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Abstract: The escalating global prevalence of obesity and its intricate association with the devel-
opment of hepatocellular carcinoma (HCC) pose a substantial challenge to public health. Obesity,
acknowledged as a pervasive epidemic, is linked to an array of chronic diseases, including HCC, cat-
alyzing the need for a comprehensive understanding of its molecular underpinnings. Notably, HCC
has emerged as a leading malignancy with rising incidence and mortality. The transition from viral
etiologies to the prominence of metabolic dysfunction-associated fatty liver disease (MAFLD)-related
HCC underscores the urgent need to explore the intricate molecular pathways linking obesity and
hepatic carcinogenesis. This review delves into the interwoven landscape of molecular carcinogenesis
in the context of obesity-driven HCC while also navigating using the current therapeutic strategies
and future prospects for combating obesity-related HCC. We underscore the pivotal role of obesity
as a risk factor and propose an integrated approach encompassing lifestyle interventions, pharma-
cotherapy, and the exploration of emerging targeted therapies. As the obesity-HCC nexus continues
to challenge healthcare systems globally, a comprehensive understanding of the intricate molecular
mechanisms and innovative therapeutic strategies is imperative to alleviate the rising burden of this
dual menace.

Keywords: obesity; metabolic dysfunction-associated fatty liver disease; hepatocellular carcinoma

1. Introduction

Obesity has been officially recognized by the World Health Organization (WHO) as
an epidemic [1]. The Framingham Heart Study recognized obesity as an independent
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risk factor for cardiovascular disease [2], contributing to the conceptualization of obesity
as a morbidity factor. Since then, tons of evidence has linked obesity with a plethora
of disorders, including hypertension, hyperlipidemia, insulin resistance, type 2 diabetes
mellitus (T2DM), coronary and cerebral artery disease, gallbladder disease, metabolic
dysfunction-associated fatty liver disease (MAFLD), obstructive sleep apnea, osteoarthritis,
and malignancy, that contribute to increased morbidity and mortality [3,4]. Increased
economic burden from obesity-related diseases for public health systems has been doc-
umented in a multitude of clinical studies [5–7]. Evidence suggests that irrespective of
the accessibility of a health system to the public, the geographic location, or the studied
era, obesity increases significantly both direct (hospitalized patients, outpatients, and drug
prescription) [5,7] and indirect costs [6]. People with obesity are classified according to
their body mass index (BMI) into four categories: overweight (25–29.9), obesity class I
(30–34.9), obesity class II (35–39.9), obesity class III (morbid obesity—above 40) [3]. The
American College of Cardiology and the American Heart Association, in order to confront
the rising wave of obesity [8], have published guidelines for its management in adults [4].
Recent data regarding global trends in obesity are disheartening [9]. Over the last four
decades, an increase in the mean BMI has been documented in both sexes, from 21.7 kg/m2

and 22.1 kg/m2 to 24.2 kg/m2 and 24.4 kg/m2 for men and women, respectively [9]. In
adulthood, it seems that in wealth-producing countries, the increase in BMI has reached
a plateau in contrast with low-income countries, such as certain parts of Africa and Asia,
in which an increasing trend is being reported [8]. A recent systematic review involving
63 studies and 1,201,807 individuals revealed a global MAFLD incidence of 4613 cases
per 100,000 person-years. The incidence rate has tripled between 2000 and 2015, with
higher rates in men and those who are overweight/obese, emphasizing the need for public
health interventions targeting at-risk populations as the prevalence of MAFLD continues
to rise [10].

Hepatocellular carcinoma (HCC) comprises the seventh most frequently diagnosed
malignancy and the second most common cause of cancer-related death worldwide [11].
MAFLD, the term proposed in 2020 to refer to fatty liver disease related to systemic
metabolic dysregulation, is the most rapidly rising cause of HCC in Western populations
since vaccination programs (Hepatitis B) and medications (Hepatitis C) have limited the
expansion of viral hepatitis [12,13]. The most significant difference between nonalcoholic
fatty liver disease (NAFLD) and the diagnosis of MAFLD is the removal of exclusion
of concurrent liver disease to entertain the diagnosis. In more detail, the criterion for
the diagnosis of MAFLD requires the presence of hepatic steatosis of ≥5% and identifies
metabolic dysregulatory factors as a pre-requisite, which are T2DM, overweight/obesity
by BMI classifications, and the presence of at least 2 out of 7 metabolic risk abnormal-
ities, which include waist circumference, blood pressure, plasma triglycerides, plasma
high-density lipoprotein-cholesterol, prediabetes, homeostasis model assessment of insulin
resistance score, and plasma high sensitivity C-reactive protein [14]. The combination
of hepatic steatosis with one of the aforementioned metabolic risk stratifications leads
to the diagnosis of MAFLD [15]. The introduction of combined immunotherapy with
angiogenic inhibition (atezolizumab plus bevacizumab) has revolutionized the systemic
treatment of unresectable HCC, prolonging the median overall survival (OS) from less than
six months to 19.2 months [16,17]. Obesity comprises a well-described etiologic factor of
cancer. In fact, it is documented that each 5-unit rise in BMI increases approximately by 6%
the risk of cancer [18]. Moreover, recent evidence suggests that metabolically unhealthy
individuals have a 22% higher probability of liver cancer, with central obesity being a
contributing factor [19]. These data are in accordance with evidence from a meta-analysis
of prospective studies, which showed that individuals with overweight and obesity had a
48% and 83% greater risk for primary liver malignancy, respectively, in comparison with
normal weight population [20]. It was estimated that a 5-unit increase in BMI, raised the
relative risk for HCC by 39% [21]. T2DM is predominantly associated with cardiovascular
complications [22], while in patients with T2DM, the prevalence of MAFLD, severe fibrosis,



