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Abstract- This paper presents a new method for modelling the gain
spectrum in quantum well structures based on the quantum well
transmission line modelling (QW-TLM) method. In the QW-TLM
method, three parallel RLC filters together with their associated
weight coefficients constitute a QW-TLM unit, which represents the
processes that electrons transit from the conduction band to the heavy
hole band, the light hole band and the spin-orbit split-off band at a
specific wave vector. Parallel QW-TLM units are adopted to describe
the electron transitions in the wave vector space. Furthermore, the
optical gain model of quantum wells based on the QW-TLM method is
presented. The gain spectrum obtained through the QW-TLM method
is agreeable with the gain spectrum calculated from the analytical
expression in a large wavelength range from nm1300 to nm1700 . In
order to reduce the computation time, under sampling QW-TLM is
proposed to model the gain curve of quantum wells. The simulation
result shows that the gain curve obtained from under sampling
QW-TLM is consistent with the gain curve obtained through the
theoretical derivation from nm1510 to nm1575 , which satisfies the
requirement of studying the dynamic spectral characteristics of
quantum well devices.

Index items-Quantum well, transmission line modelling, gain
model, semiconductor optical devices, under sampling

I. INTRODUCTION

ransmission line modelling (TLM) method was originally
developed to solve field equations in microwave circuits
[1]. In 1987, Lowery first presented the dynamic

semiconductor laser model based on the TLM method [2] and
since then this method was adopted to establish time domain
models for Fabry Perot (FP) and distributed feedback (DFB)
lasers as well as semiconductor optical amplifiers [2]-[5]. TLM
has been found to be a useful method for modelling
semiconductor optical devices particularly due to the ability of
simulating the device spectra under modulation and providing a
continuous spectral curve over a large bandwidth [6]. The
wavelength dependent gain model based on the TLM method is
an important tool for the analysis of spectral characteristics of
both semiconductor lasers and amplifiers [6-7].

Manuscript received October 22nd, 2014. Revised Dec. 18th, 2014.This
work was funded by both Dept. of EESE at the University of
Birmingham and Chinese Scholarship council.
Mingjun Xia and Hooshang Ghafouri-Shiraz are with the Electronic,
Electrical and System Engineering Department, University of
Birmingham, Birmingham, B15 2TT, United Kingdom (e-mail:
MXX322@bham.ac.uk; ghafourh@bham.ac.uk).

However, in quantum well structures, the gain spectrum curve
is complex and asymmetric especially due to the hole’s
non-parabolic density of states and the coupling between the
heavy hole bands, light hole bands and spin-orbit split-off
bands in the presence of strain, which can’t be modelled by a
single filter [2], [5] or modified by adding another cascaded
filter [8] as suggested for the bulk material semiconductor
optical lasers and amplifiers. In Ref. [9], quantum well lasers
including carrier transport effects were discussed using
transmission line laser model, however, the author has assumed
that the gain coefficient is wavelength independent. An
accurate gain model for quantum well semiconductor optical
devices using the TLM method enables us to analyse their
spectral properties more accurately. In this paper, we have
adopted the parallel QW-TLM units to model the electron
transitions from the conduction band to the valence band in the
wave vector space. Each QW-TLM unit consists of three RLC
stub filters, which are used to describe the processes that
electrons transit from the conduction band to the heavy hole
band (HH), the light hole band (LH) and the spin-orbit split-off
band (SO), respectively. The weight coefficient of each filter is
determined by the values of the momentum matrix, the
Fermi-Dirac distribution and the band energy in the
corresponding wave vector.

We apply the QW-TLM method to analyse the optical gain
model of quantum wells. Semiconductor optical devices are
attractive in the high speed fiber communication systems and
all-optical signal processing since they are energy efficient and
easy to be integrated [10]-[16]. The evolution of the optical
signal spectrum in the propagation is important to analyse the
properties of quantum well devices. The common approach is
to solve a set of rate equations for carrier and photon densities
using one rate equation per longitudinal mode, but it needs a lot
of computation time. Gain model of quantum wells based on
QW-TLM provides an effective method to study the spectral
characteristics in the process of optical signal propagation.
Finally, under sampling QW-TLM method is proposed to
further reduce the computation time.

This paper is organized as follows. The general theory of
TLM is given in Section II. In section III, the QW-TLM method
is introduced. Section IV presents the gain model for quantum
wells based on the QW-TLM method; the gain spectrum
obtained by the QW-TLM method is compared with the gain
spectrum calculated through the analytical expression. Gain
model of quantum wells using the under sampling QW-TLM
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method is discussed in Section V. Finally, conclusions are
given in section VI.

