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We prove that for every ε > 0 there exists n0 = n0(ε)
such that every regular oriented graph on n > n0 vertices 
and degree at least (1/4 + ε)n has a Hamilton cycle. This 
establishes an approximate version of a conjecture of Jackson 
from 1981. We also establish a result related to a conjecture of 
Kühn and Osthus about the Hamiltonicity of regular directed 
graphs with suitable degree and connectivity conditions.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

A Hamilton cycle in a (directed) graph is a (directed) cycle that visits every vertex 
of the (directed) graph. Hamilton cycles are one of the most intensely studied structures 
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in graph theory. There is a rich body of results that establish (best-possible) conditions 
guaranteeing existence of Hamilton cycles in (directed) graphs. Degree conditions that 
guarantee Hamiltonicity have been of particular interest, as well as the trade-off between 
degree conditions and other conditions (e.g. various types of connectivity conditions).

In this paper, we are concerned with directed graphs (or digraphs for short) and 
oriented graphs. Recall that a digraph can have up to two directed edges between any 
pair of vertices (one in each direction), while an oriented graph can have only one.

The seminal result in the area is Dirac’s theorem [2], which states that every graph 
on n ≥ 3 vertices with minimum degree at least n/2 contains a Hamilton cycle. The 
disjoint union of two cliques of equal size or the slightly imbalanced complete bipartite 
graph shows that the bound is best possible. Ghouila-Houri [3] proved the corresponding 
result for directed graphs, which states that every digraph on n vertices with minimum 
semi-degree (i.e. the smaller of the minimum in- and outdegree) at least n/2 contains 
a Hamilton cycle. The bound here is again tight by doubling the edges in the extremal 
examples for the graph setting. The proofs of both of these results are relatively short, 
while the corresponding result for oriented graphs, due to Keevash, Kühn, and Osthus [8]
given below, is more difficult and uses the Regularity Lemma together with a stability 
method. Again the degree threshold is tight as demonstrated by examples given in [8].

Theorem 1.1. There exists an integer n0 such that any oriented graph G on n ≥ n0

vertices with minimum semi-degree δ0(G) ≥ �(3n − 4)/8� contains a Hamilton cycle.

Here we consider the question of minimum degree thesholds for Hamiltonicity in 
regular (di)graphs possibly with some mild connectivity constraints. In this direction, for 
the undirected setting, Bollobás and Häggkvist (see [4]) independently conjectured that 
a t-connected regular graph with degree at least n/(t + 1) is Hamiltonian. That is, the 
threshold for Hamiltonicity is significantly reduced compared to Dirac’s Theorem if we 
consider regular graphs (with some relatively mild connectivity conditions). Note that the 
connectivity conditions without regularity is not enough to guarantee Hamiltonicity due 
to the slightly imbalanced complete bipartite graph. Jackson [4] proved the conjecture 
for t = 2, while Jung [7] and Jackson, Li, and Zhu [6] gave an example showing the 
conjecture does not hold for t ≥ 4. Finally, Kühn, Lo, Osthus, and Staden [9,10] resolved 
the conjecture by proving the case t = 3 for large regular graphs. Results in [17] which 
use ideas from [9,10] also show that the algorithmic Hamilton cycle problem behaves 
quite differently for dense regular graphs compared to dense graphs.

Jackson conjectured in 1981 that, for oriented graphs, regularity alone is enough to 
reduce the semi-degree threshold for Hamiltonicity from �(3n − 4)/8� in Theorem 1.1 to 
n/4.

Conjecture 1.2 ([5]). For each d > 2, every d-regular oriented graph on n ≤ 4d + 1
vertices has a Hamilton cycle.
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Note that the disjoint union of two regular tournaments shows that the degree bound 
above cannot be improved. Furthermore, one cannot reduce the degree bound even if 
the oriented graph is strongly 2-connected; see Proposition 1.6. Our main result is an 
approximate version of Jackson’s conjecture.

Theorem 1.3. For every ε > 0, there exists an integer n0(ε) such that every d-regular 
oriented graph on n ≥ n0(ε) vertices with d ≥ (1/4 + ε)n is Hamiltonian.

Recall that Jackson [4] proved the t = 2 case of the Bollobás–Häggkvist conjecture, 
namely that every 2-connected regular graph of degree at least n/3 has a Hamilton cycle. 
Kühn and Osthus gave a corresponding conjecture for digraphs.

Conjecture 1.4 ([11]). Every strongly 2-connected d-regular digraph on n vertices with 
d ≥ n/3 contains a Hamilton cycle.

We give a counterexample to this conjecture (see Proposition 1.6), but we show that a 
slight modification of the conjecture is true. In particular, 2-connectivity is replaced with 
the following slightly different condition. We call a digraph G on at least four vertices 
strongly well-connected if for any partition (A, B) of V (G) with |A|, |B| ≥ 2, there exist 
two vertex-disjoint edges ab and cd such that a, d ∈ A and b, c ∈ B. Note that the 
property of being strongly well-connected and that of being strongly 2-connected are 
incomparable4; on the other hand being strongly well-connected is stronger than being 
strongly connected but weaker than being strongly 3-connected. Our second result is an 
approximate version of a slightly modified statement of Conjecture 1.4.

Theorem 1.5. For every ε > 0, there exists an integer n0(ε) such that every strongly well-
connected d-regular digraph on n ≥ n0(ε) vertices with d ≥ (1/3 + ε)n is Hamiltonian.

Note that Kühn and Osthus [11] give an example that shows the degree bound in 
Conjecture 1.4 cannot be reduced, i.e. an example of a strongly 2-connected regular 
digraph on n vertices and degree close to n/3. The same example is easily seen to be 
strongly well-connected, showing that we cannot take the degree to be smaller than n/3
in Theorem 1.5.

Our methods are based on the robust expanders technique of Kühn and Osthus which 
have been used to resolve a number of conjectures (see [12,13]). Any directed dense graph 
that is a robust expander automatically contains a Hamilton cycle. An important part 
of this paper is to gain an understanding of dense directed graphs that are not robust 
expanders. In particular, we are able to construct vertex partitions of such digraphs with 
useful expansion properties. Although we do not show it directly, such partitions almost 
immediately allow us to construct very long cycles in the required settings (that is cycles 

4 A directed cycle (on at least 4 vertices) is strongly well-connected but not strongly 2-connected; see 
Proposition 1.6 for the converse example.
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Fig. 1. A strongly 2-connected (n − 1)-regular digraph G on 2n vertices.

that pass through all but a small proportion of the vertices). The remainder of the paper 
is devoted to giving delicate balancing arguments to obtain full Hamilton cycles.

The paper is organised as follows. In the next subsection, we give the counterexample 
to Conjecture 1.4. In Section 2 we give notation, preliminaries and a sketch proof. In 
Section 3 we develop the necessary language of partitions and establish some of their 
basic properties. Section 4 is devoted mainly to giving the balancing arguments that 
will allow us to construct full Hamilton cycles. Section 5 shows how to combine earlier 
results to show that dense directed and oriented graphs with certain vertex partitions 
contain Hamilton cycles. In Section 6 we prove Theorems 1.5 and 1.3. We pose some 
open problems in Section 7.

1.1. Counterexample to Conjecture 1.4

Proposition 1.6. For n ≥ 3, there exists a strongly 2-connected (n − 1)-regular digraph 
on 2n vertices with no Hamilton cycle. For n ≥ 3, there exists a strongly 2-connected 
(n − 1)-regular oriented graph on 4n + 2 vertices with no Hamilton cycle.

Proof. Let G′ be the digraph that is the disjoint union of two complete digraphs G1 and 
G2 each of size n. Let a, b ∈ V (G1) and c, d ∈ V (G2). Let G be the digraph obtained 
from G′ by deleting the edges ab, ba, cd, and dc, and adding the edges ac, cb, bd, da
(see Fig. 1). It is clear that G is a strongly 2-connected (n − 1)-regular digraph on 2n
vertices.

It is easy to see that G has no Hamilton cycle. Indeed, any Hamilton cycle H of G
must use at least one edge inside one of the cliques (since n ≥ 3). Let P be a maximal 
path of H inside one of the cliques (say G1) with at least one edge. Let e and e′ be the 
edges of H that extend P into G2. Then e and e′ must be vertex-disjoint edges that cross 
between G1 and G2 in opposite directions. But G does not have such a pair of edges.

The oriented graph is constructed similarly. It is easy to construct a regular tourna-
ment of order 2n + 1 that contains two cycles that together span the tournament and 
which have exactly two vertices in common. Indeed, we start with the two directed cycles 
with common vertices say a and b. The (undirected) complement is Eulerian, that is, all 
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vertices have even degree, and so we orient these edges using an Euler tour. This gives 
the desired tournament.

Let G′ be the disjoint union of two such regular tournaments G1 and G2 each of order 
2n +1. Let C1 and C ′

1 be the two directed cycles in G1 such that V (C1) ∪V (C ′
1) = V (G1)

and V (C1) ∩ V (C ′
1) = {a, b}. Similarly, let C2 and C ′

2 be two directed cycles in G2 such 
that V (C2) ∪ V (C ′

2) = V (G2) and V (C2) ∩ V (C ′
2) = {c, d}. Let G be obtained from G′

by deleting the edges of C1 ∪ C ′
1 ∪ C2 ∪ C ′

2, and adding the edges ac, cb, bd, da. It is 
easy to check that G is a strongly 2-connected, (n − 1)-regular, oriented graph on 4n +2
vertices. Note that G is not Hamiltonian by a similar argument as above. �
2. Notation and preliminaries

Throughout the paper, we use standard graph theory notation and terminology. For 
a digraph G, we denote its vertex set by V (G) and its edge set E(G). For a, b ∈ V (G), 
we write ab for the directed edge from a to b. We sometimes write |G| for the number 
of vertices in G and e(G) for the number of edges in G. We write H ⊆ G to mean H
is a subdigraph of G, i.e. V (H) ⊆ V (G) and E(H) ⊆ E(G). We sometimes think of 
F ⊆ E(G) as a subdigraph of G with vertex set consisting of those vertices incident to 
edges in F and edge set F . For S ⊆ V (G), we write G[S] for the subdigraph of G induced 
by S and G − S for the digraph G[V (G) \ S]. For A, B ⊆ V (G) not necessarily disjoint, 
we define EG(A, B) := {ab ∈ E(G) : a ∈ A, b ∈ B} and we write G[A, B] for the graph 
with vertex set A ∪ B and edge set EG(A, B). We write eG(A, B) := |EG(A, B)|. We 
often drop subscripts if these are clear from context. For two digraphs H1 and H2, the 
union H1∪H2 is the digraph with vertex set V (H1) ∪V (H2) and edge set E(H1) ∪E(H2). 
We say that an undirected graph G is bipartite with bipartition (A, B) if V (G) = A ∪B

and E(G) ⊆ {ab : a ∈ A, b ∈ B}.
For a digraph G and v ∈ V (G), we denote the set of outneighbours and inneigh-

bours of v by N+
G (v) and N−

G (v) respectively, and we write d+
G(v) = |N+

G (v)| and 
d−G(v) = |N−

G (v)| for the out- and indegree of v respectively. For S ⊆ V (G) we write 
d−S (v) := |N−

G (v) ∩ S| and d+
S (v) := |N+

G (v) ∩ S|. We write δ+(G) and δ−(G) respec-
tively for the minimum out- and indegree of G, and δ0(G) := min{δ+(G), δ−(G)} for 
the minimum semi-degree. Similarly, the maximum semi-degree Δ0(G) of G is defined 
by Δ0(G) := max{Δ+(G), Δ−(G)} where Δ+(G) and Δ−(G) denote the maximum out-
and maximum indegree of G respectively. A digraph is called d-regular if each vertex has 
exactly d outneighbours and d inneighbours. For undirected graphs G, we write Δ(G)
and δ(G) respectively for the maximum degree and the minimum degree. A graph is 
called d-regular if each vertex has exactly d neighbours.

A directed path Q in a digraph G is a subdigraph of G where V (Q) = {v1, . . . , vk} for 
some k ∈ N and where E(Q) = {v1v2, v2v3, . . . , vk−1vk}. A directed cycle in G is exactly 
the same except that it also includes the edge vkv1. A set of vertex-disjoint directed 
paths Q = {Q1, Q2, . . .} in G is called a path system in G. We interchangeably think of 
Q as a set of vertex-disjoint directed paths in G and as a subgraph of G with vertex set 
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V (Q) = ∪iV (Qi) and edge set E(Q) = ∪iE(Qi). We sometimes call this subgraph the 
graph induced by Q. A matching M in a digraph (or undirected graph) G is a set of 
edges M ⊆ E(G) such that every vertex of G is incident to at most one edge in M . We 
say that a matching M covers S ⊆ V (G) if every vertex in S is incident to some edge 
in M .

For two sets A and B, the symmetric difference of A and B is the set A
B := (A \
B) ∪(B\A). For k ∈ N, we sometimes denote the set {1, 2, . . . , k} by [k]. For x, y ∈ (0, 1], 
we often use the notation x � y to mean that x is sufficiently small as a function of y
i.e. x ≤ f(y) for some implicitly given non-decreasing function f : (0, 1] → (0, 1].

2.1. Tools

We will require Vizing’s theorem for multigraphs in the proof of Lemma 4.1. Let H
be an (undirected) multigraph (without loops). The multiplicity μ(H) of H is maximum 
number of edges between two vertices of H, and, as usual, Δ(H) is the maximum degree 
of H. A proper k-edge-colouring of H is an assignment of k colours to the edges of H
such that incident edges receive different colours.

Theorem 2.1 ([18]; see e.g. [1]). Any multigraph H has a proper k-edge colouring with 
k = Δ(H) + μ(H) colours. In particular, by taking the largest colour class, there is a 
matching in H of size at least e(H)/(Δ(H) + μ(H)).

In Lemma 4.2, we will require a Chernoff inequality for bounding the tail probabilities 
of binomial random variables. For a random variable X, write E[X] for the expectation 
of X. We write X ∼ Bin(n, p) to mean that X is distributed as a binomial random 
variable with parameters n and p, that is a random variable that counts the number of 
heads in n independent coin flips where the probability of heads is p. In that case we 
have E[X] = np and the following bound.

Theorem 2.2 (see [16]). Suppose X1, X2, . . . , Xn are independent random variables taking 
values in {0, 1} and X = X1 + · · · + Xn. Then, for all 0 ≤ δ ≤ 1, we have

P (X ≤ (1 − δ)E(X)) ≤ exp
(
−δ2E(X)/2

)
.

In particular, this holds for X ∼ Bin(n, p).

2.2. Robust expanders

In this subsection we define robust expanders and discuss some of their useful prop-
erties.

