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Abstract
We prove that a finite group 𝐺 has a normal Sylow 𝑝-
subgroup 𝑃 if, and only if, every irreducible character
of 𝐺 appearing in the permutation character (𝟏𝑃)𝐺 with
multiplicity coprime to 𝑝 has degree coprime to 𝑝. This
confirms a prediction by Malle and Navarro from 2012.
Our proof of the above result depends on a reduction to
simple groups and ultimately on a combinatorial analy-
sis of the properties of Sylow branching coefficients for
symmetric groups.

MSC ( 2020 )
20C15, 20C20, 20C30, 20C33 (primary)

1 INTRODUCTION

One of the main research themes in the representation theory of finite groups is to determine
how much information about the algebraic structure of a finite group 𝐺 can be discovered using
knowledge of its character degrees. A famous result in this line of investigation is the Itô–Michler
theorem [13, 20] asserting that a Sylow 𝑝-subgroup 𝑃 of 𝐺 is abelian and normal in 𝐺 if, and only

© 2022 The Authors. Bulletin of the LondonMathematical Society is copyright © LondonMathematical Society. This is an open access article
under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.

552 wileyonlinelibrary.com/journal/blms Bull. London Math. Soc. 2022;54:552–567.

mailto:swcl2@cam.ac.uk
http://creativecommons.org/licenses/by-nc/4.0/
https://wileyonlinelibrary.com/journal/blms
http://crossmark.crossref.org/dialog/?doi=10.1112%2Fblms.12584&domain=pdf&date_stamp=2022-03-14


SYLOW BRANCHING COEFFICIENTS AND A CONJECTURE OF MALLE AND NAVARRO 553

if, the character degree 𝜒(1) is coprime to 𝑝 for every irreducible character 𝜒 ∈ Irr(𝐺). Separating
the two conditions (abelian and normal) on the Sylow 𝑝-subgroup 𝑃 in the context of character
degrees has been a challenge for the last few decades. While the commutativity of 𝑃 is character-
ized by Brauer’s height zero conjecture [19], the aim of this article is to study canonical subsets of
characters whose degrees characterize the normality of 𝑃 in 𝐺.
In [17], Malle and Navarro showed that given a prime 𝑝 and a Sylow 𝑝-subgroup 𝑃 of 𝐺, then

𝑃 is normal in 𝐺 if, and only if, every irreducible constituent of the permutation character (𝟏𝑃)𝐺
has degree coprime to 𝑝. At the end of their article, they conjecture a refinement of this result,
proposing that the normality of 𝑃 may be detected by looking at an even smaller subset of irre-
ducible characters of 𝐺, namely those irreducible constituents of (𝟏𝑃)𝐺 appearing with multiplic-
ity coprime to 𝑝. In this article, we verify Malle and Navarro’s prediction.

Theorem A. Let 𝐺 be a finite group, 𝑝 be a prime and 𝑃 ∈ Syl𝑝(𝐺). The following statements are
equivalent.

(i) 𝑃 is normal in 𝐺.
(ii) Every 𝜒 ∈ Irr(𝐺) with [𝜒𝑃, 𝟏𝑃] not divisible by 𝑝 has degree coprime to 𝑝.
(iii) Every 𝜒 ∈ Irr(𝐺) with [𝜒𝑃, 𝟏𝑃] not divisible by 𝑝 satisfies 𝜒(𝑥) ≠ 0 for every 𝑥 ∈ 𝑃.

In Section 2, we show that in order to prove Theorem A it is enough to prove the validity of its
statement for all finite simple non-abelian groups. Roughly speaking, for every finite non-abelian
simple group 𝑆 we must exhibit an irreducible character 𝜒 of degree divisible by 𝑝 with trivial
Sylow branching coefficient coprime to 𝑝. If 𝑃 is a Sylow 𝑝-subgroup of a finite group 𝐺, then
the trivial Sylow branching coefficient of 𝜒 is the multiplicity [𝜒𝑃, 𝟏𝑃] with which 𝜒 appears as
a constituent of the permutation character (𝟏𝑃)𝐺 . (We refer the reader to Section 3.1.1 for more
information on Sylow branching coefficients.) The main obstacle in this context comes from sim-
ple alternating groups when 𝑝 ∈ {2, 3}, as already observed in [17, p.4] and recently remarked by
the same authors in [18], asmost other simple groups are handled by applying a result of Granville
and Ono [8] on the existence of 𝑝-defect zero characters. We prove the statement of Theorem A
for the remaining alternating groups as a consequence of the following much more general result
concerning symmetric and alternating groups, denoted by𝔖𝑛 and𝔄𝑛, respectively.

Theorem B. Let 𝑝 be a prime and 𝑛 ∈ ℕ. Let 𝐺 ∈ {𝔖𝑛,𝔄𝑛}, let 𝑃 be a Sylow 𝑝-subgroup of 𝐺 and
let 𝐵 be a 𝑝-block of 𝐺. Then there exists an irreducible character 𝜒 of height zero in 𝐵 such that
[𝜒𝑃, 𝟏𝑃] is not divisible by 𝑝.

As well as providing the key ingredient for proving Theorem A (note that the character 𝜒 pro-
vided by Theorem B has degree divisible by 𝑝 whenever 𝐵 has non-maximal defect), Theorem B
also contributes to the study of Sylow branching coefficients for symmetric and alternating groups
and, more generally, to the study of the restriction of characters to Sylow subgroups. These topics
have recently been at the centre of investigation for their connections to theMcKay Conjecture [4,
7 12, 24]. In [5], the authors determine those irreducible characters of𝔖𝑛 having non-zero trivial
Sylow branching coefficient. Despite this positivity result, very little is known about the values of
these integers. In this sense, Theorem B represents a first step towards a more precise description
of these Sylow branching coefficients.
The key idea behind the proof of Theorem B is the following. For any given 𝑝-block 𝐵 of 𝔖𝑛,

we introduce a virtual character 𝑉𝐵, obtained as a certain integer combination of the irreducible
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554 GIANNELLI et al.

characters of height zero in 𝐵 (see Definition 3.13). Using the language of symmetric functions
together with algebraic-combinatorial techniques, we then show that 𝑝 does not divide the mul-
tiplicity [(𝑉𝐵)𝑃, 𝟏𝑃], and hence deduce that there exists a height zero character in 𝐵 whose trivial
Sylow branching coefficient is coprime to 𝑝.
It is worth mentioning that the virtual characters 𝑉𝐵, and more generally the family of virtual

characters introduced in Section 3 below, seem to have further applications to problems involving
signed character sums in symmetric and alternating groups (see [11, p.2] and [21, Section 6]); this
will be the subject of future investigation.
The structure of this article is as follows. In Section 2, we prove Theorem A, assuming that its

statement holds for simple alternating groups. In Section 3, we investigate symmetric and alter-
nating groups specifically, in particular showing that Theorem A holds for these classes of groups
as a consequence of the more general Theorem B.

2 A REDUCTION TO ALTERNATING SIMPLE GROUPS

The aim of this section is to prove a reduction theorem for Theorem A. We mimic and adapt the
approach used in [17]: we reduce the problem to showing that every finite non-abelian simple
group 𝑆 possesses a suitable character lying over the trivial character of a Sylow 𝑝-subgroup of 𝑆
with multiplicity not divisible by 𝑝 and vanishing on some element of the aforementioned Sylow
𝑝-subgroup. We say that 𝜒 ∈ Irr(𝐺) vanishes on g ∈ 𝐺 if 𝜒(g) = 0.
We follow the notation of [9] and [22] for characters. Let 𝐺 be a finite group and 𝑝 be a prime.

Recall that𝜒 ∈ Irr(𝐺) has 𝑝-defect zero if 𝑝 does not divide |𝐺|∕𝜒(1). Note that a non-trivial group
with a normal Sylow 𝑝-subgroup 𝑃 does not possess a 𝑝-defect zero character unless 𝑃 = 1.

Lemma 2.1. Suppose that 𝜒 ∈ Irr(𝐺) has 𝑝-defect zero and let 𝑃 ∈ Syl𝑝(𝐺). Then:

(i) 𝜒(𝑥) = 0 for every non-trivial 𝑥 ∈ 𝑃;
(ii) 𝜒𝑃 = 𝑓 ⋅ 𝜌𝑃 where 𝑓 = [𝜒𝑃, 𝟏𝑃] is coprime to 𝑝 and 𝜌𝑃 is the regular character of 𝑃.

Proof. Part (i) is [9, Theorem 8.17] (also [22, Theorem 4.6]). By (i), we have that

[𝜒𝑃, 𝟏𝑃] =
1|𝑃| ∑
𝑥∈𝑃

𝜒(𝑥) =
𝜒(1)|𝑃|

is a positive integer. Write 𝑓 = [𝜒𝑃, 𝟏𝑃]. Then 𝑓 is coprime to 𝑝 and 𝜒𝑃 = 𝑓 ⋅ 𝜌𝑃, so part (ii)
follows. □

The next lemma follows from a standard argument.