II. TRANSMISSION LINE MODELLING THEORY

TLM is a time-discrete and space-discrete model of wave
propagation [17], consisting of stub and link lines [18]. In the
following first a brief review of the one-dimension TLM theory
is presented. The input impedance, inZ , of a lossless
transmission line can be expressed as [19]:

)tan(
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In the above equations 0Z is the characteristic impedance of the
transmission line (TL), lZ is the load impedance, l is the length
of the TL,  is the propagation constant of the TL, gn is the
effective refractive index, 0c is the light velocity in free-space
and 0f is the frequency of propagation wave. In order to make
sure that all incident voltage pulses arrive at the scattering node
at the same time, the length of the stub line should be such that
the propagation time, T , of the forward and backward pulses
along the line satisfy the following expression [20]:

gn
Tcl

2
0

 (3)

When a transmission line circuit is open- ( lZ ) or short-
( 0Z l  ) circuited their input impedances can be expressed as
(see Eqs. (1) to (3)):

)tan(/ 0fTjZZ Copenin   (4)

)tan( 0fTjZZ Lshortin   (5)

where 0Z in Eq.(1) is replaced by CZ and LZ which are the
characteristic impedances of the open circuit and short circuit
stubs, respectively. From the above equations we have:

)tan(/ 0fTZZ LC   (6)

In the TLM method (provided that 02/1 fT or 02 ff sam 
where samf is the sampling frequency) a capacitor and an
inductor can be represented by an open-circuit and a
short-circuit stubs, respectively [20]. The Q-factor in a parallel
RLC resonant circuit when the resistor is unity can be
expressed as:

L/CQ  (7)
where the capacitor, C, and the inductor, L, can be obtained
from Eqs.(4) and (5) as [20]:

CZ2/TC  (8)
2/ZTL L (9)

Substituting Eqs.(8) and (9) into Eq.(7) we have:

LCZZQ /1 (10)

The characteristic admittance of the open and short circuit stubs
can be obtained from Eqs. (4) to (10) as:

)tan(/ 0fTQYC   (11)
)tan( 0fTQYL   (12)

III. TLM METHOD FOR QUANTUM WELLS

In quantum well semiconductor optical devices, the gain curve
is dependent on the wavelength, carrier density and carrier
temperature. The passive RLC filter shown in Fig.1(a) is
commonly used to model the symmetric frequency-dependent
gain curve [2]. The TLM model of this passive filter is shown in
Fig.1(b) which consists of link and stub lines.

(a)

(b)
Fig. 1 (a) An RLC filter structure (b) filter model by TLM

In the TLM method the process of optical wave propagation is
described through the connecting and scattering matrices [20].
However, as the gain spectrum of a quantum well structure is
complex and asymmetric, we cannot use a single stub filter (see
Fig.1(b)) to describe the complex processes in quantum well
semiconductor optical devices. Therefore, we propose a new
modelling method hereby referred to as the quantum well
transmission line model (QW-TLM) to model the gain curve,
which is dependent on the wavelength, carrier density and
carrier temperature. The proposed model which represents the
electron transitions in the wave vector space is referred to as the
parallel QW-TLM units. Figure 2 shows one of the units which
consists of three parallel stub filters and their corresponding
weight coefficients 1A , 1B and 1C .
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Fig. 2 A QW-TLM unit

In the above QW-TLM unit, stub filters shown in the 1st, 2nd and
3rd branches are used to describe the electron transition
processes from the conduction band to the heavy hole, light
hole and spin-orbit split-off bands at a specific wave vector,
respectively. Axial approximation [21] is applied to simplify
the electron transition process in the wave vector space. The
resistor value in each branch of the unit is assumed to be unity
(i.e. 3,2,1,1  pZ p ). Figure 3 describes the voltage
propagation process in each stub filter. The input transmission
line with the length l is used to represent the resistor while the
open and short stub transmission lines each with length

2/l are used to model the capacitor and inductor, respectively.
In the time interval T , the input voltage propagates along the
input transmission line and arrives at the scattering node S and
at the same period, the reflected voltages of the capacitor and
inductor ( r

CV and r
LV ) propagate to the termination of the stub

transmission lines and back again at the scattering node.

