modified at the same time. Hence, the set of relaxed solutions in
general is not the same as (20), and we also define Rel(x) as the set of all
possible relaxed solutions w.r.t. x.

In the next corollary we observe some limitations on the possibilities to
increase or decrease the components of a fully active solution in certain cases
of p = ⌈ωn⌉.
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Corollary 5.4. Consider a normalized system (8) where A ∈ Rm×n, and let
x be a fully active solution of (8). Then

(i) if p = 1, then there are no decreasable indices j ∈ N ;

(ii) if p = 2 and if there are different decreasable indices j and k such
that C(i, j) = C(i, k) = 0 for some i ∈ N , then the corresponding
components of x cannot be decreased together;

(iii) if p = n, then there are no increasable indices j ∈ N ;

(iv) if p = n− 1 and if there are different increasable indices j and k such
that C(i, j) = C(i, k) = 0 for some i ∈ N , then the corresponding
components of x cannot be increased together.

Proof. (i) As p = 1, it is straightforward to see that there is no negative
element at each row of C (where C is defined as before by C(i, j) = A(i, j)+xj

for i ∈ M and j ∈ N). Hence, the second condition on Corollary 5.2 is not
satisfied. This implies that there are no decreasable indices.
(ii) Now suppose that ⌈ωn⌉ = 2. By Corollary 5.2, if j is a decreasable index
and i is such that C(i, j) = 0, then there is no negative element in C(i, ·).
Hence, one can only decrease ⌈ωn⌉ − 1 = 1 components of x at once.
(iii) Similar to (i) (using Corollary 5.3).
(iv) Similar to (ii) (using Corollary 5.3). □

In the case of column distinct matrices, when m = n, we have already
seen that no relaxation is possible.

Corollary 5.5. Consider a normalized system (8) where A ∈ Rm×n is a
column distinct matrix and suppose that Ā is the corresponding principal-
order matrix for A. If m = n, then for each ω and the corresponding fully
active solutions x ∈ S(A, ω) all indices j ∈ N are neither decreasable nor
increasable. Consequently, |S(A, ω)| is finite for each ω.

Proof. This is a direct consequence of Corollary 3.6, part (iv). □

Example 5.6 below demonstrates the steps to find other solutions of (8) by
applying relaxation when the matrix is column distinct. It should be noted
that these relaxation steps still work for general case when the matrix is not
necessarily column distinct. For the general case we also present Example 5.7
below.
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Example 5.6. Consider the linear equation in Example 3.7. We will demon-
strate the steps to obtain solutions that are not fully active by applying relax-
ation

(i) For ω = 1
4
, the only fully active solution is x = [−2 1 2 −1]⊤. Applying

Corollary 5.3, we find that increasable indices are 1 and 4, with ϵ1 =
ϵ4 = +∞. However, x1 and x4 cannot be increased at the same time
(since the second row of a matrix C defined as C(i, j) = A(i, j) + xj

has two positive elements already). It can be checked that

S(A, 1
4
) = Rel(x) =


[−2,+∞]

[1, 1]
[2, 2]

[−1,−1]

 ∪


[−2,−2]
[1, 1]
[2, 2]

[−1,+∞]

 .

(ii) For ω = 1
2
, suppose we take x = [−2 1 2 − 3]⊤, y = [−2 1 − 6 − 3]⊤

and C1, C2 defined as C1(i, j) = A(i, j) + xj, C2(i, j) = A(i, j) + yj:

C1 =

3 6 0 0
0 5 8 −2
4 0 9 −1

, C2 =

3 6 −8 0
0 5 0 −2
4 0 4 −1

.
Based on C1 and applying Corollary 5.3 and Corollary 5.2, for x, one
can only decrease the value for x3 and x4, but not simultaneously (ap-
plying Proposition 5.1). The biggest decrement for x3 is |δ3| = 8: if
δ3 < −8 then there will be two negative elements on second column of
C1. For x4, the largest decrement is |δ4| = +∞.

On the other hand, based on C2, both y1 and y3 can be increased (again,
not simultaneously since the second row of C2 has one positive element).
The corresponding biggest increments are ϵ1 = +∞ and ϵ3 = 8. As a
result, we have

Rel(x)=


[−2,−2]
[1, 1]
[−6, 2]
[−3,−3]

∪

[−2,−2]
[1, 1]
[2, 2]

[−∞,−3]

,Rel(y)=

[−2,+∞]

[1, 1]
[−6,−6]
[−3,−3]

∪

[−2,−2]
[1, 1]
[−6, 2]
[−3,−3]

 .