Lemma 2.2. Let 𝐺 be a finite group, 𝑝 be a prime and 𝑃 ∈ Syl𝑝(𝐺). Let 𝜒 ∈ Irr(𝐺) have degree
coprime to 𝑝. Then 𝜒(𝑥) ≠ 0 for every 𝑥 ∈ 𝑃.

Proof. Consider the ring 𝐑 of algebraic integers of ℂ. Let be a maximal ideal of 𝐑 containing
𝑝𝐑. Let 𝜉 ∈ 𝐑 be a root of unity of order 𝑝𝑎. Then (𝜉 − 1)𝑝𝑎 ≡ 0mod. Since 𝐑∕ is a field,
we obtain that 𝜉 ≡ 1mod. Given 𝑥 ∈ 𝑃, write 𝑄 = ⟨𝑥⟩. Since 𝜒𝑄 = 𝜆1 +⋯ + 𝜆𝜒(1) where 𝜆𝑗 ∈
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SYLOW BRANCHING COEFFICIENTS AND A CONJECTURE OF MALLE AND NAVARRO 555

Irr(𝑄), then 𝜒(𝑥) is a sum of 𝜒(1) roots of 𝑝-power order and

𝜒(𝑥) ≡ 𝜒(1)mod .

In particular, 𝜒(𝑥) ≠ 0 as ∩ ℤ = 𝑝ℤ. □

It is a well-known result of Burnside that every non-linear character of a finite group vanishes
on some element ([22, Corollary 4.2]). Hence the converse of the above lemma holds in 𝑝-groups.
However, it is not the case in general that the non-vanishing property on Sylow 𝑝-subgroups char-
acterizes characters of degree coprime to 𝑝, as shown by SL2(5) for 𝑝 = 2. A key ingredient in
the proof of Theorem A will be that symmetric and alternating groups satisfy the converse of
Lemma 2.2 (see Theorem 3.16).
We will prove Theorem A of the introduction using the following result on finite non-abelian

simple groups.

Theorem 2.3. Let 𝑆 be a finite non-abelian simple group of order divisible by a prime 𝑝, and let
𝑅 ∈ Syl𝑝(𝑆). Then 𝑆 either possesses a 𝑝-defect zero character or there is someAut(𝑆)-invariant 𝜃 ∈
Irr(𝑆) such that [𝜃𝑅, 𝟏𝑅] is not divisible by 𝑝 and 𝜃(𝑥) = 0 for some 𝑥 ∈ 𝑅.

Proof. By [8, Corollary 2], every finite non-abelian simple grouppossesses a𝑝-defect zero character
unless 𝑝 = 2 and 𝑆 is one of the sporadic groups M12, M22, M24, J2, HS, Suz, Ru, Co3, Co1, BM
or an alternating group 𝔄𝑛 with 7 ⩽ 𝑛 ≠ 2𝑚2 + 𝑚, 2𝑚2 + 𝑚 + 2 for any integer 𝑚; or 𝑝 = 3 and
𝑆 is either Suz, Co3 or 𝔄𝑛 with 3𝑛 + 1 divisible by some prime 𝑞 congruent to 2 (mod 3) to an
odd power. For 𝑝 = 2, let 𝑆 be a sporadic group not admitting a 𝑝-defect zero character. Using [3]
and the command PermChars(CharacterTable("S"), d)), we can compute the permutation
characters (𝟏𝑅)𝑆 for 𝑆 ∈ {M12,M22,M24, J2, HS}, where the second argument d is the degree of the
desired permutation character. For 𝑆 = BM the character (𝟏𝑅)𝑆 was computed by Breuer†.
For 𝑆 ∈ {Suz, Ru, Co1, Co3}, one can compute (𝟏𝑅)𝑆 by choosing a maximal subgroup 𝑀 of 𝑆

containing𝑅with the [3] commandMaxes(CharacterTable("S")), computing 𝜃 ∶= (𝟏𝑅)𝑀 with
PermChars, and finally inducing 𝜃 to 𝑆. (In the case where 𝑆 = Co1, choose Co3 as a maximal
subgroup.) One can proceed in a similar way to obtain (𝟏𝑅)𝑆 whenever 𝑆 ∈ {Suz, Co3} and 𝑝 = 3.
(The function PermChars has several strategies to determine candidates for permutation charac-
ters, and the second argument determines which one is chosen. In the case where 𝑆 = Co3 and
𝑝 = 3, one should use PermChars(CharacterTable("S"), rec(torso:=[d])) where d is the
degree of the desired permutation character.)
Once we have (𝟏𝑅)𝑆 stored in [3], one can easily check that there is some Aut(𝑆)-invariant

𝜃 ∈ Irr(𝑆) with [𝜃𝑅, 𝟏𝑅] coprime to 𝑝 that vanishes on some 𝑝-power order element.
It remains to find 𝜃 for the alternating groups 𝔄𝑛 with 𝑛 ⩾ 5 and 𝑝 ∈ {2, 3}. This is given by

Theorem 3.17. □

The following technical lemma will be useful for reducing the statement of Theorem A.

Lemma 2.4. Let 𝐺 be a finite group, 𝑝 be a prime and 𝑃 ∈ Syl𝑝(𝐺). Suppose that 𝑁 ⊲ 𝐺 is such
that 𝑃𝑁 ⊲ 𝐺 and 𝑄 = 𝑃 ∩ 𝑁 > 1.

† See http://www.math.rwth-aachen.de/homes/sam/ctbllib/doc2/chap8_mj.html#X87D11B097D95D027

 14692120, 2022, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12584 by U

niversity O
f B

irm
ingham

 E
resources A

nd Serials T
eam

, W
iley O

nline L
ibrary on [12/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.math.rwth-aachen.de/homes/sam/ctbllib/doc2/chap8_mj.html#X87D11B097D95D027


556 GIANNELLI et al.

(a) If 𝜏 ∈ Irr(𝑃𝑁) lies over 𝟏𝑃 with multiplicity coprime to 𝑝, then so does any 𝜒 ∈ Irr(𝐺) lying over
𝜏.

(b) If𝑁 has a 𝑝-defect zero character 𝜂, then𝐺 has an irreducible character𝜒 ≠ 𝟏𝐺 such that 𝑝 does
not divide [𝜒𝑃, 𝟏𝑃] and 𝜒 vanishes on the non-trivial elements of 𝑄.

Proof. (a) By assumption,𝑚𝜏 = [𝜏𝑃, 𝟏𝑃] is coprime to 𝑝. Write 𝜒𝑃𝑁 = 𝑒
∑𝑡
𝑖=1 𝜏

𝑥𝑖 by Clifford’s the-
orem [9, Theorem 6.2] with 𝑥𝑖 ∈ 𝐺. By the Frattini argument 𝐺 = 𝑁𝐍𝐺(𝑃) and we can choose
𝑥𝑖 ∈ 𝐍𝐺(𝑃) (with 𝑥1 = 1). By [9, Corollary 11.29], 𝜒(1)∕𝜏(1) = 𝑒𝑡 divides |𝐺 ∶ 𝑃𝑁|, and hence 𝑒
and 𝑡 are coprime to 𝑝. In particular, 𝜒𝑃 = 𝑒

∑𝑡
𝑖=1(𝜏

𝑥𝑖 )𝑃 = 𝑒
∑𝑡
𝑖=1(𝜏𝑃)

𝑥𝑖 and so [𝜒𝑃, 𝟏𝑃] = 𝑒𝑡𝑚𝜏 is
coprime to 𝑝.
(b) Note that 𝑄 = 𝑃 ∩ 𝑁 ∈ Syl𝑝(𝑁). In particular, 𝜂𝑄 = 𝑓 ⋅ 𝜌𝑄 by Lemma 2.1(ii), where 𝑓 =

[𝜂𝑄, 𝟏𝑄] is coprime to 𝑝. Note that

(𝜂𝑃𝑁)𝑃 = (𝜂𝑄)
𝑃 = (𝑓 ⋅ 𝜌𝑄)

𝑃 = 𝑓 ⋅ 𝜌𝑃 ,

so that [(𝜂𝑃𝑁)𝑃, 𝟏𝑃] = [𝑓 ⋅ 𝜌𝑄, 𝟏𝑄] = 𝑓. Write 𝜂𝑃𝑁 =
∑
𝜏∈Irr(𝑃𝑁)[𝜂

𝑃𝑁, 𝜏]𝜏. We have seen that

[(𝜂)𝑃𝑁, 𝟏𝑃] =
∑

𝜏∈Irr(𝑃𝑁)

[𝜂𝑃𝑁, 𝜏][𝜏𝑃, 𝟏𝑃]

is coprime to 𝑝. Therefore, we can choose 𝜏 ∈ Irr(𝑃𝑁) lying over 𝜂 and 𝟏𝑃 (that is, with
[𝜏𝑁, 𝜂][𝜏𝑃, 𝟏𝑃] ≠ 0), and such that [𝜏𝑃, 𝟏𝑃] is not divisible by 𝑝. Let 𝜒 ∈ Irr(𝐺) lie over 𝜏. By part
(a), the multiplicity [𝜒𝑃, 𝟏𝑃] is coprime to 𝑝. Moreover, 𝜒𝑁 is a multiple of the sum of the𝐍𝐺(𝑃)-
conjugates of 𝜂, and hence a sum of 𝑝-defect zero characters of𝑁. In particular, by Lemma 2.1(i),
𝜒 vanishes on every non-trivial element of 𝑄. □

