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A B S T R A C T   

In recent years, there has been a significant increase in the adoption of autonomous vehicles for marine and 
submarine missions. The advancement of emerging imaging, navigation, and communication technologies has 
greatly expanded the range of operational capabilities and opportunities available. The ENDURUNS project is a 
European research endeavor focused on identifying strategies for achieving minimal environmental impact. To 
measure these facts, this article evaluates the product impacts employing the Life Cycle Assessment methodology 
for the first time, following the ISO 14,040 standard. In this analysis, the quantitative values of Damage and 
Environmental Impact using the Eco-Indicator 99 methodology in SimaPro software are presented. The results 
report that the main contributors in environmental impact terms have been placed during the manufacturing 
phase. Thus, one of the challenges is accomplished, avoiding the use phase emissions that are the focus to reduce 
nowadays in the marine industry.   

Introduction 

In recent times, significant advancements have been made in the 
field of unmanned vehicles known as Autonomous Underwater Vehicles 
(AUV). Through automation and robotization enhancements, these ve-
hicles have evolved, eliminating the need for human drivers or operators 
during missions. These innovations have effectively mitigated the risks 
associated with human submersion. Detailed historical and technical 
references provide valuable insights and reviews in this domain. [1,2]. 
The ENDURUNS project is actively pursuing this objective with financial 
backing from the European Commission under the "Horizon 2020″ 
program. As such, the project aligns with the broader global efforts 
focused on ocean exploration and maritime mobility. There are other 
organisms, e.g., the General Bathymetric Chart of the Oceans (GEBCO) 
and the International Oceanographic Commission, supporting several 
research projects and initiatives in this field as “Seabed 2030″, described 
in reference [3]. Concretely, the ENDURUNS project is focused on the 
development of a long-endurance and sustainable system for marine and 
submarine inspections. In this case, the submarine developed by the 
project has a novel upgrade concerning the current technologies in the 
field of energy sources. The ENDURUNS AUV develops a modern system 
based on a hydrogen fuel cell for electric power generation, storing the 

energy in a battery pack connected to it. This solution represents a 
considerable evolution in the AUV market [4]. 

To assess the sustainability and environmental impact of this project, 
it is necessary to provide a Life Cycle (LC) description and conduct a Life 
Cycle Assessment (LCA) evaluation. This process considers the regula-
tory and policy requirements specific to this study. The ISO 14,000 series 
outlines the key aspects related to LC considerations. The results ob-
tained from this analysis have great applications in the decision-making 
process to reduce the environmental impact as it is explained in refer-
ence [5]. There exist some studies about underwater vehicles with 
different sustainable motifs. Table 1 shows different works and research 
lines developed in the last years: 

Thus, this article is motivated by these approaches, and it tries to fill 
the gap in the AUV LCA studies with the mentioned project aim and 
following a previous draft developed by the authors in reference [12] 
and offering novel quantitative and qualitative data and results in AUV 
LCA literature. 

The remainder of the paper is organized as follows: Section 1 pro-
vides an overview of the current state of the field and the methodology 
employed in this study. Section 2 offers a comprehensive description of 
the LCA conducted for the ENDURUNS AUV. Section 3 presents the key 
findings of the assessment, including an analysis of uncertainties. Lastly, 
Section 4 summarizes the main conclusions drawn from this research. 
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Methodology fundaments 

Nowadays, the sustainability analysis and environmental impact of 
the products are taking great importance due to different indicators 
shown in reference [13]. The first definition of the LC concept appears in 
80́s decade in the “Sustainable Developed” book published by the offi-
cial World Commission on Environment and Development (WCED) [14]. 
Since then, it has been developing intensive work in this field to opti-
mize the industrial processes for environmental preservation. The in-
stitutions and governments are regulating tougher policies in terms of 
contamination [15]. The most commonly measured factor is the 
greenhouse gas emissions regulated and focused on the last Climate 
Conventions and established in the Kyoto Protocol (1997), it was deeply 
analysed in reference [16]. 

The LC study can be conducted at various levels of complexity, 
contingent upon the stages encompassed within the analysis. A 
comprehensive LC entails examining the entire lifecycle of the product, 
from its initial creation to its eventual dismantling and recycling, 
thereby completing the ecological loop commonly referred to as "cradle 
to cradle." Further details on this concept can be found in the provided 
reference [17]. Fig. 1 illustrates the graphical representation of the LC 
analysis conducted for the ENDURUNS case study involving the AUV. 
This analysis comprises six distinct stages. Nevertheless, it is worth 
noting that there are alternative approaches available to streamline the 
study, such as the cradle-to-gate approach, which specifically focuses on 
the manufacturing process. A concise summary of this approach is 
provided in the reference. [18]. 

