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Abstract 

Objective: The aim of our study was to determine whether Dimethylarginine 

Dimethylaminohydrolase (DDAH) 1 and 2 gene polymorphisms – the main enzyme involved 

in ADMA degradation - are associated with high Asymmetric Dimethylarginine (ADMA) 

levels in Rheumatoid Arthritis (RA). 

Methods: Serum ADMA levels were measured in 201 individuals with RA [155 females 

median age 67 (59 – 73)].  Four tag SNPs in DDAH1 gene and 2 in the DDAH2 gene were 

genotyped by using the LightCyclerTM System. ADMA was initially compared across the 

genetic variables using one-way ANOVA and then multivariate analysis examined each of 

the genes after adjustment for parameters of systemic inflammation and insulin resistance, 

namely erythrocyte sedimentation rate (ESR) and homeostatic model assessment (HOMA), 

which we have previously shown affect ADMA levels in RA.  

Results: No significant relationship between DDAH genetic variables and ADMA levels was 

established in ANOVA analysis. Multivariate model adjusted for age, HOMA and ESR did 

not demonstrate any significant association between DDAH variants and ADMA 

Conclusion: The results of our study give no evidence to suggest that increased ADMA 

levels in RA relate to DDAH genetic polymorphisms. Better understanding of disease-related 

factors and their interactions with traditional CV risk factors may represent mechanisms 

responsible for ADMA accumulation in this population.      

 

 

Key words: Rheumatoid arthritis, ADMA, DDAH, CV dis ease 
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   1.  Introduction  

In recent years there has been increasing interest in the cardiovascular (CV) complications of 

chronic systemic inflammatory conditions such as rheumatoid arthritis (RA). It is now well 

recognised that RA is closely associated with the development of premature atherosclerosis 

resulting in high CV mortality and morbidity [1,2]. Pathophysiological and epidemiological 

data suggest a clinically important relationship between RA and accelerated atherosclerosis 

as both conditions appear to be provoked by initial synovial/endothelial cell injury 

respectively [3].  However the mechanisms of vascular changes in RA remain partially 

understood with systemic inflammatory burden as well as classical cardiovascular disease 

(CVD) risk factors appearing to be pivotal in the initiation and progression of endothelial 

dysfunction [4,5]. Over the last years the implication of genetic factors in the CVD risk has 

been studied with several studies reporting associations between gene variants such as tumour 

necrosis factor promoter polymorphism and atherosclerosis in RA patients [6-8].   

Endothelium-derived nitric oxide (NO) is a vasodilatory mediator with atheroprotective and 

anti-proliferative effects on the vascular wall.  Constitutive production of NO is essential for 

the regulation of blood flow, the maintenance of vasorelaxation and the prevention of 

oxidative injury to the vascular endothelium [9]. Pro-inflammatory mediators and cytokines 

which are abundantly produced in RA exert numerous deleterious effects on the endothelial 

cells including a reduction in NO production, activation of endothelial cells and platelets, and 

derangement of fibrinolysis, all of which promote thrombosis and atherosclerosis.   

Impairment of NO synthesis is multifactorial but a growing body of evidence suggests that 

circulating inhibitors of NO synthase play a crucial role [10]. Assymetric dimethylarginine 

(ADMA) is an endogenous guanido-substituted analogue of L-arginine and decreases the 

bioavailability of NO by competing with L-Arginine at the active site of all the three isoforms 
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of NO synthase (NOS). ADMA is generated during proteolysis of various proteins containing 

methylated arginine residues, a procedure catalyzed by a group of enzymes referred to as 

protein-arginine methyl transferase’s (PRMT’s) [11]. Over the last decade ADMA has 

emerged as a novel biochemical marker of endothelial dysfunction and CV risk in various 

disease settings associated with atherosclerosis such as peripheral and coronal artery disease, 

lipid disorders, diabetes mellitus, insulin resistance, hypertension, chronic heart and renal 

failure [12,13] as well as rheumatic diseases [14]. Several studies have demonstrated that 

plasma ADMA is an independent predictor for adverse cardiovascular events and death in 

patients with coronary artery disease [15] and in the general population [16]. Elevated 

ADMA levels have been reported in RA patients irrespective of the disease stage, the 

initiation and the type of treatment, the presence of clinical CVD or the detection of 

subclinical atherosclerosis in non-invasive assessments of endothelial function [17-20]. In 

addition a handful of studies have assessed the impact of biologic disease modifying drugs on 

ADMA levels [21,22].  