Int. J. Mol. Sci. 2023, 24, 14704 3 of 21

and cirrhosis have been estimated to be 65%, 14%, and 6%, respectively, with obesity and
insulin administration being predictors of fibrosis [23]. A recent meta-analysis of six inter-
national cohorts demonstrated that patients with MAFLD and T2DM face a significantly
increased risk of hepatic decompensation and HCC as compared to those without dia-
betes [24]. More specifically, participants with T2DM had a significantly higher risk of
hepatic decompensation (at 5 years: 13.85% with T2DM vs. 3.95% without T2DM) and
development of HCC (at 5 years: 3.68% with T2DM vs. 0.44% without T2DM) [24]. HCC
could arise either in the context of MAFLD-related cirrhosis with an estimated incidence of
10.6 cases per 1000 patient years [25], or among MAFLD/metabolic dysfunction-associated
steatohepatitis (MASH) patients with an estimated incidence varying from 0.08 to 0.62
per 1000 patient-years [26–28]. In fact, among non-cirrhotic individuals with chronic liver
disease, MASH patients have the highest probability to develop HCC (OR 2.61, 95% CI
1.27–5.35, p = 0.009) [29]. An estimated 12% to 30% of MAFLD-related HCC arises without
the presence of cirrhosis [16,30].

The aim of this narrative review is to shed light on the specific pathophysiologic
mechanisms leading to HCC in the context of obesity, highlight current evidence-based
and innovative therapeutic approaches, as well as to address future research challenges
and opportunities in the field of obesity-related HCC.

2. Obesity and MAFLD: Molecular Pathways and Pathogenesis

The criteria for a positive diagnosis of MAFLD are based on histological (biopsy),
imaging, or blood biomarker evidence of hepatic steatosis, in addition to one of the follow-
ing three criteria, namely overweight/obesity, presence of T2DM, or evidence of metabolic
dysregulation [14,15]. Then, MAFLD may progress to MASH, which is characterized by
lobular or portal inflammation and damage to hepatocytes (ballooning), ultimately leading
to cirrhosis, hepatic fibrosis, and/or HCC.

MAFLD, alongside its more serious manifestation, MASH, constitutes a major health
burden, as results from a recent meta-analysis demonstrated that MAFLD and MASH
among obese individuals have a global prevalence of 75% and 33%, respectively [31], with
an increasing incidence due to the rise in T2DM and metabolic syndrome [32,33]. The
progression from MASH to MASH-related HCC (~2% of cases per year) is influenced by
a variety of factors, including the hepatic tissue and immune microenvironment, genetic
polymorphisms, mainly patatin-like phospholipase domain containing 3 (PNPLA3) variant
(rs738409; I148M) [34], and dysbiosis of the gut microbiota [35], while MASH-related
HCC has unique molecular and immune traits as compared to other aetiologies of HCC.
MASH is a disease that is histologically characterized by fatty changes with evidence of
lobular hepatitis, focal necroses with mixed inflammatory infiltrates, and the presence
of Mallory bodies, while it often advances to cirrhosis, predisposing to HCC. In more
detail, in obesity, adipose tissue is dysfunctional and lacks the ability to store excess energy,
leading to increased lipolysis and insulin resistance [36]. As a result, circulating free fatty
acids (FFAs) and leptin increase while adiponectin decreases, resulting in intrahepatic fat
accumulation, further potentiating de novo lipogenesis associated with the usual high-
calorie intake observed in obese individuals. Adipose tissue is also further infiltrated by
immune cells that produce cytokines and interleukins, contributing to a chronic low-grade
intrahepatic inflammatory process, while mitochondrial defects, endoplasmic reticulum
(ER) and oxidative stress link lipotoxicity and glucotoxicity with MASH [37,38]. In the
setting of chronic low-grade intrahepatic inflammation, characterized by the activation
of Kupffer cells, dendritic cells and hepatic stellate cells (HSCs), the liver is progressively
infiltrated by immune cells, including neutrophils, T-lymphocytes and macrophages, and
fibrogenesis ensues, which may result in cirrhosis, hindering the replacement of hepatocytes
subjected to cell death or apoptosis, leading to a microenvironment that favors HCC
development [39] (Figure 1).
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Figure 1. Pathogenesis of MAFLD as a continuum from obesity to metabolic dysregulation and
diabetes. Obesity leads to adipocyte and metabolic dysfunction, peripheral tissue insulin resistance,
and increases the risk for T2DM. In this setting, circulating free fatty acids and leptin increase while
adiponectin decreases, resulting in increased triglyceride and intrahepatic fat accumulation, further
potentiating de novo lipogenesis and lipotoxicity with increased oxidative and ER stress, leading
to a microenvironment favoring MAFLD. Adipose tissue is further infiltrated by pro-inflammatory
cytokines and interleukins, contributing to chronic low-grade intrahepatic inflammation characterized
by increased HSC activation, and fibrogenesis ensues. T2DM: type 2 diabetes mellitus; IR: insulin
resistance; HSC: hepatic stellate cell; ER: endoplasmic reticulum; MAFLD: metabolic dysfunction-
associated fatty liver disease.

A significant body of evidence has demonstrated that the accumulation of triglycerides
in the liver is not inherently detrimental but rather serves as an adaptive mechanism to
enhance the influx of FFAs [40]. However, the development and advancement of hepa-
tocellular injury, inflammation, activation of hepatic stellate cells, and accumulation of
extracellular matrix (ECM), collectively defining the phenotype of MASH, are primarily
attributed to lipotoxicity [41]. In more detail, six-month treatment with omega-3 n-6/n-
3 polyunsaturated fatty acids (PUFAs) greatly improved hepatic proteomic and plasma
lipidomic markers of lipogenesis, endoplasmic reticulum stress, and mitochondrial func-
tions in patients with MASH [42]. An excessive influx of fatty acids into hepatocytes
contributes to the promotion of oxidative stress, which, in turn, leads to the development
of insulin resistance (IR) and hinders the process of autophagy, resulting in the activation
of apoptotic cascades, eventually leading to tissue damage and inflammation [43,44].

