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In space engineering, the electronic component layout has a very important impact on the centroid stability and heat dissipation
of devices. However, the expensive thermodynamic simulations in the component thermal layout optimization problems bring
great challenges to the current optimization algorithms. To reduce the cost, a surrogate-assisted evolutionary algorithm with
restart strategy is proposed in this work. The algorithm is consisted of the local search and global search. A restart strategy is
designed to make the local search jump out of the local optimum promptly and speed up the population convergence. The
proposed algorithm is compared with two state-of-the-art algorithms on the CEC2006, CEC2010, and CEC2017 benchmark
problems. The experiment results show that the proposed algorithm has a high convergence speed and excellent ability to find
the optimum in the expensive constrained optimization problems under the very limited computation budget. The proposed
algorithm is also applied to solve an electronic component layout optimization problem. The final results demonstrate the
good performance of the proposed algorithm, which is of great significance to the component layout optimization.

1. Introduction

In space engineering, the layout of electronic components on
circuit board has an important impact on the working state
of components. However, the diversity of components, a
variety of spatial location constraints, and thermal
performance constraints have brought great challenges to
the layout design. Moreover, the thermodynamic simulation
is very expensive and time-consuming. For convenience, the
component layout optimization problems (CLOPs) can be
formulated as the expensive constrained optimization
problems (ECOPs) as follows:

  minimize f xð Þ,
  subject togj xð Þ ≤ 0, j = 1,⋯,m,
   

ð1Þ

where x = ½x1,⋯, xd� is the decision vector, xk ∈ ½lk, uk�, k =
1,⋯, d. When the function evaluations f ð·Þ and gð·Þ are
time-consuming or expensive experiments [1, 2] which gen-
erally cannot be described by the analytic formula, they are

expensive optimization problems. For example, the thermal
layout simulation of electronic components in f ð·Þ and gð·Þ
is time-consuming, so it is expensive to evaluate the perfor-
mance of a solution. Therefore, it is unrealistic to use a
mount of real function evaluations in the optimization
process. The ECOPs should be solved under the limited
function evaluations. In addition, the ECOPs need the
specific constraint handling strategies.

Evolutionary algorithms (EAs) have outstanding advan-
tages in solving black-box optimization problems [3]. EAs
only rely on the input and output to keep approaching the
optimum through its iterations, which do not need the
mathematical formulation of the problems. EAs are the bio-
logical heuristic algorithms which cannot guarantee to get
the global optimum but an approximated optimum. The
representative EAs are the genetic algorithm (GA) [4] and
the differential evolution (DE) [5].

Although EAs can deal with the black-box problems,
they need a lot of evaluations. The high cost still hinders
solving the problems. Thus, the surrogates are used for
modeling the evaluation process to replace some real
evaluations with the model prediction in the optimization
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process, which is called the surrogate-assisted evolutionary
optimization [6–8]. Many machine learning techniques
have been applied to construct the surrogate models, such
as the Gaussian process regression (GP) [9], the radial
basis function network (RBFN) [10], the polynomial
regression (PR) [11], the support vector machine (SVM)
[12], and the artificial neural network (ANN) [13]. For
finding the optimum and improving the surrogates, there
have many strategies which are generally called the model
management strategies designed for selecting the candidate
solutions for real evaluations [14, 15].

Another core issue of ECOPs is how to handle constraints.
There are mainly three kinds of constraint handling methods.
The first is the penalty function method [16, 17] to impose
penalties on the constraints. The second is the feasibility rule
proposed in [18]. The feasible solutions and infeasible
solutions are compared by the specific rules. The stochastic
ranking proposed in [19] is also a kind of feasibility rule
method. The third is the multiobjective method [20, 21] which
regards the constraints as the objective to transform the origin
constrained optimization problems into the multiobjective
optimization problems.

There are some representative algorithms proposed to
address the ECOPs. For example, a global and local
surrogate-assisted differential evolution algorithm (GLo-
SADE) is proposed in [22]. In its global search stage, the
algorithm adopts two DE variants for prescreening search
and the generalized regression neural network for model-
ing the objective functions and the constraint functions.
In its local search stage, the interior point method is
applied to find the best solution in the local area and
the RBFN models are established for the objectives and
the constraints. The constraint handling adapts the feasi-
bility rule for comparing the solutions. An evolutionary
algorithm with multiple penalty functions and multiple
local surrogates (MPMLS) is proposed in [23]. The algo-
rithm decomposes the search space into multiple subre-
gions and builds one local surrogate model for each
subregion. The penalty function method is applied to deal
with the constraints.

In this work, we aim to design a surrogate-assisted
evolutionary algorithm for solving the ECOPs efficiently.
The local search can converge rapidly but easily fall into
local optimum while the global search is on the contrary.
Thus, we propose a restart strategy for combining the
advantages of both strategies. Meanwhile, a local search
method is proposed for enhancing local exploitation, and
a new constraint violation calculation method is developed
for handling the constraints. In addition, the modeling
efforts are reduced by the proposed model management
strategy. We term the proposed algorithm surrogate-
assisted evolutionary algorithm with restart strategy
(SAEA-RS).