Dimethylarginine dimethylaminohydrolase (DDAH) is the key enzyme for the degradation of 

ADMA into citrulline and dimethylamine [23]. Over 90% of endogenous ADMA is 

hydrolyzed by DDAH with the remainder renally extracted. DDAH exists in two isoforms 

(DDAH1, DDAH2) encoded by different genes, with DDAH1 being primarily an enzyme of 

epithelial cells whereas DDAH2 is present in the vasculature [24]. Recent insights indicate 

that reduced DDAH activity occurs in several pathological conditions accompanied by excess 

CV morbidity and it is considered one of the crucial mechanisms responsible for ADMA 

accumulation and endothelial dysfunction. Both deleting the DDAH-1 gene in mice and 

inhibiting its activity through DDAH-specific inhibitors resulted in structural and functional 

endothelial changes, increased systemic vascular resistance and abnormal systemic blood 

pressure via ADMA mediated dysregulation of NO production [25,26]. On the other hand 
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overexpression of DDAH in transgenic mice attenuates ADMA production and restores NO 

synthesis with favourable vascular outcomes such as reduced arterial stiffness, stabilisation of 

endothelial function and enhanced insulin sensitivity [27]. Functional variant of DDAH-2 

gene is associated with chronic kidney disease and insulin sensitivity conditions linked with 

endothelial dysfunction and increased CVD risk [28,29]. These observations underlie the 

important role of DDAH in the regulation of vascular homeostasis. Despite experimental data 

suggesting that DDAH1 is primarily responsible for the degradation of methylarginines [30], 

the relative role of these isoforms in ADMA metabolism in humans remains unknown. 

Derangement of DDAH/ADMA pathway has recently been described to participate in the 

pathogenesis of RA in a collagen-induced arthritis animal model [31].     

The aim of the present study was to determine whether DDAH1 and DDAH2 gene 

polymorphisms are associated with circulating ADMA in individuals with established RA.      

2. Methods 

2.1 Study population 

Two-hundred and one consecutive RA patients were recruited from the rheumatology 

outpatient clinics of the Dudley Group NHS Foundation Trust, UK, between March 2011- 

March 2013. All patients met the retrospective application of the 1987 revised RA criteria of 

the American College of Rheumatology [32]. The study received local Research Ethics 

Committee approval and all participants gave their written informed consent according to the 

Declaration of Helsinki. 

All participants underwent a thorough assessment including a detailed review of their 

medical history, hospital records, physical examination, and contemporary assessments of 

height, weight and body mass index. All medications were recorded, including disease 
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modifying anti-rheumatic drug (DMARD) use, oral prednisolone and anti-platelet agents. In 

addition, demographic information was collected by questionnaire. Insulin resistance was 

evaluated from fasting glucose and insulin using the Homeostasis Model Assessment of 

Insulin Resistance (HOMA) [33].   

Blood was collected from the patient’s antecubital vein using a 23G butterfly needle (Greiner 

Bio One GmbH, Austria). All tests were carried out in the routine and research laboratories of 

Russells Hall Hospital, Dudley Group NHS Foundation Trust, UK and were analysed for 

routine laboratory biochemistry, lipids, haematology, Westergren erythrocyte sedimentation 

rate (ESR), and C-reactive protein. ADMA levels were measured in serum samples by using 

a commercial enzyme immunoassay ELISA kit (Immundiagnostik, Bensheim, Germany) as 

previously described [17]. The intra-assay (n=26) standard deviation was 0.031% and the 

inter-assay (n=6) standard deviation was 0.037%. 

 

2.2 DDAH single nucleotide polymorphism (SNP) Genotyping 

2.2.1 DNA Extraction  

DNA was extracted from whole blood using the QuickGene-810 system.  Blood was 

collected in EDTA-containing tubes, placed in an isolation vessel and the red cells were 

lysed.  The white blood cells were then captured in a filter matrix and lysed so that the DNA 

was physically entrapped around the fibers.  Isolated DNA was released from the matrix and 

eluted into a collection vessel in the enclosed environment of the QuickGene 810 system.  

Resulting DNA samples were stored at 4oC until analysis.  Quality control with each batch of 

extractions was performed by running a blank tube through the whole process, omitting only 

the addition of blood.  If any DNA was found in the blank, the whole DNA batch was 

rejected. 
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2.2.2 Polymorphisms 

DDAH1/2 Polymorphisms were assessed in all subjects by using the LightCycler™ 480 

System (Idaho Technology Inc. Salt Lake City, Utah, USA), as previously described [34].  