In animal models with obesity and T2DM, hyperinsulinemia promotes profibrogenic
signals in HSCs via the stimulation of connective tissue growth factor (CTGF) mRNA tran-
scription, either directly or as a co-factor of transforming growth factor-beta (TGF-β) [45],
while results from another study demonstrated that TGF-β-mediated CTGF expression
in HSCs requires signal transducer and activator of transcription 3 (STAT3) signaling
activation [46]. Furthermore, patients with T2DM and MAFLD commonly experience
hyperglycemia, which leads to the rapid formation of advanced glycation end products via
non-enzymatic glycation of proteins in the bloodstream [47]. A study conducted by Jiang
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JX et al. demonstrated that these products elicit the fibrogenic activity and the production
of reactive oxygen species (ROS) in MASH by influencing the activity of the tumor necrosis
factor-alpha (TNF-α) converting enzyme (TACE) via NOX2 activation, as well as by down-
regulating the Sirt1/Timp3 pathways [48]. All these pathways demonstrate the underlying
reasons for the enhanced progression of liver fibrosis and disease complications observed
in patients with MAFLD and T2DM.

Furthermore, a double-blind, randomized clinical trial by Šmíd et al. demonstrated
that twelve months of n-3-PUFA treatment of patients with MAFLD was associated with a
significant decrease in gamma-glutamyl transferase (γGT) activity, liver steatosis reduction
in those who lost weight, and beneficial changes in the plasma lipid profile, with n-3-PUFA-
enriched triacylglycerols and phospholipids being the most expressed lipid signatures [49].
Recent research findings suggest that hepatocyte-derived extracellular vesicles as saturated
fatty acid (SFA)-enriched transporters target macrophages and Kupffer cells, activating a
Toll-like receptor-4 (TLR4)-mediated pro-inflammatory response enough to induce hepa-
tocyte insulin resistance [50]. These mechanisms include the activation of death receptor
signaling, the induction of ER stress leading to mitochondrial apoptosis, the stimulation of
TLR4, the activation of inflammasomes, as well as the inhibition of autophagy.

3. The Progression of MAFLD to HCC

The complex association between MAFLD and tumor development is mediated by the
interaction of multiple pathogenic pathways [51]. Chronic low-grade inflammation and IR,
via the insulin-like growth factor-1 (IGF-1) axis activation, contribute to the creation of a
microenvironment favoring carcinogenesis [52]. In addition, the presence of dysfunctional
adipose tissue characterized by reduced adiponectin and elevated leptin secretion plays a
crucial role in promoting cellular proliferation and angiogenesis [53,54]. Lastly, the presence
of gut dysbiosis and increased intestinal permeability induce the translocation of bacterial
metabolites, triggering TLR activation, which in turn promotes tumorigenesis by reducing
the secretion of interleukin (IL)-18 and enhancing IL-6 signaling [55].

In terms of genetic modifiers, those with the PNPLA3 polymorphism show increased
vulnerability to steatohepatitis and fibrosis, as well as a more than threefold increased
chance of developing HCC [56,57]. In conjunction with the inherent genetic predisposition,
the accumulation of lipids in the liver results in metabolic reprogramming, which is marked
by a confluence of cellular and metabolic modifications, as well as by the buildup of metabo-
lites with harmful potential [58]. The combination of an inflammatory microenvironment
with abnormal metabolism and continuous liver regeneration represents a major contribut-
ing factor in DNA instability and liver tumorigenesis among MAFLD individuals [58]
(Figure 2).

In more detail, the immune system plays a crucial role in the setting of MAFLD and
HCC since the presence of an inflammatory reaction in the liver is a defining characteristic
of MASH and is believed to be the primary factor driving disease progression towards
fibrosis, cirrhosis, and/or HCC [59]. Multiple studies have provided evidence for the
significant involvement of innate and adaptive immune pathways in generating hepatic
inflammation in MASH, while many preclinical models have established the relevance of
fibrosis and the immune response in the progression of MASH-associated HCC [60]. In
the context of MASH, recent data have shown the influence of both adaptive and innate
immune cells on the liver microenvironment, specifically in relation to the transition from
MASH to HCC [61,62]. These immune cells include CD4+ T cells, metabolically activated
CD8+ T cells, platelets, and dendritic cells. Both animal and human studies have demon-
strated that the hepatic population of CD8+PD1+ T cells exhibited an upward trend as the
pathogenesis of MASH advanced [63,64]. The aforementioned cells exhibit a reiteration of
an auto-aggressive condition, whereby liver-resident CD8+PD1+CD103+ T cells, although
exhausted, demonstrate an activated phenotype by producing elevated quantities of cy-
tokines such as TNF-α, CCL2, IL-10, or granzyme B [63,64]. The inflammation-induced
suppression of cytotoxic CD8+ T lymphocyte activation may consist of a tumor-promoting
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mechanism [65]. This immune dysfunction in the liver microenvironment, in conjunction
with gut dysbiosis and the apparent role of progressive fibrosis, constitutes the complex
pathogenesis of HCC among MAFLD patients, with an annual incidence rate of 2.5–13%
depending on the disease stage [65,66].
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Figure 2. Pathogenesis of HCC as a continuum from MAFLD. The complex association between
MAFLD and HCC development is mediated by the interaction of multiple pathogenic pathways,
creating a microenvironment favoring carcinogenesis, characterized by chronic low-grade inflam-
mation in the setting of steatohepatitis, increased EMT and fibrosis, neoangiogenesis and increased
tumor cell proliferation. Therefore, using reliable biomarkers that provide aid in the early diagnosis
of HCC, tumor recurrence, and response to therapy is of utmost importance for individuals with
MAFLD. MAFLD: metabolic dysfunction-associated fatty liver disease; HCC: hepatocellular car-
cinoma; EMT: epithelial-to-mesenchymal transition; AFP: alpha-fetoprotein; DCP: des-γ-carboxy
prothrombin; AFP-L3: lectin-reactive alpha-fetoprotein; IL: interleukin; IGF: insulin-like growth
factor; STAT: signal transducer and activator of transcription; NF-κB: nuclear factor kappa-light-
chain-enhancer of activated B cells; P13K: phosphoinositide 3-kinase; TNF: tumor necrosis factor;
TGF: transforming growth factor; PNPLA: patatin-like phospholipase domain-containing protein;
PPAR: peroxisome proliferator-activated receptors; SREBP: sterol regulatory element binding proteins;
mTOR: mammalian target of rapamycin; CAF: cancer-associated fibroblasts HSC: hepatic stellate cell.