The rest of this paper is organized as follows. Section 2
gives some preliminaries to establish a basis for the following
discussion. Section 3 introduces the framework and some
main parts in the proposed algorithm. Section 4 presents
ablation experiments and comparative experiments with
other algorithms. Section 5 presents the experimental results

of the proposed algorithm on a circuit component thermal
layout optimization problem. Section 6 concludes the paper
and discusses the future research directions for the expensive
constrained optimization.

2. Preliminaries

2.1. Radial Basis Function Network. RBFN is a three-layer
forward network which are the input layer, the hidden
layer, and the output layer. It has excellent fitting ability,
simple structure, and high training speed. Thus, it has
been widely used as the surrogate model in surrogate-
assisted evolutionary optimization. Given that fðxi, yiÞji =
1,⋯,Ng, RBFN can be described in the function
expression as follows:

f̂ xð Þ = 〠
N

i=1
wi ϕ xð Þ − ϕ xið Þð Þ, ð2Þ

where wi is the weight and ϕð:Þ is the basis function. The
wi can be calculated using the following expression:

w = ΦTΦ
� �−1

ΦTy,

Φ =
ϕ x1 − x1ð Þ ⋯ ϕ x1 − xNð Þ

⋮ ⋱ ⋮

ϕ xN − x1ð Þ ⋯ ϕ xN − xNð Þ

2
664

3
775, ð3Þ

where w = ½w1,⋯,wN �T and y = ½y1,⋯, yN �T . The uncer-
tainty of the solution can well represent the confidence
of the current solution, which can guide the generation
and retention of the solutions and further improve the
accuracy of the model. The uncertainty can be calculated
through the formula below:

σ2 xð Þ = −Φ xð ÞΦ−1Φ xð ÞT , ð4Þ

where ΦðxÞ = ½ϕðx − x1Þ,⋯, ϕðx − xNÞ�.
2.2. Differential Evolution. DE is a classical EA which has a
fast convergent speed. Meanwhile, it has very excellent
robustness. Also, it is inherently parallelized which is very
convenient for parallel computing. Mutation, crossover,
and selection are three main operators of DE.

The mutation operator has many variants with different
characteristics. The most representative variant is described
below:

vi = xr1 + F × xr2 − xr3ð Þ, k = 1,⋯,N: ð5Þ

For each vi, the r1, r2, and r3 are three different integers
randomly selected from f1, 2,⋯, i − 1, i + 1,⋯,Ng. Thus,
xr1, xr2, and xr3 are the individuals in the population. F is
the scaling factor, and N is the population size.

The crossover operator can be described as follows. The
ui,k is the combination of vi,k and xi,k through the crossover.
The CR is the crossover probability, and jrand is a random
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location. If a random number between 0 and 1 is less than or
equal to CR or j = jrand, the ui,k should be the vi,k. Otherwise,
the ui,k should be the xi,k.

ui,k =
vi,k, if rand 0, 1ð Þ ≤ CR or j = jrand,
xi,k, otherwise:

(
ð6Þ

The selection operator has many approaches, such as the
roulette wheel selection [24], the tournament selection [25],
feasibility ranking, and stochastic ranking. They have different
selection intensity that lead to different convergent speed.

2.3. Constraint Handling. For constrained optimization prob-
lems, the core issue is how to handle their constraints. The
common approaches can be concluded in three categories.

The first method is the penalty function. Through the
penalty function, the objective and the constraint function are
integrated into a fitness function, so the constrained problems
are transformed into an unconstrained problems. A prominent
problem in this approach is how to set the proper penalty coef-
ficients, which greatly affects the optimization performance.

The second method is the feasibility rule, which provides
a comparison rule among the feasible solutions and the
infeasible solutions. The feasibility rule has three basic rules.

(i) Between two feasible solutions, the solution with a
better objective value is the better one

(ii) Between a feasible solution and a infeasible solution,
the feasible solution is the better one

(iii) Between two infeasible solutions, the solution with a
less constraint violation value is the better one

Based on the feasibility rule, there are many similar rules
proposed, such as the stochastic ranking, ε-constrainedmethod
[26], and diversity maintenance [27].

The third method is the multiobjective method. The
constraints or constraint violation are considered as the
objectives. Therefore, the constrained optimization
problems are transformed into the multiobjective optimiza-
tion problems. Hence, plenty of multiobjective optimization
algorithms are available for solving the constrained
optimization problems.

