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ABSTRACT: Layered core−shell bimetallic Cr−Pt nanoparticles
were prepared by the formation and later reduction of an
intermediate Pt-ion-containing supramolecular complex onto
preformed Cr nanoparticles. The resultant nanoparticles were
characterized by X-ray diffraction analysis, transmission electron
microscopy, X-ray photoelectron spectroscopy, and aberration-
corrected scanning transmission electron microscopy. The results
are consistent with the presence of Pt diffusion during or after
bimetallic nanoparticle formation, which has resulted in a Pt/Cr-
alloyed core and shell. We postulate that such Pt diffusion occurs by an electric-field-assisted process according to Cabrera−Mott
theory and that it originates from the low work function of the preformed oxygen-defective Cr nanoparticles and the rather large
electron affinity of Pt.

■ INTRODUCTION

Bimetallic nanoparticles are of wide interest due to the
possibility to enhance or attain novel properties that cannot
be reached in nanoparticles from pure metals.1 Nanoparticles
combining more than one metal in an alloy or core−shell
configuration have been demonstrated to exhibit a spectrum of
unique chemical, magnetic, and optical properties, leading to a
wide range of potential applications, from catalysis and
optoelectronics to magnetic storage and sensing.2−8

Core−shell nanoarchitectures are particularly attractive for
property tuning through variations in several structural and
chemical parameters such as core size, shell thickness, and
chemical arrangement. It is in this context, for instance, that
core−shell nanoparticles can be constructed in a manner in
which the catalyst metal atoms are located in the shell layer,
whereas the core can comprise a catalytically inactive, low-cost
inorganic material. This architecture provides a potential way to
significantly reduce the use of precious noble metals (e.g., Pt,
Au, and Pd) and retain similar or superior catalytic activity
compared to that of the pure metal nanocatalyst.9,10 A salient
target of such investigations is the incorporation of non-noble
transition metals, such as Cu, Co, Ni, Fe, and Cr, within the
core, which is surrounded by a Pt shell layer.11−16 Although the
synthesis and characterization of such core−shell nano-
architectures have motivated numerous experimental and
theoretical studies, it should be recognized that non-noble

transition metals often exhibit the undesirable propensity to
oxidize.17,18

During wet-chemical synthesis of core−shell structures, the
non-noble metals usually get oxidized due to the presence of a
reactive environment, resulting in oxide formation in the metal
core. For instance, Ravel et al.19 reported the formation of an
Fe−Au core−shell prepared by a microemulsion technique in
which the Fe component was found to be extensively oxidized.
In another example, a Cu core with porous Mn3O4 shell
nanoparticles was synthesized by the successive reduction of
metal salts.20 Despite using inert atmospheric conditions, the
nanoparticles contained Cu oxide as revealed by X-ray
absorption near-edge structure.
When transition metals undergo oxidation, it is important to

consider their abilities to assume multiple oxidation states and
thus different electron configurations. As a matter of fact, it is
this particular feature of transition-metal oxides that make them
highly susceptible to different types of structural defects.17,21

These defects, which include point defects such as vacancies
and interstitials, can differ from the bulk to the surface.21 A
striking and direct consequence of such defects is that metal
and oxygen diffusion may occur through the oxide layer, as
previously observed on macroscopic metal oxide structures.22,23
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Ocal et al.22 have reported the diffusion of Au atoms through an
O-deficient aluminum oxide layer to the oxide−metal interface.
In contrast, a nondefective aluminum oxide film of similar
thickness prevented any Au diffusion. These results have been
interpreted on the basis of Cabrera−Mott theory,24 in which
diffusion is facilitated by the electric field created by the Mott
potential. In this context, defective films suffer from low work
functions, making them more prone to diffusion by high
electron affinity metals such as Au. These observations pose the
question of whether metal diffusion behavior through
transition-metal oxides can be present and occur in a similar
fashion in the reduced dimensionality of nanoparticles. To our
knowledge, there are neither theoretical nor experimental data
that support or rule out such a diffusion phenomenon. In order
to provide new insights and understanding on the subject,
herein we report on the wet-chemical synthesis and character-
ization of layered core−shell nanoparticles comprising the
transition metal Cr as the core and the high electron affinity Pt
as the shell. Crucial to this investigation was a thorough
characterization and analysis of the formed nanoparticles using
several techniques, including transmission electron microscopy

(TEM) with energy dispersive X-ray spectroscopy (EDX), X-
ray diffraction (XRD), X-ray photoelectron spectroscopy
(XPS), and aberration-corrected scanning transmission electron
microscopy (STEM).