4. Obesity and HCC: Molecular Pathways and Pathogenesis

Approximately 20% to 30% of MAFLD-related HCCs are developed de novo in the
absence of cirrhosis [16], indicating the presence of distinct pathophysiologic mechanisms
differentiating it from cirrhosis-driven carcinogenesis (Table 1). Adipose tissue consists of
two main compartments: the subcutaneous fat tissue and the intra-abdominal (omental,
mesenteric, and perirenal) or visceral fat deposits with several functional differences [67].
In fact, the omentum is an immunological organ within the peritoneal cavity harboring
organized leukocyte aggregates known as “milky spots” and fat-associated lymphoid
clusters (FALCs) [68], being primarily responsible for obesity-related inflammation. Its
anatomic proximity to the liver, since omental and mesenteric fat deposits are drained by
the portal vein, while rectal and perirenal fat is drained directly into the systemic circulation,
might imply a functional interconnection as stated by the “portal theory” [67], which states
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that the liver is exposed in greater concentrations to pro-inflammatory and FFAs from the
intra-abdominal fat storages, predisposing patients to hepatic steatosis and IR [67], driving
hepatocarcinogenesis. Obesity exerts a multitude of effects both locally and systematically,
through a series of inflammatory mediators (increased leptin, reduced adiponectin, TNF-α,
IL-6), growth factors (insulin, IGF-1), and metabolism molecules (visfatin, grehlin, and
resistin) [69]. Cytokines produced by adipose tissue include IL-6, IL-8, IL-1β, TNF-α,
vascular endothelial growth factor (VEGF), chemokine (C-C motif) ligand 2 (CCL2), and
CCL5, which, apart from recruiting immune cells, also support neovascularization [70]
(Figure 3).
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Figure 3. Pathogenic mechanisms involved in the development of HCC in the presence of obesity. An
excessive influx of fatty acids into hepatocytes contributes to the promotion of oxidative stress, which,
in turn, leads to the development of insulin resistance and hinders the process of autophagy, resulting
in the activation of apoptotic cascades, eventually leading to tissue damage and inflammation.
Chronic oxidative stress and IL-6 upregulate STAT3 and NF-κB, while enhanced TNF-α signaling
activates the JNK pathway, potentiating hepatocellular proliferation and angiogenesis while inhibiting
apoptosis. Chronic low-grade inflammation and insulin resistance through IGF-1 activation contribute
to the creation of a microenvironment favoring HCC. In addition, the presence of dysfunctional
adipose tissue characterized by reduced adiponectin and elevated leptin secretion plays a crucial
role in promoting cellular proliferation and angiogenesis. Lastly, the presence of gut dysbiosis
and increased intestinal permeability promotes tumorigenesis via enhanced IL-6 signaling. HCC:
hepatocellular carcinoma; MAFLD: metabolic dysfunction-associated fatty liver disease; MASH:
metabolic dysfunction-associated steatohepatitis; IGF: insulin-like growth factor; ROS: reactive
oxygen species; TNF-α: tumor necrosis factor alpha; IL: interleukin; FFAs: free fatty acids; JNK: c-Jun
N-terminal kinase; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; STAT3:
signal transducer and activator of transcription 3.

With respect to circulating inflammatory cells of the bloodstream, obesity is charac-
terized by downregulation of CD8+ T cells and Tregs, with concomitant induction of M1
macrophages, CD4+ T cells, B cells, and NK cells [69,71], having an impact on the HCC’s
tumor microenvironment (TME) [69,72–75]. Preclinical studies have documented that
leptin enhances neovascularization through a VEGF-dependent pathway in parallel with
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the induction of liver fibrosis and hepatocarcinogenesis [76]. In contrast, adiponectin re-
duces tumor growth, HSC, and macrophage activation in orthotopic animal tumor models,
downregulating angiogenesis through the inhibition of Rho kinase (ROCK)/IFN-inducible
protein 10 (IP10)/vascular endothelial growth factor (VEGF) [77], while animal MASH mod-
els fed choline-deficient l-amino acid-defined (CDAA) diets exhibited hypoadiponectinemia
which further aggravated fibrogenesis, inflammation and hepatocarcinogenesis [78]. The in-
duction of lipogenic signaling is associated with tumor progression and poor prognosis [79].
Low-grade obesity-induced inflammation leads to the generation of IL-6 and TNF-α with
tumor-promoting effects, activating tumor-associated neutrophils and macrophages [80].
IL-6 further induces the activation of STAT3, orchestrating hepatic carcinogenesis [81,82].