Proof of Theorem A. (i)⇒ (ii): If 𝑃 ⊲ 𝐺 and 𝜒 ∈ Irr((𝟏𝑃)𝐺), then 𝜒 can be seen as a character of
𝐺∕𝑃 and hence has degree coprime to 𝑝.
(ii)⇒ (iii): This implication follows from Lemma 2.2.
(iii) ⇒ (i): Suppose that 𝐺 is a counterexample to the statement of minimal order. Of course

𝐺 > 1 and𝐍𝐺(𝑃) < 𝐺. Let 1 < 𝑀 ⊲ 𝐺. Given 𝜒 ∈ Irr(𝐺∕𝑀) lying above 𝟏𝑃𝑀∕𝑀 with multiplicity
coprime to 𝑝, we can view 𝜒 as an irreducible character of 𝐺, and then 𝜒𝑃𝑀 = 𝑚𝟏𝑃𝑀 + Δ where
𝑝 does not divide𝑚 and [Δ, 𝟏𝑃𝑀] = 0. Note that every irreducible constituent of 𝜒𝑃𝑀 contains𝑀
in its kernel, and hence restricts irreducibly to 𝑃. In particular, [𝜒𝑃, 𝟏𝑃] = 𝑚 is not divisible by 𝑝.
By assumption, 𝜒 does not vanish in 𝑃 (so in 𝑃𝑀∕𝑀 as a character of 𝐺∕𝑀). By minimality of 𝐺,
we conclude that 𝑃𝑀 ⊲ 𝐺. In particular, 𝐎𝑝(𝐺) = 1.
Let 𝑁 be a minimal normal subgroup of 𝐺 and write 𝑄 = 𝑃 ∩ 𝑁 ∈ Syl𝑝(𝑁). By the paragraph

above, we have that 𝑃𝑁 ⊲ 𝐺. According to [1, 8.2 and 8.3] 𝑁 is either semisimple or abelian. If 𝑁
is abelian, then [1, 8.4] implies that 𝑁 is an elementary abelian 𝑞-group for some prime 𝑞. Recall
that 𝐎𝑝(𝐺) = 1. We distinguish two cases below.
Case 1: Suppose that 𝑝 divides the order of 𝑁. By the above discussion, we have that 𝑁 is

semisimple. Let 𝑆 ⊲ 𝑁 be a minimal normal subgroup of𝑁. Then𝑁 =
∏𝑟
𝑖=1 𝑆

g𝑖 where {𝑆g𝑖 }𝑟
𝑖=1
=

{𝑆g | g ∈ 𝐺} and we may assume g1 = 1. In fact,𝑁 = ×𝑟𝑖=1𝑆
g𝑖 is the direct product of the different

𝐺-conjugates of 𝑆 (see [10, Lemmas 9.5 and 9.6]). Write 𝑅 = 𝑄 ∩ 𝑆 ∈ Syl𝑝(𝑆), and note that 𝑅 > 1.
Since 𝑆 is a non-abelian simple group of order divisible by 𝑝, by Theorem 2.3 either (a) 𝑆 has a
𝑝-defect zero character 𝜃 or (b) 𝑆 has an Aut(𝑆)-invariant 𝜃 ∈ Irr(𝑆) such that 𝑝 does not divide
[𝜃𝑅, 𝟏𝑅] and 𝜃(𝑥) = 0 for some 𝑥 ∈ 𝑅. In each of these cases, define 𝜂 ∶= ×𝑟𝑖=1𝜃

g𝑖 ∈ Irr(𝑁) by [9,
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SYLOW BRANCHING COEFFICIENTS AND A CONJECTURE OF MALLE AND NAVARRO 557

Definition 4.20 and Theorem 4.21]. Note that 𝑁 ≅ 𝑆 ×⋯ × 𝑆 and, under this identification, 𝜂 is
just the direct product of 𝑟 copies of 𝜃.
In case (a), note that 𝜂 ∈ Irr(𝑁) has 𝑝-defect zero. Then Lemma 2.4(b) yields a contradiction.

In case (b), note that the fact that 𝜃 is Aut(𝑆)-invariant implies that 𝜂 is 𝐺-invariant (we refer the
reader to the proof of [23, Lemma 4.1(ii)], where the𝑝-group hypothesis is superfluous).Moreover,
[𝜂𝑄, 𝟏𝑄] = [𝜃𝑅, 𝟏𝑅]

𝑟 is not divisible by 𝑝 and 𝜂(𝑦) = 0 where 𝑦 =
∏𝑟
𝑖=1 𝑥

g𝑖 ∈ 𝑄. Since (𝜂𝑃𝑁)𝑃 =
(𝜂𝑄)

𝑃 contains 𝟏𝑃 with multiplicity [𝜂𝑄, 𝟏𝑄] coprime to 𝑝, we can choose 𝜏 ∈ Irr(𝑃𝑁) lying over
𝜂 such that 𝑝 does not divide [𝜏𝑃, 𝟏𝑃] arguing as in the proof of Lemma 2.4(b). Let 𝜒 ∈ Irr(𝐺) lie
over 𝜏. By Lemma 2.4(a), we have that 𝑝 does not divide [𝜒𝑃, 𝟏𝑃]. As 𝜂 is𝐺-invariant, 𝜒𝑁 = 𝑒𝜂 and
so 𝜒(𝑦) = 0 for 𝑦 ∈ 𝑄 ⊆ 𝑃, yielding a contradiction also in this case.
Case 2: We are left to deal with the case where 𝑁 is a 𝑝′-group. Recall that 𝑃𝑁 ⊲ 𝐺, and let

𝐾∕𝑁 be a minimal normal subgroup of 𝐺∕𝑁 with 𝐾 ⊆ 𝑃𝑁. In particular, 𝐾∕𝑁 is an elemen-
tary abelian 𝑝-group. Write 𝑄 = 𝑃 ∩ 𝐾 ∈ Syl𝑝(𝐾). Then 𝐾 = 𝑁𝑄 and 𝑄 ≅ 𝐾∕𝑁 is an elementary
abelian 𝑝-group. By the Frattini argument𝐺 = 𝐾𝐍𝐺(𝑄) = 𝑁𝐍𝐺(𝑄), and therefore it is easy to see
that 𝐂𝑄(𝑁) ⊲ 𝐺. The fact that 𝐎𝑝(𝐺) = 1 forces 𝐂𝑄(𝑁) to be trivial, and consequently the action
of 𝑄 on 𝑁 is faithful. By [2, Lemma 2.8], there is some 𝜃 ∈ Irr(𝑁) with 𝐾𝜃 = 𝑁. (Note that the
hypotheses of [2, Lemma 2.8] are fulfilled as 𝑄 acts coprimely and faithfully on 𝑁, 𝑄 is abelian
and 𝑁 is characteristically simple.) Let 𝜂 = 𝜃𝐾 ∈ Irr(𝐾). Then 𝜂 has 𝑝-defect zero as a character
of 𝐾 and Lemma 2.4(b) yields the final contradiction. □

3 SYLOW BRANCHING COEFFICIENTS OF𝕾𝒏 AND𝕬𝒏

Themain aim of this section is to prove TheoremB. Using TheoremB, we then complete the proof
of Theorem A by showing that Theorem 2.3 holds for alternating groups at the primes 2 and 3.
This is done in Theorem 3.17.
We start by recording some notation and standard facts that will be used throughout this sec-

tion.

3.1 Preliminaries

For 𝑚 a natural number we denote by [𝑚] the set {1, 2, … ,𝑚}. For 𝑝 a prime, 𝜈𝑝(𝑚) denotes the
𝑝-adic valuation of𝑚, that is,𝑚 = 𝑝𝜈𝑝(𝑚)𝑡 where 𝑝 ∤ 𝑡. For a finite group 𝐺 and a prime number
𝑝, we write Irr𝑝′ (𝐺) = {𝜒 ∈ Irr(𝐺) ∶ 𝑝 ∤ 𝜒(1)} for the set of irreducible characters of 𝐺 of degree
coprime to 𝑝. For a 𝑝-block 𝐵 of 𝐺, let Irr0(𝐵) denote the set of height zero characters in 𝐵. Recall
that if 𝐵 has defect group𝐷, then the height ht(𝜒) of an irreducible character𝜒 is given by ht(𝜒) =
𝜈𝑝(𝜒(1)) + 𝜈𝑝(|𝐷|) − 𝜈𝑝(|𝐺|). As is customary, we denote by g𝐺 the conjugacy class of the element
g in 𝐺.
We start by recording a group-theoretical result that will be used in the proof of Theorem B.