Similarly, for v and w the resulting relaxation sets are

Rel(v)=


[−6,−6]
[−4, 1]
[2, 2]

[−1,−1]

∪

[−6,−6]
[−4, 1]
[2, 2]

[−1,+∞]

,Rel(w)=

[−∞,−6]

[1, 1]
[2, 2]

[−1,−1]

∪

[−6,−6]
[−4, 1]
[2, 2]

[−1,−1]

.
24



where v =
[
−6 −4 2 −1

]⊤
and w =

[
−6 1 2 −1

]⊤
. Notice that,

Rel(x) ∩ Rel(y) ̸= ∅ and Rel(v) ∩ Rel(w) ̸= ∅. Furthermore, the set of
solutions S(A, 1

2
) can be expressed as the union of six sets

S(A, 1
2
) =


[−2,−2]
[1, 1]
[−6, 2]
[−3,−3]

 ∪


[−2,−2]
[1, 1]
[2, 2]

[−∞,−3]

 ∪


[−2,+∞]

[1, 1]
[−6,−6]
[−3,−3]

∪


[−6,−6]
[−4, 1]
[2, 2]

[−1,−1]

 ∪


[−6,−6]
[−4, 1]
[2, 2]

[−1,+∞]

 ∪


[−∞,−6]

[1, 1]
[2, 2]

[−1,−1]

.
(iii) Without providing the details, for ω = 3

4
, the resulting relaxation sets

are

Rel(p)=


[−6,−6]
[−4,−4]
[−6, 2]
[−3,−3]

 ∪


[−6,−6]
[−4,−4]
[2, 2]

[−∞,−3]

,Rel(q)=

[−6,−6]
[−4, 1]
[−6,−6]
[−3,−3]

 ∪


[−6,−6]
[−4,−4]
[−6, 2]
[−3,−3]

 ,

Rel(r)=


[−∞,−6]

[1, 1]
[−6,−6]
[−3,−3]

 ∪


[−6,−6]
[−4, 1]
[−6,−6]
[−3,−3]

 .

where p =
[
−6 −4 2 −3

]⊤
, q =

[
−6 1 −6 −3

]⊤
, and

r =
[
−6 −4 −6 −3

]⊤
. The solution set S(A, 3

4
) can be expressed

as the union of four sets

S(A, 3
4
) =


[−6,−6]
[−4,−4]
[−6, 2]
[−3,−3]

 ∪


[−6,−6]
[−4,−4]
[2, 2]

[−∞,−3]

 ∪


[−∞,−6]

[1, 1]
[−6,−6]
[−3,−3]

 ∪


[−6,−6]
[−4, 1]
[−6,−6]
[−3,−3]

.
Example 5.7. Let us reconsider the normalised system in Example 4.6.
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Without giving the the details, the relaxed solution for each x is

Rel

 3
−4
−6

 =

 [3,+∞]
[−4,−4]
[−6,−6]

 ∪

 [3, 3]
[−4,−4]
[−6, 0]

 , Rel

 3
−4
−3

 =

 [3, 3]
[−4,−4]
[−6, 0]

 ,

Rel

 3
−4
0

 =

 [3, 3]
[−∞,−4]
[−6,−6]

 ∪

 [3, 3]
[−4,−4]
[−6, 0]

 , Rel

−5
−2
−3

 =

[−5,−5]
[−2,−2]
[−3,−3]

.
Notice that, the second relaxation set is a subset of the first and the third
sets. Furthermore, the last set contains a single vector. Finally, the set of
solutions can be expressed as the union of four sets

S(A, 2
3
) =

 [3,+∞]
[−4,−4]
[−6,−6]

 ∪

 [3, 3]
[−∞,−4]
[−6,−6]

 ∪

 [3, 3]
[−4,−4]
[−6, 0]

 ∪

[−5,−5]
[−2,−2]
[−3,−3]

.
Examples 5.6-5.7 only demonstrate the cases when the variables must

be relaxed separately. The following example showcases the relaxation of
variables that can be done simultaneously.

Example 5.8. Suppose we have a normalised linear equation (8) where

A =


2 −1 7 −3
2 5 2 0
2 6 3 2
2 −1 6 4

 and ω =
1

2
.

One could check that y = [−2 1 −3 3]⊤ is one of the solutions. Let us define
a matrix C where C(i, j) = A(i, j) + xj i.e.,

C =


0 0 4 0
0 6 −1 3
0 7 0 5
0 0 3 7


Notice that, based on matrix C, the only increasable index w.r.t. x is 4.
The corresponding largest increment is ϵ4 = +∞. On the other hand, the
decreasable indices w.r.t x are 2,3, and 4. Proposition 5.1 gives the following
possible (Q,R)-relaxations: 1) Q = {2}, R = {4}, 2) Q = {3}, R = {4},
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3) increase or decrease x4 only, 4) Q = {2, 3}, R = {4}, 5) Q = {3, 4}t,
R = ∅. Without giving the details, the corresponding relaxations for each of
these opportunities are

[−2,−2]
[−5, 1]
[−3,−3]
[3,+∞]

 ,


[−2,−2]
[1, 1]

[−∞,−3]
[3,+∞]

 ,


[−2,−2]
[1, 1]

[−3,−3]
[0,+∞]

 ,


[−2,−2]
[−5, 1]
[−6,−3]
[3,+∞]

 ,


[−2,−2]
[1, 1]

[−7,−3]
[0, 3]

 .