Rs2474123 (DDAH1), rs669173 (DDAH1), rs13373844 (DDAH1), rs7521189 (DDAH1) 

and rs3131383 (DDAH2) were identified using LightSNip probes and primers (TIB Molbiol 

GmbH, Berlin, Germany). Cycle conditions were as follows: denaturation of the template 

DNA for 1 cycle of 95ºC for 10 minutes, programmed transition rate of 4.4ºC/s; amplification 

of the target DNA for 45 cycles of 95ºC for 10 sec, 60ºC for 10 sec and 72°C for 15 sec, each 

with a temperature transition rate of 4.4/2.2/4.4°C/sec; melting curve analysis for 1 cycle of 

95°C for 30 sec and 40°C for 2 minutes, each with a transition temperature rate of 

4.4/1.5°C/sec, and then ramping to 75°C continuous.  

The temperatures for DDAH2 (rs3131383) melting peaks were 63.5oC for the CC and 69.5oC 

for the AA genotype and heterozygous (CA) there was a peak at 63.5oC and another at 

69.5oC. 

DDAH1 (rs2474123) melting peaks were GG: -64.5°C, AA: – 69.5oC and GA: -63.5 and 

69.5oC. DDAH1 (rs669173) were TT: -58oC, CC: –66oC and CT: 58 and 66oC. DDAH1 

(rs13373844) were AA: -62oC, CC: -70 and AC: -62 and 70oC. DDAH1 (rs7521189) were 

AA: -56 oC, GG: -63oC and AG: 56 and 63oC. 

 

2.3 Statistical analysis 

Initially, ADMA levels were compared across the different classifications of the DDAH 

genes, namely minor allele, carrier and major allele, using one-way ANOVA models. 

Multivariable general linear models were then used to account for potential confounding 

effects of factors which have previously been found to be associated with ADMA. These 
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factors were included in the model, alongside DDAH status, as continuous covariates, with 

log-transformations applied to those with skewed distributions. Analysis was repeated after 

splitting patients in tertiles based on ADMA values. All analysis was performed using IBM 

SPSS 19, with p<0.05 deemed to be indicative of statistical significance. 

Post-hoc power calculations were performed for the comparisons of ADMA across the 

categories of each of the genes considered. As in the main analysis, separate calculations 

were performed using all of the data, and with the outliers excluded. In each case, pairwise 

comparisons were made between each combination of categories, based on independent 

samples t-tests. The alpha value was Bonferroni adjusted for 3 comparisons, hence a value of 

1.67% was used. The minimal detectable differences for 80% power for each comparison 

were quoted (Supplementary material). 

 

3. Results 

3.1 Participant Characteristics  

The demographic and disease-related characteristics for the RA patients are presented in 

Table 1. One-hundred and twenty-two (61%) patients were receiving non-biologic 

DMARDS, fifty-one (25%) oral steroids, sixty (30%) biologic DMARDS, twenty nine (14%) 

non-steroidal anti-inflammatory drugs, seventy nine (39%) anti-hypertensive treatment and 

seventy four (37%) cholesterol-lowering agents. 

3.2 Outliers 

Three cases were identified as having unusually high ADMA measurements (>1.1 µmol/l), 

which became highly influential outliers in the statistical models. In order to ensure that the 

analysis was robust, the models were reproduced with these outliers excluded. The difference 
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between the models was generally small for the significant factors, but both models are 

quoted for each outcome for completeness. 

 

3.3 Associations between ADMA and DDAH polymorphism 

All DDAH-1 and DDAH-2 SNPs tested were in Hardy-Weinberg equilibrium (Chi-square 

test p values 0.237, 0.587, 0.246, 0.274, 0.824 for rs13373844, rs2474123, rs669173, rs 

7521189 and rs 3131383 respectively). All DDAH-1 SNPs studied were in strong linkage 

disequilibrium with each other as demonstrated by D' values (LD analysis using Haploview) 

(Figure 1) [35].  