Lemma 3.1. Let 𝐺 be a finite group, let 𝑝 be a prime and let 𝑃 ∈ Syl𝑝(𝐺). Let g be an element of 𝑃.
Then 𝜈𝑝(|𝑃 ∩ g𝐺|) = 𝜈𝑝(|g𝐺|).
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558 GIANNELLI et al.

Proof. From the definition of an induced character [9, Chapter 5], we have

(𝟏𝑃)
𝐺(g) =

|𝐂𝐺(g)| ⋅ |g𝐺 ∩ 𝑃||𝑃| =
|𝐺 ∶ 𝑃| ⋅ |g𝐺 ∩ 𝑃||g𝐺| .

We then observe that (𝟏𝑃)𝐺(g) equals the number of fixed left cosets of 𝑃 in 𝐺 under the action of⟨g⟩ by left multiplication. It follows that (𝟏𝑃)𝐺(g) is coprime to 𝑝. The statement then follows. □

3.1.1 Characters and combinatorics of𝔖𝑛

We let (𝑛) denote the set of partitions of 𝑛. Given 𝜆 ∈ (𝑛) (also written 𝜆 ⊢ 𝑛), we denote its
conjugate by 𝜆′. The set Irr(𝔖𝑛) of ordinary irreducible characters of𝔖𝑛 is naturally in bijection
with (𝑛). For a partition 𝜆 ∈ (𝑛), we denote the corresponding irreducible character of𝔖𝑛 by
𝜒𝜆. Given 𝑃𝑛 a Sylow 𝑝-subgroup of𝔖𝑛 and 𝜑 ∈ Irr(𝑃𝑛), we use the notation introduced in [6] by
letting 𝑍𝜆𝜑 denote the natural number defined by

𝑍𝜆𝜑 ∶= [(𝜒
𝜆)𝑃𝑛 , 𝜑].

These multiplicities are called Sylow branching coefficients for symmetric groups. In this article,
we will be particularly interested in the case where 𝜑 = 𝟏𝑃𝑛 is the trivial character of 𝑃𝑛. We will
sometimes use the symbol 𝑍𝜆 to denote 𝑍𝜆

𝟏𝑃𝑛
, to ease the notation.

To each partition 𝜆 = (𝜆1, … , 𝜆𝑘) we may associate a Young diagram given by [𝜆] = {(𝑖, 𝑗) ∈
ℕ × ℕ ∶ 1 ⩽ 𝑖 ⩽ 𝑘, 1 ⩽ 𝑗 ⩽ 𝜆𝑖}. The hook of 𝜆 corresponding to the node (𝑖, 𝑗) is denoted by ℎ𝑖,𝑗(𝜆)
and we let |ℎ𝑖,𝑗(𝜆)| denote its size.
For any 𝑒 ∈ ℕ, we denote by 𝐶𝑒(𝜆) the 𝑒-core of the partition 𝜆. This is obtained from 𝜆 by

successively removing hooks of size 𝑒 (also called 𝑒-hooks) until there are no further removable
𝑒-hooks. We say that 𝜆 is an 𝑒-core partition if 𝜆 = 𝐶𝑒(𝜆). The leg length of a hook is one less than
the number of rows it occupies. The 𝑒-weight of 𝜆 is given by 𝑤𝑒(𝜆) = (|𝜆| − |𝐶𝑒(𝜆)|)∕𝑒. We refer
the reader to [15] or [27] for detailed descriptions of these combinatorial objects.
We record here some useful facts on the degrees of irreducible characters of 𝔖𝑛. Let 𝑝 be a

prime and let 𝜆 ∈ (𝑛). An immediate consequence of the hook length formula [14, 20.1] is that
𝜒𝜆 has 𝑝-defect zero if and only if 𝜆 is a 𝑝-core partition. At the other end of the spectrum, the set
of irreducible characters of𝔖𝑛 of degree not divisible by 𝑝 was completely described in [16]. We
recall this result in language convenient for our purposes.

Lemma 3.2. Let 𝑝 be a prime and 𝑛 ∈ ℕ. Let 𝑛 =
∑𝑡
𝑖=1 𝑎𝑖𝑝

𝑛𝑖 be its 𝑝-adic expansion, where
𝑛1 > 𝑛2 > ⋯ > 𝑛𝑡 ⩾ 0 and 𝑎𝑖 ∈ [𝑝 − 1] for all 𝑖 ∈ [𝑡]. Let 𝜆 ∈ (𝑛) and let 𝜇 = 𝐶𝑝𝑛1 (𝜆). Then
𝜒𝜆 ∈ Irr𝑝′(𝔖𝑛) if and only if 𝜇 ∈ (𝑛 − 𝑎1𝑝

𝑛1) and 𝜒𝜇 ∈ Irr𝑝′(𝔖𝑛−𝑎1𝑝𝑛1 ).

Repeated applications of Lemma 3.2 imply the following statement.

Lemma 3.3. Let 𝑛 be a natural number, let 𝑝 be a prime and let 𝜆 ∈ (𝑛). If |𝐶𝑝(𝜆)| ⩾ 𝑝 then 𝑝
divides 𝜒𝜆(1).
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SYLOW BRANCHING COEFFICIENTS AND A CONJECTURE OF MALLE AND NAVARRO 559

The Murnaghan–Nakayama rule [15, 2.4.7] allows us to compute the values of the irreducible
characters of𝔖𝑛.

Theorem3.4 (Murnaghan–Nakayama rule). Let 𝑟, 𝑛 ∈ ℕwith 𝑟 < 𝑛. Suppose that𝜋𝜌 ∈ 𝔖𝑛 where
𝜌 is an 𝑟-cycle and 𝜋 is a permutation of the remaining 𝑛 − 𝑟 numbers. Then

𝜒𝜆(𝜋𝜌) =
∑
𝜇

(−1)ℎ(𝜆⧵𝜇)𝜒𝜇(𝜋),

where the sumruns over all partitions𝜇 obtained from𝜆 by removing an 𝑟-hook, andℎ(𝜆 ⧵ 𝜇)denotes
the leg length of the hook removed.

The cycle types of elements in𝔖𝑛 are naturally parametrized by the partitions of 𝑛. Since the
ordering of cycles is irrelevant, when we refer to cycle types we may sometimes use compositions
rather than partitions of 𝑛. We further remark that if 𝜎 ∈ 𝔖𝑛 has cycle type given by the compo-
sition 𝛼 = (1𝑚12𝑚2 … ), then we say that 𝜎 contains exactly𝑚𝑖 𝑖-cycles, for all 𝑖 ∈ ℕ. Moreover, its
centralizer has size |𝐂𝔖𝑛(𝜎)| =∏

𝑖∈ℕ 𝑖
𝑚𝑖 ⋅𝑚𝑖!.

3.1.2 Characters and blocks of𝔖𝑛 and𝔄𝑛

Let𝑝 be a prime. It is well known that the𝑝-blocks of𝔖𝑛 are parametrized by𝑝-core partitions [15,
6.1.21]. In this article, wewill denote the𝑝-block corresponding to the𝑝-core 𝛾 by𝐵(𝛾, 𝑤), where𝑤
is the natural number such that 𝑛 = |𝛾| + 𝑝𝑤. As explained in [15, 6.2.39], defect groups of 𝐵(𝛾, 𝑤)
are Sylow 𝑝-subgroups of𝔖𝑝𝑤. Moreover, the set Irr0(𝐵(𝛾, 𝑤)) can be described as follows.

Lemma 3.5. Let 𝑛 be a natural number and let 𝑝 be a prime. Let 𝛾 be a 𝑝-core partition such that
𝑛 = |𝛾| + 𝑝𝑤, for some𝑤 ∈ ℕ. Let 𝑝𝑤 = ∑𝑡

𝑖=1 𝑎𝑖𝑝
𝑛𝑖 be its 𝑝-adic expansion, where 𝑛1 > 𝑛2 >⋯ >

𝑛𝑡 ⩾ 0 and 𝑎𝑖 ∈ [𝑝 − 1], for all 𝑖 ∈ [𝑡]. Given 𝜆 ∈ (𝑛) and 𝜇 = 𝐶𝑝𝑛1 (𝜆), we have that

𝜒𝜆 ∈ Irr0(𝐵(𝛾, 𝑤)) if and only if 𝜒𝜇 ∈ Irr0(𝐵(𝛾, 𝑤 − 𝑎1𝑝𝑛1−1)).

Proof. This follows from [25, Lemma 3.1]. □

In other words, Lemma 3.5 tells us that 𝜒𝜆 ∈ Irr0(𝐵(𝛾, 𝑤)) if and only if there exists a sequence
of partitions 𝜆 = 𝜆0, 𝜆1, … , 𝜆𝑎1 = 𝜇 such that 𝜆𝑖+1 is obtained by removing a 𝑝

𝑛1 -hook from 𝜆𝑖 , and
such that 𝜆𝑎1 labels an irreducible character of height zero in 𝐵(𝛾, 𝑤 − 𝑎1𝑝

𝑛1−1). When 𝑝 = 2, we
have the following.