3. Proposed Algorithm

3.1. Framework. The flowchart of the proposed algorithm
is shown in Figure 1. The algorithm has two coordinate
optimization processes. One is a global search process,
and another one is a local search process. The local search
can converge rapidly but easily fall into the local optimum.
In order to solve this problem, a restart strategy is intro-
duced to restart the population when the search falls into
the local optimum or falls behind the global search. A
local search method is proposed to exploit the local region
efficiently. The global search adopts the DE as the opti-
mizer. To reduce the number of the real function evalua-
tions, the RBFN models are established for each real

objective and constraint functions to evaluate the newly
generated individuals. The RBFN models are updated dur-
ing the optimization process by the model management
strategy proposed in this paper. For adapting to the differ-
ent characteristics of the two optimization processes, the
feasibility ranking is applied to the local search, and the
stochastic ranking is applied to the global search. The fea-
sibility ranking focuses on the convergence which is more
suitable for the local search, while the stochastic ranking
does not only retain the more feasible solutions but also
preserves some infeasible solutions closed to the feasible
region to maintain the population diversity. So, the
stochastic ranking is adopted in the global search.

3.2. Proposed Constraint Violation. In the feasibility rule,
the degree of constraint violation is generally defined as
the sum of all constraint violations, which can be described
as follows:

CV xð Þ = 〠
m

j=1
max 0, gj xð Þ

� �
: ð7Þ

We proposed a new constraint violation calculation
method as below:

CVnew xð Þ =max max 0, g1 xð Þð Þ,⋯, max 0, gm xð Þð Þð Þ, ð8Þ

where CVnewðxÞ chooses the maximum of all the constraint
violations as the constraint violation of x. For two infeasible
solutions, the one closer to the feasible region should be the
better one. The infeasible solution closer to the feasible
region is the one with smaller maximum of all the
constraint violations, which is similar to the “cask effect.”
However, an infeasible solution with a smaller sum of con-
straint violation may not be the one closer to the feasible
region. The reason is that an infeasible solution with a
smaller sum of all constraint violations may have a large
maximum of all constraint violations. Therefore, the
maximum of all constraint violations can better compare
the infeasible solutions.

3.3. Restart Strategy. The local search has a fast
convergence ability, but it also easily falls into the local
optimum. Therefore, a restart strategy is proposed in order
to make the local search jump out of the current local opti-
mum. The pseudocode of the restart strategy is shown in
Algorithm 1. Firstly, the restart condition of local search
population is defined as that the historical optimal solution
obtained by local search is worse than that obtained by
global search, or the local population diversity is lower than
the diversity threshold. The diversity threshold is calculated
by the following formula:

PDthreshold = 〠
d

k=1
δ uk − lkð Þ, ð9Þ

where δ is a threshold factor. It should be between 0 and 1.
The smaller it is, the higher the tolerance of losing
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population diversity is. The local population diversity is
calculated by the formulae below:

 PDlocal = 〠
N

i=1
〠
d

k=1
xi,k − �xk
�� ��,

  �xk =
1
N
〠
N

i=1
xi,k, k = 1,⋯, d:

   

ð10Þ

It should be noted that the local population has a
protection period which has been defined within 5 iterations
after each restart. Therefore, the local population will not be
restarted during the protection period. The restart population
is generated by Equation (11), but xr1 is always the historical
best individual in this part. Then, the local population will be
set to the new restarted population.

3.4. Local Search. The global search adopts the mutation and
crossover operator in DE to generate the new individuals of
global population. Then, the new population and parent
population are combined and evaluated by the RBFN
models. Finally, the stochastic ranking is used to select N

individuals as the offspring population. In order to enhance
the local exploitation, we propose a new local search
method. After the restart strategy, the local population uses
Equation (11) to generate new individuals, and the newly
obtained population are combined with the parent popula-
tion. The combined population are sorted by the feasibility
rule, and the best N individuals are selected as the offspring
population.

  vi,k = xr1,k + Xk,
  Xk ~N 0, σkð Þ,
  σk = abs xr2,k − xr3,kð Þ,
  k = 1,⋯, d,

ð11Þ

where r1, r2, and r3 are three different integers randomly
sampled from f1, 2,⋯, i − 1, i + 1,⋯,Ng and X is a random
variable with a mean value of 0 and a variance of σ. The
operator is very similar to the mutation operator of DE,
but it can generate more diverse local solutions for enhanc-
ing the local exploitation ability.

Local
search

Mutation &
crossover 

Stochastic
ranking

Termination

OptimumEvaluation

Evaluation

Training
data

No

Yes Yes

NoRestart
strategy 

RBFN model

Feasibility
ranking Restart

population

StartRestart
condition 

Figure 1: A diagram of the proposed algorithm.

Input: Plocal: the local search population, lbest: the historical best individual found by local search, Pglobal: the global search population,
gbest: the historical best individual found by global search, abest: the historical best individual found by global search and local search,
PDthreshold: the threshold of the population diversity, PDlocal: the population diversity of the Plocal, Pnew : the new population generated
by the restart strategy, Psearch: the population generated by the local search
Output: Plocal: the local population after the restart strategy

Calculate PDthreshold and PDlocal
1 Calculate PDthreshold by the Equation (9).
2 Calculate PDlocal by the Equation (10).

