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Cytoskeletal regulation of platelet formation: Coordination of F-actin and microtubules 

Natalie S. Poulter and Steven G. Thomas 

Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of 

Birmingham, Edgbaston, Birmingham B15 2TT, UK. 

 

Signalling Network Facts 

 Blood platelets are released into the circulation from their progenitor cell, the 

megakaryocyte which resides in the bone marrow. 

  The process of platelet production involves maturation of megakaryocytes via endomitosis 

and the release of platelets from proplatelet extensions. Disruption of these processes can 

give rise to thrombocytopenia and/ or platelet function disorders. 

 The actin and microtubule cytoskeletons are essential for proper maturation and proplatelet 

formation. 

 Recent evidence has highlighted new roles for several proteins (e.g. WASp, Profilin, Pak2) in 

coordinating actin and microtubules to regulate platelet production. 

Abstract 

Platelets are small, anucleate blood cells which play an important role in haemostasis. 

Thrombocytopenia is a condition where the platelet count falls below 150 x 109/litre and patients 

suffering from severe forms of this condition can experience life-threatening bleeds requiring 

platelet transfusions.  Platelets are produced from large progenitor cells called megakaryocytes 

which are found in the bone marrow. The process of megakaryocyte maturation and the formation 

of proplatelets are essential steps in the production of mature platelets and both depend heavily on 

the actin and microtubule cytoskeletons. Understanding these processes is important for the 

development of in vitro platelet production which will help to treat thrombocytopenia as well as 

produce model systems for studying platelet-associated disorders. This review will highlight some of 

the recent advances in our understanding of the role of the cytoskeleton in platelet production, 

especially the key molecules and signalling pathways that regulate actin and microtubule crosstalk. 
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Megakaryocyte, Platelets, Proplatelet formation, Actin, Microtubules 

1. Introduction 

Platelets are small, anucleate, circulating blood cells which play a critical role in the process of 

haemostasis (the prevention of blood loss following injury). The activation of platelets in response to 

vascular injury, along with vasoconstriction and the coagulation cascade, ensure that blood loss is 

restricted and promotes repair of damaged vessel walls. The normal platelet count of blood ranges 

between 150 – 400 x 109/litre and human platelets have a lifespan of 8–10 days (Giles, 1981; 

Leeksma and Cohen, 1955). The average healthy adult produces 1011 platelets/day to maintain this 

count. Thrombocytopenia is a condition where the platelet count falls below the 150 x 109/litre 

threshold. This can be caused by a variety of factors ranging from genetic causes to drug-induced 
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thrombocytopenia. Patients suffering from thrombocytopenia experience a range of symptoms and, 

depending on the severity, may require platelet transfusions to counteract the risk of severe 

bleeding (Reviewed by Gauer and Braun, 2012). 

Platelets are produced from their progenitor cell, the megakaryocyte (MK), in the bone marrow in 

response to the hormone thromobopoietin (TPO) (Reviewed by Thon and Italiano 2012; Machlus and 

Italiano 2013). In response to TPO, haematopoietic stem cells differentiate into MKs by differential 

regulation/expression of transcription factors (including GATA1, FOG1, RUNX1, FLI1 and NF-E2). This 

maturation is characterised by an increase in size of the MK (50μm  ≥100μm) and DNA ploidy level of 

the cell due to endomitosis (DNA replication without cell division). This increase in size allows the 

MK to accumulate RNA, protein, internal membrane pools and organelles for subsequent packaging 

into platelets.  

The production of platelets from mature MKs occurs via the extension of proplatelets (PPs) into the 

bone marrow sinusoidal blood vessels and release of (pro)platelets into the blood.  It is known that 

inhibition of cytoskeletal dynamics has a detrimental effect on platelet production (Tablin et al. 

1990; Italiano et al. 1999). This review will highlight some recent developments in our understanding 

of the proteins and signalling pathways that regulate the cytoskeleton during MK maturation, 

proplatelet formation (PPF) and platelet release.  

2. Functions 

The formation of platelets from mature MKs can be separated into several stages (Figure 1) which 

are summarised below and highlight the key functions of the actin and microtubule (MT) 

cytoskeletons. In addition, Table 1 summarises the roles of the various cytoskeletal proteins in 

platelet production. 