Lemma 3.6. Let 𝑛 be a natural number and let 𝜆 ∈ (𝑛) be such that 𝜆 ≠ 𝐶2(𝜆). If 𝜒𝜆 is an irre-
ducible character of height zero in its 2-block, then 𝜆 ≠ 𝜆′.

Proof. Let 𝜒𝜆 ∈ Irr(𝐵(𝛾, 𝑤)), for some 2-core 𝛾 and some𝑤 ∈ ℕ. Let 2𝑤 = 2𝑛1 + 2𝑛2 +⋯ + 2𝑛𝑡 be
the binary expansion of 2𝑤where 𝑡 ∈ ℕ and 𝑛1 > 𝑛2 > ⋯ > 𝑛𝑡 ⩾ 1. By Lemma 3.5, 𝜆 has a unique
2𝑛1 -hook. Assume for a contradiction that 𝜆 = 𝜆′. Then |ℎ𝑖,𝑖(𝜆)| is odd for all 𝑖 ∈ ℕ. Hence the
unique 2𝑛1 -hook of 𝜆 is off the main diagonal, that is, it is ℎ𝑖,𝑗(𝜆) for some 𝑖 ≠ 𝑗. This contradicts
the assumption that 𝜆 = 𝜆′. □
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560 GIANNELLI et al.

We now briefly recall a description of the irreducible characters and blocks of alternating
groups, and refer the reader to [26, Section 4] for further detail. Let 𝜆 ∈ (𝑛). If 𝜆 ≠ 𝜆′, then
(𝜒𝜆)𝔄𝑛 = (𝜒

𝜆′)𝔄𝑛 is an irreducible character of 𝔄𝑛. On the other hand, if 𝜆 = 𝜆
′, then (𝜒𝜆)𝔄𝑛 =

𝜑+
𝜆
+ 𝜑−

𝜆
with 𝜑±

𝜆
∈ Irr(𝔄𝑛). All of the irreducible characters of𝔄𝑛 are of one of these two forms.

Turning to blocks, we let 𝐵(𝛾, 𝑤) be a 𝑝-block of𝔖𝑛 and we first suppose that 𝑝 is odd. If 𝑤 > 0,
then 𝐵(𝛾, 𝑤) covers a unique block �̂� of 𝔄𝑛. Moreover, 𝐵(𝛾, 𝑤) and 𝐵(𝛾′, 𝑤) are the only blocks
covering �̂�. If 𝑤 = 0, then 𝐵(𝛾, 0) covers a unique block of 𝔄𝑛, unless 𝛾 = 𝛾′. In the latter case,
𝐵(𝛾, 0) covers twoblocks of𝔄𝑛, respectively, containing the two irreducible constituents of (𝜒𝛾)𝔄𝑛 .
Finally, if 𝐵(𝛾, 𝑤) covers �̂�, then their defect groups are isomorphic. On the other hand, if 𝑝 = 2,
then 𝛾 = 𝛾′. In particular, we have that 𝐵(𝛾, 𝑤) covers a unique block of 𝔄𝑛 if and only if 𝑤 > 0.
Moreover, if 𝐷 is a defect group of 𝐵(𝛾, 𝑤), then 𝐷 ∩ 𝔄𝑛 is a defect group of any 2-block of 𝔄𝑛
covered by 𝐵(𝛾, 𝑤).

3.2 Virtual characters of𝕾𝒏

As mentioned in the introduction, the following definition will play a central role in the proof of
Theorem B.

Definition 3.7. Let 𝜆 be any partition and let 𝑒 ∈ ℕ. Set 𝑛 ∶= |𝜆| + 𝑒. We let 𝑉𝜆[𝑒] be the virtual
character of𝔖𝑛 defined as follows:

𝑉𝜆[𝑒] ∶=
∑
𝛼

(−1)ℎ(𝛼⧵𝜆)𝜒𝛼

where 𝛼 runs over all partitions of 𝑛 obtained from 𝜆 by adding an 𝑒-hook. As before, ℎ(𝛼 ⧵ 𝜆)
denotes the leg length of the 𝑒-hook added.

Example 3.8. Let 𝜆 = (3, 1) and 𝑒 = 3. We observe that 𝜆 has exactly three addable 3-hooks. In
particular, we have that 𝑉(3,1)[3] = 𝜒(6,1) − 𝜒(3,2,2) + 𝜒(3,14).

We describe the values taken by the virtual characters just introduced.

Theorem 3.9. Let 𝜆 be any partition and let 𝑒 ∈ ℕ. Let 𝑛 = |𝜆| + 𝑒 and let 𝜎 ∈ 𝔖𝑛. Suppose that
the disjoint cycle decomposition of 𝜎 contains exactly 𝑘 𝑒-cycles. Then

𝑉𝜆[𝑒](𝜎) =

{
𝑘𝑒 ⋅ 𝜒𝜆(𝜏) if 𝑘 > 0,

0 if 𝑘 = 0,

where 𝜏 ∈ 𝔖𝑛−𝑒 has cycle type equal to that of 𝜎 except with one fewer 𝑒-cycle.

We observe that Theorem 3.9 extends [14, Theorem 21.7]. The result may be known to experts
in the field, but we could not find it in the literature. To prove Theorem 3.9, we use results from
[28], translating between the language of symmetric polynomials and class functions. We briefly
summarize here the relevant notation.
For a partition 𝜇, we let 𝑠𝜇 denote the corresponding Schur function. For 𝑒 ∈ ℕ, 𝑝𝑒 denotes

the power sum symmetric function
∑
𝑖 𝑥
𝑒
𝑖
in indeterminates 𝑥𝑖 . If 𝜇 = (𝜇1, 𝜇2, … , 𝜇𝑘), then 𝑝𝜇
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SYLOW BRANCHING COEFFICIENTS AND A CONJECTURE OF MALLE AND NAVARRO 561

is defined to be the product 𝑝𝜇1𝑝𝜇2 ⋯𝑝𝜇𝑘 . The Frobenius characteristic map ch is a ring isomor-
phism between the algebra of class functions of finite symmetric groups and the ring of symmetric
functions (for more detail, see [28, §7.18]). If 𝑓 is a class function of𝔖𝑛, then

ch(𝑓) =
∑
𝜇⊢𝑛

𝑧−1𝜇 𝑓(𝜇)𝑝𝜇, (3.1)

where 𝑧𝜇 = |𝐂𝔖𝑛(𝜔)| with 𝜔 ∈ 𝔖𝑛 an element of cycle type 𝜇. In particular, ch(𝜒𝜆) = 𝑠𝜆, for
any partition 𝜆. Moreover, for all class functions 𝑓 of 𝔖𝑚 and g of 𝔖𝑛 we have that ch satisfies
ch(𝑓◦g) = ch(𝑓) ⋅ ch(g). Here 𝑓◦g denotes the induced class function (𝑓 × g)𝔖𝑚+𝑛

𝔖𝑚×𝔖𝑛
.

Proof of Theorem 3.9. From [28, Theorem 7.17.1], we have that

𝑠𝜆 ⋅ 𝑝𝑒 =
∑
𝛼

(−1)ℎ(𝛼⧵𝜆)𝑠𝛼

where the sum runs over all partitions 𝛼 obtained from 𝜆 by adding an 𝑒-hook. It is easy to see
from (3.1) that if ch(𝑓) = 𝑝𝑒, then 𝑓 is the class function of𝔖𝑒 given by

𝑓(𝜔) =

{
𝑒 if the cycle type of 𝜔 is (𝑒),
0 otherwise.

It follows that

ch(𝜒𝜆◦𝑓) = ch(𝜒𝜆) ⋅ ch(𝑓) = 𝑠𝜆 ⋅ 𝑝𝑒 =
∑
𝛼

(−1)ℎ(𝛼⧵𝜆) ch(𝜒𝛼).

Since ch is bijective and linear, we have that 𝜒𝜆◦𝑓 = 𝑉𝜆[𝑒]. Thus it remains to prove that

(𝜒𝜆◦𝑓)(𝜎) =

{
𝑘𝑒 ⋅ 𝜒𝜆(𝜏) if 𝑘 > 0,
0 if 𝑘 = 0,

where 𝜏 ∈ 𝔖𝑛−𝑒 has cycle type equal to that of 𝜎 except with one fewer 𝑒-cycle. Since 𝜒𝜆◦𝑓 =
(𝜒𝜆 × 𝑓)𝔖𝑛+𝑒 , this follows directly from [9, (5.1)] and the definition of 𝑓 given above. □

We now extend Definition 3.7 by allowing the addition of multiple hooks.

Definition 3.10. Let 𝜆 be any partition. For 𝑒, 𝑓 ∈ ℕ, define

𝑉𝜆[𝑒, 𝑓] ∶=
∑
𝛼

(−1)ℎ(𝛼⧵𝜆)
∑
𝛽

(−1)ℎ(𝛽⧵𝛼)𝜒𝛽.