Chronic oxidative stress contributes to hepatocarcinogenesis, regulating the expres-
sion of STAT1 and STAT3 [83]. In more detail, the obesity-induced oxidative environment
leads to the inactivation of the T cell protein tyrosine phosphatase (TCPTP), upregulating
STAT1 and STAT3 signaling [84]. The unopposed STAT1 signaling facilitates lymphocyte
recruitment, causing MASH and fibrosis, while STAT3 signaling promotes the development
of HCC [84]. In addition, Omega-3 PUFAs downregulate the expression of STAT3-inducing
apoptosis, comprising a potential therapeutic target [85]. Moreover, the activation of tu-
mor necrosis factor receptor (TNFR) signaling by TNF-α leads to the stimulation of c-Jun
N-terminal kinase (JNK)/activator protein-1 (AP-1) signaling, potentiating hepatocellular
proliferation and inhibiting apoptosis [73,86]. The latter is supported by clinical stud-
ies, which robustly demonstrate an essential role of TNF-α in hepatocarcinogenesis [87].
Conclusively, insulin resistance represents a major cause of carcinogenesis [73,88].

Hyperinsulinemia causes the activation of IGF-1 and insulin receptor substrate-1 (IRS-1),
which further upregulate several signaling molecules, including p53, mitogen-activated pro-
tein kinase (MAPK) [89,90], and phosphatidylinositol-3 kinase (PI3K)/Akt [89,90], leading
to cellular proliferation while also downregulating apoptosis [91]. Additionally, hyper-
glycemia triggers the upregulation of hypoxia-inducible factor-1α (HIF1α), leading to
the induction of glycolytic enzymes, which provide a survival advantage under hypoxic
conditions [92]. According to an observational study by Jee et al., an elevated fasting serum
glucose comprises an independent risk factor of HCC mortality among men (HR 1.57,
95% CI 1.40–1.76, p = 0.03) and women (HR 1.33, 95% CI 1.01–1.81, p = 0.045), increasing
HCC incidence rate in men (HR 1.72, 95% CI 1.56–1.89, p = 0.01) [93].

The HCC microenvironment has been vigorously studied over the past decade [94–97],
comprising, apart from hepatocellular tumor cells, innate immune cells (macrophages [98],
neutrophils [99], dendritic cells), lymphoid cells, adipocytes, stellate cells, fibroblasts, and
ECM, and endothelial cells implicated in a complex interplay to overcome the Warburg
effect-induced hypoxic and acidic conditions [100,101]. A growing body of evidence
suggests that obesity shapes the liver microenvironment, promoting carcinogenesis [69].
Fundamental differences are found in the immunologic synthesis of the omentum and liver
among lean and obese individuals. The omentum and liver are tolerogenic organs, which is
achieved by the predominance of anti-inflammatory innate and adaptive cell populations
producing IL10. In the omentum predominate M2 macrophages, Tregs, invariant natural
killer T (iNKT) cells and Th2 CD4+ (Th2) cells [68], while in the liver there is an abundance
of Tregs in conjunction with NK cells, NKT cells, mucosal-associated invariant T (MAIT)
cells, γδ T cells, CD4+ and CD8+ T cells and B cells [69]. The accumulation of lipids
within adipose tissue and hepatocytes shifts the balance towards pro-inflammatory cellular
populations such as Th17 CD4+ and CD8+ T cells, NK cells, B cells, M1 macrophages and
neutrophils in omentum [68], and CD14+ Kupffer cells [102], MOP+ neutrophils [103],
TNF+ dendritic cells [104], TH17 CD4+ T cells [105], CD8+ T cells [106], and CD3+CD56+
Vα24+ iNKT cells [107].

Although CD8+ T cells and NK cells exhibit cancer immunosurveillance properties,
recent evidence from various studies suggested that obesity induces functional alterations
leading to immunoparesis [108–111]. CD8+ T cells, in contrast to cancer cells, lack the
ability for metabolic adaptations since they are unable to increase their fat uptake upon
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exposure to a high-fat diet (HFD) [108] and are sensitive to nutrient deprivation such
as glutamine-expressing exhaustion phenotypes [110]. Targeting cancer cells’ metabolic
adaptation mechanisms could offer a potential therapeutic strategy [108]. Analogously, the
upregulation of sterol regulatory element-binding protein 2 (SREBP2) leads to an intracellu-
lar increase in cholesterol and lipid peroxide, causing the suppression of natural killer T
(NKT) cell cytotoxicity [111]. In regard to liver-resident macrophages, hypernutrition leads
to defective macrophage cleavage, while the upregulation of IL-1β and TNF potentiates an
ADAM-17-mediated proteolytic cleavage of the macrophage phagocytic receptor TREM2,
resulting in the aggregation of damaged hepatocytes, stimulating further the inflammatory
process [112].

According to Hanahan et al., inflammation has been recognized as a tumor-promoting
characteristic [94,113], and besides their immunoregulatory functions, inflammatory cells
exert pleiotropic tumor-promoting functions within the HCC TME. HepG2 cells co-cultured
with innate and adaptive cells exhibited epithelial-to-mesenchymal transition (EMT) upon
inflammatory stimulation, which promoted immune escape and metastatic dissemina-
tion [114]. Additionally, HCV-carrier mice fed with high cholesterol and saturated fat
diet (HCFD) upon TLR4-stimulation developed HCC with more prominent mesenchymal
features, highly suggestive of activated EMT [115]. Finally, evidence about the role of the
IL-6/STAT3 axis in the organization of HCC TME has emerged [116,117]. Zheng et al.
demonstrated that the upregulation of IL-6/STAT3 signaling in Huh7 cells generated the
transformation of normal fibroblasts to cancer-associated fibroblasts (CAFs), potentiating
the expression of TIMP-1. Consequently, CAFs induced the proliferation of Huh7 cells,
generating a positive feedback loop [116]. Additionally, CAFs induced EMT in HCC, acti-
vating the IL-6/STAT3 signaling [117]. Thus, it becomes evident that obesity modulation
of HCC TME exerts pleiotropic effects in the generation and the progression of hepatocar-
cinogenesis. Further exploitation of the steatosis-driven tumor microenvironment of HCC
could offer unique personalized theranostic applications [118].