■ RESULTS AND DISCUSSION

The synthesis strategy for the preparation of core−shell Cr−Pt
nanoparticles is illustrated in Figure 1.
This strategy aims at generating nanoparticles with a Pt shell

on a Cr core and involves four steps: (1) the synthesis of a
bipyridine Pt-chelating moiety25−27 containing a diazonium
cation (D-BiPy) (see Supporting Information for details on the
D-BiPy synthesis and characterization); (2) the formation of D-
BiPy-functionalized Cr core nanoparticles stabilized by Cr−C
bonds via diazonium reduction; (3) the complexation of Pt(II)
metal ions with the bipyridine chelating moieties of the D-
BiPy-functionalized Cr core nanoparticles; and (4) the
reduction of the Pt(II) metal ions on the preformed Cr
nanoparticles to their zero-valent state. In our one-pot synthesis
where the reducing agent is present throughout but with

Figure 1. Proposed stepwise reaction sequence for the preparation of layered core−shell bimetallic Cr−Pt nanoparticles in one pot. Note that PtII−
Bipy represents not only individual Pt(II) metal ions being assembled with BiPy but also minuscule clusters consisting of very few Pt(II) ions and
Pt(0) atoms.

Figure 2. EDX spectrum of Cr nanoparticles. (Inset) TEM image of Cr nanoparticles.
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diminished reducing power in the complexation stage, there are
two possible routes for complexation leading to the deposition
of Pt on the preformed nanoparticles. One route is the
complexation of BiPy with Pt(II) metal ions and the other is
the complexation of BiPy with minuscule clusters consisting of
very few Pt(II) metal ions and Pt(0) atoms.4,5 The Pt precursor
that is not involved in complex formation with the bipyridine
chelating moieties can form pure Pt nanoparticles.
TEM with EDX was used to determine the particle size, the

dispersion, and the elemental composition of Cr nanoparticles.
The EDX spectrum (Figure 2) confirms the formation of Cr
nanoparticles and the presence of a significant amount of
oxygen. Because the preparation of the Cr nanoparticles was
conducted under ambient conditions and given chromium’s
propensity to oxidize,17 it can be inferred that the presence of
oxygen on the Cr nanoparticles originates from the formation
of Cr oxide. The inset of Figure 2 shows a TEM image of the
D-BiPy-functionalized Cr core nanoparticles, which are well
dispersed and have an average size of 1.8 ± 0.3 nm.
XRD, XPS, and STEM analyses were performed to fully

characterize the synthesized Cr−Pt nanoparticles. The XRD
pattern of the synthesized Cr−Pt nanoparticles is shown in
Figure S2. The peaks corresponding to the face-centered-cubic
(FCC) structure of Pt are all present in the spectrum and
labeled accordingly. The extra peaks around 32 and 58° arise
from the substrate material. The crystallite size of Cr−Pt
nanoparticles is calculated using the Scherer equation28 and is
found to be 2.3 nm. The lattice parameter for Cr−Pt is also
calculated to be 3.91 Å, which is close to the lattice parameter
for Pt (3.92 Å).29 Note that we have also investigated over 180
nanoparticles by STEM and found that ∼45% of the
nanoparticles have face-centered-cubic (FCC) structures,
∼5% have icosahedral structures, and the rest of the
nanoparticles are amorphous or unclassified. The XRD results
suggest that Pt is present in high amounts in the synthesized
nanoparticles. This finding indicates that the Pt precursor,
which was not involved in complex formation with the
bipyridine chelating moieties, had undergone reduction and
the formation of pure Pt nanoparticles.
Survey and high-resolution XPS spectra of N 1s, O 1s, Cr 2p,

and Pt 4f were acquired for the Cr−Pt nanoparticles. Several
samples were analyzed, and the results presented herein are
based on a sample area where both Cr and Pt are present. It is
important to note, however, that XPS analysis of some sample
areas indicated only the presence of Pt and not Cr. This
observation is in agreement with the XRD data and confirmed
that pure Pt nanoparticles were also formed during the
preparation of the layered core−shell Cr−Pt nanoparticles.
The XPS N 1s spectrum (Figure 3a) can be assigned to a