Here 𝛼 runs over all partitions obtained from 𝜆 by adding an 𝑒-hook. For each fixed such 𝛼, we
have 𝛽 running over partitions obtained from 𝛼 by adding an 𝑓-hook.
We define 𝑉𝜆[𝑒1, 𝑒2, … , 𝑒𝑢] analogously for any 𝑢 ∈ ℕ ∪ {0} and any sequence of natural num-

bers 𝑒1, … , 𝑒𝑢. If 𝑢 = 0, we set 𝑉𝜆[𝑒1, … , 𝑒𝑢] ∶= 𝜒𝜆.
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562 GIANNELLI et al.

Observe that 𝑉𝜆[𝑒, 𝑓] =
∑
𝛼(−1)

ℎ(𝛼⧵𝜆)𝑉𝛼[𝑓]. It is then easy to see that Theorem 3.9 implies
𝑉𝜆[𝑒, 𝑓] = 𝑉𝜆[𝑓, 𝑒]. Similarly, we have that 𝑉𝜆[𝑒1, … , 𝑒𝑢] = 𝑉𝜆[𝑒𝜌(1), … , 𝑒𝜌(𝑢)] for any 𝜌 ∈ 𝔖𝑢.

Example 3.11. Following on from Example 3.8, we can compute 𝑉(3,1)[3, 3], a virtual character
of𝔖10:

𝑉(3,1)[3, 3] = (−1)0 ⋅ 𝑉(6,1)[3] + (−1)1 ⋅ 𝑉(3,2,2)[3] + (−1)2 ⋅ 𝑉(3,1
4)[3]

= 𝜒(9,1) + 𝜒(6,4) − 2𝜒(6,2,2) + 2𝜒(6,1
4) + 𝜒(4,4,2) + 2𝜒(3,2

3,1)

− 𝜒(3,2,2,1
3) − 𝜒(3,3,2,1,1) + 𝜒(3,1

7). ◊

We now turn to the study of the restriction to Sylow 𝑝-subgroups of the virtual characters intro-
duced in Definition 3.10. As mentioned at the beginning of Section 3, we will use the symbol 𝑃𝑛
to denote a fixed Sylow 𝑝-subgroup of𝔖𝑛.

Theorem 3.12. Let 𝑝 be a prime, let 𝑛 ∈ ℕ and let 𝛾 be a 𝑝-core partition such that |𝛾| ⩽ 𝑛 and
𝑝 ∣ 𝑛 − |𝛾|. Let 𝑢 ∈ ℕ ∪ {0} and 𝑡1, … , 𝑡𝑢 ∈ ℕ be such that 𝑛 − |𝛾| = 𝑝𝑡1 +⋯ + 𝑝𝑡𝑢 . Then

𝑝 ∤
[
𝑉𝛾[𝑝𝑡1 , … , 𝑝𝑡𝑢 ]𝑃𝑛 , 𝟏𝑃𝑛

]
.

Proof. If |𝛾| = 𝑛, then 𝑢 = 0 and 𝑉𝛾[𝑝𝑡1 , … , 𝑝𝑡𝑢 ] = 𝜒𝛾 is a 𝑝-defect zero character. Then 𝑝 does
not divide [(𝜒𝛾)𝑃𝑛 , 𝟏𝑃𝑛 ] by Lemma 2.1.
We now assume that |𝛾| < 𝑛 and 𝑢 > 0. To ease the notation we let 𝑒𝑖 = 𝑝𝑡𝑖 , for all 𝑖 ∈ [𝑢]. We

recall that 𝜒𝛾 is zero on every non-trivial element of 𝑃|𝛾| since 𝛾 is a 𝑝-core partition. By repeated
applications of Theorem 3.9, we find that𝑉𝛾[𝑒1, … , 𝑒𝑢] is zero on every element of 𝑃𝑛 except those
with cycle type (𝑒1, 𝑒2, … , 𝑒𝑢, 1|𝛾|). Let𝜎 ∈ 𝑃𝑛 have cycle type (𝑒1, 𝑒2, … , 𝑒𝑢, 1|𝛾|). Let𝑇𝜎 be the class
function of 𝑃𝑛 taking value 1 on those elements with the same cycle type as 𝜎 and 0 otherwise.
Then 𝑉𝛾[𝑒1, … , 𝑒𝑢]𝑃𝑛 = 𝑧𝑇𝜎 for some 𝑧 ∈ ℕ. Thus[

𝑉𝛾[𝑒1, … , 𝑒𝑢]𝑃𝑛 , 𝟏𝑃𝑛

]
= [𝑧𝑇𝜎, 𝟏𝑃𝑛 ] =

1|𝑃𝑛| ∑
𝜏∈𝑃𝑛

𝑧𝑇𝜎(𝜏) =
𝑧|𝑃𝑛| ⋅ |𝑃𝑛 ∩ 𝜎𝔖𝑛 |.

On the other hand, from Theorem 3.9 we also have that

𝑉𝛾[𝑒1, … , 𝑒𝑢](𝜎) = 𝜒
𝛾(1) ⋅

∏
𝑖⩾2

(𝑖𝑎𝑖 ⋅ 𝑎𝑖!)

where 𝑎𝑖 = |{𝑗 ∈ [𝑢] ∶ 𝑒𝑗 = 𝑖}|. Hence
𝑧 = 𝑧𝑇𝜎(𝜎) = 𝑉

𝛾[𝑒1, … , 𝑒𝑢](𝜎) = 𝜒
𝛾(1) ⋅

|𝐂𝔖𝑛(𝜎)||𝛾|! .

Therefore, to conclude the proof it suffices to show that

𝜈𝑝(𝜒
𝛾(1)) − 𝜈𝑝(|𝛾|!) + 𝜈𝑝(|𝐂𝔖𝑛(𝜎)|) − 𝜈𝑝(|𝔖𝑛|) + 𝜈𝑝(|𝑃𝑛 ∩ 𝜎𝔖𝑛 |) = 0, (3.2)
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SYLOW BRANCHING COEFFICIENTS AND A CONJECTURE OF MALLE AND NAVARRO 563

where we have used that 𝜈𝑝(|𝑃𝑛|) = 𝜈𝑝(|𝔖𝑛|). Since 𝛾 is a 𝑝-core, we have 𝜈𝑝(𝜒𝛾(1)) = 𝜈𝑝(|𝛾|!).
Thus (3.2) follows from the Orbit–Stabiliser theorem (giving |𝔖𝑛| = |𝜎𝔖𝑛 | ⋅ |𝐂𝔖𝑛(𝜎)|) and
Lemma 3.1. □

Starting with Definition 3.7, in this section we introduced a family of virtual characters of𝔖𝑛
and we have studied their properties. The main ingredient of our proof of Theorem B for symmet-
ric groups (Corollary 3.14) is a specific member of this family. We highlight this specific virtual
character in the following definition.

Definition 3.13. Let 𝛾 be a 𝑝-core partition and let 𝑛 = |𝛾| + 𝑤𝑝 for some integer 𝑤 > 0. Let
𝐵 = 𝐵(𝛾, 𝑤) be the 𝑝-block of𝔖𝑛 labelled by 𝛾. Let 𝑤𝑝 =

∑
𝑖⩾1 𝑎𝑖𝑝

𝑖 with 𝑎𝑖 ∈ {0, 1, … , 𝑝 − 1} for
each 𝑖. We denote by 𝑉𝐵 the virtual character of𝔖𝑛 defined as

𝑉𝐵 = 𝑉𝛾[𝑒1, … , 𝑒𝑢],

where 𝑒1, … , 𝑒𝑢 are natural numbers such that |{𝑗 ∈ [𝑢] ∶ 𝑒𝑗 = 𝑝𝑖}| = 𝑎𝑖 for all 𝑖 ⩾ 1, and 𝑢 =∑
𝑖 𝑎𝑖 .

In other words, the numbers 𝑒1, … , 𝑒𝑢 in Definition 3.13 are the various 𝑝𝑖 appearing in the
𝑝-adic expansion 𝑤𝑝 =

∑
𝑖⩾1 𝑎𝑖𝑝

𝑖 , counted with multiplicity.
We remark that every irreducible character 𝜒 ∈ Irr(𝔖𝑛) appearing with non-zero coefficient in

𝑉𝐵 belongs to Irr0(𝐵). This follows directly from Lemma 3.5.

Corollary 3.14. Theorem B holds when 𝐺 is a finite symmetric group.

Proof. Let 𝐺 = 𝔖𝑛 and suppose 𝐵 = 𝐵(𝛾, 𝑤) for some 𝑝-core 𝛾 and 𝑤 ⩾ 0. If 𝑤 = 0 then 𝜒𝛾 ∈
Irr0(𝐵) since 𝛾 is a 𝑝-core partition. By Lemma 2.1, 𝑝 ∤ [(𝜒𝛾)𝑃𝑛 , 𝟏𝑃𝑛 ].
Now suppose 𝑤 > 0. Consider the virtual character 𝑉𝐵 = 𝑉𝛾[𝑒1, … , 𝑒𝑢], introduced in Defini-

tion 3.13, and note that 𝑒𝑖 > 1 and 𝑒𝑖 is a power of 𝑝 for every 𝑖 ∈ [𝑢]. It follows from Theorem 3.12
that 𝑝 ∤ [(𝑉𝐵)𝑃𝑛 , 𝟏𝑃𝑛 ]. Hence, there exists an irreducible character 𝜒 occurring in𝑉

𝐵 that satisfies
𝑝 ∤ [𝜒𝑃𝑛 , 𝟏𝑃𝑛 ]. As remarked after Definition 3.13 we know that 𝜒 ∈ Irr0(𝐵), as desired. □

We are now ready to treat the case of alternating groups, which will conclude the proof of The-
orem B.