Notice that, the first relaxation vector is subset of the fourth one. Hence,
Rel(x) is sufficient to be expressed as the union of the second, the third, the
fourth and the fifth sets.

Example 5.6 suggests that, for column distinct cases and when m < n,
all fully active solutions can be relaxed. Proposition 5.9 formally proves
this condition. In fact, it also works on general cases. On the other hand,
Example 5.7 may also suggest that all fully active solutions can be relaxed
(even when m = n). However, this is not true in general. The condition of
|S(A, ω)| = 1 could happen when ⌈ωn⌉ ∈ {1, n} as in Proposition 2.6. Unlike
column distinct cases, the condition for relaxed solution does not only depend
on the dimension of the matrix but also on the sum of fj defined in (17).

Proposition 5.9. Suppose we have a normalised (8) where A ∈ Rm×n is
a column distinct matrix and m < n. Then, each fully active solution x ∈
S(A, ω) can be relaxed.

Proof. Let us assume there exists a fully active solution x ∈ S(A, ω) which
cannot be relaxed. Define matrix C as C(i, j) = A(i, j) + xj. Since all
indices j ∈ N are neither increasable nor decreasable, by Corollary 5.3 and
Corollary 5.2, one of the following conditions must hold: in each i ∈ M ,

(i) there is exactly one zero at C(i, ·),

(ii) there are exactly p − 1 negative elements and n − p positive elements
at C(i, ·) where p = ⌈ωn⌉

Notice that, the second condition implies the first one. Hence, to show
contradiction, it is sufficient that the first requirement cannot hold. Since A
is column distinct, there is exactly one zero in each column of C. As a result,
there are exactly n zero elements in C. However, since m < n, there must at
least one row of C with multiple zero elements. □
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The following corollary lists the possible numbers of solutions depending
the size of the matrix for the column distinct cases. The arguments are based
on Corollaries 3.5-3.6 and Proposition 5.9 and are omitted.

Corollary 5.10. Suppose we have a normalised (8) where A ∈ Rm×n is a
column distinct matrix. Then, the following condition holds

(i) if m > n, then |S(A, ω)| = 0,

(ii) if m = n, then 0 ≤ |S(A, ω)| < +∞,

(iii) if m < n, then |S(A, ω)| ∈ {0,+∞}.

Finally, Corollary 5.11 presented below is the generalisation of Corol-
lary 5.10 by taking account the maximum number of duplicates in each row
of the normalised matrix in (8). We recall that, the column distinct cases
imply f1 + . . . + fn = n. The (i) part is owing to Corollaries Corollaries 3.5
and 4.2 while the (ii) part is due to Corollaries 3.6 and 4.3. The (iv) part is
due to Proposition 5.9. Lastly, the (iii) part is the unique case which only
happens when the matrix is square and not column distinct. The unique-
ness of solution for (8) is possible when ⌈ωn⌉ ∈ {1, n}. Furthermore, as
demonstrated in Example 5.7, |S(A, ω)| = +∞ is also a possibility.

Corollary 5.11. Suppose we have a normalised (8) and let us define f =
f1 + . . .+ fn. Then, the following condition holds

(i) if m > f ≥ n, then |S(A, ω)| = 0,

(ii) if m = f ≥ n, then 0 ≤ |S(A, ω)| < +∞,

(iii) if m = n < f , then 0 ≤ |S(A, ω)| ≤ +∞,

(iv) if m < n ≤ f , then |S(A, ω)| ∈ {0,+∞}.

6. Conclusions and Future Work

In this work we have studied systems A ⊗ω x = b of maxmin-ω linear
equations. These systems are a natural extension of max-plus and min-
plus linear systems A ⊗ x = b and A ⊗′ x = b where a threshold ω ∈
(0, 1] is introduced to determine which term aij + xj is selected in each ith
equation. After normalizing the system in order to have b = 0, we split
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the treatment of the problem into two parts based on whether the entries in
each column of A are distinct or not. Then we introduce the notion of the
principal-order matrix, which we use to prove a result allowing us to list all
the candidates for fully active solutions. Inspired by the existing work, we
develop a technique to find other solutions by modifying some elements of
the fully active solutions.

At least three possible directions for the future work can be seen. The first
one is to address the maxmin-ω linear equations when the matrix contains
non-finite elements (however, see the discussion in the end of Section 2). The
next one is to discuss the eigenproblem A⊗ω x = λ⊗x. Another direction is
to study the periodicity in dynamical systems defined by x(k+1) = A⊗ωx(k)
and to find efficient bounds for the periodicity transient. Note that for last
two problems, it seems that the classical methods for max-plus and min-plus
algebras do not work since it is required to compute the power of a matrix.
However, for maxmin-ω systems, the power of a matrix cannot be defined
due to the lack of associativity.
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