Definition 2.3. Fix a digraph G on n vertices and parameters 0 < ν < τ < 1. For 
S ⊆ V (G), the robust ν-outneighbourhood of S is the set RN+

ν (S) := {v ∈ V (G) :
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|N−
G (v) ∩ S| ≥ νn}. We say G is a robust (ν, τ)-outexpander if |RN+

ν (S)| ≥ |S| + νn for 
all subsets S ⊆ V (G) satisfying τn ≤ |S| ≤ (1 − τ)n.

If the constant ν used is clear from context, we write RN+(S). The notion of robust 
expansion has been key to proving numerous conjectures about Hamilton cycles. One 
of the starting points is the following seminal result which states that robust expanders 
with certain minimum degree condition are Hamiltonian.

Theorem 2.4 ([14]; see also [15]). Let 1/n � ν ≤ τ � γ < 1. If G is an n-vertex digraph 
with δ0(G) ≥ γn such that G is a robust (ν, τ)-outexpander, then G contains a Hamilton 
cycle.

The following straightforward lemma shows that robust expansion is a “robust” prop-
erty, i.e. if G is a robust (ν, τ)-outexpander, then adding or deleting a small number of 
vertices results in another robust outexpander with slightly worse parameters.

Lemma 2.5 ([9]). Let 0 < ν � τ � 1. Suppose that G is a digraph and U, U ′ ⊆ V (G)
are such that G[U ] is a robust (ν, τ)-outexpander and |U
U ′| ≤ ν|U |/2. Then, G[U ′] is 
a robust (ν/2, 2τ)-outexpander.

By taking (U, U ′) = (V (G) − S, V (G)), Lemma 2.5 has the following corollary.

Corollary 2.6. Let 1/n � ν � τ � 1. If G is an n-vertex digraph and S ⊂ V (G)
such that |S| ≤ ν|G|/2 and G − S is a robust (ν, τ)-outexpander then G is a robust 
(ν/2, 2τ)-outexpander.

The next lemma shows that any digraph G with minimum semi-degree slightly higher 
than |G|/2 is a robust outexpander.

Lemma 2.7 ([12]). Let 0 < ν ≤ τ ≤ ε < 1 be constants such that ε ≥ 2ν/τ . Let G be a 
digraph on n vertices with δ0(G) ≥ (1/2 + ε)n. Then, G is a robust (ν, τ)-outexpander.

In fact we can relax the degree condition in Lemma 2.7 and allow a small number of 
vertices to violate the minimum degree condition.

Corollary 2.8. Let 1/n < ν, ρ � τ � ε � α < 1 be constants. If G is an n-vertex digraph 
such that d+(v), d−(v) ≥ (1/2 + ε)n for all but at most ρn vertices v ∈ V (G), then G is 
a robust (ν, τ)-outexpander. In particular, if additionally δ0(G) ≥ αn, then G contains 
a Hamilton cycle.

Proof. Fix ν′ and τ ′ such that ν, ρ � ν′ � τ ′ � τ . Let W be the set of vertices v in G
such that min{d+(v), d−(v)} < (1/2 + ε)n. Then, observe that G′ = G −W satisfies

d+
G′(v), d−G′(v) ≥ (1/2 + ε− ρ)n ≥ (1/2 + ε− ρ)|G′|
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for all v ∈ V (G′). By our choice of parameters, we can conclude that G′ is a robust 
(ν′, τ ′)-outexpander by Lemma 2.7 since τ ′ ≤ ε − ρ and 2ν′/τ ′ ≤ ε − ρ. Moreover, we 
have |W | = ρn ≤ ν′n/2. Therefore, G is a robust (ν, τ)-outexpander by Corollary 2.6, 
and the result follows by Theorem 2.4. �
2.3. Sketch proof

Note that the sketch proof we give below only makes reference to Definition 2.3, 
Theorem 2.4, and Lemma 2.7. We will sketch the proof of Theorem 1.5 and then explain 
how these ideas are generalised and refined to prove Theorem 1.3.

Let G = (V, E) be an n-vertex, d-regular digraph with d ≥ (1/3 +ε)n. If G is a robust 
(ν, τ)-outexpander (for suitable parameters ν and τ), then by Theorem 2.4, we know G
has a Hamilton cycle. So assume G is not a robust (ν, τ)-outexpander. We describe a 
useful vertex partition of G.

Partitioning non-robust expanders - Since G is not a robust (ν, τ)-outexpander we 
know by Definition 2.3 that there exists S ⊆ V (G) such that τn ≤ |S| ≤ (1 − τ)n and 
|RN+

ν (S)| ≤ |S| +νn. This immediately gives us a partition of V (G) into four parts given 
by

V11 = S ∩ RN+(S), V12 = S \ RN+(S),

V21 = RN+(S) \ S, V22 = V \ (S ∪ RN+(S)).

We see that most outedges from vertices in S go to RN+(S) by the definition of RN+(S). 
Moreover, S and RN+(S) must be of similar size; indeed we already know RN+(S) is 
not significantly bigger than S, and it cannot be significantly smaller because otherwise 
the degrees in RN+(S) would be larger than degrees in S violating that G is regular. 
Also most outedges of vertices in V \S go to V \RN+(S) because if many of these edges 
went to RN+(S), the degrees in RN+(S) would again be too large violating that G is 
regular. All of this is straightforward to show and captured in Lemma 3.6. The structure 
we obtain is depicted in Fig. 2. To summarise, we have that

(a) |S| ≈ |RN+(S)| so |V12| ≈ |V21|,
(b) most edges of G are from S to RN+(S) and from V \S to V \RN+(S). We call these 

the good edges of G, and
(c) (b) implies that we must have |S|, |V \S| � d so that in particular n/3 � |S|, |V \S| �

2n/3

Next we describe the strategy to construct a Hamilton cycle in G using this partition.
Constructing the Hamilton cycle for balanced partitions - We first describe how to 

construct the Hamilton cycle in the special case |V12| = |V21| > 0. In that case, let 
V12 = {x1, . . . , xk} and V21 = {y1, . . . , yk}. Consider the two edge-disjoint subgraphs G1
and G2 of G given by (see Fig. 3)
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Fig. 2. The 4-partition of V (G) with |V12| ≈ |V21|, and directions of the good edges.

Fig. 3. The edge-disjoint subgraphs G1 and G2 of G.

G1 =
(
S ∪ RN+(S), EG(S,RN+(S)

)
= (V11 ∪ V12 ∪ V21, E(V12, V11) ∪ E(V11, V11) ∪ E(V11, V21) ∪ E(V12, V21)),

and

G2 =
(
(V \ S) ∪ (V \ RN+(S)), EG(V \ S, V \ RN+(S)

)
= (V22 ∪ V12 ∪ V21, E(V21, V22) ∪ E(V22, V22) ∪ E(V22, V12) ∪ E(V21, V12)).

Suppose we can find

(i) vertex-disjoint paths Q1
1, . . . , Q

1
k in G1 that together span V (G1) and where Q1

i is 
from xi to yσ(i) for some permutation σ on [k],

(ii) vertex-disjoint paths Q2
1, . . . , Q

2
k in G2 that together span V (G2) and where Q2

i is 
from yi to xπ(i) for some permutation π on [k],

(iii) and where the permutation πσ is a cyclic permutation.

Then it is easy to see that the union of these paths forms a Hamilton cycle. We find 
these paths as follows.

Consider G1 first. We construct the graph J1 from G1 by identifying xi with yi for 
every i ∈ [k] and keeping all edges (except any self loops). The vertex which replaces xi

and yi is called i. From the structure of G1, it is not hard to see that most vertices in J1

have degree roughly d = (1/3 + ε)n, while |J1| = |S| � 2n/3 by (c). So most vertices in 
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Fig. 4. An example illustration of (A) G1, (B) the corresponding graph J1 with a Hamilton cycle H1, and 
(C) the vertex-disjoint paths Q1

1, . . . , Q1
k spanning G1 (with k = 3 in this case) corresponding to H1. In 

this case σ = (231), i.e. the cyclic permutation that sends 1 to 2, 2 to 3, and 3 to 1.

J1 have in- and outdegree at least (1/2 + ε/2)|J1|, which implies J1 is a robust expander 
by Lemma 2.7.5 Therefore J1 has a Hamilton cycle H1 by Theorem 2.4.

Let σ be the permutation on [k] where σ(i) is the vertex in [k] after i that is visited 
by H1. Therefore H1 is the union of paths R1, . . . , Rk where Ri is from i to σ(i), which 
corresponds in G1 to the path Q1

i from xi to yσ(i); these paths can easily be seen to 
satisfy (i) (see Fig. 4). Next, we obtain J2 from G2 by identifying the vertex xi with 
yσ(i), and labelling the resulting vertex i, for every i ∈ [k] similarly as for J1. Again, 
we find that J2 is a robust expander and so has a Hamilton cycle H2. Let π be the 
permutation on [k] such that π(i) is the next vertex in [k] after i visited by H2. Using 
the same argument as before, we obtain paths Q2

1, . . . , Q
2
k satisfying (ii). By our choice 

of identification in J2, and since H2 is a Hamilton cycle, it is easy to see that π and σ
satisfy (iii).

Constructing the Hamilton cycle for unbalanced partitions - We have seen how to find 
the Hamilton cycle when |V12| = |V21|. If instead we only have (by (a)) that |V12| ≈ |V21|, 
then we will find vertex-disjoint paths S1, . . . , S� that use only bad edges (and only a 
relatively small number of bad edges) such that “contracting” these paths results in a 
slightly modified graph G′ with a slightly modified vertex partition V ′

11, V
′
12, V

′
21, V

′
22, 

which has essentially the same properties as before but also that |V ′
12| = |V ′

21|. Here G′ is 

5 Any enumeration of the vertices in V12 and V21 would lead to J1 being a robust expander.
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not regular, but almost regular; this however is enough for us. So we can find a Hamilton 
cycle in G′ using the previous argument, and “uncontracting” the paths S1, . . . , S� gives 
a Hamilton cycle in G.6

The case of regular oriented graphs - For Theorem 1.3, i.e. when G is an n-vertex 
regular oriented graph with degree d ≥ (1/4 + ε)n, we start by applying the same argu-
ment as before. Recall that we construct digraphs J1 and J2 and wish to find Hamilton 
cycles in these digraphs. However, whereas before, we could guarantee that both J1 and 
J2 would be robust expanders, this time we find that (at most) one of them, say J2
might not be. This is because G and Ji have lower degree, and so we cannot necessar-
ily apply Lemma 2.7. It is not too hard to see that the Ji are almost regular and so 
we can iterate our partition argument on J2. In particular we can partition V (J2) into 
four parts Z11, Z12, Z21, Z22 that satisfy slightly modified forms of (a) and (b). Again 
if |Z12| = |Z21|, then we can create digraphs K1 and K2 such that Hamilton cycles in 
K1 and K2 lift to a Hamilton cycle in J2 (just as Hamilton cycles in J1 and J2 lift to a 
Hamilton cycle in G). This time the increase in density is enough to guarantee that both 
K1 and K2 are robust expanders, which gives the desired Hamilton cycle by Theorem 2.4. 
If |Z12| �= |Z21| then, as before, we need to construct paths whose contraction results 
in a modified graph with a modified partition that is balanced. In fact, we need to be 
able to find and contract paths in such a way that we simultaneously have |V ′

12| = |V ′
21|

and |Z ′
12| = |Z ′

21|. For this purpose, and generally for a cleaner and more transparent 
argument, rather than working with two iterations of the 4-partition described earlier, 
we work equivalently with a 9-partition of V (G). The required paths are constructed in 
Lemma 4.6.

3. Partitions of regular digraphs and oriented graphs

We have seen that (essentially) any dense digraph that is a robust expander is Hamil-
tonian. If the digraph is not a robust expander, then we will see (Lemma 3.6) that the 
witness sets to this non-expansion naturally forms a partition of the vertices into 4 parts. 
Throughout the paper we will be working with such partitions and their iterations. In 
this section, we introduce the language of partitions and establish some of their basic 
properties.

Definition 3.1. For a given digraph G and k ∈ N, a partition Pk = {Vij : i, j ∈ [k]} of 
V (G) is called a k2-partition of V (G) (we allow the sets Vij to be empty). The set of 
good edges with respect to Pk is defined as

Gk(Pk, G) :=
⋃
i

E(Vi∗, V∗i),

6 For Theorem 1.5, these paths are constructed directly in the proof of the theorem in Section 6, but in 
the more complicated case of Theorem 1.3, they are constructed in Lemma 4.6.
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where Vi∗ :=
⋃

j Vij and V∗j :=
⋃

i Vij . The set of bad edges with respect to Pk is defined 
as

Bk(Pk, G) := E(G) − Gk(Pk, G) =
⋃
i�=j

E(Vi∗, V∗j).

We write Gij := G[Vi∗, V∗j ].

Note that while we define k2-partitions and prove properties for general k, in fact we 
only require the cases k = 2, 3. For regular digraphs, we have a useful equality relating 
the sizes of different parts in a k2-partition and the number of bad edges.

Proposition 3.2. Let G be a d-regular digraph, k ∈ N, and Pk = {Vij : i, j ∈ [k]} be a 
k2-partition of V (G). Then, for all i ∈ [k], we have

d(|Vi∗| − |V∗i|) =
∑
j �=i

(e(Gij) − e(Gji)) .

Proof. By considering outneighbours of the vertices in Vi∗, we can write

d|Vi∗| = e(Vi∗, V∗i) +
∑
j �=i

e(Vi∗, V∗j).

Similarly, by considering the inneighbours of the vertices in V∗i, we have

d|V∗i| = e(Vi∗, V∗i) +
∑
j �=i

e(Vj∗, V∗i).

By subtracting the second equality from the first one, the result follows. �
If the number of bad edges is small compared to E(G), then Proposition 3.2 implies 

that Vi∗ and V∗i are similar in size.

Corollary 3.3. Let k ∈ N and γ be a positive constant. Let G be a d-regular digraph on n
vertices, and Pk = {Vij : i, j ∈ [k]} be a k2-partition of V (G). If |Bk(P, G)| ≤ γn2, then 
we have 

∣∣|Vi∗| − |V∗i|
∣∣ ≤ γn2/d for all i ∈ [k].

Proof. Fix i ∈ [k]. We have
∣∣∣∑
j �=i

(e(Vi∗, V∗j) − e(Vj∗, V∗i))
∣∣∣ ≤ ∑

j �=i

(e(Vi∗, V∗j) + e(Vj∗, V∗i)) ≤ |Bk(P, G)| ≤ γn2.