2.1 MK maturation  

During maturation, MK progenitors, which reside in the bone marrow osteoblastic niche, increase in 

size and migrate to the vascular bone marrow niche. Migration of MKs to the perivascular space is 

driven by a gradient of the chemokine stromal cell-derived factor 1 (SDF-1) (Avecilla et al. 2004) and 

is dependent on the actin cytoskeleton with a specific role for non-muscle myosin IIA (Pecci et al. 

2011). Furthermore, precise regulation of the actin cytoskeleton is required to allow endomitosis 

which is responsible for the increase in MK size and ploidy from 2N up to 128N.  

2.2 Extension of proplatelets into the blood stream 

Once in the vascular niche mature MKs produce  protrusions called proplatelets (PPs) which extend 

across the sinusoidal blood vessel wall.. It is from these projections that platelets are formed and the 

cytoskeleton plays a major role in this. MTs are absolutely required for the extension of PPs but it is 

the sliding of MTs past each other, driven by the motor protein dynein, and not MT polymerisation, 

that is the primary driving force of PP extension (Italiano et al. 1999; Patel et al. 2005; Bender et al. 

2015). β1-tubulin is the major isoform of tubulin in MKs and is necessary for PPF (Wang et al. 1986; 

Schwer et al. 2001). Mutations in β1-tubulin (Tubb1) cause autosomal dominant thrombocytopenia 

in humans (Kunishima et al. 2009). Although pharmacological disruption of the actin cytoskeleton 

does not prevent PP extension, actin is involved in the bifurcation of PPs which increases PP tip 

number (Italiano et al. 1999). More recently the actin cytoskeleton has been implicated in PPF 
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through the action of WASp in the formation of podosomes, actin rich structures which mediate 

adhesion and degradation of the extra-cellular matrix (Schachtner et al. 2013) and downstream of 

PIP2 present in the MK demarcation membrane system (Schulze et al. 2006). 

2.3 Delivery of Cargo into proplatelets 

During MK maturation, MKs accumulate platelet-specific granules which are essential to platelet 

function. During PPF these granules and organelles are distributed into the nascent platelets along 

bipolar MTs which line the length of the PPs. This movement is via the MT motor kinesin and this 

drives their capture at the PP tips (Patel et al. 2005; Richardson et al. 2005). In addition to 

movement along MTs, the sliding of MTs also contributes to the distribution of organelles/granules 

into platelets. (Richardson et al. 2005). 

2.4 Platelet release 

The final stage of platelet production occurs in the bloodstream. Anucleate fragments of the PPs, 

that are larger than individual platelets, bud off into the circulation. Both preplatelets (Thon et al. 

2010) and barbell-shaped platelets (Schwertz et al. 2010) have been observed in the circulation and 

their conversion into platelets is a MT-dependent process. It is thought that preplatelets (discoids of 

2-10µm diameter) can reversibly convert into barbell platelets by twisting the MT cytoskeleton 

around the centre of the preplatelet (Thon et al. 2010). The barbell structures, which have a platelet-

sized (2µm) MT coil at each end, can divide into two individual terminal platelets. This fission event 

is accelerated by the shear forces present in flowing blood (Thon et al. 2010). Mathematical 

modelling has shown that the cytoskeleton is also responsible for maintaining platelet size (Thon et 

al. 2012), an important factor in controlling the pro-thrombotic potential of platelets.  

3. Cascades 

3.1 Rho family small GTPases 

The Rho family small GTPases are well characterised regulators of the cytoskeleton, with RhoA, Rac1 

and Cdc42 being the best characterised. Historically Cdc42 was thought to drive the formation of 

filopodia, Rac1 lamellipodia and RhoA stress fibres (Heasman and Ridley 2008). However, it is clear 

that their roles are more complex than this and this is certainly true in MKs.  

Recent data using MK-specific knockouts of RhoA have indicated that it has roles in both MK 

maturation and platelet formation. During cell division, RhoA recruitment to the cleavage furrow 

promotes cell division via F-actin and myosin-II contraction. The expression of the Rho-GEFs ECT2 

and GEF-H1, which are required for localisation and activation of RhoA at the cleavage furrow, are 

down-regulated during MK maturation (Gao et al. 2012). The subsequent failure of RhoA-mediated 

contraction drives polyploidisation via endomitosis. RhoA-/- MKs are larger and have an increased 

ploidy level when compared to wildtype mice (Suzuki et al. 2013).  