The impact of a product on contamination is evaluated based on the 
emissions and environmental damage generated throughout its LC. In 
Europe, certifications such as the European Conformity (CE) and Envi-
ronmental Product Declaration (EPD) are employed. The EPD certificate 
offers valuable, verified, quantitative, and comparable data regarding 
the environmental impact of a product [19]. The LCA framework con-
sists of four interlinked phases: Phase 1 - Goal and Scope Definition, 
Phase 2 - Inventory Analysis, Phase 3 - Impact Assessment, and Phase 4 - 
Interpretation [20]. These phases will be developed in this article and 
applied to the case of the study of ENDURUNS AUV. The results obtained 
from the LCA study will apply to product sustainability improvements, 
green marketing and strategic or to comply policies referenced in [21]. 

ENDURUNS AUV LCA 

The LCA framework outlines four distinct phases that are essential 
for conducting a comprehensive study, although it is important to note 
that this is a theoretical assumption. For the UAV’s LC, specific stages 
such as assembly, launch, and product use contribute collectively to its 
environmental impact. In contrast, the AUV is assessed by considering 
its components separately. Therefore, the simulation case establishes the 
basis for a cradle-to-grave analysis. 

Objective, scope and definition 

Phase 1 of the LCA entails establishing the objectives, scope, and 
context of the study. In the case of the ENDURUNS AUV, the LCA in-
volves a comprehensive analysis of the LC processes and sub-processes, 
extending from manufacturing to product retirement. The scope of this 
study encompasses the entire Cradle to Grave LC stages, including the 
manufacturing processes for each AUV component, the assembly 

Nomenclature list 

GEBCO General Bathymetric Chart of the Oceans 
AUV Autonomous Underwater Vehicle 
LC Life Cycle 
LCA Life Cycle Assessment 
ISO International Organization for Standardization 
GWP Global Warning Potential 
ELCD European Life Cycle Database 
CML Centrum voor Milieukende Leiden 
WCED World Commission on Environment and Development 
CE European Conformity 
EPD Environmental Product Declaration 
UNE-EN Una Norma Española/European Norm 
ILCD International Life Cycle Data System 
DALYs Disable Adjusted Life Years 
PDFs Potentially Disappeared Fraction*m2year 
MJ Mega Joules 
PAF Potentially Affected Fraction 
Pt Eco Points  

Table 1 
Autonomous Underwater Vehicles LCA studies.  

Study Methodology Year Reference 

It develops an LCA for 
different Autonomous 
Underwater vehicle power 
options. 

Eco-indicator 99 
with Ecoinvent 
database. 

2006 Jan Verdaasdonk 
et al. [6] 

It evaluates different fuel 
chain LCA in marine 
vehicles. 

GWP100 with 
ELCD database. 

2011 Selma Bemgtsson  
[7] 

It performs a comparative LCA 
of different clean fuels for 
marine vehicles. 

CML 2001 with 
Ecoinvent 
database. 

2018 Yosuf Bicer and 
Ibrahim Dincer  
[8] 

The objective of this study is to 
conduct an LCA for marine 
vessels to determine the 
most suitable propulsion 
system. 

CML 2016 with 
GaBi database. 

2018 Byongug Jeong 
et al. [9] 

This study employs LCA 
analysis to evaluate and 
quantify the environmental 
impact associated with 
constructing and recycling 
steel hulls. 

CML with 
Ecoinvent 
database. 

2020 Mehmet Önal 
et al. [10]. 

The sustainability of 
manufacturing aluminum/ 
steel welding in marine 
applications is analysed 
through LCA. 

ILCD 2018 99 with 
Ecoinvent 
database. 

2022 Guido Di Bella 
et al. [11].  

Fig. 1. ENDURUNS AUV LC Stages.  
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process, launch and setup operations, implications during the AUV’s 
lifespan, and ultimately, the end-of-life dismantling process [22].. The 
insights derived from the project’s latest findings have been considered 
to develop this study. The examination of the UAV components stands 
out as the most involved and intricate subprocess under evaluation. 
Fig. 2 displays the prototype of the UAV. 

The modular nature of the UAV is evident, with distinct components 
dedicated to propulsion, mapping, energy, and buoyancy. This config-
uration enhances the versatility of the UAV, enabling future modifica-
tions to accommodate new mission requirements. Such adaptability 
represents a favourable aspect in terms of sustainability. Furthermore, 
the model’s outcomes prove valuable for conducting an environmental 
analysis of the project, facilitating the evaluation of emissions and waste 
generation. These contributions aid in achieving sustainable optimiza-
tion, as proposed in the reference [23]. 