//Restart population
3 if Plocal is not in the protection period(within 5 iterations after restarting the population) then
4 if gbest is better than lbest or PDlocal < PDthreshold then
5 Generate the Pnew by the formulae in Equation (11) (The xr1 in Equation ((11)) is always abest here, and the xr2 and the xr3 are
two different individuals randomly selected from the Pglobal .).
6 Set Plocal as Pnew .
7 end
8 end

Algorithm 1: Pseudocode of restart strategy.
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3.5. Model Management. For improving the models’ predic-
tion ability, a model management strategy is proposed as
shown in Algorithm 2. The sampling frequency is set to once
every dinterval generations. Therefore, the models Mobjective
and Mconstraint will be updated every dinterval generations.
The prediction ability of the model can be divided into the
local prediction ability and the global prediction ability. In
order to improve the local prediction ability, the best indi-
vidual ib which has not been evaluated by the real function
in the local search population Plocal is selected as the sam-
pling point. In order to improve the global prediction accu-
racy, the most uncertain individual iu calculated by Equation
(4) in the global search population Pglobal is selected as the
sampling point. Similar to the local search, if the individual
has been evaluated by the real function, the second uncertain
individual is selected, and so on. In the above two sampling
methods, if all individuals of the population have been eval-
uated by the real function, a random individual in the search
space is chosen as the sampling point. The sampling points
are evaluated by real function and added to the training
dataset Dtrain for training the surrogate models Mobjective
and Mconstraint again.

4. Comparative Experiment

4.1. Ablation Experiment. In order to verify the performance
of each part of the proposed algorithm, the ablation experi-
ments are carried out on the restart strategy and the local
search. Therefore, there are three different algorithms which
are a basic SAEA without the restart strategy and the local

search and a SAEA with the local search(SAEA-LS) and
the SAEA-RS. In this experiment, the surrogate model of
all algorithms adopts the RBFN model, and the kernel func-
tion adopts cubic kernel function. The model management
strategy adopts the method in Algorithm 2, where the sam-
pling frequency dinterval is set to 5. Since the initial sampling
takes 100 real function evaluations, there remain 200 real
function evaluations that can be used during the iterations.
Since the RBFN models are updated every 5 generations
and each update costs 2 real function evaluations, the num-
ber of evolutionary generations is set to 500. The constraint
violation calculation method is the proposed CVnew.

Firstly, the basic algorithm is the SAEA without the
restart strategy and the local search. The initial population
whose size is 100 is generated by the Latin hypercube sam-
pling method [28]. The main optimizer is the DE whose
scaling factor F is set to 0:8, and the crossover probability
CR is set to 0:4. The selection adopts the stochastic ranking
whose probability Pf is set to 0:45. The model management
adopts the method proposed in the Algorithm 2. It should be
noted that the ib and iu are both sampled in the Pglobal since
there is no Plocal.

The second algorithm is the SAEA-LS which has the
Pglobal and the Plocal. The initial Pglobal and Plocal are the same
population generated by the Latin hypercube sampling. The
local search adopts the proposed local search method in the
Equation (11), and selection operator adopts the feasibility
ranking. In addition, the global search uses the DE, and
selection operator uses the stochastic ranking. For fair com-
parison, the other parameter settings are same as the SAEA.

Input: Plocal: the local search population, Pglobal: the global search population, iter: the current iterations, dinterval: the number of inter-
val iterations, ib: the selected individual from the Plocal, iu: the selected individual from the Pglobal, Dtrain: the training set of the sur-
rogate models
Output: Mobjective: the objective model, Mconstraint: the constraint models
1 if mod ðiter, dintervalÞ == 0 then
2 Plocal is sorted according to the feasibility rule from the best to the worst.
3 Pglobal is sorted according to the order of uncertainty from the maximum to the minimum.
4 Let ib = Plocalð1Þ.
5 if ib is in the Dtrain then
6 Select Plocalð2Þ to PlocalðjPlocaljÞ as ib in order until ib is not in the Dtrain.
7 if ib is still in the Dtrain then
8 Generate an individual randomly in the search space as the ib.
9 end
10 end
11 Let iu = Pglobalð1Þ.
12 if iu is in the Dtrain then
13 Select Pglobalð2Þ to PglobalðjPglobaljÞ as iu in order until iu is not in the Dtrain.
14 if iu is still in the Dtrain then
15 Generate an individual randomly in the search space as the iu.
16 end
17 end
18 Evaluate the ib and the iu with the real functions.
19 Dtrain =Dtrain ∪ ib ∪ iu:
20 Train the Mobjective and the Mconstraint with the Dtrain.
21 end

Algorithm 2: Pseudocode of model management.
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The third algorithm is the SAEA-RS. The only difference
between SAEA-RS and SAEA-LS is that SAEA-RS adds the
restart strategy proposed in Algorithm 1. The δ in the P
Dthreshold is set to 1e-10. The other parts including the
parameter settings are same as SAEA-LS.