Table 1. Summary of studies evaluating the role of obesity in HCC pathogenesis.

Study (Year) Study Subjects Outcomes

Aleffi et al. [70] (2005) Human
Pro-inflammatory cytokines produced by adipose tissue include IL-6, IL-12, TNF-α,

VEGF, CCL2, and CCL5, which regulate immunity and promote neovascularization in
human hepatic stellate cells, mediated via the activation of NF-κB

Endo et al. [54] (2006) Animal
The presence of dysfunctional adipose tissue characterized by reduced adiponectin

and elevated leptin secretion plays a crucial role in promoting tumor proliferation and
angiogenesis, mediated by OB-R/STAT3 signaling

Kitade et al. [76] (2006) Animal Leptin-mediated neovascularization coordinated with VEGF plays an important role
in the development of liver fibrosis and hepatocarcinogenesis in MASH

Man et al. [77] (2010) Animal Adiponectin reduces HCC growth, hepatic stellate cell and macrophage activation,
downregulating angiogenesis via the inhibition of ROCK/CXCL10/VEGF

Park et al. [80] (2010) Animal
Obesity-promoted HCC development is dependent on enhanced production of the
tumor-promoting cytokines IL-6 and TNF, which cause hepatic inflammation and

activation of the oncogenic transcription factor STAT3

Grohmann et al. [84]
(2008) Animal

Obesity-associated hepatic oxidative stress can independently contribute to the
pathogenesis of MASH, fibrosis, and HCC by the inactivation of TCPTP and the

upregulation of STAT1 and STAT3 signaling

Rensen et al. [103]
(2023) Human

Increased hepatic myeloperoxidase activity in obese subjects is associated with the
induction of CXC chemokines and hepatic neutrophil infiltration, contributing to the

development of HCC

Eferl et al. [86] (2003) Animal Activation of TNFR signaling by TNF-α leads to the stimulation of JNK/AP-1
signaling, potentiating hepatocellular proliferation and inhibiting apoptosis
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Table 1. Cont.

Study (Year) Study Subjects Outcomes

Wang et al. [112] (2022) Animal

Obesity leads to defective macrophage cleavage, while the upregulation of
IL-1β and TNF potentiates a TACE-mediated proteolytic cleavage of TREM2,

resulting in the aggregation of damaged hepatocytes, stimulating the
inflammatory process

Kumar et al. [115] (2006) Animal
HCFD stimulates the TLR4 and the OB-R/phosphoSTAT3 signaling pathways,
resulting in liver tumorigenesis via an exaggerated mesenchymal phenotype

with prominent Twist1-expressing TICs

CCL: chemokine (C-C motif) ligand; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells;
CXCL10: CXC motif chemokine ligand 10; ROCK: Rho-kinase; VEGF: vascular endothelial growth factor; STAT:
signal transducer and activator of transcription; TCPTP: T cell protein tyrosine phosphatase; HCC: hepatocellular
carcinoma; MASH: metabolic associated steatohepatitis; AP-1: activator protein-1; JNK: c-Jun N-terminal Kinase;
TNFR: tumor necrosis factor receptor; TREM2: triggering receptor expressed on myeloid cells 2; TACE: tumor
necrosis factor-α-converting enzyme; TNF: tumor necrosis factor; IL: interleukin; OB-R: leptin receptor; TRL4:
Toll-like receptor-4; TIC tumor-initiating stem-like cell; HCFD: high in cholesterol and saturated fat diet.

5. Treatment Strategies in Obesity-Related HCC

Treatment options for patients with HCC were thoroughly presented in the Euro-
pean and American guidelines for therapeutic management, which demonstrated that
treatment selection is primarily based on disease stage [16,119,120]. The most extensively
used staging approach for HCC is the Barcelona Clinic of Liver Cancer (BCLC) algo-
rithm, which distinguishes patients with HCC into five clinical stages: very early stage
(BCLC 0), early stage (BCLC A), intermediate stage (BCLC B), advanced stage (BCLC C),
and terminal stage (BCLC D) [16,121]. Nevertheless, current guidelines do not distinguish
between obesity/MAFLD-related HCC and HCC associated with other modalities, e.g.,
chronic viral hepatitis [65]. Patients with obesity-related HCC usually present with other
obesity-associated cardiometabolic comorbidities, affecting their general health status and
influencing therapeutic decision-making [65,122–125]. These patients are usually diag-
nosed at an older age at stages BCLC C or BCLC D, even though without the obvious
manifestations of cirrhosis [65,126]. The latter is mainly attributed to low-performance
status test (PST), influenced by the coexisting cardiometabolic diseases [65].

As in every other obesity-related comorbidity or complication, prevention of disease pro-
gression via the achievement of weight loss is of paramount importance [127,128]. The armory
against obesity consists of lifestyle modifications, such as dietary and exercise interven-
tions, anti-obesity, anti-diabetic, and anti-hyperlipidemic medications, bariatric/metabolic
surgery, and anti-inflammatory drugs [128–130]. Lifestyle changes focusing on weight loss
are cardinal for reducing the risk of progression of obesity to MAFLD to MASH; however,
dietary guidance as part of supportive care for patients with HCC should also aim to
maintain a well-balanced diet with sufficient caloric intake to counteract weight loss or
malnutrition, which are frequently seen in patients with cancer [65]. Several studies have
shown favorable results with the optimal control of metabolic conditions, primarily T2DM.
Patients with cirrhosis receiving metformin for T2DM had a lower incidence of HCC [131].
In a meta-analysis of patients with T2DM and HCC who were receiving anti-diabetic
medication, metformin was associated with increased overall survival [132]. However,
these results cannot be generalized as it appears that racial/ethnic disparity exists with the
use of metformin [133].