Hence, by Proposition 3.2, we know d
∣∣|Vi∗| − |V∗i|

∣∣ ≤ γn2, so the result follows. �
We will be especially interested in partitions with a small number of bad edges and 

where certain parts are not too small.
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Definition 3.4. For a given digraph G on n vertices and positive constants γ, τ , and 
k ∈ N, we say a k2-partition Pk = {Vij : i, j ∈ [k]} of V (G) is a (k2, τ, γ)-partition if the 
following hold:

|Bk(Pk, G)| ≤ γn2 and |Vi∗|, |V∗j | ≥ τn for all i, j ∈ [k].

Remark 3.5. In general, the constants γ and τ are taken to satisfy 1/n � γ � τ �
1. When working with regular graphs, we sometimes implicitly take the conclusion of 
Corollary 3.3 as a property of a (k2, τ, γ)-partition.

Next, we show that every almost regular digraph which is dense and not a robust 
(ν, τ)-outexpander admits a (4, τ/2, 4ν)-partition.

Lemma 3.6. Let 1/n � ν � τ � α � 1, and G be a digraph on n vertices such that 
e(G) ≥ (α − ν)n2 and Δ0(G) ≤ αn. If G is not a robust (ν, τ)-outexpander, then G
admits a (4, τ, 4ν)-partition.

Proof. Assume G is not a robust (ν, τ)-outexpander. Then we can find a subset S ⊆ V (G)
such that τn ≤ |S| ≤ (1 −τ)n and |RN+

ν (S)| < |S| +νn. Let us define V11 = S∩RN+
ν (S), 

V12 = S − RN+
ν (S), V21 = RN+

ν (S) − S, and V22 = V (G) − (S ∪ RN+
ν (S)). Therefore 

V1∗ = S and V∗1 = RN+
ν (S). Note that P2 = {Vij : i, j ∈ [2]} is a 4-partition of V (G). 

Moreover, since τn ≤ |S| ≤ (1 − τ)n, we have |V1∗|, |V2∗| ≥ τn.
We first show that |B2(P2, G)| ≤ 4νn2. By the definition of RN+

ν (S), we know that 
every vertex in V∗2 has fewer than νn inneighbours from V1∗. Thus, we have

e(V1∗, V∗2) ≤ νn2 (3.1)

and

e(V1∗, V∗1) = e(V1∗, V (G)) − e(V1∗, V∗2) ≥ e(V1∗, V (G)) − νn2

= e(G) − e(V2∗, V (G)) − νn2

≥ (α− ν)n2 − αn|V2∗| − νn2 = αn|V1∗| − 2νn2. (3.2)

Since |V∗1| = |RN+
ν (S)| < |S| + νn = |V1∗| + νn, we have

e(V (G), V∗1) ≤ αn|V∗1| < (|V1∗| + νn)αn ≤ αn|V1∗| + νn2.

Thus, together with (3.2), we have

e(V2∗, V∗1) = e(V (G), V∗1) − e(V1∗, V∗1) ≤ 3νn2.

Therefore (3.1) implies that |B2(P2, G)| = e(V1∗, V∗2) + e(V2∗, V∗1) ≤ 4νn2.
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We now bound |V∗1| and |V∗2| from below. Let T be the set of vertices with outdegree 
at most (α−√

ν)n. Then as Δ0(G) ≤ αn

(α− ν)n2 ≤ e(G) ≤ (α−
√
ν)n|T | + αn(n− |T |) = αn2 −

√
νn|T |,

which implies that |T | ≤ √
νn. For {i, j} = [2], recall that |Vi∗| ≥ τn and so we have

(|V∗i| + 4ν/τ)|Vi∗| ≥ |Vi∗||V∗i| + 4νn2 ≥ e(Vi∗, V∗i) + |B2(P2, G)|

≥ e(Vi∗, V∗i) + e(Vi∗, V∗j)

= e(Vi∗, V (G)) ≥ (α−
√
ν)n|Vi∗ \ T | ≥ (α−

√
ν)n|Vi∗|/2

As a result, we obtain |V∗i| ≥ (α−√
ν)n/2 − 4ν/τ ≥ τn, so the result follows. �

One can construct an (�2, τ, γ)-partition of G from a (k2, τ, γ)-partition of G for � ≤ k.

Proposition 3.7. Let G be a digraph with a (k2, τ, γ)-partition Pk = {Vij : i, j ∈ [k]}. 
Let {I1, I2, . . . , I�} be a partition of [k] with It �= ∅ for all t ∈ [�]. For i′, j′ ∈ [�], let 
Wi′j′ =

⋃
i∈Ii′ , j∈Ij′

Vij. Then, P� = {Wi′j′ : i′, j′ ∈ [�]} is an (�2, τ, γ)-partition of G.

Proof. Let n = |G|. For i′ ∈ [�], note that

Wi′∗ =
⋃

j′∈[�]

Wi′j′ =
⋃

i∈Ii′ , j∈[k]

Vij =
⋃
i∈Ii′

Vi∗

and so |Wi′∗| ≥ τn. Similarly, we have |W∗j′ | ≥ τn for all j′ ∈ [�]. Moreover, note that

|B�(P�, G)| =
∑

i′,j′∈[�] : i′ �=j′

e(Wi′∗,W∗j′) =
∑

i′,j′∈[�] : i′ �=j′

∑
i∈Ii′ , j∈Ij′

e(Vi∗, V∗j)

≤
∑

i,j∈[k] : i�=j

e(Vi∗, V∗j) = |Bk(Pk, G)|,

so the result follows. �
Next, we show that if a regular digraph is dense and admits a (k2, τ, γ)-partition, then 

certain unions of parts have size at least roughly the degree of the digraph.

Proposition 3.8. Let 1/n � γ � τ � ε � α � 1, k ∈ N, and G be a d-regular 
digraph on n vertices where d ≥ (α + ε)n. Suppose that G has a (k2, τ, γ)-partition 
Pk = {Vij : i, j ∈ [k]}. Then we have |Vi∗|, |V∗i| ≥ d − εn/2 for all i ∈ [k]. In particular, 
Pk is a (k2, α + ε/2, γ)-partition for G.
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Proof. Let i ∈ [k]. By looking at the outneighbours of Vi∗, we have

|V∗i| ≥
e(Vi∗, V∗i)

|Vi∗|
=

d|Vi∗| −
∑

j �=i, j∈[k] e(Vi∗, V∗j)
|Vi∗|

≥ d− |Bk(Pk, G)|
|Vi∗|

≥ d− γn2

|Vi∗|
≥ d− γn

τ
≥ d− εn/2

since |Bk(Pk, G)| ≤ γn2, |Vi∗| ≥ τn and γ � τ � ε. Similarly, we have |Vi∗| ≥ d −
εn/2. �

If a (k2, τ, γ)-partition has the minimum possible number of bad edges among all 
(k2, τ, γ)-partitions of a digraph, then we give it a special name.

Definition 3.9. Let 1/n � γ � τ � 1, k ∈ N, and G be a digraph on n vertices. A 
(k2, τ, γ)-partition Pk = {Vij : i, j ∈ [k]} of V (G) is called an extremal (k2, τ, γ)-partition
if Bk(Pk, G) ≤ Bk(P ′

k, G) for all (k2, τ, γ)-partitions P ′
k of V (G).

We establish some useful degree conditions for extremal (k2, τ, γ)-partitions of dense 
regular digraphs.

Proposition 3.10. Let 1/n � γ � τ � α � 1, k ∈ N, and G be a d-regular digraph on 
n vertices with d ≥ αn and an extremal (k2, τ, γ)-partition Pk = {Vij : i, j ∈ [k]}. Then, 
for all i, j ∈ [k] and w ∈ Vij, we have d+

V∗i′
(w) ≤ d+

V∗i
(w) and d−Vj′∗

(w) ≤ d−Vj∗
(w) for all 

i′, j′ ∈ [k]. In particular, we have d−Vj′∗
(w), d+

V∗i′
(w) ≤ d/2 for all i′ �= i and j′ �= j, and 

d+
Gk(Pk,G)(v), d

−
Gk(Pk,G)(v) ≥ d/k for all v ∈ V (G).

Proof. Let ε be a constant such that τ � ε � α. Let α′ = α− ε. Suppose the contrary 
and without loss of generality that there exists w ∈ Vij and a ∈ [k] such that d+

V∗a
(w) >

d+
V∗i

(w). Let V ′
ij = Vij\{w}, V ′

aj = Vaj ∪ {w}, and V ′
i′j′ = Vi′j′ for all (i′, j′) ∈ [k] ×

[k]\{(i, j), (a, j)}. Let P ′
k = {V ′

i′j′ : i′, j′ ∈ [k]}. By Proposition 3.8,

|V ′
i∗| = |Vi∗| − 1 ≥ d− εn/2 − 1 ≥ τn

since τ � ε � α. Similarly, we have |V ′
∗j | ≥ τn. Moreover, for all i′ �= i and j′ �= j, we 

know |V ′
i′∗| ≥ |Vi′∗| ≥ τn and |V ′

∗j′ | ≥ |V∗j′ | ≥ τn. On the other hand, we obtain

|Bk(P ′
k, G)| = |Bk(Pk, G)| − d+

V∗a
(w) + d+

V∗i
(w) < |Bk(Pk, G)|.

Hence P ′
k is a (k2, τ, γ)-partition of G having fewer bad edges than the extremal (k2, τ, γ)-

partition Pk, which is a contradiction. As a result, for all 1 ≤ i′, j′ ≤ k, we have 
d+
V (w) ≤ d+

V (w) and d−V (w) ≤ d−V (w). The rest of the proof is immediate. �

∗i′ ∗i j′∗ j∗
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For any dense regular oriented graph, we show that certain unions of sets in a (k2, τ, γ)-
partition have strictly positive size.

Proposition 3.11. Let 1/n < γ � τ � ε < 1 be constants, k ∈ N, and G be a d-regular 
oriented graph on n vertices with d ≥ (1/4 +ε)n. Suppose that G has a (k2, τ, γ)-partition 
Pk = {Vij : i, j ∈ [k]}. Then, for i ∈ [k], we have

∣∣ ⋃
j �=i

Vij

∣∣, ∣∣ ⋃
j �=i

Vji

∣∣ ≥ τn.

Proof. First suppose that k = 2. Without loss of generality, assume |V11| ≤ |V22|, which 
gives d − |V11|/2 ≥ d − n/4 ≥ εn. By Corollary 3.3, we know that |V12| − |V21| ≤
γn2/d ≤ τn. Hence, it suffices to show that |V12| ≥ 2τn. By Proposition 3.8, we have 
|V11| + |V12| = |V1∗| ≥ (1/4 + ε/2)n. Since τ � ε, we may assume that |V11| ≥ n/4. 
Then, since G is oriented and d-regular, we can write

d|V11| = e(V (G), V11) = e(V11, V11) + e(V12, V11) + e(V2∗, V11)

≤ |V11|2/2 + |V12||V11| + γn2

≤ |V11| · (|V11|/2 + |V12| + 4γn).

This implies |V12| ≥ d − |V11|/2 − 4γn ≥ (ε − 4γ)n ≥ 2τn as required.
Now, fix k ≥ 3 and define Wi = {W i

ab : a, b ∈ [2]} for all i ∈ [k] where

W i
11 = Vii, W i

12 =
⋃
j �=i

Vij , W i
21 =

⋃
j �=i

Vji, W i
22 =

⋃
a,b�=i

Vab.

Notice that Wi is a (4, τ, γ)-partition by Proposition 3.7, so we get |W i
12|, |W i

21| ≥ τn

from the case k = 2. Then, we obtain
∣∣∣ ⋃
j �=i

Vij

∣∣∣ = |W i
12| ≥ τn and

∣∣∣ ⋃
j �=i

Vji

∣∣∣ = |W i
21| ≥ τn,

so the result follows for any k. �
4. Balancing partitions

Let G be a regular digraph or oriented graph and suppose Pk is a (k2, τ, γ)-partition 
of G that is “not balanced”, in the sense that |Vi∗| �= |V∗i| for some i ∈ [k]. Then, 
Proposition 3.2 implies that any Hamilton cycle C must contain a number of bad edges 
(i.e. edges from Bk(Pk, G)) that depends on the extent of the “imbalance” of Pk. Since 
Bk(Pk, G) is small (at most γn2 edges), when constructing a Hamilton cycle of G, it is 
necessary to first pick the edges of Bk(Pk, G) that will be in C. Let us write Q for the 
bad edges in our target Hamilton cycle, and note that Q is a path system.
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By Proposition 3.2 (applied with d = 1 and G = C), we must ensure that Q satisfies 
that for all i ∈ [k],

∑
j �=i

|E(Q) ∩E(Vi∗, V∗j)| −
∑
j �=i

|E(Q) ∩ E(Vj∗, V∗i)| = |Vi∗| − |V∗i|.

A naive approach to construct Q is to take a suitable size matching in each of Gij for 
i �= j, where as before Gij = G[Vi∗, V∗j ]. However, the union of these matchings may not 
be a path system since it might contain cycles or might satisfy Δ0(Q) ≥ 2. The main 
purpose of this section is to adapt the naive approach to construct Q; see Lemma 4.10.

Our first goal is to show that given several edge-disjoint subdigraphs of some given 
digraph, we are able to pick a relatively large path system from each subdigraph such 
that the union of these path systems does not contain a directed cycle; this is Lemma 4.3. 
The first two lemmas below are technical results needed to prove this.

Lemma 4.1. Let G be a digraph with Δ0(G) ≤ d. Let 0 < θ < 1, and define the sets 
W+ = {w ∈ G : d+(w) ≥ θd} and W− = {w ∈ G : d−(w) ≥ θd}. Then, there exists a 
matching M satisfying

(i) 4θe(M) + |W+| + |W−| ≥ e(G)/d,
(ii) x /∈ W+ and y /∈ W− for all xy ∈ E(M),
(iii) e(M) ≤ e(G)/θd.