The ablation experiments adopts the 30D CEC2010 [29]
as the benchmark problems. The equality constraint prob-
lems are not considered in this work, so the c01, c07, c08,
c13, c14, and c15 are chosen as the test problems. To avoid
the instability of the algorithms, the experiments are con-
ducted independently for 30 times. The mean obtained opti-
mum of 30 independent experiments are shown in Table 1.

The best results among three algorithms are highlighted in
bold. The average convergence curve on the c01, c07, c08,
and c13 are shown in Figure 2.

From Table 1, SAEA-RS has achieved the best results on
the c01, c07, c08, and c13 problems. The three algorithms
have failed in finding the feasible solutions in some experi-
ments on the c14 and c15 problems. Hence, the rate of find-
ing the feasible solutions in 30 experiments are used as the
comparison target. The SAEA-LS achieves the best results
on c14 and c15 problems. In Figure 2, the SAEA-RS has
the fastest convergence speed and best final results in c01,
c07, c08, and c13 problems. Due to the restart strategy, the
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Figure 2: The convergence curves of SAEA, SAEA-LS, and SAEA-RS on c01, c07, c08, and c13 problems.

Table 1: Optimal solutions obtained by the SAEA, SAEA-LS, and SAEA-RS on the 30D CEC2010 problems. The results are shown in the
form of mean ± standard deviation.

Problem SAEA SAEA-LS SAEA-RS

c01 −1:96e − 01 ± 3:46e − 02 −2:17e − 01 ± 3:44e − 02 −2:18e − 01 ± 3:50e − 02
c07 4:88e + 09 ± 4:86e + 09 8:03e + 09 ± 5:99e + 09 2:93e + 08 ± 2:62e + 08
c08 7:34e + 09 ± 4:95e + 09 1:09e + 10 ± 7:41e + 09 3:16e + 09 ± 2:78e + 09
c13 −2:28e + 01 ± 5:12e + 00 −2:19e + 01 ± 4:14e + 00 −3:79e + 01 ± 4:07e + 00
c14 56.67% 83.00% 70.00%

c15 3.33% 10.00% 3.33%
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Figure 3: The convergence curves of SAEA-RS with CV and SAEA-RS with CVnew on c01, c07, c08, and c13 problems.

Table 2: Optimal solutions obtained by the SAEA-RS, GLoSADE, and MPMLS on the CEC2006 problems. The results are shown in the
form of mean ± standard deviation.

Problem SAEA-RS GLoSADE MPMLS

g01 −1:50e + 01 ± 1:09e − 09 −1:50e + 01 ± 2:42e − 02 −6:26e + 00 ± 8:76e − 01
g02 −2:08e − 01 ± 4:99e − 02 −2:40e − 01 ± 4:18e − 02 −2:46e − 01 ± 4:37e − 02
g04 −3:07e + 04 ± 7:96e − 08 −3:07e + 04 ± 1:19e + 00 −3:05e + 04 ± 5:25e + 01
g06 −6:96e + 03 ± 2:81e − 03 −6:86e + 03 ± 4:21e + 02 6.67%

g07 2:46e + 01 ± 1:69e − 01 2:81e + 01 ± 3:03e + 00 86.67%

g08 −8:21e − 02 ± 2:68e − 02 −9:58e − 02 ± 2:73e − 05 −7:86e − 02 ± 1:90e − 02
g09 1:19e + 03 ± 2:24e + 02 1:16e + 03 ± 2:65e + 02 9:43e + 02 ± 8:33e + 01
g10 7:32e + 03 ± 1:82e + 02 9:03e + 03 ± 8:09e + 02 93.33%

g12 −9:56e − 01 ± 3:20e − 02 −9:94e − 01 ± 1:20e − 02 −9:95e − 01 ± 6:07e − 03
g16 −1:90e + 00 ± 1:57e − 02 −1:63e + 00 ± 1:50e − 01 96.67%

g18 −7:83e − 01 ± 8:42e − 02 46.67% 0.00%

g19 1:18e + 02 ± 4:45e + 01 2:08e + 02 ± 9:63e + 01 8:37e + 02 ± 1:24e + 02
g24 −5:51e + 00 ± 4:65e − 11 −5:51e + 00 ± 4:97e − 03 −5:50e + 00 ± 2:96e − 03
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SAEA-RS has the faster convergence speed than the SAEA
and SAEA-LS. Since the ib is sampled in the Plocal, the diver-
sity of SAEA-LS is not as good as that of SAEA, and the per-
formance of SAEA-LS is worse than the SAEA. The initial
convergence curve has some fluctuations owing to not find-
ing the infeasible solutions. In a word, the SAEA-RS per-
forms best in the three algorithms.