The observation that RhoA-/- mice display macrothrombocytopenia (Pleines et al. 2012) indicates an 

additional role for RhoA in PPF and this may be due to changes in membrane stiffness and deformity 

(Suzuki et al. 2013). Furthermore, the protein kinase-C isotype epsilon (PKC) is known to modulate 

the activity and expression of RhoA and subsequent cytoskeletal rearrangements. Recent 

observations that knockdown of PKC in MKs leads to aberrant PPF suggests that localised PKC-
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mediated down-regulation of RhoA activity promotes PPF and platelet release (Gobbi et al. 2013). 

Overall, the loss of RhoA function leads to aberrant release of large platelets which are rapidly 

cleared from the circulation. These studies have therefore identified roles for RhoA signalling in both 

MK maturation and PPF. 

Previous studies demonstrated that although platelets from Rac1 deficient mice have defective 

lamellipodia formation (McCarty et al. 2005; Pleines et al. 2009), Cdc42 seemed to be dispensable 

for platelet filopodia (Pleines et al. 2010). However, whilst Rac1-/- platelet number and size appeared 

normal, mice lacking Cdc42 displayed mild thrombocytopenia indicating that it may be required for 

platelet formation (Pleines et al. 2010). Recent studies with MK-specific knockouts of both Cdc42 

and Rac1 have demonstrated that these mice display severe macrothrombocytopenia (Pleines et al. 

2013) and identified roles for Rac1/Cdc42 in efficient demarcation membrane formation, synthesis 

and trafficking of granules and the maintenance of MK structural integrity during maturation 

(Pleines et al. 2013). Furthermore, they are required for proper MT organisation in PPs, an effect 

that may well be mediated via the actin-binding protein cofilin (Pleines et al. 2013).  These results 

highlight roles for Rac1/Cdc42 in the coordination of actin and MT cytoskeletons during PPF. 

3.2 Rho-GTPase effectors 

Many proteins are known to act as downstream effectors of Rho-GTPases to drive actin 

polymerisation. Recent studies on three proteins have identified roles in regulating MK maturation 

and platelet formation. The RhoA effector mDia1, a Diaphanous-related formin which regulates both 

F-actin polymerisation and MT stability (Schönichen and Geyer 2010), is upregulated during MK 

differentiation in both human and mouse cells (Watkins et al. 2009; Thomas et al. 2011). shRNAi 

knockdown of mDia1 in CD34+ human MKs resulted in increased PPF, a decrease in F-actin content 

and an increase in formation of stable MTs (Pan et al. 2014). Furthermore, expression of a 

constitutively-active mDia1 leads to a decrease in PPF suggesting that activation of mDia1 inhibits 

PPF (Pan et al. 2014). These data fit well with the observations that RhoA down-regulation is 

required for PPF and further reinforces the concept that coordination of the actin and MT 

cytoskeletons is important in these processes.  

A second Rho-GTPase effector demonstrated to play a role in platelet formation is Wiskott-Aldrich 

Syndrome protein (WASp). WASp is classically activated downstream of Cdc42 and mice lacking 

WASp, or humans with mutations in WASp, display microthrombocytopenia amongst other immune 

cell abnormalities (Moulding et al. 2013), a phenotype similar to that seen in the Cdc42-/- mice 

(Pleines et al. 2010). The observation that WASp-/- mice ectopically shed platelets in the bone 

marrow and additionally lack actin-rich adhesion structures called podosomes (Sabri et al. 2006) was 

further developed by demonstrations that MK podosomes are important for matrix degradation and 

protrusion of MKs through ECM basement membranes (Schachtner et al. 2013).  Taken together 

these data show that WASp plays a vital role in ensuring that MKs are releasing platelets into the 

circulation. Furthermore, the small size of platelets in WAS patients may be due to a WASp-

dependent, profilin-mediated effect on MT stability, thus highlighting a new role for WASp as a 

regulator of MT dynamics (Bender et al. 2014). 

Finally, Pak2 (p21-activated kinase2), an effector of Rac1 and Cdc42 GTPases, has been shown to 

play a role in PPF. MKs from Pak2-/- mice have less β1-tubulin, decreased F-actin polymerisation, less 

membrane invaginations and fewer proplatelets than their wild-type counterparts (Kosoff et al. 



Page 5 of 14

Acc
ep

te
d 

M
an

us
cr

ip
t

5 
 

2015). This study identifies Pak2 as playing a pivotal role in controlling MK actin- and MT-dynamics 

downstream of Rho-GTPases. 