Another example is the relatively new class of anti-diabetic drugs, sodium-glucose
cotransporter-2 inhibitors (SGLT2i), which promote weight loss [124], are effective against
NAFLD and have recently shown promising results in individuals with T2DM and HCC [134].
In addition to improving metabolic markers, such as glycated hemoglobin and BMI, the
possible benefits of SGLT2i in HCC could be mediated by the wealth of their pleiotropic
actions, as these drugs are known to alleviate systemic inflammation, improve cell bioener-
getics, and down-regulate oxidative stress [135]. Glucagon-like peptide 1 (GLP-1) receptor
agonists (GLP-1 RA) and the dual GLP-1/gastric inhibitory polypeptide agonist tirzepatide
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are new anti-diabetic agents that induce significant reductions in body weight and have
been shown to improve hepatic biochemistry and reduce liver fat content in patients
with MAFLD [136,137]. GLP-1 RA has shown encouraging results in animal models with
HCC [138]. However, it is still under investigation whether these benefits are driven by
their metabolic effects or whether their anti-inflammatory properties are also involved.

Bariatric surgery is an ideal option for patients with obesity and/or MASH who
are unresponsive to other treatments, while it has been demonstrated to both ameliorate
hallmarks of MASH as well as to decrease the risk of developing HCC [139–142]. The use
of statins (for hypercholesterolemic states usually accompanying obesity and T2DM) has
been shown to potentially exert beneficial inhibitory effects on HCC development and
HCC recurrence after curative resection [142,143]. Moreover, supplementation of aspirin
was shown to reduce the risk of progression to advanced fibrosis, and subsequently HCC,
in patients with MAFLD and MASH [144,145]. These findings were attributed to the anti-
inflammatory effects of aspirin, which could be of aid in obesity, as it is associated with
chronic low-grade inflammation [122,145]. All of the aforementioned findings should be
interpreted with caution, given the paucity of randomized human trials, since a significant
body of evidence comes from animal and observational studies that are prone to bias.
Furthermore, these strategies need further investigation on top of the standard treatments
already in use to tackle metabolic-associated HCC.

Surgery is the main curative treatment option for localized HCC, including both liver
resection and/or liver transplantation for those with multifocal disease and without cir-
rhosis, as the presence of the latter complicates the management [16,146]. Sparce studies
have explored the influence of obesity on HCC peri/post-surgically. A recent multicenter
study examined the coexistence of HBV infection and obesity as part of metabolic syn-
drome and has demonstrated that metabolic syndrome was associated with poor prognosis,
including many postoperative long-term oncologic survival indices [147]. However, it
has not been established yet whether metabolic treatments can directly benefit these indi-
viduals. Other local treatment options, curative or supportive, include thermal ablation,
intra-arterial therapies (particle embolization, radioembolization, or drug-eluting bead),
and radiotherapy [16,148]. For later stages of HCC, systemic drug administration is the
treatment of choice [16,65,121]. Sorafenib, a tyrosine kinase inhibitor, was the drug of choice
for HCC for several years [16,65,149], but various other novel therapeutic options have
been approved [16,65,119,150,151]. Overall, upon evaluating and deciding on available
treatment options for patients with HCC, a thorough assessment by multidisciplinary
teams in experienced centers should be performed, and the most suitable therapy for each
patient should be considered via constant re-evaluation [16,65].

6. Discussion

Understanding the molecular pathways that link obesity and HCC is crucial for the de-
velopment of targeted therapies and preventive strategies. The molecular linkage between
HCC and obesity is multifaceted, involving inflammation, insulin resistance, dyslipidemia,
gut microbiota, and adipokines. A comprehensive understanding of these pathways pro-
vides a foundation for the development of targeted therapies and preventive measures
that can potentially reduce the incidence and impact of HCC in the context of obesity.
Continued research efforts are essential to unravel the intricacies of this complex relation-
ship and translate findings into clinical practice. Inflammation and immune dysregulation
are the hallmarks of obesity-related HCC. Obesity is characterized by chronic low-grade
inflammation, mainly mediated by adipose tissue-derived cytokines such as TNF-α and
IL-6 [152]. These inflammatory mediators create a microenvironment in the liver promoting
hepatocyte damage and regeneration, increasing the risk of genetic mutations that drive
HCC. The NF-κB pathway, a central regulator of inflammation, plays a pivotal role in
connecting obesity-induced inflammation with HCC development. Activation of NF-κB
promotes the production of pro-inflammatory cytokines and induces cell survival path-
ways, ultimately contributing to HCC initiation and progression [153]. Moreover, obesity is
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closely linked to insulin resistance and hyperinsulinemia, which lead to increased IGF-1
levels, activating the PI3K/AKT/mTOR pathway, which is frequently dysregulated in
HCC [154]. This pathway promotes cell proliferation and inhibits apoptosis, fostering
HCC development. Additionally, hyperinsulinemia can stimulate HSCs, leading to liver
fibrosis, a precursor condition for HCC. Furthermore, dyslipidemia often accompanies
obesity and can result in the accumulation of lipids in hepatocytes, which can progress to
MASH, liver cirrhosis, and eventually HCC. Peroxisome proliferator-activated receptor
gamma (PPAR-γ) and sterol regulatory element-binding protein-1c (SREBP-1c) are key
transcription factors that regulate lipid metabolism and are implicated in the link between
obesity and HCC [155]. Activation of these pathways leads to increased lipid synthesis and
storage, contributing to liver carcinogenesis. Adipose tissue secretes various adipokines,
including leptin and adiponectin, which play roles in energy homeostasis and inflamma-
tion. Elevated levels of leptin and reduced adiponectin are common in obesity and have
been associated with HCC development [156]. Leptin promotes cell proliferation and
angiogenesis, while adiponectin has anti-inflammatory and anti-tumor properties. The
imbalance in these adipokines contributes to the molecular linkage between obesity and
HCC. Finally, obesity-associated changes in the gut microbiota composition can promote
the release of pro-inflammatory LPS into the bloodstream. LPS-induced inflammation can
activate TLR4 signaling, triggering downstream pathways like NF-κB, which exacerbate
liver inflammation and fibrosis, ultimately increasing the risk of HCC [157].