single peak centered at 399.7 eV, which can be ascribed to the
pyridine nitrogen in the D-BiPy molecule. The O 1s spectrum
(Figure 3b) contains a single peak centered at 531.4 eV, which
suggests the presence of metal (either Cr or Pt) oxide and/or
hydroxide on the Cr−Pt nanoparticles. The Cr 2p spectrum
(Figure 3c) can be resolved into two doublets, indicating that
Cr exists in metallic as well as oxidized form. The doublet with
peaks located at 577.5 and 587.3 eV is assigned to chromium
oxide in its oxidized state (III).30,31 Among the different
chromium oxides, Cr2O3 is the most stable32 and thus is
expected to be the main form of chromium oxide in the
synthesized Cr−Pt nanoparticles. The other doublet with
binding energy values of 576.4 and 585.6 eV is attributed to the
metallic Cr.30 The ratio of oxidized Cr to metallic Cr, as

calculated by the integrated intensities of the two doublet
peaks, is 4:1. The analysis of the Pt spectrum suggests the
presence of metallic Pt with a doublet at 71.6 and 74.9 eV and a
similar amount of Pt(OH)2 (doublet at 72.8 and 76.1 eV).30

From the XRD and XPS analysis, the formation of core−shell
Cr−Pt cannot be established. However, this analysis reveals the
presence of Pt and Cr in the nanoparticles and that a high
percentage of Cr exists in its oxidized form. In order to gain
insight into the atomic structure of the Pt−Cr nanoparticles,
STEM studies were performed. Because STEM uses Z (atomic
number) contrast imaging, the intensity in the HAADF images
is quite sensitive to the atomic number of the materials.33−35

The HAADF intensity (I) is proportional to Zn, where n = 1.46
± 0.18 for our STEM.36 Because the atomic number of Pt is 78
and that of Cr is 24, the HAADF intensity of one Pt atom is
about 5.59 times brighter than that of one Cr atom. Hence,
chemical contrast can be obtained by the analysis of the
HAADF contrast within bimetallic nanoparticles.
Figure 4 shows representative aberration-corrected STEM

images and diameter distributions of Cr−Pt nanoparticles. Two
kinds of nanoparticles (small and large) can be seen in the
STEM image. The corresponding distribution of diameters is
shown in Figure 4b. The statistical data show that the diameter
of the smaller nanoparticles is 1.45 ± 0.25 nm and that the
diameter of the larger nanoparticles is 2.35 ± 0.30 nm. The size
of the smaller nanoparticles is lower when compared to that of
D-BiPy-functionalized Cr core nanoparticles (∼1.8 nm as
determined by TEM). This finding suggests that the smaller
nanoparticles are neither pure Cr nor bimetallic nanoparticles
but pure Pt nanoparticles. This conclusion is supported by the
XRD and XPS data.
Additionally, from the relationship of HAADF intensity

versus the volume of the particles (Figure 5), we can observe
that most of the data points are under the fitting line when R3 >
2, indicating a lower percentage of Pt (Pt %) in larger clusters.
This trend in intensity can be seen clearly in Figure 5b, which
shows the diagram of the average value of HAADF intensity
against the cluster volume (R3). These results reveal that the
smaller nanoparticles (R3 < 2) have the highest average
HAADF intensity, enabling us to ascribe them as pure Pt
nanoparticles.

Figure 3. XPS spectra of the N 1s, O 1s, Cr 2p, and Pt 4f peak regions
of the synthesized Cr−Pt nanoparticles.
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On the other hand, the larger nanoparticles, which exhibit a
diameter 0.55 nm larger than the diameter of the D-BiPy-
functionalized Cr core nanoparticles, are expected to be the
Cr−Pt nanoparticles. Thus, further STEM analysis is focused
on these particles. Figure 6a displays typical, high-resolution,
aberration-corrected STEM images of the Cr−Pt nanoparticles.
From the image, we can see that the Cr−Pt nanoparticles do
not display a typical Cr core/Pt shell structure (dark core and
bright shell). It can be seen very clearly in the profile in Figure