Proof. If θd < 1, then we obtain W+ = {w ∈ G : d+(w) ≥ 1}. Then, we have x ∈ W+

for any xy ∈ E(G), which, in particular, implies d|W+| ≥ e(G). Therefore, we can set 
M to be empty in that case. Hence, we may assume θd ≥ 1. Let H be the multigraph 
obtained from G by deleting all the edges ab with either a ∈ W+ or b ∈ W−, and by 
making all the edges undirected. Note that we have Δ(H) + μ(H) ≤ 2θd + 2 and

e(H) ≥ e(G) − d(|W+| + |W−|). (4.1)

Then, by Theorem 2.1 (Vizing’s theorem for multigraphs), there exists a matching M1
in H of size at least e(H)/(2θd + 2). Moreover, we can assume that e(M1) ≤ e(H)/θd
because otherwise we can remove some edges from M1. Let M be the corresponding 
matching in G. Clearly (ii) holds. By using θd ≥ 1, we obtain

e(G)
θd

≥ e(H)
θd

≥ e(M) ≥ e(H)
2θd + 2 ≥ e(H)

4θd ,

so (iii) holds. Hence, together with (4.1), we have 4θe(M) + |W+| + |W−| ≥ e(G)/d, 
proving (i). �

Now, given some matchings in a graph, we show that one can pick a significant number 
of edges from each matching such that all the chosen edges form a matching.
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Lemma 4.2. Let k, r ∈ N and M1, M2, . . . , Mk be matchings with Δ 
(⋃

i∈[k] Mi

)
≤ r. 

Suppose e(Mi) > 2(r3 + r)2 ln k for all i ∈ [k]. Then, there exists a matching H ⊆⋃
i∈[k] Mi with |E(H) ∩Mi| ≥ e(Mi)/(r2 + 1) for all i ∈ [k].

Proof. Letting G =
⋃

i∈[k] Mi, we have Δ(G) ≤ r. We mark edges of G randomly as 
follows. For each vertex v ∈ G, pick an edge incident to v uniformly at random and mark 
all other edges incident to v. Do this independently for every vertex v (so some edges may 
be marked twice). Then, let H be the graph where all the marked edges are deleted. Note 
that H is a matching. We now show that H satisfies the desired property with positive 
probability. Observe that the probability of an edge uv surviving into H is at least 1/r2

because the probability of uv being marked due to u is at least 1/r, and independently 
the probability of uv being marked due to v is at least 1/r. Moreover, these events are 
independent for vertex-disjoint edges. Now, for any i ∈ [k], let Xi = Bin(e(Mi), 1/r2). 
Since Mi is a matching, we have

P

(
|E(H) ∩Mi| ≤

e(Mi)
r2 + 1

)
≤ P

(
Xi ≤

e(Mi)
r2 + 1

)
.

Note that E[Xi] = e(Mi)/r2. Hence, by Theorem 2.2 (Chernoff bound), we obtain

P

(
Xi ≤

e(Mi)
r2 + 1

)
= P

(
Xi ≤

r2

r2 + 1 · E[Xi]
)

≤ exp
(
− E[Xi]

2(r2 + 1)2

)
= exp

(
−e(Mi)

2(r3 + r)2

)
.

Then, by using e(Mi) > 2(r3 + r)2 ln k, we obtain P
(
|E(H) ∩Mi| ≤

e(Mi)
r2 + 1

)
<

1
k

for 

each i ∈ [k]. Hence, by the union bound, we have

P

(
|E(H) ∩Mi| ≥

e(Mi)
r2 + 1 for all i ∈ [k]

)
> 0.

Therefore, there exists a matching H ⊆
⋃

i∈[k] Mi with |E(H) ∩ Mi| ≥
e(Mi)
r2 + 1 for all 

i ∈ [k]. �
By using Lemmas 4.1 and 4.2, we will prove an edge selection lemma which will be 

used in the proof of Lemma 4.6.

Lemma 4.3. Let k ∈ N with k ≤ 10, let 0 < γ � α < 1 be constants, and let G be a 
digraph on n vertices. Let G1, G2, . . . , Gk be pairwise edge-disjoint subgraphs of G with ∑

i∈[k] e(Gi) ≤ γn2 and Δ0(Gi) ≤ αn for each i ∈ [k]. Then, each Gi contains a path 
system Qi such that 

⋃
i∈[k] Qi is cycle-free and e(Qi) ≥ �e(Gi)/αn� for all i ∈ [k].
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Proof. Since γ � α, we can choose a constant θ with 
√

8γ/α < θ < 1/ 
(
8 ln k(k3 + k)2

)
. 

Then, let us define the sets

W+
i = {w ∈ V (Gi) : d+

Gi
(w) ≥ αθn} and W−

i = {w ∈ V (Gi) : d−Gi
(w) ≥ αθn}.

By Lemma 4.1, for each i ∈ [k], we can find a matching Mi in Gi with

4θe(Mi) + |W+
i | + |W−

i | ≥ e(Gi)/αn,

Mi ⊆ Gi[V −W+
i , V −W−

i ], e(Mi) ≤ e(Gi)/αθn.

For each i, we have either |W+
i | + |W−

i | > (e(Gi)/αn) − 1 or 4θe(Mi) ≥ 1. In the latter 
case, we have e(Mi) ≥ 2(k3 + k)2 ln k due to the definition of θ. Let R be the set of 
indices i ∈ [k] satisfying 4θe(Mi) ≥ 1. By applying Lemma 4.2 for the matchings Mi

with i ∈ R, we find a matching M ⊆
⋃

i∈R Mi such that e(M ∩Mi) ≥ e(Mi)/(k2 + 1)
for all i ∈ R. Therefore, we have

e(M ∩Mi) + |W+
i | + |W−

i | ≥ e(Mi)/(k2 + 1) + |W+
i | + |W−

i |

≥ 4θe(Mi) + |W+
i | + |W−

i | ≥ e(Gi)/αn

for all i ∈ R. On the other hand, if i /∈ R, we know |W+
i | + |W−

i | > (e(Gi)/αn) − 1, 
which, in particular implies |W+

i | + |W−
i | ≥ �e(Gi)/αn�. Write Ni = M ∩Mi if i ∈ R, 

write N =
⋃

i∈R Ni, and set Ni = ∅ if i /∈ R. Thus, we obtain e(Ni) + |W+
i | + |W−

i | ≥
�e(Gi)/αn� for all i ∈ [k]. By deleting edges in Ni or removing vertices from W+

i ∪W−
i , 

we may assume

e(Ni) + |W+
i | + |W−

i | = �e(Gi)/αn� for all i ∈ [k].

Let us write W =
⋃

i∈[k](W
+
i ∪W−

i ). Note that

|V (N) ∪W | ≤
∑
i∈[k]

(
2e(Ni) + |W+

i | + |W−
i |

)
≤ 2 ·

∑
i∈[k]

(e(Gi)/αθn) ≤ 2γn/αθ. (4.2)

We now construct the desired path systems Q1, . . .Qk by induction. Suppose we have 
found path systems Q1, . . . , Qj for some 0 ≤ j ≤ k such that N∪

(⋃
i∈[j] Qi

)
is cycle-free, 

and the following hold for all i ∈ [j]:

(i) Ni ⊆ Qi ⊆ Gi,
(ii) e(Qi) = �e(Gi)/αn�.

If j = k, then we are done. If j < k, then we construct Qj+1 as follows. First, we define 

U = (V (N) ∪W ) ∪ V
(⋃

i∈[j] Qi

)
. By using (4.2), we have
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|U | ≤ 2γn/αθ + 2
∑
i∈[j]

e(Qi) ≤ (2γn/αθ) + (2γn/α).

We construct the undirected bipartite graph B with bipartition (A, B) as follows. Let 
B = V (G) −U , and let A be the disjoint union of W+

j+1 and W−
j+1. We add the edge ab

for each a ∈ W+
j+1 and b ∈ B if b ∈ N+

G (a), and add the edge ab for each a ∈ W−
j+1 and 

b ∈ B if a ∈ N−
G (b). Due to the choice of θ, we have

dB(a) ≥ αθn− (2γn/αθ) − (2γn/α)

≥ γn/α ≥ e(Gj+1)/αn ≥ |W+
j+1| + |W−

j+1| ≥ |A|.

Therefore, we can greedily pick a matching in B that covers A. Note that the cor-
responding edges in G with respect to this matching give a path system Q′

j+1 in 
Gj+1 containing paths of length one or two with e(Q′

j+1) = |W+
j+1| + |W−

j+1| and 

E(Q′
j+1) ∩ E

(
N ∪

⋃
i∈[j] Qi

)
= ∅. Moreover, each edge in Q′

j+1 will contain a ver-
tex in W+

j+1 ∪W−
j+1 and one unique vertex not in U . Since x /∈ W+

j+1 and y /∈ W−
j+1 for 

all xy ∈ Nj+1, we can add Nj+1 into Q′
j+1 to obtain another path system Qj+1 in Gj+1

with e(Qj+1) = �e(Gj+1)/αn�.
Finally, suppose N ∪

(⋃
i∈[j+1] Qi

)
= N ∪

(⋃
i∈[j] Qi

)
∪ Qj+1 has a cycle C. Since 

N∪
(⋃

i∈[j] Qi

)
has no cycle, C contains an edge e in Q′

j+1. However, e contains a unique 

vertex x not in U , that is, x has (total) degree 1 in N ∪
(⋃

i∈[j+1] Qi

)
, a contradiction. 

This completes the inductive construction of the Qi and the proof of the lemma. As a 
result, N ∪

(⋃
i∈[j+1] Qi

)
is cycle-free, and we are done. �

Suppose G is an oriented graph and consider a 9-partition {Vij : i, j ∈ [3]} of V (G). 
For i, j ∈ [3], i �= j, we say a path system Q is type-ij if E(Q) ⊆ E(Vi∗, V∗j). Our next 
lemma describes the structure of the graph which is the union of several path systems 
that are of different types. First some further notation.

We denote the set of all type-ij path systems by Q(i, j). Let S ⊂
⋃

i�=j Q(i, j) be a 
set consisting of three path systems of different types. We say S is a symmetric 3-set if 
either |S ∩ Q(1, 2)| = |S ∩ Q(2, 3)| = |S ∩ Q(3, 1)| = 1 or |S ∩ Q(2, 1)| = |S ∩ Q(3, 2)| =
|S ∩Q(1, 3)| = 1. Otherwise, we say S is an anti-symmetric 3-set. For an anti-symmetric 3-
set S, if |S ∩(Q(1, 2) ∪Q(2, 3) ∪Q(3, 1))| = 2 and |S ∩(Q(2, 1) ∪Q(3, 2) ∪Q(1, 3))| = 1, then 
we call the unique path system in S ∩ (Q(2, 1) ∪Q(3, 2) ∪Q(1, 3)) a special element of S. 
Similarly, if |S ∩(Q(1, 2) ∪Q(2, 3) ∪Q(3, 1))| = 1 and |S ∩(Q(2, 1) ∪Q(3, 2) ∪Q(1, 3))| = 2, 
then we call the unique path system in S ∩(Q(1, 2) ∪Q(2, 3) ∪Q(3, 1)) as a special element
of S. We will show that the graph induced by S has some structural properties if S is 
a symmetric or anti-symmetric 3-set. First, we need the definition of an anti-directed 
path.

Let G be a digraph. A subgraph P of G is called an anti-directed path in G if its edges 
can be ordered as E(P ) = {e1, e2, . . . , ek} for some k ∈ N such that
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(i) (e1, e2, . . . , ek) induces an (undirected) path when we forgot the directions of the 
edges, and

(ii) (e1, e2, . . . , ek) does not contain a directed path of length at least two.

An anti-directed path P in G is said to be maximal if it is not entirely contained in any 
other anti-directed path.

Lemma 4.4. Let P3 = {Vij : i, j ∈ [3]} be a 9-partition of an oriented graph G. Let S be a 
set consisting of three path systems in G of different types; thus either S is a symmetric 
3-set or an anti-symmetric 3-set. Let H be the graph induced by all the paths in S. If 
S is a symmetric 3-set, then H is the disjoint union of paths and cycles. If S is an 
anti-symmetric 3-set with special element S, then E(H) can be partitioned into maximal 
anti-directed paths Q of length at most three with the following properties:

(i) If Q is a maximal anti-directed path of length two, then Q has a unique edge belonging 
to S.

(ii) If Q is a maximal anti-directed path of length three, then each edge of Q belongs to 
a distinct path system in S where the middle edge belongs to S.

Proof. If S is a symmetric 3-set, without loss of generality, assume S = {Q23, Q31, Q12}
where the path system Qij is type-ij. Then, for any x23y23 ∈ E(Q23), x31y31 ∈ E(Q31), 
x12y12 ∈ E(Q12), we obtain x23, x31, x12 are all distinct since x23 ∈ V2∗, x31 ∈ V3∗, 
and x12 ∈ V1∗. Similarly, we have y23, y31, y12 are all distinct. Therefore, for any vertex 
v ∈ H, we have d+(v), d−(v) ≤ 1, which implies H is the disjoint union of paths and 
cycles.

Let S be an anti-symmetric 3-set. Without loss of generality, it is enough to examine 
the cases S = {Q23, Q12, Q13} and S = {Q23, Q12, Q21} where Qij is type-ij. Let us first 
examine the case S = {Q23, Q12, Q13}. Note that Q13 is the special element of S. For any 
x23y23 ∈ E(Q23), x13y13 ∈ E(Q13), x12y12 ∈ E(Q12), we have x23 ∈ V2∗, x13, x12 ∈ V1∗, 
y12 ∈ V∗2, y23, y13 ∈ V∗3, which shows that Δ0(H) ≤ 2. Thus, we can conclude that two 
different maximal anti-directed paths in H are edge-disjoint, which implies every edge of 
H lies in a unique maximal anti-directed path. Let Q be a maximal anti-directed path 
in H of length at least two. Let ei, ei+1 be two consecutive edges in Q. It is easy to check 
that

(ei, ei+1) ∈ (E(Q13) × E(Q12)) ∪ (E(Q12) ×E(Q13))

∪ (E(Q13) × E(Q23)) ∪ (E(Q23) × E(Q13)) .

Therefore, if Q has two edges, property (i) follows. If Q has three consecutive edges 
ei, ei+1, ei+2, then

(ei, ei+1, ei+2) ∈ E(Q12) ×E(Q13) × E(Q23) or



140 A. Lo et al. / Journal of Combinatorial Theory, Series B 164 (2024) 119–160
(ei, ei+1, ei+2) ∈ E(Q23) ×E(Q13) × E(Q12).

This shows property (ii), and in particular that the middle of the three edges is in the 
special element Q13. Finally, if Q has at least four edges, take any four consecutive edges. 
These four edges contain two anti-directed paths of length three and the middle edge 
of each of these paths lies in Q13 from the argument above. Therefore we obtain two 
consecutive edges in Q both in Q13, which is impossible since Q13 is a path system.

If S = {Q23, Q12, Q21}, it is easy to check that we have d+
H(v) ≤ 2 and d−H(v) ≤ 1 for 

all v ∈ V (H). Note that Q21 is the special element of S. As before, we see that E(H)
can be partitioned into maximal anti-directed paths since Δ0(H) ≤ 2. Also, since each 
anti-directed path of length at least three has at least one vertex of indegree two, we 
have that all the maximal anti-directed paths in H have at most two edges. Moreover, 
if Q is a maximal anti-directed path of length two, say e and f are the edges of Q, then 
we have either (e, f) ∈ E(Q23) × E(Q21) or (e, f) ∈ E(Q21) × E(Q23), which completes 
the proof. �

We need one more technical proposition before we prove the lemma that shows how 
to select the bad edges that will be part of our final Hamilton cycle.