One-way ANOVA analysis did not reveal any statistically significant associations between 

serum ADMA concentrations and DDAH gene variants in our populations. These findings 

were similar in the analysis which excluded the three outliers (See Table 2). The data was 

also analyzed with ADMA concentrations divided into approximate tertiles (<0.5, 0.5-0.6 and 

>0/6 µmol/l). This gave results consistent with the ANOVA analysis, with no evidence of 

significant associations between gene categories and ADMA. (Table 3)  

 

3.4 Multivariable Analysis 

We investigated whether parameters of inflammation and insulin resistance, which have 

previously been linked with ADMA levels in RA, could have had a deleterious effect on the 

relationship between ADMA and gene expression. Multivariable general linear models were 

produced, which accounted for the effects of age, HOMA and ESR, in addition to gene 

expression, on ADMA. As with the previous analysis, separate models were produced for all 

patients, and with the outliers excluded (Table 4). 
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ESR was consistently found to be associated with ADMA (p=0.001). However, after 

accounting for this relationship, as well as for the other potentially confounding factors in the 

model, the associations between the genotypes and ADMA remained non-significant.  

 

4. Discussion  

In this study we did not establish any significant association between circulating ADMA and 

SNPs in the DDAH1 and DDAH2 genes in patients with RA. DDAH genetic variants were 

not found to influence ADMA levels after adjustment for age, disease-related inflammation 

and insulin resistance parameters which have been previously linked with raised ADMA in 

this population. This is the first study of this kind to explore genetic variations in DDAH 

genes and their relationship with ADMA in RA patients. 

A handful of studies have assessed the role of genetic variations of the DDAH1 and DDAH2 

genes polymorphism and ADMA levels in humans [28,29,36,37].  In diabetes mellitus, 

significant correlations between DDAH genes polymorphisms and ADMA levels were 

reported in patients with type 2 [38] but not type 1 [39]. Diabetes mellitus represents the 

prototypic disease carrying excessive risk for future CV events and similarly to RA, classical 

CVD risk factors are not sufficient to explain the increased incidence of CVD. In addition, 

clinical presentation and outcomes of coronary artery disease follow the same pattern in both 

conditions and currently the magnitude of CV risk in RA is considered equivalent and 

comparable to that of diabetes [40].  ADMA is elevated in patients with diabetes [41] and is 

associated with insulin resistance [42] while overexpression of DDAH appears to normalise 

hyperglycaemic profile in rats by enhancing insulin sensitivity [43]. It is worth noting that 

insulin resistance has been described as an independent predictor of high ADMA in patients 

with RA [44] and hypertension [13], providing further support for the link between 
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impairment of NO/ADMA/DDAH pathway, endothelial injury and abnormal glucose 

metabolism. However, in our multivariate model, DDAH gene polymorphisms were not 

found to affect ADMA after correction for HOMA – an indicator of insulin resistance.     

Evidence for ADMA accumulation in RA is wide ranging and its role in mediating 

endothelial dysfunction and accelerated atherosclerosis has been the focus of several 

publications. ADMA has been associated with morphological and functional parameters of 

subclinical vascular disease in some [18] but not all the studies assessing vascular 

morphology [45], coronary microvascular perfusion [46] and in vivo endothelium-dependent 

and -independent microvascular and macrovascular function [17]. Higher mortality rates in 

RA in comparison with the general population are largely attributable to CVD, predominantly 

coronary atherosclerosis. Disruption of NO synthesis is crucial in the pathogenesis of 

endothelial dysfunction, so the recognition of the regulators of NO activity will help to 

provide a better understanding of the precise mechanisms involved and may also indicate 

potential therapeutic targets.  As a growing amount of evidence suggests that ADMA levels 

predict future CV events and outcomes in retrospective cohort studies in the general 

population [16] and patients with established CVD risk factors [47] - which are highly 

prevalent in RA - endogenous mechanisms that regulate ADMA and NO bioavailability in 

RA are of great interest.  

Several pathways incorporating increased formation and diminished hydrolysis are involved 

in the high circulating levels of ADMA in RA. The activation of the PRMT’s and the 

augmentation of protein arginine type I N-methyltransferase by increased release of reactive 

oxygen species in inflamed synovium result in upregulation of ADMA synthesis [48]. 

However it appears that the most important parameter in ADMA accumulation is DDAH 

dysfunction [49]. This enzyme seems to be extremely sensitive to oxidative stress and high- 

levels of  NO production following overexpression of inducible NOS, nitrosates DDAH and 
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inhibits activity [50]. The ensuing elevation in ADMA not only reduces vascular NO 

bioavailability but potentially evokes endothelial NOS uncoupling switching it to a 

superoxidate synthase  [51]. By this way ADMA acts in a multiplicative manner in promoting 

endothelial dysfunction. This vicious circle results in the progression of vascular damage and 

may be of higher importance in chronic, systemic inflammatory conditions such as RA 

compared to other vascular disorders. It is tempting to speculate that cumulative 

inflammatory burden in this population may have a more significant impact on impaired 

ADMA metabolism, overshadowing the potential effect of DDAH gene polymorphism.   