6b. The HAADF intensity profile of the Cr−Pt nanoparticles
reveals that the central areas of the nanoparticles are either
similar to or brighter than the edge areas and exhibit a nearly
flat contrast at the core. It indicates that no Pt shell was formed
on the Cr−Pt nanoparticles.
In order to identify the structure of the Cr−Pt nanoparticles,

we simulated the STEM intensity profiles of model core−shell
morphologies. Simple geometrical structures were employed:
both the core and the shell are spherical, and the center of mass

Figure 4. STEM image and diameter distribution of Cr−Pt nanoparticles: (a) STEM image and (b) diameter distribution. The positions of the two
peaks are at 1.45 ± 0.25 and 2.35 ± 0.30 nm, respectively. Small particles are indicated with arrows.

Figure 5. Relationship between the HAADF intensity and cluster volume (a) and (b) average HAADF intensity against the cluster volume.

Figure 6. (a) High-resolution STEM image and (b) experimental and simulated HAADF intensity line profiles for Cr−Pt nanoparticles. Hollow
circles: the experimental average profile was measured along the two lines pointed to by arrows with 4.1-Å-wide bands. The red curve denotes the
intensity profile calculated from the model of a Pt−Cr core and a Cr2O3−Pt shell. Green indicates the model of a Cr core and Cr2O3/Pt shell. Blue
indicates the model of a Cr−Cr2O3 core and Pt shell.
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of the core is the same as the center of mass of the shell. The
HAADF intensities depend exclusively on the height of the
projected atomic column, with each atom contributing a Z1.46-
dependent intensity.32 On the basis of the TEM and STEM
results, we employed Cr−Pt nanoparticles of diameter 2.35 nm
with a 1.8 nm core. Furthermore, we assume that the core is
Cr−Cr2O3 and the ratio of oxidized Cr is 80%, as determined
by XPS analysis. The calculated HAADF intensity profiles were
convolved with a Gaussian function.
The simulated HAADF intensity profiles of three kind of

structures of Cr−Cr2O3 (core)/Pt (shell), Cr (core)/ Cr2O3−
Pt (shell) and Pt−Cr (core)/Cr2O3−Pt (shell) are displayed in
Figure 7. Compared to the experimental profile, we can see that

the experimental HAADF intensity profile (hollow circles in
Figure 6b) is not consistent with the HAADF intensity profiles
calculated from the structure of Cr−Cr2O3 (core)/Pt(shell) or
Cr (core)/Cr2O3−Pt (shell). The HAADF intensity profile of
the Pt−Cr (core)/Cr2O3−Pt (shell) structure agrees well with
the experimental profiles. The statistical analysis of 182 Cr−Pt
nanoparticles has revealed that 98% of the particles exhibit a
profile similar to that mentioned above (i.e., Pt−Cr (core)/
Cr2O3−Pt (shell)). Only 2% of the particles exhibited concave
HAADF intensity line profiles (i.e., Pt-rich shell) as depicted in
Figure S3.
These findings mean that the Pt atoms have diffused from

the surface into the core and formed a Pt−Cr alloy core and
Cr2O3−Pt shell. The diffusion of Pt atoms can be explained by
Cabrera−Mott theory. On the basis of the theory, the Mott
potential will be built up across the oxide layer due to a contact
potential difference between metal and adsorbed oxygen.20 This
potential drives both anion and cation transport across the
oxide film at low temperature, where the anions will diffuse into
the metal core. Because of the high electron affinity of Pt, when
the Pt atom deposits on the oxide layer, it will tend to diffuse
into the core of the bimetallic nanoparticles through the well-
established field-assisted diffusion mechanism.18 This behavior
leads to the formation of the observed Pt−Cr (core)/Cr2O3−
Pt (shell) nanoparticles.

■ CONCLUSIONS
We have synthesized layered core−shell bimetallic Cr−Pt
nanoparticles by the formation and later reduction of an

intermediate Pt-ion-containing supramolecular complex onto
preformed Cr nanoparticles. By performing TEM, XRD, XPS,
and STEM analysis, we studied in detail the composition and
structure of the synthesized Cr−Pt nanoparticles. The results
are consistent with the occurrence of Pt diffusion during or
after bimetallic nanoparticle formation, which results in a Pt/
Cr-alloyed core and shell. This behavior is tentatively attributed
to field-assisted diffusion by a Mott−Cabrera-type mechanism.
This study highlights a crucial but often overlooked diffusion
phenomenon that must be considered if core−shell nano-
particles are developed on the basis of non-noble transition
metals.