Proposition 4.5. Let t, x1, x2, x3, x4, x5 ∈ {0, 1} be such that

x1 + x2 + x3 ≡ t ≡ x1 + x4 + x5 (mod 2). (4.3)

Then, one can find mi ∈ {−1, 1} for i ∈ [5] with

m1x1 + m2x2 + m3x3 = t = m1x1 + m4x4 + m5x5.

Proof. Without loss of generality, we can assume x2 ≤ x3, x4 ≤ x5, and x2+x3 ≤ x4+x5. 
By (4.3), we must have (x2 + x3, x4 + x5) ∈ {(0, 0), (1, 1), (2, 2), (0, 2)}.

1. If x2 + x3 = 0 = x4 + x5, then we have t = x1 and x2 = x3 = x4 = x5 = 0. Hence, 
we only need m1x1 = x1, which can be done by choosing m1 = 1.

2. If x2 + x3 = 1 = x4 + x5, then we have t = 1 − x1, x2 = x4 = 0 and x3 = x5 = 1. 
Hence, we need m1x1 + m3 = 1 − x1 = m1x1 + m5, which can be done by choosing 
m3 = m5 = 1, and m1 = −1.

3. If x2 + x3 = 2 = x4 + x5, then we have t = x1 and x2 = x3 = x4 = x5 = 1. Hence, 
we need m1x1 + m2 + m3 = x1 = m1x1 + m4 + m5, which can be done by choosing 
m1 = 1, m2 = m4 = 1, and m3 = m5 = −1.

4. If x2 + x3 = 0 and x4 + x5 = 2, then we have t = x1, x2 = x3 = 0 and x4 = x5 = 1. 
Hence, we need m1x1 = x1 = m1x1 + m4 + m5, which can be done by choosing 
m4 = 1, m5 = −1, and m1 = 1. �

We are now ready to prove the main result of this section.
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Lemma 4.6. Let 1/n � γ � τ � α � 1 be some constants, let G be a d-regular 
oriented graph on n vertices with d ≥ αn and an extremal (9, τ, γ)-partition P3 = {Vij :
i, j ∈ [3]}. Then, there exists a path system Q in B3(P3, G) such that, writing aij =
|E(Q) ∩ E(Vi∗, V∗j)| for all i �= j, we have

(i) e (Q) ≤ 2γn/α, and
(ii) ai∗ − a∗i = |Vi∗| − |V∗i| for all i ∈ [3], where ai∗ =

∑
j �=i aij and a∗i =

∑
j �=i aji.

Proof. We first give the main idea of the proof. Note that by Proposition 3.2, it suffices 
to find a path system Q satisfying

ai∗ − a∗i =
∑
j �=i

e(Gij)/d−
∑
j �=i

e(Gji)/d (4.4)

for each i ∈ [3]. By Proposition 3.10, we know Δ(Gij) ≤ d/2, so by using Lemma 4.3, 
we can find path systems Qij in Gij such that 

⋃
i�=j Qij is cycle-free and e(Qij) has 

roughly 2e(Gij)/d edges. Therefore, we need only (roughly) half of the edges from each 
Qij to satisfy (4.4). Moreover, for each i �= j, it makes sense to include edges from only 
one of Gij and Gji. We will choose Q0

ij ⊆ Qij , where Q0
ij has size (roughly) e(Qij)/2

for three different pairs (i, j) and is empty for the remaining three pairs, by using the 
structural properties of 

⋃
i�=j Qij (ensured by Lemma 4.4) so that Δ0(

⋃
i�=j Q0

ij) = 1. 
Since 

⋃
i�=j Q0

ij ⊆
⋃

i�=j Qij is cycle-free, Δ0(
⋃

i�=j Q0
ij) = 1 guarantees that 

⋃
i�=j Q0

ij is a 
path system. Also, e(

⋃
i�=j Q0

ij) is small enough by the construction since e(
⋃

i�=j Qij) ≤
2|B3(P3, G)|/d ≤ 2γn/α.

Let us write ni = |Vi∗| − |V∗i| for i ∈ [3]. Since n1 + n2 + n3 = 0, without loss 
of generality, we can assume n1, n2 ≥ 0. Recall Gij = G[Vi∗, V∗j ], and write mij =
e(Gij) − e(Gji) for i, j ∈ [3], i �= j. Note that mij = −mji. Without loss of generality, 
we can assume m12 ≥ 0. By Proposition 3.2, we have

dn1 = m12 + m13 = m12 −m31, (4.5)

dn2 = m21 + m23 = m23 −m12. (4.6)

Since n1, n2 ≥ 0, (4.5) and (4.6) imply that m23 ≥ m12 ≥ m31. So, it suffices to consider 
the cases

m23 ≥ m12 ≥ m31 ≥ 0 and m23 ≥ m12 ≥ 0 ≥ m31.

Let m12 = dx for some x ≥ 0, and write x = s + t where s = �x� and 0 ≤ t < 1.
Case 1: Suppose we have m23 ≥ m12 ≥ m31 ≥ 0. Then, we can write m31 = d(x −n1)

and m23 = d(x +n2) by using (4.5) and (4.6). Let H = G23∪G31∪G12. Notice that e(H) ≤
|B3(P3, G)| ≤ γn2. Also, by Proposition 3.10, we know Δ0(G23), Δ0(G31), Δ0(G12) ≤
d/2. By Lemma 4.3, we can find path systems Q23 ⊆ G23, Q31 ⊆ G31, Q12 ⊆ G12 such 
that Q23 ∪Q31 ∪Q12 has no cycle and
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e(Q23) =
⌊
e(G23)
d/2

⌋
≥

⌊
m23

d/2

⌋
= �2x + 2n2� ≥ s + n2,

e(Q31) =
⌊
e(G31)
d/2

⌋
≥

⌊
m31

d/2

⌋
= �2x− 2n1� ≥ s− n1,

e(Q12) =
⌊
e(G23)
d/2

⌋
≥

⌊
m12

d/2

⌋
= �2x� ≥ s.

Moreover, by Lemma 4.4, we have Q23 ∪ Q31 ∪ Q12 is a disjoint union of paths and 
cycles since {Q23, Q31, Q12} is a symmetric 3-set. However, we know it is cycle-free, 
which implies it is a path system. Note that (4.5) implies that d(x − n1) = m31 ≥ 0 by 
assumption, so we have s −n1 ≥ 0. We now define Q by choosing s +n2 edges from Q23, 
s − n1 edges from Q31, and s edges from Q12. Note that

e (Q) ≤ e(G12) + e(G23) + e(G31)
d/2 ≤ |B3(P3, G)|

d/2 ≤ 2γn
α

.

Since a23 = s + n2, a31 = s − n1, a12 = s and a21 = a32 = a13 = 0, the result follows.
Case 2: Suppose we have m23 ≥ m12 ≥ 0 ≥ m31. Recall m12 = dx. Then, we can write 

m13 = d(n1−x) and m23 = d(n2+x) by using (4.5) and (4.6). As with the previous case, 
we can find path systems Q23 ⊆ G23, Q13 ⊆ G13, Q12 ⊆ G12 such that Q23 ∪Q13 ∪Q12
is cycle-free and

e(Q13) = 2n1 + �−2x�, e(Q23) = �2x� + 2n2, e(Q12) = �2x�, (4.7)

e(Q13 ∪Q23 ∪Q12) ≤ 2γn/α. (4.8)

Let H be the graph induced by Q23 ∪Q13 ∪Q12. Note that Q13 is the special element of 
the anti-symmetric 3-set {Q23, Q13, Q12}. For simplicity, we write A = 13, B = 23 and 
C = 12 (so e.g. mA = m13 and GA = G13). By Lemma 4.4, we can decompose E(H)
into six sets ST with T ∈ {ABC, AB, AC, A, B, C} such that ST is the set of maximal 
anti-directed paths of length |T | containing an edge in each QS for S ∈ T , e.g. SABC is 
the set of anti-directed paths of length three with one edge in each of Q13, Q23, Q12.

From the definition of the decomposition, clearly we have

e(Q13) = e(QA) = |SABC | + |SAB | + |SAC | + |SA|,
e(Q23) = e(QB) = |SABC | + |SAB | + |SB |,
e(Q12) = e(QC) = |SABC | + |SAC | + |SC |.

By (4.7), we obtain

2(|SABC | + |SAC |) + |SAB | + |SA| + |SC |
= e(QA) + e(QC) = 2n1 + �−2t� + �2t� (4.9)

|SAB | + |SB | − |SAC | − |SC | = e(QB) − e(QC) = 2n2. (4.10)
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Hence, letting |ST | ≡ rT (mod 2) for T ∈ {ABC, AB, AC, A, B, C} where rT ∈ {0, 1}
(so |ST | ± rT is even), we have the following equivalence by summing (4.9) and (4.10):

rAB + rA + rC ≡ −�2t� − �−2t� ≡ rAC + rA + rB (mod 2).

Since 0 ≤ t < 1, we have −�2t� − �−2t� ∈ {0, 1}. Then, by Proposition 4.5, we can find 
iAB , iAC , iA, iB , iC ∈ {−1, 1} such that

iABrAB + iArA + iCrC = −�2t� − �−2t� = iACrAC + iArA + iBrB . (4.11)

We now construct Q ⊆ H as follows. Initializing Q = ∅, we will add some edges into Q
as follows:

1. Choose (|SABC | + rABC) /2 many paths from SABC , (|SAB | + iABrAB) /2 many 
paths from SAB , and (|SAC | + iACrAC) /2 many paths from SAC . For each such 
path, we add the unique edge from QA ⊆ G13 to Q.

2. Take the remaining (|SABC | − rABC) /2 many paths from SABC . For each such path, 
we add the unique edge from QB ⊆ G23 and the unique edge from QC ⊆ G12 to Q.

3. Take the remaining (|SAB | − iABrAB) /2 many paths from SAB. For each such path, 
we add the unique edge from QB ⊆ G23 to Q.

4. Take the remaining (|SAC | − iACrAC) /2 many paths from SAC . For each such path, 
we add the unique edge from QC ⊆ G12 to Q.

5. For each T ∈ {A, B, C}, take (|ST | + iT rT ) /2 many paths from ST . Add them to Q.

If Δ0(Q) ≥ 2, then there exists an anti-directed path Q′ of length 2 in Q. This path Q′

must be contained in some maximal anti-directed path Q∗ in SABC ∪SAB ∪SAC . Only in 
Step 2 do we add more than one edge from a maximal anti-directed path to Q. However, 
the two edges added in that case are not incident by Lemma 4.4(ii) as Q13 = QA is the 
special element. Therefore no such Q′ exists, and so Δ0(Q) ≤ 1. Recall that 

⋃
Q ⊆ H is 

cycle-free and so Q is a path system. By (4.8)

e (Q) ≤ e(H) ≤ 2γn/α.

Note that

2(a1∗ − a∗1) = 2 (e (Q∩G12) + e (Q∩G13)) = 2 (e (Q∩QA) + e (Q∩QC))

= 2(|SABC | + |SAC |) + |SAB | + |SA| + |SC | + iABrAB + iArA + iCrC

= 2n1,

where the last equality is due to (4.9) and (4.11). Similarly,

2(a2∗ − a∗2) = 2(e(Q∩G23) − e(Q∩G12)) = 2(e(Q∩GB) − e(Q∩GC))



144 A. Lo et al. / Journal of Combinatorial Theory, Series B 164 (2024) 119–160
= (|SAB | + |SB | − |SAC | − |SC |) + (iACrAC + iBrB − iABrAB − iCrC)

= 2n2,

where the last equality is due to (4.10) and (4.11). So we have a1∗ − a∗1 = n1 and 
a2∗ − a∗2 = n2. Since n1 + n2 + n3 = 0, we deduce that a3∗ − a∗3 = n3 as required. �

The previous lemma shows how to obtain the (path system of) bad edges that will 
be part of our final Hamilton cycle. It will be convenient to suitably contract this path 
system because the resulting contracted graph will have a “balanced” partition and 
finding a Hamilton cycle in the contracted graph will give us a Hamilton cycle in the 
original graph by “uncontracting” the path system. We now define the right notion of 
contraction and establish some of its properties.

Definition 4.7. Let G be a digraph, k ∈ N, and Pk = {Vij : i, j ∈ [k]} be a k2-partition 
of V (G). Let Q be a path system in G. We define the contraction of Q in G with 
respect to Pk as follows: for each Q ∈ Q, create a new vertex x associated to Q such that 
N−(x) = N−

G (u) and N+(x) = N+
G (v) where Q goes from u to v. If u ∈ Vij and v ∈ Vi′j′ , 

put x into Vi′j . Then, we delete all the vertices in Q. We call P ′
k = {V ′

ij : i, j ∈ [k]} the 
resulting partition where V ′

ij is the updated version of Vij for all i, j ∈ [k], and we denote 
the resulting graph by G′.

Since we often use the following fact, we state it as a proposition.

Proposition 4.8. Let G be a digraph, Q be a path system in G, and Pk = {Vij : i, j ∈ [k]}
be a k2-partition of V (G). If G′ is the graph obtained from G by contracting Q with 
respect to Pk, and G′ is Hamiltonian, then so is G.

Next we see that the number of bad edges cannot increase from contracting a path 
system with respect to the given partition.

Proposition 4.9. Let 1/n � θ, γ � τ ≤ 1 and k ∈ N be constants. Let G be a digraph 
on n vertices, Q be a path system in G, and Pk = {Vij : i, j ∈ [k]} be a k2-partition of 
V (G). Let us contract Q with respect to the partition Pk. Then, we have |Bk(P ′

k, G
′)| ≤

|Bk(Pk, G)|. Moreover, if Pk is a (k2, τ, γ)-partition of G and e(Q) ≤ θn, then P ′
k is a 

(k2, τ/2, 2γ)-partition of G′.

Proof. Consider a path P ∈ Q that goes from u to v, let x be the created vertex 
corresponding to P during the contraction process with x ∈ V ′

cb. In particular, we have 
v ∈ Vc∗. If xy ∈ Bk(P ′

k, G
′), then y /∈ V∗c and y ∈ N+(v), which shows vy ∈ Bk(Pk, G). 