Corollary 3.15. Theorem B holds when 𝐺 is a finite alternating group.

Proof. Let 𝐺 = 𝔄𝑛 and suppose 𝐵 is a 𝑝-block of 𝔄𝑛. Let �̄� = 𝐵(𝛾, 𝑤) be a block of 𝔖𝑛 covering
𝐵, and let �̄� and 𝐷 = �̄� ∩ 𝔄𝑛 be defect groups of �̄� and 𝐵, respectively. Let �̄� ∈ Syl𝑝(𝔖𝑛) and
𝑃 ∶= �̄� ∩ 𝔄𝑛 ∈ Syl𝑝(𝔄𝑛).
First assume 𝑝 is odd. Then 𝑃 = �̄� and 𝐷 = �̄�. By Corollary 3.14, there exists 𝜒𝜆 ∈ Irr0(�̄�) such

that 𝑝 ∤ [(𝜒𝜆)�̄�, 𝟏�̄�]. If 𝜆 ≠ 𝜆′, then 𝜑 ∶= (𝜒𝜆)𝔄𝑛 ∈ 𝐵. Since 𝜒
𝜆 ∈ Irr0(�̄�)we have that 𝜑 ∈ Irr0(𝐵),

as |�̄�| = |𝐷| and 𝑝 is odd. Moreover, 𝑝 ∤ [𝜑𝑃, 𝟏𝑃] = [(𝜒𝜆)�̄�, 𝟏�̄�]. On the other hand, if 𝜆 = 𝜆′ then
(𝜒𝜆)𝔄𝑛 = 𝜑

+
𝜆
+ 𝜑−

𝜆
and at least one of 𝜑+

𝜆
and 𝜑−

𝜆
belongs to 𝐵. Note 𝜑+

𝜆
(1) = 𝜑−

𝜆
(1) = 1

2
𝜒𝜆(1).

Since 𝑝 is odd we have that both 𝜑+
𝜆
and 𝜑−

𝜆
are height zero characters in their block. Moreover,

𝑝 ∤ [(𝜑+
𝜆
)𝑃, 𝟏𝑃] = [(𝜑

−
𝜆
)𝑃, 𝟏𝑃] =

1

2
[(𝜒𝜆)�̄�, 𝟏�̄�].
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564 GIANNELLI et al.

Now assume 𝑝 = 2. First suppose 𝑤 > 0. Let 2𝑤 = 2𝑛1 + 2𝑛2 +⋯ + 2𝑛𝑡 be the binary expan-
sion of 2𝑤 where 𝑡 ∈ ℕ and 𝑛1 >⋯ > 𝑛𝑡 ⩾ 1. Let 𝑉�̄� = 𝑉𝛾[2𝑛1 , … , 2𝑛𝑡 ]. By Lemma 3.5, every irre-
ducible character 𝜒𝜆 ∈ Irr(𝔖𝑛) occurring in the linear combination 𝑉�̄� belongs to Irr0(�̄�). More-
over, 𝜆 ≠ 𝜆′ for all such characters 𝜒𝜆 by Lemma 3.6. Since 𝛾 is self-conjugate, if 𝜒𝜆 occurs in
𝑉�̄� then so does 𝜒𝜆′ . In particular, we can write 𝑉�̄� as a sum of terms of the form ±(𝜒𝜆 + 𝜒𝜆′)
or (𝜒𝜆 − 𝜒𝜆′) for various 𝜆. Since 2 ∤ [(𝑉�̄�)�̄�, 𝟏�̄�] by Theorem 3.9, we deduce that 2 ∤ [(𝜒𝜆)�̄�, 𝟏�̄�] +
[(𝜒𝜆

′
)�̄�, 𝟏�̄�] for some𝜒𝜆 ∈ Irr0(�̄�). Let𝜑 ∶= (𝜒𝜆)𝔄𝑛 . Since |𝐷| = 1

2
|�̄�|, we deduce that𝜑 ∈ Irr0(𝐵).

Moreover,

[𝜑𝑃, 𝟏𝑃] = [(𝜒
𝜆)�̄�, 𝟏�̄�] + [(𝜒

𝜆′)�̄�, 𝟏�̄�].

We conclude that 2 ∤ [𝜑𝑃, 𝟏𝑃], as desired.
Finally, if 𝑝 = 2 and 𝑤 = 0, then 𝐷 = 1 and 𝐵 contains a unique irreducible character 𝜑 that is

at the same time of 𝑝-defect zero and of height zero in 𝐵. By Lemma 2.1, we have that 2 ∤ [𝜑𝑃, 𝟏𝑃].
The proof is concluded. □

As promised at the start of Section 3, we use Theorem B to prove Theorem 3.17 and thereby
complete the proof of Theorem A. In order to do this, we first show that irreducible characters in
symmetric and alternating groups of degree coprime to 𝑝 are characterized by the non-vanishing
property on Sylow 𝑝-subgroups.

Theorem 3.16. Let 𝐺 be a finite symmetric or alternating group, 𝑝 be a prime and 𝑃 ∈ Syl𝑝(𝐺).
Then 𝜒 ∈ Irr(𝐺) has degree coprime to 𝑝 if and only if 𝜒(𝑥) ≠ 0 for every 𝑥 ∈ 𝑃.

Proof. Let 𝜒 ∈ Irr(𝐺). By Lemma 2.2, we need to prove that if 𝜒(𝑥) ≠ 0 for every 𝑥 ∈ 𝑃, then
𝑝 ∤ 𝜒(1).
Let 𝑛 ∈ ℕwith𝑝-adic expansion 𝑛 =

∑𝑡
𝑖=1 𝑎𝑖𝑝

𝑛𝑖 , where 𝑛1 > 𝑛2 > ⋯ > 𝑛𝑡 ⩾ 0 and 𝑎𝑖 ∈ [𝑝 − 1]
for all 𝑖 ∈ [𝑡]. Since the theorem holds trivially for 𝑛 < 𝑝, we assume from now on that 𝑛 ⩾ 𝑝. We
call an element g ∈ 𝔖𝑛 a 𝑝-adic element if in the disjoint cycle decomposition of g there are 𝑎𝑖
cycles of length 𝑝𝑛𝑖 for each 𝑖 ∈ [𝑡]. We proceed by splitting the proof into two cases according to
𝐺 = 𝔖𝑛 or 𝐺 = 𝔄𝑛.

(i) 𝐺 = 𝔖𝑛: Given 𝜒 ∈ Irr(𝔖𝑛) with 𝑝 ∣ 𝜒(1), we claim that 𝜒(g) = 0 for any 𝑝-adic element
g ∈ 𝑃. We show that the above claim holds by induction on 𝑡, the 𝑝-adic length of 𝑛. Let
𝜒 = 𝜒𝜆 for some 𝜆 ⊢ 𝑛.
If 𝑡 = 1, then 𝑛 = 𝑎𝑝𝑘 for some 𝑎 ∈ [𝑝 − 1] and 𝑘 ∈ ℕ. In this setting, g has cycle type

(𝑝𝑘, 𝑝𝑘, … , 𝑝𝑘) (that is, g is the product of 𝑎 cycles of length 𝑝𝑘). Since 𝑝 divides 𝜒𝜆(1), by
Lemma 3.2 we have that |𝐶𝑝𝑘(𝜆)| > 0. Equivalently, the 𝑝𝑘-weight of 𝜆 is strictly smaller than
𝑎. Hence it is not possible to successively remove 𝑎 𝑝𝑘-hooks from 𝜆. Using the Murnaghan–
Nakayama rule, we conclude that 𝜒𝜆(g) = 0.
Let us now assume that 𝑡 ⩾ 2 and that the claim holds for 𝑡 − 1. In this setting, we

have that g = 𝜌𝜋, where 𝜌 is the product of 𝑎1 cycles of length 𝑝𝑛1 and 𝜋 is a 𝑝-adic
element of 𝔖𝑛−𝑎1𝑝𝑛1 . Clearly, the 𝑝

𝑛1 -weight 𝑤𝑝𝑛1 (𝜆) of 𝜆 is smaller than or equal to 𝑎1. If
𝑤𝑝𝑛1 (𝜆) < 𝑎1, then 𝜒𝜆(g) = 0 by the Murnaghan–Nakayama rule. Otherwise, 𝑤𝑝𝑛1 (𝜆) = 𝑎1
and 𝜈 ∶= 𝐶𝑝𝑛1 (𝜆) is a partition of 𝑛 − 𝑎1𝑝𝑛1 . Since 𝑝 divides 𝜒𝜆(1), Lemma 3.2 implies that
𝑝 ∣ 𝜒𝜈(1). The inductive hypothesis now guarantees that 𝜒𝜈(𝜋) = 0. This concludes the proof
of our claim, as another application of the Murnaghan–Nakayama rule shows that there
exists 𝑘 ∈ ℤ such that 𝜒𝜆(g) = 𝑘 ⋅ 𝜒𝜈(𝜋) = 0.
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We can now conclude that if 𝜒𝜆(𝑥) ≠ 0 for all 𝑥 ∈ 𝑃, then 𝜒𝜆 ∈ Irr𝑝′(𝔖𝑛), because we can
always find a 𝑝-adic element of𝔖𝑛 lying in 𝑃.