Fig. 3 Voltage propagation process in the stub filter

Based on the TLM theory, the Thevenin equivalent circuit of
the stub filter is shown in Fig.4. The input currents of the node
from the 1st 2nd and 3rd branches 1i , 2i and 3i can be expressed
as:

inRin VYVi 1 (13)

C
i
CYVi 22  (14)

L
i
LYVi 23  (15)

The node voltage V can be expressed as

)22(1)(1
321

i
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i
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Y
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Y
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where,
LC YYY  1 (17)

Fig. 4 Thevenin equivalent circuit of stub filter

Based on the above analysis, the node voltage of each stub filter
( 1V , 2V and 3V ) in the QW-TLM unit can be expressed as:
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V  (20)

where,
3,2,1,1  pYYY LpCpp (21)

3,2,1),tan(/1
 pTfQ

Z
Y p

Cp
Cp  (22)

3,2,1),tan(1
 pTfQ

Z
Y p

Lp
Lp  (23)

In the above equations, inV is the input voltage, ( i
CV 1 , i

CV 2 , i
CV 3 )

and ( i
LV 1 , i

LV 2 , i
LV 3 ) are the incident voltages of the capacitive

and inductive stub lines, respectively, CpY and LpY are the
characteristic admittances of the capacitive and inductive stub
lines and pf is the central frequency of the pth stub filter. The
output voltage of each stub filter is:

11 VVV inA  (24)

21 VVV inB  (25)

31 VVV inC  (26)
and the output voltage of the whole QW-TLM unit is expressed
as:

111111 CBAout VCVBVAV  (27)

The weight coefficients 1A , 1B and 1C can be obtained from the
QW momentum matrix, Fermi-Dirac distribution functions in
the conduction and valence bands and the band structure. The
voltages reflected into the capacitors, r

CpV , and inductors, r
LpV ,

of the QW-TLM unit can be expressed as:
3,2,1,  pVVV i

Cpp
r
Cp (28)

3,2,1,  pVVV i
Lpp

r
Lp (29)
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These reflected voltages return and become new incident
voltages after one iteration [7], that is:

3,2,1,1  pVV r
CpK

i
CpK (30)

3,2,1,1  pVV r
LpK

i
LpK (31)

where, K is the iteration number.
In each stub filter, the capacitor and inductor frequency is a
function of the wave vector tk that can be expressed as:

SOLHHHhkEkEkf tmt
c
ntp ,,,/))()(()( ,  

 (32)

where, h is the Plank constant, )( t
c
n kE and )(, tm kE are the

energy band structure in the conduction and valence bands,
respectively. When the heavy hole band energy
( HH),k(E tm, 

 ) is substituted into Eq. (32), we can
obtain the central frequency of the first stub filter ( 1),(1 pkf t ).
The band structures are obtained by solving the Schrodinger
equations for the conduction and valence bands [21]-[23]:

);()();( tnt
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where, cH and 
iH ,33 are the Hamiltonians for the conduction

and valence bands, );( tn kz is the envelope function of

the nth conduction sub-band while 
,mg is the envelope function

of the mth valence sub-band,  denotes the upper and lower
matrix signs in the block diagonal Hamiltonian for the valence
band. In the Hamiltonians expression [21] we have considered
the effects of both strain on the quantum well and the coupling
between HH, LH and SO bands. The conduction band
structure )( t

c
n kE is obtained by solving Eq. (33) at 0tk and

then using the following equation

te

t
t

c
nt

c
n m

kkEkE
,

22

2
)0()( 
 (35)

where,  is the Plank constant divided by 2 , tem , is the
electron effective masses in the perpendicular to the growth
direction. The valence band structure 

 mE , is calculated by
solving Eq. (34) using the finite difference method [22]. Due to
spin orbit interaction, the valence band is spilt into the HH, LH
and SO bands. Thus, in one QW-TLM unit, three stub filters are
used to describe the processes electrons transit from the
conduction band to heavy hole band, light hole band and
spin-orbit split-off band at the same wave vector.

The Q-factor of each stub filter can be expressed as

B/f2Q m (36)
Where, mf is the central frequency of the quantum well
semiconductor optical device, B is the bandwidth of the stub

filter, which is employed to describe the linewidth broadening
caused by scattering.