Similarly, for any bad edge in G′ with respect to P ′
k, we can find a different bad edge in 

G with respect to Pk, which shows |Bk(P ′
k, G

′)| ≤ |Bk(Pk, G)|.
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Notice that we have |G′| ≥ (1 − θ)n. Also, since we deleted at most 2θn vertices and 
θ � τ , we have |V ′

i∗| ≥ τn − 2θn ≥ τ |G′|/2 for all i ∈ [k]. Moreover, we get 2(1 − θ)2 > 1
since θ � 1, which implies |Bk(P ′

k, G
′)| ≤ γn2 ≤ 2γ(1 − θ)2n2 ≤ 2γ|G′|2. �

We end this section with a lemma which states that if a path system Q in B(Pk, G)
satisfies condition (ii) of Lemma 4.6, then the contraction of Q with respect to Pk

balances the partition.

Lemma 4.10. Let k ∈ N, and let Pk = {Vij : i, j ∈ [k]} be a k2-partition for a digraph G. 
Let Q be a path system in Bk(Pk, G) such that, for all i ∈ [k],

∑
j �=i

aij −
∑
j �=i

aji = |Vi∗| − |V∗i|,

where aij denotes the number of edges in E(Q) ∩ E(Vi∗, V∗j) for all i �= j. Then, the 
contraction of Q with respect to Pk results in a digraph G′ with a k2-partition P ′

k =
{V ′

ij : i, j ∈ [k]} such that |V ′
i∗| = |V ′

∗i| for all i ∈ [k].

Proof. Let Q = {Q1, Q2, . . . , Qt}. Let apij denote the number of edges in E(Qp) ∩
E(Vi∗, V∗j) for all 1 ≤ p ≤ t and i �= j. Consider a path Qp, say from u ∈ Vxy to 
v ∈ Vzt. Recall that we delete all the vertices in Qp and add a new vertex into Vzy (see 
Definition 4.7). By applying Proposition 3.2 with d = 1 and G = Qp ∪ {vu}, we obtain

|Vi∗ ∩ V (Qp)| − |V∗i ∩ V (Qp)| =
∑
j �=i

apij −
∑
j �=i

apji + 1{i = z} − 1{i = y}

for each i ∈ [k] since v ∈ Vz∗ and u ∈ V∗y. By considering the new vertex added into 
Vzy, we see that the contraction of the path Qp leads to a decrease in |Vi∗| − |V∗i| by ∑

j �=i a
p
ij −

∑
j �=i a

p
ji. Since all the paths in Q can be contracted independently, we have

|V ′
i∗| − |V ′

∗i| = (|Vi∗| − |V∗i|) −
∑
p∈[t]

⎛
⎝∑

j �=i

apij −
∑
j �=i

apji

⎞
⎠

= (|Vi∗| − |V∗i|) −

⎛
⎝∑

j �=i

aij −
∑
j �=i

aji

⎞
⎠ .

Since we have 
∑

j �=i aij −
∑

j �=i aji = |Vi∗| − |V∗i|, the result follows. �
5. Hamilton cycles from partitions

The main goal of this section is to prove that regular directed or oriented graphs of 
suitably high degree that admit a (k2, τ, γ)-partition for suitable k, τ, γ have a Hamil-
ton cycle. We begin by formally defining certain contracted graphs associated with 
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Fig. 5. An illustration for how J 1(P, G, φ1) is constructed.

4-partitions (i.e. the graphs Ji discussed in the sketch proof). These will be used in 
this and the next section.

Let H be a (undirected) bipartite graph with bipartition (A, B) and |A| = |B| = n. 
Given a set K of size n and bijections φA : K → A and φB : K → B, the identification 
of H with respect to (K, φA, φB) is defined to be the digraph G, where V (G) = K and 
for each a, b ∈ K, we have ab ∈ E(G) if and only if φA(a)φB(b) ∈ E(H).7

Let G be a digraph and P = {Vij : i, j ∈ [2]} be a 4-partition of V (G). For each i ∈ [2], 
we define Bi(P, G) to be the (undirected) bipartite graph with bipartition (Vi∗, V∗i), 
where, for each a ∈ Vi∗ and b ∈ V∗i, we have ab ∈ E(Bi(P, G)) if and only if ab ∈ E(G). 
(Although Vi∗ and V∗i are not disjoint as subsets of V (G), namely Vi∗ ∩ V∗i = Vii, we 
duplicate any vertices in Vii, so Bi(P, G) has |Vi∗| + |V∗i| vertices.)

Let G be a digraph and P = {Vij : i, j ∈ [2]} be a 4-partition of V (G) such that 
|V12| = |V21| = t > 0. For i ∈ [2], we call φi = (φi∗, φ∗i) a proper i-pair with respect 
to P if φi∗ : [t] ∪ Vii → Vi∗ and φ∗i : [t] ∪ Vii → V∗i are bijections satisfying φi∗(x) =
φ∗i(x) = x for all x ∈ Vii. In this case we define J i(P, G, φi) to be the identification 
of Bi(P, G) with respect to ([t] ∪ Vii, φi∗, φ∗i). Formally, V (J i(P, G, φi)) = [t] ∪ Vii

and xy ∈ E(J i(P, G, φi)) if and only if φi∗(x)φ∗i(y) ∈ E(Bi(P, G)). One can think of 
J i(P, G, φi) as the digraph obtained from G[Vi∗∪V∗i] by pairing vertices in Vi∗\Vii with 
vertices in V∗i\Vii and identifying them, where the pairing is determined by φi∗ and φ∗i; if 
we pair x ∈ Vi∗\Vii with y ∈ V∗i\Vii, the identified vertex has the same outneighbours as 
x and the same inneighbours as y. Note that there is a one-to-one correspondence between 
the edges in J i(P, G, φi) and those in G[Vi∗, V∗i]. Fig. 5 illustrates this construction by 
a small example.

7 If φA(a)φB(a) ∈ E(H) for some a ∈ K, then we will have a loop aa ∈ E(G). The small number of loops 
in G play no role in our arguments, but we keep them for convenience so that H and G have the same 
number of edges.
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The first proposition shows how Hamiltonicity of J i translates into Hamiltonicity for 
G.

Proposition 5.1. Let G be a digraph on n vertices, and let P = {Vij : i, j ∈ [2]} be a 
4-partition of V (G) with |V12| = |V21| > 0. Suppose that for every i ∈ [2] and every 
proper i-pair φi with respect to P, we have that J i(P, G, φi) is Hamiltonian. Then, G is 
Hamiltonian.

Proof. Let |V12| = |V21| = t and φ1 be a proper 1-pair with respect to P. Consider a 
Hamilton cycle C in J 1(P, G, φ1). Recall that the vertex set of J 1(P, G, φ1) is [t] ∪V11. 
Let p1, . . . , pt be the order in which the vertices in [t] are visited by C so that C can be 
partitioned into paths P1, . . . Pt where Pr is a path from pr to pr+1 (with the convention 
that pt+1 = p1). Each Pr corresponds to a path P 1

r in G[V11∪V12∪V21] from φ1∗(pr) ∈ V12

to φ∗1(pr+1) ∈ V21, and moreover the paths P 1
1 , . . . , P

1
t are vertex-disjoint and span 

V11 ∪ V12 ∪ V21.
Let φ2 be the proper 2-pair with respect to P satisfying φ2∗(pr) = φ∗1(pr+1) ∈ V21

and φ∗2(pr) = φ1∗(pr) ∈ V12 for all r ∈ [t]. Note that J 2(P, G, φ2) can be obtained 
from G[V2∗ ∪ V∗2] by identifying the start and end points of P 1

r for each r and calling 
the resulting vertex pr (here we keep only the inedges of the start point φ1∗(pr) and the 
outedges of the end point φ∗1(pr+1)). Since J 2(P, G, φ2) has some Hamilton cycle H, 
we see that G also has a Hamilton cycle, obtained by replacing each vertex pr in H with 
the path P 1

r . �
Next, we will prove that digraphs admitting a (4, 1/3, γ)-partition with additional 

degree conditions are Hamiltonian. Recall that for a k2-partition Pk = {Vij : i, j ∈
[k]} of V (G), the set of good edges was defined as Gk(Pk, G) =

⋃
i E(Vi∗, V∗i) (see 

Definition 3.1), and we also think of Gk(Pk, G) as the subdigraph of G with the vertex 
set consisting of those vertices incident to edges in Gk(Pk, G).

Lemma 5.2. Let 1/n � γ, ρ � ε � 1 be constants. Let G be a digraph on n vertices with 
a (4, 1/3, γ)-partition P = {Vij : i, j ∈ [2]}. Suppose that

(i) d+
G2(P,G)(v), d

−
G2(P,G)(v) ≥ (1/3 +ε)n holds for all but at most ρn vertices v ∈ V (G),

(ii) δ0(G2(P, G)) ≥ n/20,
(iii) |V12| = |V21| > 0.

Then G is Hamiltonian.

Proof. Let |V12| = |V21| = t. For i ∈ [2], let φi be a proper i-pair with respect to 
P. Let Ji := J i(P, G, φi). Since |V (Ji)| = |Vi∗| ≥ n/3 (the inequality holds because 
P is a (4, 1/3, γ)-partition), we obtain n/3 ≤ |Ji| ≤ 2n/3. On the other hand, for 
any v ∈ Vii, we have d+

J (v) = d+ (v) and d−J (v) = d− (v). Similarly, for 

i G2(P,G) i G2(P,G)
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any r ∈ [t], we have d+
Ji

(r) = d+
G2(P,G)(φi∗(r)) and d−Ji

(r) = d−G2(P,G)(φ∗i(r)). Then, 
d+
Ji

(x), d−Ji
(x) ≥ (1/2 + ε)|Ji| holds for all but at most 3ρ|Ji| vertices x in Ji by (i). 

Moreover, (ii) implies δ0(Ji) ≥ |Ji|/20. Therefore, Ji is Hamiltonian for i ∈ [2] by 
Corollary 2.8. Hence, the result follows from Proposition 5.1. �

We end this section by showing that every regular oriented graph of sufficiently high 
degree that admits a (9, τ, γ)-partition is Hamiltonian.

Lemma 5.3. Let 1/n < γ � τ � ε < 1 be constants. Then every d-regular oriented 
graph G on n vertices with d ≥ (1/4 + ε)n and that admits a (9, τ, γ)-partition is Hamil-
tonian.

Proof. Let P = {Vij : i, j ∈ [3]} be an extremal (9, τ, γ)-partition of G. Firstly, we claim 
at least two of the following are true:

(a) τn + |V11| ≤ |V22| + |V33| + |V23| + |V32|,
(b) τn + |V22| ≤ |V33| + |V11| + |V31| + |V13|,
(c) τn + |V33| ≤ |V11| + |V22| + |V12| + |V21|.

If not, then without loss of generality, say (a) and (b) are false. By adding up those 
inequalities, we obtain 2τn > 2|V33| + |V31 ∪ V32| + |V13 ∪ V23|. However, by Proposi-
tion 3.11, we know |V31 ∪ V32|, |V13 ∪ V23| ≥ τn, so we have a contradiction. Similarly, it 
can be easily shown that at least two of the following are true:

(a′) τn ≤ |V12| + |V21|, (b′) τn ≤ |V13| + |V31|, (c′) τn ≤ |V23| + |V32|.

Thus, without loss of generality, we can assume that (c) and (a′) hold, that is,

τn + |V33| ≤ |V11| + |V22| + |V12| + |V21| and τn ≤ |V12| + |V21|. (5.1)

By Lemma 4.6, there exists a path system Q in B3(P, G) containing at most 8γn edges 
such that 

∑
j �=i aij −

∑
j �=i aji = |Vi∗| −|V∗i| for all i ∈ [3], where aij = |E(Vi∗, V∗j) ∩Q|. 

We contract Q with respect to P and write G′ for the resulting graph and P ′ = {V ′
ij :

i, j ∈ [3]} for the resulting partition. By Proposition 3.8, P is actually a (9, 1/4 +ε/2, γ)-
partition of G, so Proposition 4.9 implies that P ′ is a (9, 1/8, 2γ)-partition for G′. By 
Lemma 4.10, we have

|V ′
i∗| = |V ′

∗i| ≥ |V∗i| − |V (Q)| ≥ n/4 for all i ∈ [3]. (5.2)

Moreover, by using Proposition 3.11, we have
∑
j �=i

|V ′
ij | =

∑
j �=i

|V ′
ji| ≥ τn for all i ∈ [3]. (5.3)
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Also, using (5.1) and the facts that γ � τ and e(Q) ≤ 8γn, we have

|V ′
33| ≤ |V ′

11| + |V ′
22| + |V ′

12| + |V ′
21| and |V ′

12| + |V ′
21| ≥ τn/2. (5.4)

Since |V (Q)| ≤ 16γn, we have

δ0(G′) ≥ d− 16γn ≥ (1/4 + ε/2)n. (5.5)

Similarly, by Proposition 3.10,8

for any v ∈ V (G′), if v ∈ V ′
ab for some a, b ∈ [3],

then d+
V ′
∗a

(v), d−V ′
b∗

(v) ≥ d/3 − 16γn. (5.6)

In other words, we have

d+
G3(P′,G′)(v), d

−
G3(P′,G′)(v) ≥ d/3 − 16γn. (5.7)

Let

W11 = V ′
33, W12 = V ′

32 ∪ V ′
31,

W21 = V ′
23 ∪ V ′

13, W22 = V ′
11 ∪ V ′

22 ∪ V ′
12 ∪ V ′

21.

By Proposition 3.7, we have W = {Wij : i, j ∈ [2]} is a (4, 1/8, 2γ)-partition for G′. 
Furthermore, (5.4) and (5.3) imply that

|W11| ≤ |W22| and |W12| = |W21| ≥ τn/2.

By Proposition 4.8, if G′ is Hamiltonian then so is G. For i ∈ [2], let φi be a proper 
i-pair with respect to W. In order to prove the lemma, it is enough to show that Ji :=
J i(W, G′, φi) is Hamiltonian for i ∈ [2] by Proposition 5.1.

First, for J1, (5.2) and the fact that |W11| ≤ |W22| imply that

n/4 ≤ |V ′
3∗| = |J1| ≤ |G′|/2 ≤ n/2. (5.8)

Let B+(J1) be the set of vertices in J1 satisfying d+
J1

(x) < (1/2 +ε/2)|J1|. Similarly, define 
B−(J1). For any vertex x ∈ V (J1), we have φ1∗(x) ∈ V ′

3∗ and d+
J1

(x) = d+
V ′
∗3

(φ1∗(x)). 
Together with (5.5) and (5.8), we deduce that

8 It is clear that all the vertices of G′ inherited from G satisfy these degree conditions; for the new vertices 
in G′ (created from contracting paths), one can easily check in the definition of contraction that the vertices 
are placed in such a way that the degree conditions hold.
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2γn2 ≥ |B2(W, G′)| ≥ e(φ1∗(B+(J1)), V (G′) \ V ′
∗3)

≥
∑

x∈B+(J1)

(
d+
G′(φ1∗(x)) − d+

V ′
∗3

(φ1∗(x))
)

≥
∑

x∈B+(J1)

(
δ0(G′) − d+

J1
(x)

)
≥

∑
x∈B+(J1)

((1/4 + ε/2)n− (1/2 + ε/2)|J1|)

≥ |B+(J1)|εn/4.