3.3 Actin-binding proteins 

There are many actin-binding proteins which function downstream of Rho-GTPase effectors and new 

insights into several of these proteins in MKs have been identified. MK-specific knockouts of 

profilin1 display a phenotype similar to that of WASp deficient mice (Bender et al. 2014). Whilst the 

small size of the profilin1-/- platelets can be explained by effects on MT stability, the 

thrombocytopenia of profilin1-/- platelets is not due to defective PPF, but rather a combination of i) 

macrophage-dependent clearance of platelets from the circulation and ii) ectopic production of 

platelets in the BM. Similar to WASp-/- MKs, Profilin1-/- MKs have reduced podosome formation 

(Bender et al. 2014) which would reduce the ability of these MKs to protrude across ECM basement 

membrane and contribute to the thrombocytopenia .  Thus the role of profilin in MKs and platelets 

appears to be downstream of WASp and may explain the mechanism for the 

microthrombocytopenia observed in WAS patients.  

Non-muscle Myosin II (NMII) has been previously shown to have important roles in cytokinesis and 

cell division (Heissler and Manstein 2013). The  failure of the MK to divide following DNA replication 

is due to a defect in the actin-myosin II contractile ring that is caused by the down regulation of 

MYH10 (NMII-B) by the transcription factor RUNX1 (Lordier et al. 2008; Lordier et al. 2012). In 

contrast, the expression of MYH9 (NMII-A) increases during maturation and is important for MK 

organelle distribution, PPF and platelet release (Leon et al. 2007). F-actin organisation and organelle 

distribution was abnormal in MYH9-/- MKs, and NMII-A was required for proper positioning of 

organelles prior to PPF (Pertuy et al. 2014). Additionally, MK with mutations in MYH9 displayed 

normal development (in terms of ploidy and expression of platelet markers), but displayed hyper-

contractility (increased stress fibre formation) and a subsequent decrease in PPF (Chen et al. 2013). 

It is hypothesised that this increased contractility restrains PPF as it could be rescued by inhibition of 

myosin or Rho Kinase activity. Furthermore, NMII-A is activated under shear stress and plays a role 

in the shear-induced release of platelets into the circulation (Spinler et al. 2015). Therefore the 

combined effects of NMII-A and –B regulate several stages of platelet formation and mutations lead 

to a complex phenotype characterised by macrothrombocytopenia and mild bleeding disorders. 

4. Key molecules 

Clearly, the regulation of MK development, maturation, PPF and platelet release is complicated, 

requiring the coordination of both actin- and MT-cytoskeletons. Whilst many of the classical proteins 

responsible for the regulation of either actin or tubulin have been characterised, it is increasingly 

clear that many of these proteins play dual roles in this coordination (e.g. WASp, Profilin, mDia1, 

Rho-GTPases). The recent studies on PaK2 highlight this as its phenotype is complex, with both actin- 

and MT-dependent effects (Kosoff et al. 2015). Furthermore, understanding how gene expression is 

regulated during platelet production, specifically the regulation of cytoskeletal-related proteins, will 

help us to provide a temporal context to their roles. The recent identification of a number of actin-

binding proteins regulated by the micro-RNA MiR-142 (Chapnik et al. 2014) is a good example of this 

and provides foundations for future studies. In addition, recent work reporting proplatelet-

independent platelet production during times of acute platelet need (e.g. in thrombocytopenia or 

inflammation), in which MKs undergo cytoplasmic fragmentation and demonstrate dysregulated MT 
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organisation (Kowata et al 2014; Nishimura et al. 2015) indicates that there may be alternative 

cytoskeletal regulatory pathways involved. 

5. Pathologies and therapeutic intervention 

Defective MK maturation or PPF can result in thrombocytopenia which, if severe, can cause life-

threatening bleeding episodes. Understanding the signalling behind the biology of platelet formation 

is allowing scientists to develop new methods of producing platelets in vitro – the holy grail of 

platelet biology. A major challenge in the study of platelet production is understanding the role that 

the bone marrow environment plays in the process. As highlighted in Table 1, many studies on the 

role of individual proteins in platelet production have been carried out using in vitro studies where 

the presence of extracellular matrix proteins, stromal cells and cytokines is limited or non-existent. It 

is likely that the myriad of signals received from the bone marrow environment modulates platelet 

formation, as will the shear force from blood flow in the bone marrow sinusoids. Even within an in 

vivo setting, monitoring blood platelet counts at “steady state” in laboratory housed mouse models 

may mask partial defects in platelet production (for example as has been observed for Pecam1 KO 

mice (Dhanjal et al. 2007)). Therefore, studies in both in vitro and in vivo settings need to be 

addressed before a protein can be ruled out as playing a role in the process of platelet production.  