(ii) 𝐺 = 𝔄𝑛: If 𝑝 is odd then 𝑃 ∈ Syl𝑝(𝔄𝑛) is also a Sylow 𝑝-subgroup of 𝔖𝑛, and hence 𝑃
contains a 𝑝-adic element g . Consider 𝜑 ∈ Irr(𝔄𝑛) with 𝑝 ∣ 𝜑(1), and let 𝜆 ⊢ 𝑛 be such
that 𝜑 is an irreducible constituent of (𝜒𝜆)𝔄𝑛 . If 𝜆 ≠ 𝜆

′, then 𝜑 = (𝜒𝜆)𝔄𝑛 and hence
𝜑(g) = 𝜒𝜆(g) = 0, as 𝑝 divides 𝜒𝜆(1). If 𝜆 = 𝜆′, then 𝑝 divides 𝜒𝜆(1) = 2𝜑(1). Let 𝛿 ∶=
(|ℎ1,1(𝜆)|, |ℎ2,2(𝜆)|, … , |ℎ𝓁,𝓁(𝜆)|) be the partition of 𝑛 given by the diagonal hook lengths of
𝜆. We observe that 𝛿 cannot be equal to the cycle type of g . This is clear whenever 𝑎𝑖 ⩾ 2 for
some 𝑖 ∈ [𝑡], because |ℎ𝑗,𝑗(𝜆)| > |ℎ𝑗+1,𝑗+1(𝜆)| for all 𝑗 ∈ [𝓁 − 1]. On the other hand, if 𝑎𝑖 = 1
for all 𝑖 ∈ [𝑡], then Lemma 3.2 shows that we cannot have |ℎ𝑖,𝑖(𝜆)| = 𝑝𝑛𝑖 for all 𝑖 ∈ [𝑡], because
𝑝 divides 𝜒𝜆(1). It follows that 𝜑(g) = 1

2
𝜒𝜆(g) = 0, by [15, 2.5.13].

If 𝑝 = 2, then 𝑃 is a subgroup of index 2 of a Sylow 2-subgroup of𝔖𝑛. Let𝜑 ∈ Irr(𝔄𝑛)with 2 ∣ 𝜑(1)
and let 𝜆 ⊢ 𝑛 be such that 𝜑 is an irreducible constituent of (𝜒𝜆)𝔄𝑛 . We observe that 𝜒

𝜆(1) is even.
From Lemma 3.2, we deduce that there exists 𝑠 ∈ [𝑡] such that |𝐶2𝑠 (𝜆)| > 𝑛 − (2𝑛1 +⋯ + 2𝑛𝑠 ).
Let

𝑟 = min{𝑠 ∈ [𝑡] ∶ |𝐶2𝑠 (𝜆)| > 𝑛 − (2𝑛1 +⋯ + 2𝑛𝑠 )}.

We now pick g ∈ 𝔖𝑛 of cycle type

⎧⎪⎪⎨⎪⎪⎩
(2𝑛1 , 2𝑛2 , … , 2𝑛𝑡 ) if 𝑡 is even,

(2𝑛1 , 2𝑛2−1, 2𝑛2−1, 2𝑛3 , … , 2𝑛𝑡 ) if 𝑡 is odd and 𝑟 = 1,

(2𝑛1−1, 2𝑛1−1, 2𝑛2 , 2𝑛3 , … , 2𝑛𝑡 ) if 𝑡 is odd and 𝑟 > 1.

We observe that such a g is an even permutation and therefore can be found in 𝑃. More-
over, we have that 𝜒𝜆(g) = 0 by the Murnaghan–Nakayama rule. It follows that if 𝜆 ≠ 𝜆′ then
𝜑(g) = 𝜒𝜆(g) = 0. Finally, if 𝜆 = 𝜆′, then clearly |ℎ𝑖,𝑖(𝜆)| is odd for all 𝑖 ∈ [𝑡], hence we cannot
have ℎ𝑖,𝑖(𝜆) = 2𝑛𝑖 for all 𝑖 ∈ [𝑡]. Therefore 𝜑(g) =

1

2
𝜒𝜆(g) = 0, by [15, 2.5.13]. □

Theorem 3.17. Let𝑝 ∈ {2, 3} and let 𝑛 ⩾ 5 be a natural number. Let𝑅 be a Sylow𝑝-subgroup of𝔄𝑛.
Then 𝔄𝑛 either possesses a 𝑝-defect zero character or there is some Aut(𝔄𝑛)-invariant 𝜃 ∈ Irr(𝔄𝑛)
such that [𝜃𝑅, 𝟏𝑅] is not divisible by 𝑝 and 𝜃(𝑥) = 0 for some 𝑥 ∈ 𝑅.

Proof. From Theorem 3.16, we know that for 𝜃 ∈ Irr(𝔄𝑛) the condition 𝜃(𝑥) = 0 for some 𝑥 ∈ 𝑅
is equivalent to having that 𝑝 divides 𝜃(1). We also recall that for every 𝑛 ≠ 6, we have that 𝜃 is
Aut(𝔄𝑛)-invariant if and only if 𝜃 = (𝜒𝜆)𝔄𝑛 for some partition 𝜆 of 𝑛 such that 𝜆 ≠ 𝜆

′.
We distinguish two cases, depending on the value of 𝑝 ∈ {2, 3}.

(i) 𝑝 = 2: If 𝑛 = 6, then both constituents of (𝜒(3,2,1))𝔄6 are 2-defect zero irreducible characters
of𝔄6. Suppose now that 𝑛 ≠ 6. Let 𝛾 be the following 2-core partition:

𝛾 =

{
(2, 1) if 𝑛 is odd,
(3, 2, 1) if 𝑛 is even.
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Let 2𝑤 = 𝑛 − |𝛾| and let 2𝑤 = 2𝑛1 + 2𝑛2 +⋯ + 2𝑛𝑡 be its binary expansion, where 𝑡 ∈ ℕ and
𝑛1 > 𝑛2 >⋯ > 𝑛𝑡 ⩾ 1. Let 𝐵 ∶= 𝐵(𝛾, 𝑤) be the corresponding 2-block of𝔖𝑛. By Lemma 3.6,
if 𝜒𝜆 ∈ Irr0(𝐵), then 𝜆 ≠ 𝜆′. Considering as in the proof of Corollary 3.15 the virtual character
𝑉𝛾[2𝑛1 , 2𝑛2 , … , 2𝑛𝑡 ], we deduce that there exists 𝜆 ∈ (𝑛) labelling a character in Irr0(𝐵) such
that the sum of Sylow branching coefficients 𝑍𝜆 + 𝑍𝜆′ is odd. Since |𝛾| ⩾ 3, we also have that
𝜒𝜆(1) is even, by Lemma 3.3. We conclude that 𝜃 = (𝜒𝜆)𝔄𝑛 is an irreducible character of 𝔄𝑛
with the desired properties, since [𝜃𝑅, 𝟏𝑅] = 𝑍𝜆 + 𝑍𝜆

′ .
(ii) 𝑝 = 3: Direct verification shows that the statement holds for 𝑛 ∈ {5, 8, 11}. More precisely, the

alternating groups𝔄5 and𝔄8 admit 3-defect zero irreducible characters. On the other hand,
𝜃 = (𝜒(8,2,1))𝔄11 is such that 3 ∣ 𝜃(1) and 3 ∤ [𝜃𝑅, 𝟏𝑅] where 𝑅 ∈ Syl3(𝔄11).

Now suppose that 𝑛 ∉ {5, 8, 11}. Let 𝛾 be the following 3-core partition:

𝛾 =

⎧⎪⎨⎪⎩
(4, 2) if 𝑛 ≡ 0 (mod 3),

(3, 1) if 𝑛 ≡ 1 (mod 3),

(6, 4, 2, 1, 1) if 𝑛 ≡ 2 (mod 3).

Let 𝐵 be the 3-block of𝔖𝑛 labelled by 𝛾. Since 𝛾 ≠ 𝛾′ we have that every irreducible character in
Irr0(𝐵) is labelled by a non-self-conjugate partition. By Theorem B, there exists 𝜒𝜆 ∈ Irr0(𝐵) such
that𝑍𝜆 is coprime to 3. Since |𝛾| ⩾ 4we also have that 3 divides𝜒𝜆(1), by Lemma 3.3.We conclude
that 𝜃 = (𝜒𝜆)𝔄𝑛 is an irreducible character of𝔄𝑛 with the desired properties. □
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