So |B+(J1)| ≤ 8γn/ε and, similarly, |B−(J1)| ≤ 8γn/ε. By (5.8),

|B+(J1)| + |B−(J1)| ≤ 16γn/ε ≤ 64γ|J1|/ε ≤
√
γ|J1|.

Thus d+
J1

(x), d−J1
(x) ≥ (1/2 + ε/2)|J1| holds for all but at most √γ|J1| vertices. Also, 

by (5.6), we have δ0(J1) ≥ d/3 − 16γn ≥ |J1|/10. Therefore, by Corollary 2.8, J1 is 
Hamiltonian.

For J2, we first show that J2 has a (4, 1/3, 8γ)-partition. By (5.8)

n/2 ≤ |J2| = |G′| − |V ′
3∗| ≤ 3n/4, (5.9)

so (5.2) implies that

|V ′
∗i| = |V ′

i∗| ≥ n/4 ≥ |J2|/3 for i ∈ [2].

Let t := |W12| = |W21|. Recall that φ2∗ : [t] ∪W22 → W2∗ and φ∗2 : [t] ∪W22 → W∗2 are 
bijections satisfying φ2∗(x) = φ∗2(x) = x for all x ∈ W22, so we have φ2∗(q) ∈ V ′

32 ∪ V ′
31

and φ∗2(q) ∈ V ′
23 ∪ V ′

13 for any q ∈ [t] since W12 = V ′
32 ∪ V ′

31 and W21 = V ′
23 ∪ V ′

13. Then, 
we partition [t] into parts {Tij : i, j ∈ [2]} as follows:

T11 = {q ∈ [t] : φ2∗(q) ∈ V ′
13, φ∗2(q) ∈ V ′

31},
T12 = {q ∈ [t] : φ2∗(q) ∈ V ′

13, φ∗2(q) ∈ V ′
32},

T21 = {q ∈ [t] : φ2∗(q) ∈ V ′
23, φ∗2(q) ∈ V ′

31},
T22 = {q ∈ [t] : φ2∗(q) ∈ V ′

23, φ∗2(q) ∈ V ′
32}.

Then, let us write Zij = V ′
ij∪Tij for i, j ∈ [2], and Z = {Zij : i, j ∈ [2]}. Notice that Z is 

a partition of V (J2). By using |T11| + |T12| = |V ′
13|, we deduce that |Z1∗| = |V ′

1∗| ≥ |J2|/3. 
More generally, for i ∈ {1, 2}

|Zi∗| = |Z∗i| = |V ′
i∗| ≥ |J2|/3.

Note that Z12 ∪ Z21 ⊇ V ′
12 ∪ V ′

21 �= ∅ by (5.4). We deduce that |Z12| = |Z21| > 0. 
On the other hand, for i ∈ {1, 2}, we have Zi∗ = V ′

i1 ∪ V ′
i2 ∪ {q ∈ [t] : φ2∗(q) ∈ V ′

i3}
and Z∗i = V ′

1i ∪ V ′
2i ∪ {q ∈ [t] : φ∗2(q) ∈ V ′

3i}. Since φ2∗(x) = φ∗2(x) = x for all 



A. Lo et al. / Journal of Combinatorial Theory, Series B 164 (2024) 119–160 151
x ∈ V ′
11∪V ′

12∪V ′
21∪V ′

22, we see that φ2∗(V ′
i1∪V ′

i2) = V ′
i1∪V ′

i2 and φ∗2(V ′
1i∪V ′

2i) = V ′
1i∪V ′

2i. 
Therefore,

xy ∈ E(Zi∗, Z∗j) if and only if

φ2∗(x)φ∗2(y) ∈ E(V ′
i∗, V

′
∗j) for all i, j ∈ [2]. (5.10)

Then, we have

e(Zi∗, Z∗j) = e(V ′
i∗, V

′
∗j) for i, j ∈ [2]. (5.11)

Hence, we obtain

|B2(Z, J2)| = e(V ′
1∗, V

′
∗2) + e(V ′

2∗, V
′
∗1) ≤ |B3(P ′, G′)| ≤ 2γ|G′|2 ≤ 8γ|J2|2.

As a result, Z is a (4, 1/3, 8γ)-partition for J2 with |Z12| = |Z21| > 0.
Let B+(J2) be the set of vertices in J2 satisfying d+

G2(Z,J2)(x) < (1/3 + ε/3)|J2|. 
Similarly, define B−(J2). Note that d+

G2(Z,J2)(x) = d+
G3(P′,G′)(φ2∗(x)) for any vertex 

x ∈ V (J2) by (5.10). Moreover, by (5.5) and (5.9), we have δ0(G′) ≥ (1/3 + ε/2)|J2|. 
Hence, by (5.9), for any vertex x ∈ B+(J2), we obtain

d+
B3(P′,G′)(φ2∗(x)) > (1/3 + ε/2)|J2| − (1/3 + ε/3)|J2| ≥ ε|J2|/6 ≥ εn/12.

Since |B3(P ′, G′)| ≤ |B3(P, G)| ≤ γn2, we find γn2 ≥ |B+(J2)|εn/12. So |B+(J2)| ≤
12γn/ε and, similarly, |B−(J2)| ≤ 12γn/ε. As a result, by (5.9), we have

|B+(J2)| + |B−(J2)| ≤ 24γn/ε ≤ 48γ|J2|/ε ≤
√
γ|J2|.

On the other hand, by (5.7) and (5.9), for any vertex x ∈ V (J2), we obtain

d+
G2(Z,J2)(x) = d+

G3(P′,G′)(φ2∗(x)) ≥ d/3 − 16γn ≥ |J2|/20.

Similarly, we have d−G2(Z,J2)(x) ≥ |J2|/20. As a result, the partition Z for the digraph J2
satisfies all the conditions of Lemma 5.2, so we are done. �
6. Proofs of main results

In this section, we give the proofs of Theorems 1.5 and 1.3.

Proof of Theorem 1.5. Let ε > 0 be a constant. Let G be a strongly well-connected d-
regular digraph on n (sufficiently large) vertices with d ≥ (1/3 + ε)n. We will show that 
G is Hamiltonian. Let ν and τ be constants satisfying 1/n � ν � τ � ε. If G is a robust 
(ν, τ)-outexpander, then we are done by Theorem 2.4. Assume not. Then, G admits a 
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(4, τ, 4ν)-partition by Lemma 3.6. Let P = {Vij : i, j ∈ [2]} be an extremal (4, τ, 4ν)-
partition for G. Notice that |V1∗|, |V2∗| ≥ (1/3 + ε/2)n by Proposition 3.8. Without loss 
of generality, assume |V12| ≥ |V21|. We will choose a path system Q in B2(P, G) satisfying

|E(Q) ∩E(V1∗, V∗2)| − |E(Q) ∩ E(V2∗, V∗1)| = |V12| − |V21|

as follows.

(i) If V12 = V21 = ∅, then |V11|, |V22| ≥ (1/3 +ε/2)n. Since G is strongly well-connected, 
we can find disjoint edges ab ∈ E(V11, V22) and cd ∈ E(V22, V11). Then, set Q =
{ab, cd}.

(ii) If |V12| ≥ |V21| > 0, then d(|V12| − |V21|) = e(V1∗, V∗2) − e(V2∗, V∗1) by Propo-
sition 3.2. Hence, we have e(V1∗, V∗2) ≥ d(|V12| − |V21|). By Proposition 3.10, 
E(V1∗, V∗2) induces a subgraph H in G with Δ0(H) ≤ d/2. Since e(V1∗, V∗2) ≤ 4νn2, 
by Lemma 4.3, we can find a path system Q′ in H with e(Q′) ≥ 2e(V1∗, V∗2)/d ≥
2(|V12| − |V21|). Then, we remove all but exactly |V12| − |V21| edges in Q′ to obtain 
Q.

(iii) If |V12| ≥ 2 and |V21| = 0, then as with the previous case, E(V1∗, V∗2) has a path 
system Q′ containing 2|V12| edges. We claim Q′ has at least one path that starts 
in V11 and ends in V22. If not, then any path in Q′, with s edges say, is incident to 
at least s vertices in V12, but since Q′ contains more than |V12| edges, we have a 
contradiction. Next we claim that any path in Q′ from V11 to V22 has at most |V12|
edges. Indeed, if not, then Q′ has a unique path which has |V12| +1 edges. But then 
Q′ has 2|V12| = |V12| + 1 edges, contradicting |V12| ≥ 2. Using the claims, we can 
remove all but exactly |V12| edges in Q′ to obtain a path system Q with exactly 
|V12| = |V12| − |V21| edges and where at least one path starts in |V11| and ends in 
|V22|.

(iv) If |V12| = 1 and |V21| = 0, let x be the unique vertex in V12. By Proposition 3.2, we 
have d = d−V11

(x) +d+
V22

(x) +e(V11, V22) −e(V22, V11). Note that, by Proposition 3.10, 
we know d−V11

(x), d+
V22

(x) ≤ d/2. If d−V11
(x) = d+

V22
(x) = d/2, then we obtain another 

extremal (4, τ, 4ν)-partition by moving x into V11, which results in case (i). If we 
have either d−V11

(x) < d/2 or d+
V22

(x) < d/2, then we have e(V11, V22) ≥ 1. We can 
take an arbitrary edge ab ∈ E(V11, V22), and set Q = {ab}.

Now we contract this path system Q in G with respect to partition P to obtain a graph 
G′ with resulting partition P ′ = {V ′

ij : i, j ∈ [2]}. By Lemma 4.10, we have |V ′
12| = |V ′

21|. 
Moreover, the choice of Q ensures that both V ′

12 and V ′
21 are nonempty as follows: In 

cases (i), (iii), and (iv) we include at least one path from V11 to V22 so that the vertex 
created when contracting this path is placed in V ′

21; see Definition 4.7. In case (ii), V21 is 
nonempty and we do not use any vertices from V21 in the path system. Therefore, V ′

12 is 
nonempty after the contraction, which also means that V ′

12 is nonempty as |V ′
12| = |V ′

21|. 
We note that Q has at most 12νn edges since, by construction, Q has at most ||V12| −|V21||



A. Lo et al. / Journal of Combinatorial Theory, Series B 164 (2024) 119–160 153
edges (except in case (i) where Q has two edges) and |V12| −|V21| ≤ 12νn by Corollary 3.3. 
Therefore, we delete at most 24νn vertices, which implies δ0(G′) ≥ d − 24νn. On the 
other hand, by Proposition 4.9, we have that P ′ is a (4, τ/2, 8ν)-partition. Also, by 
Proposition 3.8, we have

|V ′
i∗| ≥ |Vi∗| − 24νn ≥ (1/3 + ε− 24ν)n ≥ |G′|/3

for i ∈ [2]. Similarly, we obtain |V ′
∗i| ≥ |G′|/3, so P ′ is a (4, 1/3, 8ν)-partition. Let 

B+(G′) be the set of vertices in G′ satisfying d+
G2(P′,G′)(x) < (1/3 + ε/3)|G′|. Similarly, 

define B−(G′). Note that δ0(G′) ≥ d − 24νn ≥ (1/3 + ε/2)|G′|. Hence, for any vertex 
x ∈ B+(G′), we obtain

d+
B2(P′,G′)(x) > (1/3 + ε/2)|G′| − (1/3 + ε/3)|G′| ≥ ε|G′|/6.

Since |B2(P ′, G′)| ≤ 8ν|G′|2, we have 8γ|G′|2 ≥ |B+(G′)| · ε|G′|/6. So, |B+(G′)| ≤
48ν|G′|/ε and, similarly, |B−(G′)| ≤ 48ν|G′|/ε. As a result, we obtain

|B+(G′)| + |B−(G′)| ≤ 96ν|G′|/ε ≤
√
ν|G′|.

Moreover, since P is an extremal (4, τ, 4ν)-partition and we deleted at most 24νn vertices, 
Proposition 3.10 implies that d+

G2(P′,G′)(v), d
−
G2(P′,G′)(v) ≥ d/2 − 24νn ≥ |G′|/20 for all 

v ∈ V (G′). As a result, P ′ satisfies the properties in Lemma 5.2, so G′ is Hamiltonian. 
Hence, the result follows by Proposition 4.8. �
Proof of Theorem 1.3. Let ε > 0 be a constant. Let G be a d-regular oriented graph on 
n (sufficiently large) vertices with d ≥ (1/4 + ε)n. We will show that G is Hamiltonian. 
Fix constants ν and τ satisfying 1/n � ν � τ � ε. By Theorem 2.4, we are done if G
is a robust (ν, τ)-outexpander. Assume not. Then, by Lemma 3.6, G admits an extremal 
(4, τ, 4ν)-partition P = {Vij : i, j ∈ [2]}. Then, for each i ∈ [2],

|Vi∗|, |V∗i| ≥ (1/4 + ε/2)n (6.1)

by Proposition 3.8. Also, we have |V12|, |V21| ≥ τn by Proposition 3.11. Without loss 
of generality, assume |V11| ≤ |V22|. Furthermore, by reversing the edges if necessary, we 
may assume that |V12| ≥ |V21|. Let r = |V12| − |V21|. By Corollary 3.3 and the fact that 
|B2(P, G)| ≤ 4νn2, we obtain

r ≤ 4νn2/d ≤ 16νn. (6.2)

Fix a subset R of V12 of size r. Let W = {Wij : i, j ∈ [2]} where Wij = Vij \ R for 
i, j ∈ [2]. Note that |V11| ≤ |V22| and |V12| ≥ |V21| imply that |V∗2| ≥ n/2. Hence

|W2∗| = |W∗2| ≥ (n− r)/2 (6.3)

and |W1∗| = |W∗1| ≥ |V21| ≥ τn. (6.4)
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We now split into cases depending on whether, for all proper 2-pairs φ2 with respect 
to W, the digraph J 2(W, G −R, φ2) is a robust (ν1/2, τ)-outexpander or not.

Case 1: Suppose that, for all 2-pairs φ2 with respect to W, J 2(W, G − R, φ2) is a 
robust (ν1/2, τ)-outexpander. Recall that Gij = G[Vi∗, V∗j ]. We have by Proposition 3.2
that

e(G12) ≥ e(G12) − e(G21) = d(|V12| − |V21|) = dr.