Additionally, whilst studies using knockouts or knockdowns of proteins are useful in understanding 

the role of a protein, generating mouse models expressing mutant forms of proteins implicated in 

thrombocytopenia will be important in elucidating the nuances of cytoskeletal regulation of platelet 

production. 

Recently great strides have been made in the production of functional platelets in vitro (Nakagawa 

et al. 2013; Thon et al. 2014; Di Buduo et al. 2015). Further work in this area will facilitate production 

of large quantities of functional platelets to bypass the limitations of using donated platelets for 

transfusion. This, coupled with the use of MKs/platelets derived from patient induced-pluripotent 

stem (iPS) cells (e.g. Ingrungruanglert et al. 2015), will enable the development of both patient-

specific therapeutics and models for studying specific diseases.  
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Figure Legends and Table 

Figure 1 - The stages of platelet production from megakaryocytes. 

1) Immature MKs residing in the osteoblastic niche undergo several rounds of endomitosis to 

increase their size, ploidy and membrane content whilst migrating to sinusoidal vessels in the 

vascular niche. 2) Mature MKs degrade the basement membrane using specialised actin structures 

called podosomes and extend proplatelets by a microtubule-driven process into the bloodstream. 3) 

Organelles and platelet-specific granules are taken to nascent platelets along bipolar microtubule 

bundles that line the length of the proplatelet where they become trapped at the tips. 4) The final 

processing of platelets takes place in the circulation. Preplatelets can reversibly convert to barbell-

shaped platelets by twisting the microtubule cytoskeleton before a fission event creates two 

individual terminal platelets in a process that is potentiated by shear. 
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Table 1 - Summary of cytoskeletal proteins known to regulate platelet production 

Protein Type of disruption Species Platelet number Platelet 
size/volume 

Other information Refs 

Actin Pharmacological on MK in vitro - 
Cytochalasin 

Guinea 
Pig / 
Mouse 

N/A
1
 N/A Disruption of actin filaments accelerates PP 

extension, but reduces bifurcation and 
branching of PP tips. 

Tablin et al. 
1990; Italiano et 
al. 1999 

Tubulin Pharmacological on MK in vitro – 
Nocodazole or Taxol 
 
 

1-tubulin knockout 
 
 
 

Patients with 1-Tubulin 
mutation (R318W) 

Guinea 
Pig / 
Mouse 
 
Mouse 
 
 
 
Human 

N/A 
 
 
 
Reduced (Approx. 
50% of WT) 
 
 
Reduced (40-60 
x10

9
/litre)

2
 

N/A 
 
 
 
Normal 
 
 
 
Enlarged 

Inhibition of MTs polymerisation blocks PP 
extension. Stabilisation of MTs leads to a 
reduced number of thickened, abnormal PPs. 
 
Defective PP formation and although platelet 
size is normal, they lack the discoid shape and 
have abnormal MT coil. 
 

R318W 1-tubulin is expressed but unstable. 

Tablin et al. 
1990; Italiano et 
al. 1999 
 
Schwer et al. 
2001 
 
 
Kunishima et al. 
2009 

RhoA MK/platelet specific RhoA 
knockout  

Mouse Reduced (Approx, 
50% of WT) 

Enlarged (25% 
larger) 

Changes in membrane stiffness and 
contractility combine to give aberrant release 
of large platelets which are rapidly cleared.  

Pleines et al. 
2012; Suzuki et 
al. 2013 

Rac1/Cdc42 MK/platelet specific Cdc42 
knockout 
 
Inducible Rac1 knockout 
 
 
 
MK/platelet specific Cdc42/Rac1 
double knockout 

Mouse 
 
 
Mouse 
 
 
 
Mouse 

Reduced (Approx. 
50% of WT) 
 
Normal 
 
 
 
Reduced (Approx. 
25% of WT) 

Enlarged (20% 
larger) 
 
Normal 
 
 
 
Enlarged (25% 
larger) 

Platelets have shortened lifespan in circulation. 
Possible role in granule packaging during PPF. 
 