IV. GAIN MODEL OF QUANTUM WELLS

In the above analysis we introduced the quantum well
transmission line modelling method, which can be applied to
model different quantum well semiconductor optical devices.
In the following, we analyse the gain model of quantum well
and explain how to apply the QW-TLM method to model the
gain function which is dependent on the wavelength, carrier
density and temperature. In order to verify the validity of the
QW-TLM method we first analyse the material gain of
quantum wells and then compare the results with those obtained
from the proposed QW-TLM method.

A. Band structure

At first, the conduction and valence bands of a strained
AsGaIn 36.064.0 - InGaAsP quantum well are calculated by

solving the Schrodinger equations (i.e. Eqs. (33) and (34)).
The well and barrier widths are nm5.4 and nm10 , respectively.
The barrier with a band-gap wavelength mg  15.1 is
lattice-matched to the InP substrate. The parameters used in
our model are given in Table 1-2 and some are taken from Ref.
[24]. Figures 5(a) and (b) show the simulation results of the
conduction and valence energy bands which are used to
calculate the optical gain spectra. Curves labeled C1 and C2
in Fig. 5a represent the 1st and 2nd sub-bands in the conduction
band and those in Fig.5b which are labelled HH1, HH2, LH1
and LH2 represent the first two sub-bands in the heavy hole
and light hole bands. The strain effects and the coupling
between the heavy hole, the light hole and the spin-orbit
split-off bands have also been considered in the calculations.
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Fig. 5 (a) Conduction band structure (b) valence band structure of a

compressively strained quantum well

B. Gain function of QWs based on Fermi’s Golden Rule

The material gain )(g of quantum wells derived from the
Fermi’s golden rule can be expressed as [24]:
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In the above equations, q is the magnitude of the electron
charge, rn is the ground refractive index, 0m is the electron rest
mass in free space, zL is the quantum well width, 0 is the
permittivity in free space and  is line-width at half maximum
of the Lorentzian function, ê is the polarization vector of the
optical electric field, 

nmM is the momentum matrix element,

fcE and fE are the quasi-Fermi levels in the conduction and
valence bands, respectively, BK is the Boltzmann constant and
T is the carrier temperature. Equation (37) is used to calculate
the gain spectra of AsGaIn 36.064.0 - InGaAsP quantum well. The
parameters used in the analysis are given in Table 1-2 and Ref.
[24]. The simulation results both in the presence and absence of
spin-orbit split-off bands electron transition are shown in Fig.6
which are in good agreement with those reported in Ref. [22].
As Fig.6 clearly indicates the electron transition from the
conduction band to the spin-orbit split-off band has negligibly
small effect on the material gain spectra of the quantum well
due to its low energy level. Hence, its effect can be ignored.
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Fig. 6 Gain spectra of a strained quantum well in the presence and absence of
spin-orbit split-off bands electron transition

Table 1
Parameters for the gain model

Symbol Parameter Value
Q Stub filter Q-factor 8.60

sQ Compensation stub filter Q-factor 5
N Carrier density 324100.8  m
samf Sampling frequency Hz15100.1 

usamf Under sampling frequency Hz13102893.6 

b Band number 3
r Number of transform points 2048
 Linewidth of the Lorentzian function srad /102 13

wW Well width nm5.4

bW Barrier width nm10

rn Background refractive index 67.3

Table 2
Quantum well material Parameters [24]

Parameters Symbol InP InAs GaP GaAs

Lattice constant ( A ) d 5.8688 6.0684 5.4512 5.6533

Band gap energy ( eV ) gE 1.344 0.354 2.78 1.424

Stiffness constants

( 211 /10 cmdyn )
11C 10.220 8.329 14.120 11.880

12C 5.760 4.526 6.253 5.380

Luttinger Parameters
1 4.95 20.4 4.05 6.85

2 1.65 8.3 0.49 2.1

3 2.35 9.1 1.25 2.9
Bir-Pikus deformation

potentials ( eV )
ca -5.04 -5.08 -7.41 -7.17

va -1.27 -1.00 -1.70 -1.16

Shear deformation
potential ( eV ) b -1.7 -1.8 -1.7 -1.8

Spin-orbit splitting
energy ( eV )  0.11 0.38 0.08 0.34
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C.Gain model of quantum wells based on QW-TLM

Figure 7 shows the material gain model for quantum wells
which is based on the proposed QW-TLM method. The model
consists of the gain coefficient 0G and a number of parallel
QW-TLM units. Each unit has two weight coefficients
iA and iB , where, i denotes the branch number. Because the

effect of the electron transition from the conduction band to the
spin-orbit split-off band is negligible we have not included the
3rd branch of the QW-TLM unit (see Fig.2) in the proposed gain
model shown in Fig.7.