Inventory analysis 

This phase aims to summarize and quantify the inputs and outputs 
associated with the LC processes and stages. These flows encompass raw 
materials, energy consumption, and waste generation throughout the 
product’s LC, as detailed in the provided ref. [24]. This part of the study 
needs a great volume of data. SimaPro is an environmental impact 
auditory software developed by PRé Sustainability, a consultancy en-
terprise for the Netherlands funded in 1990 by experts in this field. 
SimaPro software provides a dedicated workspace for conducting this 
process, allowing for efficient development and storage of all relevant 
information using a comprehensive global environmental database. The 
system boundary of the product is depicted by a square dotted line, 
excluding materials extractions. Each process identified in the product’s 
LC needs to be integrated into the software model. The inventory can be 
divided into distinct processes, incorporating individual flows within 
each of them. Fig. 3 shows a conceptual map of the LCA inventory for 
this case of study. 

The system boundary for the product is delineated by a square dotted 
line, excluding materials extraction. The software model needs to 
incorporate each previously defined process of the product’s LC. The 
inventory can be partitioned into various processes, with the ability to 
account for individual flows within each of them. 

Table 2 shows a draft of the inventory analysis performed for this 
study. It should be noted that the materials extraction subprocess has 
been included in the components manufacturing flow as it is made in 
[25]. The inputs and outputs of each process have been filled out using 
the database provided by the software, in this case, the international 
Ecoinvent database support described in [26]. 

Impact assessment 

In accordance with the UNE-EN-ISO 14,040:2006 guidelines, several 
methodologies have been developed for assessing environmental 
impact. Some of the most widely recognized methodologies include 
Recipe, IMPAC 2002+, Eco-Indicator 99, EDP, and ILCD. [27]. Most of 
these methods have been developed by PRè-Sustainability corporation 
in collaboration with different European universities and institutes. The 
authorship of them has as its main reference the eco-designer and 
pioneer Mark Goedkoop, responsible for the dissemination and devel-
opment of this ground since the ‘90 s [28]. In this study, the 
Eco-Indicator 99 method was employed to assess the ENDURUNS AUV 
case. This methodology, developed by Mark Goedkoop in collaboration 
with the PRè-Consultants team, addresses the challenges associated with 
the weighting step in the ISO 14,040 standard [29]. The Eco-Indicator 
99 is an endpoint approach and divides the environment impact cate-
gories into three groups of damage with each one defined and 

Fig. 2. ENDURUNS AUV Prototype.  

Fig. 3. ENDURUNS AUV Inventory Analysis Flowchart.  

Table 2 
ENDURUNS AUV Inventory Resume.   

INPUTS OUTPUTS 

PROCESSES SUBPROCESSES RAW MATERIALS ENERGY WATER AIR TRANSPORTATION AIRBORNE SOLID WATERBORNE 

Manufacturing AUV Components X X X X X X X X 
Vehicle Assembly AUV Assembly X X X X   X X  

Suppliers Shipping     X X   
Set-Up Pre-Launch Test  X X X   X X  

Post-Launch Test  X     X X 
Launch Displacement  X   X X X   

Raising Operations  X    X X  
Use Fuel Consumption X       X  

Recharge Operations  X   X    
Maintenance Displacement     X X    

Maintenance Operations X X     X  
Dismantling Displacement  X   X X X   

Raising Operations  X    X X   
Dismantling Operations  X  X  X X X 

Recycling Recycling Operations  X X X X X X X  

P.J. Barnalte Sanchez et al.                                                                                                                                                                                                                  
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normalized units given in brackets: Human Health (Disable Adjusted 
Life Years or DALYs), Ecosystem Quality(Potentially Disappeared Frac-
tion*m2year or PDFs) and Resources (Megajoules surplus energy or MJ), 
detailed in [30]. Table 3 shows the numerical results obtained in the 
mentioned unit’s terms. The results are presented detailing all the 
damage categories and finally doing the total sum for each group of 
impact. 

Table 3 shows the contribution of each product LC process damage 
evaluation. It is possible to observe that a great amount of the total 
corresponds with the product manufacturing process. It also notes that 
the Dismantling and Recycling processes present negative outcomes in 
some impact categories, this is due to the beneficial character of these 
processes about each associated methodology aspect. For a deeper and 
more meaningful analysis, it will be proper to evaluate each damage 
impact category to detect critical processes in each area. For example, if 
the focus is the carcinogen’s impact, it is possible to observe that the 
most harmful process is Manufacturing, with an order of magnitude. On 
the other hand, the 

The dismantling process reports a negative value, this fact indicates a 
positive effect of this process on the carcinogens index in environmental 
profits. This negative contribution is clearer exposed in the following 
Fig. 4 in percentage terms. 

SimaPro software also provides a visually intuitive graphical repre-
sentation of the results obtained from the LCA. [31]. Fig. 5 allows to 
identify each process’s contributions in terms of percentage and 
weighting. The “x” axis represents the Eco-Indicator 99 damage cate-
gories and the “y” axis represents the percentage in the first case and Eco 
Points or single score (Pt) in the second case with the same color code as 
Fig. 4. 