■ EXPERIMENTAL SECTION
Synthesis of Layered Cr−Pt Core−Shell Nanoparticles. The

D-BiPy compound used in the synthesis of the Cr−Pt core−shell
nanoparticles was freshly prepared and characterized as detailed in the
Supporting Information and immediately used. Briefly, D-BiPy was
dissolved in ethanol (10 mL, 6 mM) and mixed with a solution of
CrCl3·6H2O in ethanol (5 mL, 6 mM) under continuous stirring in a
round-bottomed flask at 500 rpm using a magnetic stirrer for 10 min.
A freshly prepared NaBH4 solution in ethanol (5 mL, 0.4 M) was
slowly added to the mixture, and a change in color to dark green was
observed, suggesting the reduction of the Cr precursor. After 30 min, a
solution of dichloro(1,5-cyclooctadiene)platinum(II) in ethanol (5
mL, 6 mM) was slowly added to the mixture. A change in color of the
mixture was observed after 20−30 s, suggesting the reduction of the Pt
precursor. The nanoparticles were purified by precipitation from
ethanol using acetone, followed by centrifugation, and the supernatant
was discarded. The precipitation/centrifugation was repeated three
more times, after which the black solid was dried in a vacuum oven at
40 °C.

Transmission Electron Microscopy (TEM). The nanoparticles
were deposited on Cu grids with a carbon coating on one side and
examined in an FEI Tecnai TF20 coupled with an Oxford Instruments
INCA 350 EDX system operated at an acceleration voltage of 200 kV.
Bright-field images were taken at low and high resolution to analyze
the size, size distribution, and structure of the nanoparticles. EDX was
done on the individual particles as well as over different areas to study
the composition of the particles. The particle size was calculated by
analyzing the high-resolution images using ImageJ.

X-ray Diffraction (XRD). Laboratory-source XRD (INEL XRD
Equinox 3000 diffractometer) was used to characterize the structure of
the nanoparticles. The Cu Kα source operates at a potential of 40 kV
and a current of 40 mA. This diffractometer can measure the whole 2θ
range simultaneously, i.e., 0−120°. An aluminum XRD sample holder
of size 3 cm × 3 cm is used. The holder has a well in the center of size
1 cm width × 1 cm length × 1 mm depth to hold the powder samples.
The Cr−Pt nanoparticle powder was poured into the well and
carefully flattened to form a smooth surface in alignment with the
surface of the aluminum. The diffraction pattern was analyzed using
Match software. Instrumental broadening was determined using Si
standard samples, and the particle size was estimated using the
observed line broadening and Scherer equation at different planes of
reflection.

X-ray Photoelectron Spectroscopy (XPS). XPS spectra were
obtained on the AXIS Nova (Kratos Analytical) instrument based at
the University of Newcastle (NEXUS), U.K. XPS experiments were
carried out using a monochromatic Al Kα X-ray source (1486.7 eV)
and a takeoff angle of 90° with respect to the surface plane. High-
resolution scans of Pt 4f, C 1s, O 1s, and Cr 2p were recorded using a
pass energy of 20 eV with a step size of 0.1 eV. Fitting of XPS peaks
was performed using CASA XPS processing software. Sensitivity
factors used in this study were C 1s, 1.00; O 1s, 2.8; Pt 4f7/2, 8.65; Pt
4f5/2, 6.8; Cr 2p3/2, 7.69; and Cr 2p1/2, 3.98.

Scanning Transmission Electron Microscope (STEM). The
STEM investigation was performed in a 200 kV JEOL 2100F
instrument equipped with a CEOS spherical aberration probe

Figure 7. Simulated HAADF intensity line profiles for three types of
bimetallic Cr−Pt nanoparticles and their corresponding models on the
right.
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corrector. The inner and outer collection angles of the HAADF
detector were set to 62 and 164 mrad, respectively, and the probe
convergence angle was 19 mrad. The images were taken in 3 s with an
electron dose of ∼4.6 × 104 electrons/Å2. The particle size and
intensity profiles were obtained by analyzing the HAADF images using
ImageJ (http://imagej.nih.gov/ij/).
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