In addition ADMA concentration can induce inflammatory vascular reaction by activation of 

adhesion molecules and cytokine production [52]. In collagen-induced arthritis animal model 

the culture of fibroblast-like synoviocytes with Tumour Necrosis Factor-alpha resulted in 

elevation of ADMA levels accompanied with increase in interleukin-1 and -6 and 

downregulation of DDAH2 expression [31].  The inflammatory effects were reversible with 

DDAH2 overexpression suggesting that ADMA may have a role as a pro-inflammatory 

mediator. However, the association between endothelial dysfunction and particularly ADMA 

with disease-related inflammation in RA remains to be determined and more research is 

required to answer whether disruption of DDAH/ADMA pathway contributes to both 

inflammatory process and vascular damage in RA 

High circulating ADMA levels predict adverse outcomes specifically vascular events and 

death in patients with different CVD settings [47,53,54]. Strong causal relationships, 

however, are yet to be established and it is still unknown whether elevated ADMA levels in 

these conditions are the cause or the result of endothelial dysfunction. Such associations are 

much more complex in RA in which interplays between classical CVD risk factors, immune 

activation, chronic cumulative inflammatory load and cardiotoxicity of anti-rheumatic 

treatment form a complicated puzzle which remains unresolved [1]. Since ADMA correlates 
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with traditional and non-traditional CVD risk factors as well as autoantibodies in RA [55], it 

may represent an attractive marker for CVD risk stratification in this population.  We 

performed a genetic association study to assess the potential contribution of polymorphic 

variants of DDAH genes to elevated ADMA levels in RA which yielded negative results.  

Although we cannot exclude the possibilities that untyped SNPs in the current study may 

have an impact on ADMA levels or that none of the SNPs assessed are of functional 

importance for ADMA metabolism, it appears that ADMA concentration in RA is dependent 

on a variety of parameters other than DDAH activity which are involved in endothelial 

dysfunction in RA.     

We performed our study in a well-defined, real-life RA population with detailed clinical and 

laboratory characterisization. We acknowledge that the major limitation of our study is the 

relatively small size of our cohort which cannot draw definite conclusions regarding the 

genetic basis of enhanced ADMA production in RA. However out study was sufficiently 

powered as according to post hoc power calculations the minimal detectable differences in 

ADMA levels between groups were consistently less than 0.1 µmol/l. It is worth noting that 

three patients with unusually high ADMA levels had similar genetic profile with reduced 

expression for rs2474123 SNP in DDAH1 gene and increased expression for the other 

polymorphism. The inclusion of these patients in the analysis did not change the results, but 

this observation may suggest that genetic control of ADMA may occur in patients with more 

severe disruption of endothelial function.  

In conclusion, no evidence was found to suggest that genetic variation in DDAH1 and 

DDAH2 genes is significantly associated with serum ADMA levels in patients with RA. 

There is still inadequate understanding of the production of ADMA in RA and its role in 

promoting atherosclerosis and contributing to CV morbidity and mortality in this population. 

The complexity of CVD and the risk factor interactions requires further studies to investigate 
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whether DDAH sequence variation influences DDAH activity and ADMA levels in 

individuals with RA which will provide better insights in the role of DDAH/ADMA pathway 

in the dysregulation of NO metabolism and endothelial dysfunction in RA.       
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Table 1: Demographic and clinical characteristics of RA patients 
 
 RA Patients (n = 201) 
General characteristics  
Age (years) 67 (59 – 73) 
Sex: female  155 (77%) 
Disease characteristics  
Disease duration (years) 16 (11 – 25) 
Rheumatoid factor positive  148 (74%) 
Anti-CCP positive  123 (61%) 
DAS28 3.1 (2.5 – 4.0) 
C-reactive protein (mg/l) 3 (3 – 9) 
Erythrocyte sedimentation rate (mmhr) 12 (5 – 23) 
Health assessment questionnaire 1.6 ± 0.9 
Cardiovascular Disease Risk Factors  
Hypertension  130 (65%) 
Dyslipidemia  158 (79%) 
Insulin resistance  53 (26%) 
Diabetes  21 (10%) 
Current Smokers  23 (11%) 
ADMA (µmol/l) 0.55 (0.48 – 0.64) 
Data reported as median (25th – 75th percentile), number (percentage) or mean and standard 
deviation as appropriate. ADMA = asymmetric dimethylarginine; CCP = cyclic citrullinated 
peptides; DAS28 = disease activity score in 28 joints. 
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Table 2: Comparison of ADMA across genotypes for each of the genes 
 