It is possible to observe that the main contribution for Human Health 
and Ecosystem Quality categories is the AUV Manufacturing for a) and 
b) with around 57%,73%,350Pt and 170Pt respectively, while the most 
contributively process in terms of Resources Impact is the AUV Use with 
around 77% and 376Pt. Another important contribution in the case of 
Human Health is the Launch Process with around 12% and 72Pt, due to 
the cargo ships [32] and trucks [33] employment with the corre-
sponding high CO2 emissions. 

Interpretation 

The objective of this phase of the LCA is to summarize the findings 
and outcomes of the methodology employed. By interpreting these 
values, it becomes possible to analyze the level of product contamina-
tion. In this particular instance, a preliminary and approximate assess-
ment of the ENDURUNS project AUV is obtained. 

In this case, there are some tools included in the software to extract 
relevant information from the product LCA. One of them is the Sankey 
Diagram or processes tree, with this representation it is possible to 
visualize with a “cut off” filter the contribution of each process for the 
final product. In this case, Fig. 6 shows the higher than 4% contribution 
processes. It observes that the main contributions correspond with the 
AUV Manufacturing and the Use processes, reaching around 80% of the 
total. Thus, these processes should consider carefully to make changes to 
reduce the environmental impact, if necessary. 

In environmental terms, it is possible to extract interesting data from 
this study. As occurs in other cases as the car tires, exposed by K. Pio-
trowska et al. in [34], it is possible to do an uncertainty analysis with 
Montecarlo methodology [35]. 

Fig. 7 shows the outcomes conducted to examine the uncertainties 
associated with the ENDURUNS AUV LC processes. The average value 
obtained is 1810 Pt. The other parameters characterizing the distribu-
tion include a Median of 1800 Pt, a Standard Deviation of 132 Pt, and a 
Coefficient of Variation of 7.3%. The dispersion of the final results 
demonstrates a relatively minor diversification, suggesting that the 
Median value effectively represents the average level of the environ-
mental impact encompassing the entire ENDURUNS AUV LC. Ta
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Fig. 4. LCA Characterization of ENDURUNS AUV processes.  

Fig. 5. Eco-Indicator Bar Chart Results: a) Percentage Contribution and b) Weighting.  
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The findings from the comprehensive LCA study suggest the 
following summary for the uncertainty analysis: Based on the collected 
data, it can be inferred that the eco-points value for the complete LC of 
an AUV, considering all the processes 153 Pt. The associated standard 
deviation is 132 Pt, indicating a 95.5% probability (±2 σ) that the eco- 
points value for the ENDURUNS AUV will fall within the range of 1590 

to 2110 Pt. 

Conclusions 

Research initiatives like the ENDURUNS project necessitate a 
comprehensive Life Cycle Assessment to ensure their eco-design focus 

Fig. 6. ENDURUNS AUV LCA Sankey diagram.  

Fig. 7. Uncertainty Analysis for ENDURUNS AUV LC study.  
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and evaluate their environmental impact. The autonomous underwater 
vehicle developed within the ENDURUNS project incorporates a 
hydrogen fuel cell as its energy source. For this reason, the main impacts 
come from the manufacturing phase as has been proved. The analysis 
developed in this paper is focused on the cradle-to-grave processes of the 
ENDURUNS Autonomous Underwater Vehicle Life Cycle as the project 
reports and achievements. The main conclusions are resumed in the 
following points: 

• The numerical results of the Damage Categories enable the identifi-
cation of the highest values for each environmental impact and life 
cycle process. This helps in detecting the most significant impacts 
throughout the life cycle of the product. In this case, the partial sum 
reveals that the Respiratory Inorganics (Human Health) with 7,53E-3 
DALYS, the Ecotoxicity (Ecosystem Quality) with 1,54E4 
PDF*m2year and the Fossil Fuels (MJ) with 1,79E4 MJ are the most 
critical indicators.  

• The contribution of each process of the life cycle is measurable. It has 
been obtained percentage and weight contributions of a graphical 
representation with bar charts and the Sankey diagram. This analysis 
reports the greatest influence of the AUV manufacturing process 
achieving 43,3%, followed by 36,8% from the Use contribution over 
the total product life cycle. 

• According to the uncertainty analysis simulation, it is reported suc-
cessful results for the ENDURUNS LCA study validation with a low 
coefficient of variation. 

This analysis reports the greatest influence of the AUV 
manufacturing process, followed by the Use contribution over the 
product life cycle. However, this theoretical study must be contrasted 
and monitored during the project life cycle to guarantee the correct 
measurements in terms of sustainability according to the legislative re-
strictions. This work has a certain improvement margin due to the 
theoretical assumptions of some data and processes. For future work, it 
can be proper to develop a precise assessment of the definitive vehicles 
and physical examinations to certify the measurements. 
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