For investigating the effects of the proposed CVnew, the
SAEA-RS with CVnew is compared with the SAEA-RS with
the general CV on the c01, c07, c08, and c13 problems of
the 30D CEC2010. The other parameter settings are same
as those in the previous experiments. The comparative
experiments are carried out 30 times independently. The
average convergence curves of the two algorithms are shown
in Figure 3.

From Figure 3, the CVnew has a higher convergence
speed than the CV on the c01, c08, and c13 problems. The
CVnew has the lower convergence speed but similar final
results on the c07 problems. Therefore, the CVnew has the

different effects on the different problems. On the whole,
the CVnew is benefit for improving the performance of the
proposed algorithm, which can increase the convergence
speed on some problems.

4.2. Comparative Experiment. In order to compare the per-
formance of the proposed algorithm with other existing
algorithms, the comparative experiment is carried out in this
part. The SAEA-RS is compared with two state-of-the-art
algorithms which are the GLoSADE and the MPMLS. For
a fair comparison, the total real function evaluations of all
algorithms are set to 300. The other parameter settings of
the SAEA-RS are same as the ablation experiment. The rest
of the parameter settings of GLoSADE and MPMLS are con-
sistent with that in [22, 23]. The comparative experiments
are, respectively, conducted on three sets of benchmark
problems which are the CEC2006 [30], the CEC2010, and
the CEC2017 [31]. To avoid the experimental instability,
the comparative experiments are repeated 30 times
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Figure 4: The convergence curves of SAEA-RS, GLoSADE, and MPMLS on g01, g04, g19, and g24 problems of CEC2006.
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independently. The average optimal objective values of 30
experiments are as the performance indicator. If an algo-
rithm fails to find a feasible solution in some experiments,
the percentage of the algorithm finding a feasible solution
in 30 experiments is used as the performance indicator.

The experimental results on 13 benchmark problems of
CEC2006 are shown in Table 2, and the best results among
all the algorithms are italicized. From Table 2, SAEA-RS
and GLoSADE have acquired the very close results on the
g01, g04, and g24 problems. However, SAEA-RS converges
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Figure 5: The convergence curves of SAEA-RS, GLoSADE, and MPMLS on c01, c07, c08, and c13 problems of CEC2010.

Table 3: Optimal solutions obtained by the SAEA-RS, GLoSADE, and MPMLS on the 30D CEC2010 problems. The results are shown in the
form of mean ± standard deviation.

Problem SAEA-RS GLoSADE MPMLS

c01 −2:25e − 01 ± 3:24e − 02 −1:90e − 01 ± 2:11e − 02 −1:86e − 01 ± 1:85e − 02
c07 4:01e + 08 ± 7:07e + 08 3:45e + 08 ± 4:53e + 08 2:14e + 10 ± 9:64e + 09
c08 3:50e + 09 ± 3:10e + 09 3:72e + 08 ± 3:41e + 08 1:80e + 10 ± 7:91e + 09
c13 −3:68e + 01 ± 5:88e + 00 −2:42e + 01 ± 5:59e + 00 0.00%

c14 90.00% 8:52e + 11 ± 1:35e + 12 93.33%

c15 13.33% 23.33% 10.00%
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faster and achieves more accurate results than GLoSADE.
On g06, g07, g10, g16, g18, and g19 problems, SAEA-RS
achieves a significant lead. Especially, SAEA-RS obtains fea-
sible solutions in all 30 experiments on g18 problems, but
GLoSADE and MPMLS do not obtain the feasible solutions
in some experiments. On the whole, SAEA-RS gets a lead on
9 of the 13 benchmark problems. In order to explore the
convergence performance of the algorithms, the conver-
gence curve of SAEA-RS, GLoSADE, and MPMLS on g01,
g04, g19, and g24 problems are shown in Figure 4. The ver-
tical axis is the objective values of the current best solution,
and the horizontal axis is the number of real evaluations.
Since the first 100 real evaluations are applied in the initial
sampling, the horizontal axis is set from 100 to 300. The
objective values of GLoSADE and MPMLS increase in the
first 200 real evaluations owing to not finding the feasible
solutions, while SAEA-RS converges rapidly and even
reaches near the optimum. The GLoSADE converges to the
optimum rapidly at the 200 real evaluations since GLoSADE
enters the local search stage, which have the similar situa-

tions in other problems. Similarly, SAEA-RS has the fastest
convergence speed among the three algorithms on g04,
g19, and g24 problems. Therefore, when the number of real
evaluations is small, the advantages of SAEA-RS are more
prominent and more suitable for expensive problems than
GLoSADE and MPMLS.