  Minor Allele Carrier Major Allele p-Value 

DDAH1 –  
RS2474123 

All Patients 0.60 (0.03) 0.57 (0.01) 0.55 (0.02) 0.219 
Outliers Excluded 0.55 (0.01) 0.57 (0.01) 0.55 (0.02) 0.463 

DDAH1 –  
RS669173 

All Patients 0.57 (0.02) 0.56 (0.01) 0.59 (0.02) 0.371 
Outliers Excluded 0.57 (0.02) 0.56 (0.01) 0.56 (0.01) 0.973 

DDAH1 – 
RS13373844 

All Patients 0.58 (0.03) 0.57 (0.01) 0.57 (0.02) 0.998 
Outliers Excluded 0.58 (0.03) 0.57 (0.01) 0.55 (0.01) 0.456 

DDAH1 – 
 RS7521189 

All Patients 0.56 (0.02) 0.57 (0.01) 0.59 (0.02) 0.497 
Outliers Excluded 0.56 (0.02) 0.57 (0.01) 0.56 (0.01) 0.865 

DDAH2 –  
RS3131383 

All Patients 0.58 (0.09) 0.57 (0.02) 0.57 (0.01) 0.998 
Outliers Excluded 0.58 (0.09) 0.57 (0.02) 0.56 (0.01) 0.669 

Data reported as: “Mean (SEM)”, with p-values from One-Way ANOVA. DDAH = 
Dimethylarginine dimethylaminohydrolase 
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Table 3: Results after splitting of patients in tertiles 
  
 ADMA µmol/l  
 < 0.5 0.5 - 0.6 >0.6 p-Value 
DDAH1 - RS2474123    0.559 

minor allele 10 (25%) 17 (43%) 13 (33%)  
carrier 26 (28%) 33 (36%) 33 (36%)  
major allele 22 (36%) 24 (39%) 15 (25%)  

DDAH1 - RS669173    0.312 
minor allele 11 (38%) 10 (34%) 8 (28%)  
carrier 34 (34%) 35 (35%) 31 (31%)  
major allele 13 (20%) 29 (45%) 22 (34%)  

DDAH1 - RS13373844    0.981 
minor allele 4 (33%) 4 (33%) 4 (33%)  
carrier 27 (31%) 32 (37%) 27 (31%)  
major allele 27 (28%) 38 (40%) 30 (32%)  

DDAH1 - RS7521189    0.600 
minor allele 13 (39%) 12 (36%) 8 (24%)  
carrier 31 (30%) 37 (36%) 34 (33%)  
major allele 14 (24%) 25 (43%) 19 (33%)  

DDAH2 - RS3131383    0.989 
minor allele 1 (25%) 2 (50%) 1 (25%)  
carrier 14 (28%) 20 (40%) 16 (32%)  
major allele 43 (31%) 52 (37%) 44 (32%)  

Data reported as: “N (%)”, with p-values from Fisher’s exact tests 
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Table 4: Comparison of ADMA across genotypes for each of the genes 

Results from multivariable general linear models. Data reported as: “Coefficient (95% 
Confidence Interval)”. #Factor was log2-transformed, hence the coefficient represents the 
increase in ADMA for a two-fold increase in the factor. *Significant at p<0.05 
ESR = erythrocyte sedimentation rate; DDAH = Dimethylarginine dimethylaminohydrolase;  
HOMA = homeostasis model assessment 
 

 All Patients Outliers Excluded 
 Coefficient p-value Coefficient p-value 
DDAH1 – RS2474123 
Gene Category  0.307  0.641 

Minor 0.043 (-0.013, 0.098) 0.130 -0.005 (-0.052, 0.042) 0.844 
Carrier 0.012 (-0.034, 0.058) 0.610 0.014 (-0.024, 0.052) 0.470 
Major - - - - 