No apparent role for Rac1 in platelet 
production. 
 
 
Multiple defects in MK maturation and PPF 
including defective MT organisation in PPs. 

Pleines et al. 
2010 
 
McCarty et al. 
2005; Pleines et 
al. 2009 
 
Pleines et al. 
2013 

mDia1 mDia1 knockout 
 
 
shRNAi knockdown of mDia1 in 
CD34+ primary cells in culture 

Mouse 
 
 
Human 

Normal 
 
 
N/A 

ND
3
 

 
 
N/A 

No apparent platelet defect in mDia1 
knockouts. 
 
Increased PPF, decreased F-actin and increase 
in stable MTs. CA

4
 mDia1 expression gives 

reduced PPF suggesting mDia1 down-regulation 
is required for PPF. 

Thomas et al. 
2011 
 
Pan et al. 2014 
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WASp Patients with WAS
5
 

 
 
WASp knockout 

Human 
 
 
Mouse 

Reduced 
 
 
Reduced 

Reduced 
 
 
Reduced 

Microthrombocytopenia and other immune cell 
phenotypes. 
 
Ectopic production of platelets in bone marrow 
due to failure of podosome formation. 
Additionally, WASp regulation of profilin-
mediated MT stability regulates platelet size. 

Moulding et al. 
2013 
 
Sabri et al. 2006; 
Schachtner et al. 
2013; Bender et 
al. 2014 

Pak2 Inducible Pak2 knockout Mouse Reduced (Approx. 
50% of WT) 

Increased (10% 
larger) 

Multiple effects on MK maturation via effects 
on both actin and MT cytoskeletal regulation. 

Kosoff et al. 
2015 

Non-muscle 
Myosin II-A 

MK/platelet specific NMII-A 
knockouts 
 
 
Patients with MYH9-related 
disorder 
 
Cell lines expressing MYH9-
related disorder mutations 

Mouse 
 
 
 
Human 
 
 
Human 

Reduced (Approx. 
40% of WT) 
 
 
Reduced (10 – 
110 x10

9
/litre) 

 
N/A

2
 

Enlarged 
 
 
 
Enlarged 
 
 
N/A 

Abnormal F-actin and organelle distribution in 
MKs. 
 
 
Hyper-contractility of MKs and decreased PPF. 
 
 
NMII-A activity regulates release of platelets 
into circulation and determines platelet size. 

Leon et al. 2007; 
Pertuy et al. 
2014 
 
Chen et al. 2013 
 
 
Spinler et al. 
2015 

Non-muscle 
Myosin II-B 

shRNAi knockdown of NMII-B in 
CD34+ primary cells in culture 

Human N/A N/A RUNX1-mediated down-regulation of NMII-B 
leads to endomitosis rather than cell division. 

Lordier et al. 
2012 

Dynein Pharmacological on MK in vitro Mouse N/A N/A Dynein is required for MT sliding during PP 
extension. 

Patel et al. 2005; 
Bender et al. 
2015 

Kinesin Kinesin coated beads Mouse N/A N/A Organelles and granules are transported along 
MTs by kinesins. 

Richardson et al. 
2005 

PKC shRNAi knockdown of PKC in MK 
cultures 

Mouse Reduced (in 
culture platelets) 

Enlarged (in 
culture platelets) 

Localised down-regulation of RhoA by PKC 
enhances PPF. 

Gobbi et al. 
2013 

ADF/Cofilin MK/platelet specific ADF/cofilin 
knockout 

Mouse Reduced (Approx. 
5% of WT)  

Enlarged Required for proper formation of the DMS, 
granule distribution and actin dynamics during 
MK maturation. 

Bender et al. 
2010 

Profilin MK/platelet specific Profilin1 
knockout 

Mouse Reduced (by 
Approx. 40%) 

Reduced Ectopic platelet formation in bone marrow 
possibly due to reduced podosome formation. 
Effects on platelet size via MT integrity. 

Bender et al. 
2014 

Notes. 
1
 N/A = Not applicable. 

2
 Normal human platelet count = 150-400 x10

9
/litre. 

3
 ND = Not Determined. 

4
 CA = Constitutively active. 

5
 WAS = Wiskott-Aldrich syndrome. 
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