The experiment results on 30D CEC2010 are shown in
Table 3. SAEA-RS acquires the best results on c01 and c13
problems, and GLoSADE acquires best results of the
remaining four problems. However, the convergence curves
in Figure 5 show that SAEA-RS has the best performance
on the convergence speed. SAEA-RS has the best results on
c01, c07, c08, and c13 problems before the 200 real evalua-
tions. Owing to the local search, GLoSADE converges
quickly after 200 real evaluations on c07 and c08 problems,
but the final results are very close to SAEA-RS. In particular,
the convergence curve fluctuates on c13 problems since
SAEA-RS and GLoSADE do not find the feasible solutions
before 200 real evaluations and MPMLS do not find the fea-
sible solutions in 300 real evaluations.
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Figure 6: The convergence curves of SAEA-RS, GLoSADE, and MPMLS on c01 and c04 problems of CEC2017.

Table 4: Optimal solutions obtained by the SAEA-RS, GLoSADE, and MPMLS on the 30D CEC2017 problems. The results are shown in the
form of mean ± standard deviation.

Problem SAEA-RS GLoSADE MPMLS

c01 6:77e + 04 ± 1:72e + 04 7:61e + 04 ± 2:04e + 04 9:11e + 04 ± 2:00e + 04
c02 2:50e + 04 ± 6:31e + 03 73.33% 3:79e + 04 ± 1:39e + 04
c04 4:17e + 02 ± 3:19e + 01 5:32e + 02 ± 9:25e + 01 5:49e + 02 ± 5:52e + 01
c05 8:85e + 03 ± 3:91e + 03 93.33% 80.00%

c13 0.00% 0.00% 0.00%

c19 0.00% 0.00% 0.00%

c20 1:14e + 01 ± 7:30e − 01 1:10e + 01 ± 8:91e − 01 1:12e + 01 ± 6:39e − 01
c22 0.00% 0.00% 0.00%

c28 0.00% 0.00% 0.00%

10 Space: Science & Technology

D
ow

nloaded from
 https://spj.science.org at U

niversity of B
irm

ingham
 on Septem

ber 29, 2023



The average results of SAEA-RS, GLoSADE, and
MPMLS on 9 benchmark problems of 30D CEC2017 are
reported in Table 4. SAEA-RS achieves the best results on
c01, c02, c04, and c05 problems, and GLoSADE acquires
the best solutions on c20 problems. In addition, all the

algorithms fail to find a feasible solution in 30 experiments
on the c13, c19, c22, and c28 problems. Therefore, SAEA-
RS has an outstanding performance on the 30D CEC2017
problems. The convergence curve on c01 and c04 prob-
lems are shown in Figure 6. SAEA-RS has the fastest

Input: Plhsample: the population generated by Latin hypercube sampling, max iter: the iterations
Output: Plocal: the local population, Pglobal: the global population, MHmax

: the Hmax objective model, MGheat
: the Gheat constraint

model, Dtrain: the training dataset.
1 Calculate GoverlapðxÞ, GcentroidðxÞ and GpipeðxÞ of each individual x in the Plhsample and take the sum of them as the fitness f .
2 Calculate HmaxðxÞ and GheatðxÞ of each individual x in the Plhsample by the thermodynamic simulations and take them as the train-
ing dataset Dtrain.
3 Train MHmax

and MGheat
with the Dtrain.

4 Set A =∅:
5 for i = 1 : max iter do
6 for j = 1 : jPlhsamplej do
7 Generate a new individual xnew by Equation (11) where xr1 is the jth individual x j in Plhsample, xr2 and xr3 are two individuals
randomly selected from Plhsample.
8 Calculate the fitness f new(The sum of GoverlapðxnewÞ, G centroidðxnewÞ and GpipeðxnewÞ) of the xnew .
9 if f new == 0 then
10 A = A ∪ xnew
11 end
12 if f new ≤ f j then
13 x j = xnew
14 f j = f new
15 end
16 end
17 end
18 if jAj≥jPlhsamplej then
19 A is clustered into jPlhsamplej classes.
20 Select the individuals nearest to the each cluster center and take them as Plocal.
21 else
22 Keep searching for new individuals until jAj≥jPlhsamplej.
23 end
24 Set Pglobal as Plocal.

Algorithm 3: Pseudocode of population initialization.
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Figure 7: The schematic diagram of component layout.
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convergence speed on c01 and c04 problems which reflects
the advantage of SAEA-RS when the real evaluations is
small.

In summary, SAEA-RS has the highest convergence
speed and finds the best solutions on most benchmark prob-
lems. For the constrained expensive optimization problems,
the advantages of SAEA-RS can help to find a better solution
within a few real evaluations.