Age 0.000 (-0.002, 0.002) 0.835 -0.001 (-0.002, 0.001) 0.427 
HOMA# 0.010 (-0.009, 0.029) 0.310 0.012 (-0.004, 0.028) 0.142 
ESR# 0.023 (0.009, 0.036) 0.001* 0.020 (0.009, 0.031) 0.001* 
DDAH1 – RS669173 
Gene Category  0.346  0.981 

Minor -0.036 (-0.098, 0.025) 0.244 -0.004 (-0.056, 0.047) 0.872 
Carrier -0.029 (-0.073, 0.015) 0.198 0.000 (-0.037, 0.038) 0.979 
Major - - - - 

Age 0.000 (-0.002, 0.002) 0.782 0.000 (-0.002, 0.001) 0.519 
HOMA# 0.010 (-0.009, 0.030) 0.293 0.011 (-0.005, 0.028) 0.170 
ESR# 0.024 (0.010, 0.037) 0.001* 0.020 (0.009, 0.032) 0.001* 
DDAH1 – RS13373844 
Gene Category  0.921  0.285 

Minor -0.005 (-0.089, 0.079) 0.904 0.017 (-0.052, 0.086) 0.621 
Carrier 0.007 (-0.034, 0.049) 0.727 0.027 (-0.007, 0.062) 0.115 
Major - - - - 

Age 0.000 (-0.002, 0.002) 0.733 -0.001 (-0.002, 0.001) 0.471 
HOMA# 0.011 (-0.009, 0.030) 0.277 0.012 (-0.004, 0.028) 0.145 
ESR# 0.023 (0.010, 0.037) 0.001* 0.021 (0.009, 0.032) <0.001* 
DDAH1 – RS7521189 
Gene Category  0.407  0.971 

Minor -0.028 (-0.088, 0.033) 0.367 0.006 (-0.044, 0.057) 0.812 
Carrier -0.030 (-0.075, 0.015) 0.194 0.003 (-0.035, 0.041) 0.870 
Major - - - - 

Age 0.000 (-0.002, 0.002) 0.814 -0.001 (-0.002, 0.001) 0.495 
HOMA# 0.011 (-0.009, 0.030) 0.272 0.012 (-0.005, 0.028) 0.161 
ESR# 0.023 (0.010, 0.037) 0.001* 0.020 (0.009, 0.032) <0.001* 
DDAH2 – RS3131383 
Gene Category  0.928  0.537 

Minor 0.024 (-0.114, 0.162) 0.735 0.036 (-0.077, 0.150) 0.530 
Carrier 0.005 (-0.041, 0.051) 0.829 0.019 (-0.019, 0.057) 0.329 
Major - - - - 

Age 0.000 (-0.002, 0.002) 0.764 0.000 (-0.002, 0.001) 0.597 
HOMA# 0.011 (-0.008, 0.031) 0.262 0.012 (-0.004, 0.028) 0.138 
ESR# 0.023 (0.010, 0.037) 0.001* 0.020 (0.009, 0.031) <0.001* 
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Figure 1: Linkage Disequilibrium plot of DDAH-1 genes polymorphisms.  
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• ADMA is an endogenous inhibitor of NO and an emerging risk factor for endothelial 

dysfunction 

• ADMA levels are increased in RA but the mechanisms responsible for this remain to be 

determined 

• DDAH genes variants investigated in this study do not appear to influence ADMA levels in 

our population of RA patients.  
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Supplementary table – Power calculation: minimal detectable differences 

Quoted values are minimal detectable differences between groups from post-hoc power calculations, 
based on independent samples t-tests, with 80% power and 1.67% alpha. 

 

 

 

 

 

 

 

 

  
Minor Allele 
vs. Carrier 

Minor vs. 
Major Allele 

Carrier vs. 
Major Allele 

DDAH1 –  
RS2474123 

All Patients 0.09 0.10 0.07 
Outliers Excluded 0.07 0.07 0.07 

DDAH1 –  
RS669173 

All Patients 0.09 0.11 0.07 
Outliers Excluded 0.09 0.08 0.06 

DDAH1 – 
RS13373844 

All Patients 0.13 0.15 0.07 
Outliers Excluded 0.13 0.10 0.06 

DDAH1 – 
 RS7521189 

All Patients 0.08 0.11 0.08 
Outliers Excluded 0.08 0.08 0.06 

DDAH2 –  
RS3131383 

All Patients 0.22 0.24 0.07 
Outliers Excluded 0.22 0.19 0.06 