Non-invasive imaging techniques and biomarkers of MAFLD could aid in both the
prevention of HCC as well as in timely diagnosis and therapy [158]. Moreover, developing
reliable biomarkers for early HCC detection in obese populations is of utmost importance.
Alpha-fetoprotein (AFP), the first serum biomarker of HCC, was discovered in 1963, and
it has been demonstrated that it activates AKT/mTOR signaling to promote CXCR4 ex-
pression and migration of hepatoma cells, while several other protein biomarkers have
been identified and utilized into clinical practice since then [159]. Yet, insufficient speci-
ficity and sensitivity of these biomarkers highlight the need for novel biomarker discovery.
Current integrated multiomics technologies for the identification of gene expression and
protein or metabolite distribution patterns can facilitate the discovery of novel biomarker
candidates for obesity-related HCC early diagnosis and prognosis [160]. Nowadays, the
biomarkers for combined testing for HCC diagnosis, tumor recurrence, and treatment re-
sponse include the “gold standard” serum biomarker AFP, as well as the serum biomarker
lens culinaris agglutinin (LCA)-reactive L3 glycoform of AFP (AFP-L3), which has been
associated with poor prognosis upon high concentrations for patients with HCC [161], and
des-gammacarboxyprothrombin (DCP), which stimulates HCC invasion and angiogene-
sis through activation of matrix metalloproteinase, via the upregulation of extracellular
signal-regulated kinase-mitogen-activated protein kinase (MAPK) and the DCP-kinase
insert domain receptor-phospholipase Cγ-MAPK pathways [162]. Another promising
biomarker includes osteopontin (OPN), an acidic chemokine-like secreted phosphoglyco-
protein found in ECM that functions via integrin-αv3/NF-κB/HIF-α, PI3K/Akt/NF-κB,
and CD44-mediated signaling and can be used for early diagnosis of HCC [163,164]. More-
over, glypican-3 (GCP3) is a heparan sulfate proteoglycan that can stimulate HCC growth
through canonical Wnt/β-catenin-mediated signaling pathway, and its combination with
AFP improves the sensitivity for HCC diagnosis up to 82% or 94%, depending on the HCC
type [165]. Elevated midkine (MDK) levels have been observed both in tumor biopsies and
in the blood serum of HCC patients; thus, it can serve as a biomarker of HCC progression
and metastasis via ERK/JNK/p38 MAPK-mediated signaling promoted by ZFAS1, which
is elevated in HCC but can be suppressed using microRNA-624 [166]. It is of note that
the sensitivity of MDK for HCC diagnosis is higher than that of AFP, even at the early
stage of HCC [167]. Similarly, dickkopf-1 protein (DKK1) can serve as a biomarker of HCC,
contributing to the identification of patients with AFP-negative HCC and acting as an
inhibitor of Wnt/β-catenin signaling [168]. DKK1 promotes inflammation, cell migration,
and invasion in HCC via TGF-1-mediated remodeling of the TME, while it exerts oncogenic
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effects in HepG2/C3C cell lines and thus is a promising target for HCC immunother-
apy [169]. Finally, squamous cell carcinoma antigen (SCCA) or SCCA-immunoglobulin M
(IgM) have demonstrated moderate accuracy in HCC diagnosis; however, combined mea-
surements with AFP and DCP increase the sensitivity, specificity, and diagnostic accuracy
for HCC [170,171].

Understanding the intricate molecular pathways linking obesity and HCC has opened
avenues for potential therapeutic interventions and preventive strategies. Developing
drugs that specifically target key molecules in the molecular pathways connecting obesity
and HCC, such as inhibitors of NF-κB, PI3K/AKT/mTOR, and PPAR-γ, may prove effective
in preventing or treating HCC in obese individuals. Lifestyle modifications, including
weight loss through diet and exercise, remain a cornerstone in reducing HCC risk in obese
individuals by helping to alleviate insulin resistance, inflammation, and dyslipidemia.
In addition, research into the manipulation of gut microbiota composition to mitigate
inflammation and reduce HCC risk holds promise, while probiotics, prebiotics, and dietary
interventions may also be explored. Finally, promoting obesity prevention and management
on a population scale is crucial, while public health campaigns emphasizing the importance
of maintaining a healthy weight and lifestyle can contribute to reducing the burden of
obesity-related HCC.

7. Conclusions

In conclusion, this comprehensive review delved into the intricate relationship be-
tween obesity and HCC, shedding light on the multifaceted mechanisms underlying their
association underscoring the substantial role that obesity plays in the development, progres-
sion, and poor prognosis of HCC. Through the elucidation of various molecular, metabolic,
and inflammatory pathways, we have provided insights into how adipose tissue-derived
factors, altered insulin signaling, chronic inflammation, and dysregulated lipid metabolism
collectively contribute to the increased risk of HCC among individuals with obesity. How-
ever, despite the significant strides made in understanding this relationship, there remain
several gaps in knowledge that merit further investigation. The need for future trials
and studies is evident in order to establish a more comprehensive understanding of the
causal links between obesity and HCC, while prospective cohort studies with larger and
more diverse populations are essential to unravel the intricate aspects of this relationship.
Additionally, molecular studies that delve into specific pathways and potential therapeutic
targets can offer novel interventions to mitigate the risk and progression of HCC among
individuals with obesity. Incorporating interdisciplinary approaches, such as combining
clinical, molecular, and epidemiological insights, will be pivotal in deciphering the intricate
interplay between obesity and HCC. By adopting a holistic perspective and focusing on the
diverse factors at play, future trials can pave the way for personalized prevention strategies
and targeted treatments that address both obesity and HCC simultaneously.
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