5. Application to Electronic Component
Layout Optimization

In this section, the proposed algorithm is applied to solve a
CLOP on a space circuit board. As shown in Figure 7, the
red border indicates the circuit board whose length is 80,
and the width is 50. The four green rectangles represent the
heat pipes on the circuit board, and the blue rectangles repre-
sent 6 different electronic components. The heat pipes can
evacuate the heat generated by the components. The length
and width of component 1 are 15 and 18, respectively, which
can be recorded as (15, 18). Similarly, the size of component
2 to 6 can be denoted as (20, 10), (10, 15), (14, 16), (8, 13),
and (15, 12). The first constraint is that the components
should not overlap each other or exceed the layout domain.
The second constraint is that the deviation between the
centroid of the system and the expected centroid should not
exceed a specific value. The third constraint is that the heat
load on each heat pipe should not exceed its maximum
capacity. The last constraint is that each component should
overlap with the heat pipes to dissipate heat. For uniform heat
distribution, the objective is to minimize the maximum ther-
mal load on all heat pipes. The problem can be described as
follows:

minimize Hmax xð Þ,  

subjectto Goverlap xð Þ ≤ 0, Gcentroid xð Þ ≤ 0,
  Gheat xð Þ ≤ 0, Gpipe xð Þ ≤ 0,

ð12Þ

where Hmax denotes the maximum thermal load, Goverlap
denotes the component layout overlap constraint, Gcentroid
denotes the centroid deviation constraint, Gheat denotes the

heat load constraint, Gpipe denotes the heat pipe overlap
constraint, and x = ½x1, y1,⋯, x6, y6�, xi and yiði = 1,⋯, 6Þ
denotes the center coordinate of component 1 to 6, −40 ≤ xi
≤ 40, and −25 ≤ yi ≤ 25.

The Hmax and Gheat require the thermodynamic
simulation which is expensive and time-consuming, but
Goverlap, G centroid, and Gpipe can be easily calculated by the
cheap function evaluations. In order to take advantage of
this characteristic, a population initialization strategy shown
in Algorithm 3 is designed for replacing the original Latin
hypercube sampling in the SAEA-RS. Through Algorithm 3,
there are more approximately feasible individuals selected as
the initial Plocal and Pglobal, which can increase the
convergence process to some extent.

In this section, the max iter is set to 1000. The other
parameter settings of SAEA-RS are same as those in Section
4. Therefore, there are 300 real thermodynamic simulations
used in the whole optimization process, which are 100 sim-
ulations for evaluating the Hmax and Gheat of the Plhsample in
Algorithm 3 and 200 simulations for evaluating the new
sampling ib and iu in Algorithm 2. It should be noted that
Goverlap, G centroid, and Gpipe are always calculated by the
cheap functions in the whole optimization process. The
experiments are repeated independently for 10 times, and
the final optimal results are shown in Table 5.

From Table 5, the x1 to x6 and y1 to y6 are the horizon-
tal and vertical coordinates of six components’ geometric
centers, respectively. Hmax is the objective value, and C
Vnew is the constraint violation. The experiment no. 2 and
no. 8 have found the feasible solutions. However, other
experiments do not find the feasible solutions which shows
that the feasible region of the CLOP is very small. To show
more intuitive results, the component layout of solutions
no. 2 and no. 8 are shown in Figure 8. The Hmax and the
CVnew are both 23 and 0 of experiment no. 2 and no. 8.
From Figure 8, components are uniformly distributed on
the board and do not overlap each other. The overall
centroid of the components is centered which guarantees
the stability of the overall board. Also, the components are
all in contact with heat pipe so that the components can dis-
sipate the heat through the heat pipes. On the whole, the
algorithm has realized the optimization requirements. The
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Figure 8: The optimal component layouts of solution no. 2 and no. 8.
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proposed algorithm converges under the small number of
thermodynamic simulations, which greatly speeds up the
optimization process.

6. Conclusions

For addressing the expensive constrained optimization prob-
lems in space engineering, we propose a surrogate-assisted
evolutionary algorithm with restart strategy. The local search
has the strong exploitation ability, while the global search is
on the exploration ability. Therefore, the global search and
local search are combined to give full play to their advantages.
A restart strategy is proposed to make the local search jump
out of the local optimum promptly. In addition, a new local
search method and a constraint violation calculation approach
are proposed for improving the algorithm performance. The
comparative experiments compare SAEA-RS with two state-
of-the-art algorithms. The results demonstrate that SAEA-RS
has a higher convergence speed and the better results on
CEC2006, CEC2010, and CEC2017 problems under very lim-
ited computation budgets. Meanwhile, SAEA-RS is applied to
solve the electronic component thermal layout optimization
problems in space engineering. The final results show that
the problem is well solved which indicates the great signifi-
cance of SAEA-RS to solve real-world engineering problems.

There are several aspects worthy of further study in the
future. Firstly, the restart strategy can be integrated in other
algorithm frameworks for improving the population diver-
sity. Secondly, other constraint handling methods can be
applied in the proposed algorithm for further exploration.
Thirdly, the proposed algorithm applied to other real-
world problems needs further study.
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