By Proposition 3.10, Δ0(G12) ≤ d/2. Moreover, we have e(G12) ≤ |B2(P, G)| ≤ 4νn2. 
Hence, by Lemma 4.3, G12 has a path system Q with r edges.

We contract Q in G with respect to P to obtain G′ with resulting partition P ′ =
{V ′

ij : i, j ∈ [2]}. Since |E(Q) ∩ E(G12)| − |E(Q) ∩ E(G21)| = |V12| − |V21|, Lemma 4.10
implies that |V ′

12| = |V ′
21|. Moreover, by Proposition 3.11, we have |V12|, |V21| ≥ τn. Since 

r ≤ 16νn � τn, we conclude that |V ′
12| = |V ′

21| > 0. By Proposition 4.8, it is enough to 
show that G′ is Hamiltonian.

Consider a proper i-pair ψi with respect to P ′ for i ∈ [2]. Let Ji = J i(P ′, G′, ψi). To 
show that G′ is Hamiltonian, by Proposition 5.1, it suffices to show that J1 and J2 are 
Hamiltonian.

We first prove that J2 is a robust (ν1/2/2, 2τ)-outexpander by showing it is a small 
perturbation of J 2(W, G − R, φ2) for a suitable proper 2-pair φ2 with respect to W, 
chosen as follows. Let t = |W12| and t′ = |V ′

12|. Recall that ψ2 is a function from [t′] ∪V ′
22

to V ′
2∗×V ′

∗2. Pick φ2 among all proper 2-pairs with respect to W such that |X| is as large 
as possible where X is the set of x ∈ ([t] ∪W22) ∩ ([t′] ∪ V ′

22) satisfying φ2(x) = ψ2(x). 
We define J 2 = J 2(W, G −R, φ2).

We have that V (J2) = [t′] ∪ V ′
22 and V (J 2) = [t] ∪ W22 and X ⊆ V (J2) ∩ V (J 2). 

Moreover J2[X] = J 2[X]; to see this, note that for Y := φ2(X) = ψ2(X) ⊆ V (G), the 
partitions P ′ and W are the same on G′[Y ] = (G −R)[Y ].

First note that

|J 2| = |W∗2| ≥ (n− r)/2.

Since

|W2∗
V ′
2∗|, |W∗2
V ′

∗2| ≤ 3e(Q) + |R| = 4r,

we deduce that

|([t] ∪W22) \X| , |([t′] ∪ V ′
22) \X| ≤ 16r.

Therefore

|V (J2)
V (J 2)| ≤ |([t] ∪W22) \X| + |([t′] ∪ V ′
22) \X|

≤ 32r ≤ 512νn ≤ ν1/2|J 2|/2.
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Since J 2 is a robust (ν1/2, τ)-outexpander by assumption, we conclude that J2 is a 
robust (ν1/2/2, 2τ)-outexpander by Lemma 2.5 (where J2 ∪ J 2 plays the role of G). 
Also, by Proposition 3.10, we know that d+

G2(P,G), d
−
G2(P,G) ≥ d/2. Then, since e(Q) = r, 

we have d+
G2(P′,G′)(v), d

−
G2(P′,G′)(v) ≥ d/2 − 2r for all v ∈ V (G′), which shows

δ0(J2) ≥ d/2 − 2r ≥ n/10 ≥ |J2|/10

by using d ≥ (1/4 +ε)n, r ≤ 16νn and ν � ε. Hence, J2 is Hamiltonian by Theorem 2.4.
We now show that J1 is Hamiltonian. By (6.1) and (6.2), we have n/4 ≤ |V1∗| − 2r ≤

|V ′
1∗| = |J1|. Also, since |V11| ≤ |V22| and |V12| − |V21| = r, we have |V ′

1∗| ≤ |V1∗| + r ≤
(n + r)/2 + r ≤ (1/2 + τ)n as ν � τ . Then, we obtain

n/4 ≤ |V ′
1∗| = |J1| ≤ (1/2 + τ)n.

Similarly as above, by Proposition 3.10, we have δ0(J1) ≥ d/2 − 2r ≥ |J1|/10. By 
Proposition 4.9, P ′ is a (4, τ/2, 8ν)-partition of G′. Also

e(J1) = e(V ′
1∗, V

′
∗1) ≥ δ0(G′)|V ′

1∗| − |B2(P ′, G′)|
≥ (d− 2r)|V ′

1∗| − 8νn2 ≥ (d− 64νn)|J1|

as |V ′
1∗| = |J1| ≥ n/4. Let B+(J1) be the set of vertices in J1 satisfying d+

J1
(v) < d −εn/4. 

Similarly define B−(J1). Since Δ0(J1) ≤ d, we obtain

(
|J1| − |B+(J1)|

)
d + |B+(J1)| (d− εn/4) ≥ e(J1) ≥ (d− 64νn)|J1|,

which implies 64νn|J1| ≥ |B+(J1)|εn/4. Hence, we have |B+(J1)| ≤ 256ν|J1|/ε, and 
similarly, |B−(J1)| ≤ 256ν|J1|/ε. As a result, we obtain

|B+(J1)| + |B−(J1)| ≤ 512ν|J1|/ε ≤
√
ν|J1|

as ν � ε. Hence, for all but at most 
√
ν|J1| vertices v ∈ V (J1), we have

d+
J1

(v), d−J1
(v) ≥ (d− εn/4) ≥ (1/2 + ε/3)|J1|.

Therefore, J1 satisfies the conditions of Corollary 2.8, so it is Hamiltonian.
Case 2: Suppose that there exists a 2-pair φ2 = (φ2∗, φ∗2) with respect to W such that 

J 2(W, G − R, φ2) is not a robust (ν1/2, τ)-outexpander. Let J 2 = J 2(W, G − R, φ2). 
We now show that there is a (9, τ/6, 20ν1/2)-partition for G (so that we can apply 
Lemma 5.3).

Note that it suffices to show that G −R admits a (9, τ/3, 10ν1/2)-partition since |R| =
r ≤ 16νn (so we can arbitrarily add the vertices of R into those 9 parts, which would 
cause a small amount of increase in the number of bad edges). Recall that J 2 is a digraph 
on [t] ∪W22 where t = |W12| = |W21|, and φ2∗ : [t] ∪W22 → W2∗, φ∗2 : [t] ∪W22 → W∗2
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are bijections satisfying φ2∗(x) = φ∗2(x) = x for all x ∈ W22. First we show J 2 is almost 
regular, so it admits a (4, τ, 4γ1/2)-partition by using Lemma 3.6 since we assumed it is 
not a robust (ν1/2, τ)-outexpander. Note that any partition {Uij : i, j ∈ [2]} of V (J 2)
also gives a 4-partition for W22. Similarly, {Uij : i, j ∈ [2]} partitions W12 (resp. W21) 
into 2 parts depending on y ∈ U1∗ or y ∈ U2∗ (resp. y ∈ U∗1 or y ∈ U∗2) for each y ∈ [t], 
so we obtain a 9-partition of G −R. Then we show bad edges in this 9-partition (almost) 
correspond to B2(W, G −R), so we can find an upper bound for the number of them.

Let θ = d/|W2∗|. Remove any loops in J 2. Notice that we have |J 2| = |W2∗| and 
Δ0(J 2) ≤ d = θ|W2∗|. Since W2∗ = V2∗ and W∗2 = V∗2 −R, we have by (6.3)

e(J 2) ≥ e(W2∗,W∗2) − n = e(V2∗,W∗2) − n ≥ d|W∗2| − e(B2(P, G)) − n

≥ d|W2∗| − νn2 − n ≥ (θ − ν1/2)|W2∗|2.

By Lemma 3.6, J 2 admits a (4, τ, 4ν1/2)-partition P∗
2 = {Uij : i, j ∈ [2]}. Let Xi =

φ2∗(Ui∗) and Yi = φ∗2(U∗i) for i ∈ [2]. Hence we have

|X1|, |X2|, |Y1|, |Y2| ≥ τ |W2∗| ≥ τ(n− r)/2 ≥ τn/3, (6.5)

eG(X1, Y2) + eG(X2, Y1) ≤ B2(P∗
2 ,J 2) + |W2∗| ≤ 5ν1/2|W2∗|2, (6.6)

where we have used (6.3) and (6.2) for the first line. Then, let us define the partition 
Z = {Zij : i, j ∈ [3]} for G −R as follows:

Z11 = W22 ∩X1 ∩ Y1, Z12 = W22 ∩X1 ∩ Y2, Z13 = W21 ∩X1,

Z21 = W22 ∩X2 ∩ Y1, Z22 = W22 ∩X2 ∩ Y2, Z23 = W21 ∩X2,

Z31 = W12 ∩ Y1, Z32 = W12 ∩ Y2, Z33 = W11.

Notice that, for i ∈ [2]

|Zi∗| = |Xi| ≥ τn/3 and |Z∗i| = |Yi| ≥ τn/3

by (6.5). Also, by (6.4), we have |Z3∗| = |W1∗| ≥ τn/3 and |Z∗3| = |W∗1| ≥ τn/3. Note 
that

B3(Z, G−R) ⊆ EG(X1, Y2) ∪ EG(X2, Y1) ∪
⋃

i,j �=3

(EG(Zi∗, Z∗3) ∪ EG(Z3∗, Z∗j))

= EG(X1, Y2) ∪ EG(X2, Y1) ∪ B2(W, G−R)

⊆ EG(X1, Y2) ∪ EG(X2, Y1) ∪ B2(P, G),

so (6.6) implies that |B3(Z, G − R)| ≤ 5ν1/2|W2∗|2 + 4νn2 ≤ 10ν1/2|G − R|2. There-
fore, Z is a (9, τ/3, 10ν1/2)-partition for G − R. Let us distribute the vertices of R into 
elements of Z arbitrarily. Since r ≤ 16νn � τn, the modified version of Z becomes a 
(9, τ/6, 20ν1/2)-partition for G. Hence, by Lemma 5.3, G is Hamiltonian, as required. �



A. Lo et al. / Journal of Combinatorial Theory, Series B 164 (2024) 119–160 157
7. Conclusion

The main result of this paper is a proof of the approximate version of Jackson’s 
conjecture, namely Conjecture 1.2. It remains an open problem to prove this conjecture 
exactly. Similarly, it would be interesting (and probably easier) to obtain an exact version 
of Theorem 1.5, namely to show that every strongly well-connected n-vertex d-regular 
digraph with d ≥ n/3 is Hamiltonian.

Another natural question is to ask for the analogue of Theorem 1.5 for oriented graphs. 
By suitably orienting the edges in a non-Hamiltonian 2-connected regular graph on n
vertices with degree close to n/3 (see e.g. [10]), there exist non-Hamiltonian strongly 
well-connected regular oriented graphs on n vertices with d close to n/6.

Proposition 7.1. For n ∈ N, there exists a strongly well-connected 3n-regular oriented 
graph on 18n + 5 vertices with no Hamilton cycle (Fig. 6).

Proof. Let G1, G2 and G3 be vertex-disjoint regular tournaments each on (6n + 1)
vertices. For i ∈ [3], let Mi = {xi

jy
i
j : j ∈ [2n]} be a matching of size 2n in Gi. Define 

G to be the oriented graph obtained from 
⋃

i∈[3](Gi −Mi) by adding two new vertices 
z and z′ and edge set {xi

jz, zy
i
j , x

i
j+nz

′, z′yij+n : i ∈ [3], j ∈ [n]}. Note that G is a 3n-
regular oriented graph on 18n + 5 vertices. We claim that G is strongly well-connected. 

Fig. 6. A strongly well-connected 3n-regular oriented graph G on 18n + 5 vertices.
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Indeed, G has a cycle with vertex set V (G1) ∪ V (G2) ∪ {z, z′} and another cycle with 
vertex set V (G3) ∪{z, z′}. The union of these two cycles (which is a subdigraph of G) is 
already strongly well-connected; hence G is strongly well-connected. However G is not 
Hamiltonian because deleting the two vertices z and z′ from G disconnects it into 3
components (whereas deleting any 2 vertices from a Hamilton cycle disconnects it into 
at most 2 components). �

Are all strongly well-connected d-regular oriented graphs on n vertices with d ≥ n/6
Hamiltonian? We note that a version of this question with “strongly 2-connected” in 
place of “strongly well-connected” was asked in [11], but Proposition 1.6 provides a 
counterexample for that.

Another interesting direction is to obtain an analogue of the Bollobás–Häggkvist Con-
jecture (which is discussed in the introduction) for oriented graphs. That is, given t ≥ 3, 
determine the minimum value for d such that any strongly t-connected d-regular n-vertex 
oriented graph is Hamiltonian. For any choice of t, we must have d ≥ n/8 by considering 
a suitable orientation of the example of Jung and of Jackson, Li, and Zhu (mentioned in 
the Section 1), as shown below.

Proposition 7.2. For n ∈ N, there exists a strongly n-connected 2n-regular oriented graph 
on 16n + 1 vertices with no Hamilton cycle.

Proof. Consider a 2n-regular oriented bipartite graph H with vertex classes A and B each 
of size 4n. Fix b ∈ B and let N+

H(b) = {a+
1 , . . . , a

+
2n} and N−

H (b) = {a−1 , . . . , a−2n}. Let G1

and G2 be regular tournaments each on (4n +1) vertices. Suppose that V (H), V (G1) and 
V (G2) are pairwise disjoint. For i ∈ [2], let Mi = {xi

jy
i
j : j ∈ [n]} be a matching of size n

in Gi. Define G to be the oriented graph obtained from (H−{b}) ∪G1∪G2 by removing 
the edges from M1 ∪ M2 and adding the edges {x1

ja
+
j , a

−
j y

1
j , x

2
ja

+
j+n, a

−
j+ny

2
j : j ∈ [n]}. 

Note that G is a strongly n-connected 2n-regular oriented graph on 16n + 1 vertices 
(Fig. 7). However G is not Hamiltonian as removing A will create 2 + (|B| − 1) > |A|
components. �

Are all strongly 3-connected d-regular oriented graphs on n vertices with d ≥ n/8
Hamiltonian?

For digraphs, one can similarly ask whether all strongly well connected (or 3-
connected) d-regular digraphs on n vertices with d ≥ n/3 (or d ≥ n/4, respectively) 
Hamiltonian? If the answer is yes, then the value of d is best possible by considering the 
digraph analogues of the examples given by Propositions 7.1 and 7.2.
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Fig. 7. A strongly n-connected 2n-regular oriented graph G on 16n + 1 vertices.
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