Fig. 7 Gain model of quantum wells based on QW-TLM
Referring to the ith QW-TLM unit in Fig.7, the 1st branch
impedances aiZ , LaiZ and CaiZ are resistors, inductors and
capacitors, respectively, which are used to model the process
that electrons in the conduction band transfer to the heavy hole
band while the impedances in the 2nd branch biZ , LbiZ and CbiZ
represents the process that electrons transfer from the
conduction band to the light hole band. The frequencies for the
1st branch and the 2nd branch capacitors and inductors in the ith
QW-TLM unit can be expressed as:

hikEikEikf t
h
mt

c
nt /))](())(([))(( ,1  (41)

hikEikEikf t
l
mt

c
nt /))](())(([))(( ,2  (42)

In the above equations ))(( ikE t
c
n is the nth conduction band

energy at the wave vector )(ikt , ))((, ikE t
h
m and ))((, ikE t

l
m are

the mth heavy-hole and light-hole band energies at the wave
vector )(ikt , respectively. The characteristic admittance values
in ith QW-TLM unit can be obtained by substituting

))((1 ikf t and ))((2 ikf t into Eq. (22) to (23).The time interval
T in Eq. (22) and Eq. (23) can be expressed as:

samfT /1 (43)
where, samf is the sampling frequency which can be determined
by the following expression:

))](()),((max[2 21 ikfikff ttsam  (44)

The weight coefficients iA and iB are given as
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Where, ))(( ikM tnm
 is the momentum matrix element in the

wave vector )(ikt , tdk is the wave vector interval in the

numerical calculation, ))(( ikF t
c
n is the value of the

Fermi-Dirac distribution function for the conduction band in
the wave vector )(ikt , the values of the Fermi-Dirac

distribution functions for the heavy hole, ))(( ikF t
h
m , and the

light hole, ))(( ikF t
l
m , bands can be calculated from Eq. (39).

In order to calculate the Q-factor given in Eqs.(22) to (23)
we equate the parameter  which represents the full width at
half maximum of the Lorentzian function given in Eq.(37) to
the stub filter bandwidth B given in Eq.(36) which results in:

 /2 mfQ  (47)

D. Simulation Results

In the following section, we simulate the gain spectra of a
compressively strained quantum well using the above two
methods, the analytical expression derived from Fermi’s
golden rule (i.e. Eq.(37)) and the QW-TLM method. The two
gain spectra are compared to verify the validity of the proposed
QW-TLM method. The gain spectra of the proposed model can
be obtained by applying FFT to the pulse sequence of the
output node when a unit impulse is applied to the input node of
the gain model (see Fig.7).

Figure 8 shows the normalized gain spectra obtained using
both the analytical expression and the proposed QW-TLM
method. As the results clearly indicate, the gain spectra
obtained by the proposed model is in a very good agreement
with that obtained by the analytical expression given in Eq. (37)
within nm1300 and nm1700 wavelength band. In order to
reduce the computation time we have assumed that the Q-factor
in the proposed model is the same for all units and this has
caused a negligibly small difference between the two methods
within nm1585 and nm1670 wavelength band.
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Fig. 8 Normalized gain spectra of a compressively strained quantum well
based on the analytical expression (AE) and QW-TLM method

It should be noted that the sampling frequency samf used in the

above analysis is in order of Hz1510 which means the time
step samf/1T  is very small and consequently the
computation time is high in particular when the proposed
QW-TLM method is used to analyse the dynamic behaviour of
quantum well devices (about a few hours depending on the QW
device parameters). However, in this work it took about 1min to
obtain the gain spectra of the QW device. In order to minimise
the computation time, a technique of sampling below the
optical frequency (i.e. under sampling) is proposed in the
following section. It worth’s to note that the under sampling
method has very little effect on the computation time when
calculating gain spectrum of quantum wells, However, it
reduces the computation time significantly when analyzing
other characteristics of quantum well devices such as
amplification of ultra-short pulses, dynamic spectral effects and
so on.

V. UNDER SAMPLING QW-TLM
According to Ref [2] since the laser beam spectral linewidth

mf is very narrow as compared with its operating
frequency mf (typically 1%) the sampling frequency samf may
be lowered without loss of information. To reduce modelling
time samf should be minimised without any information loss
within mf . Let us denote samuf  and uQ as the under
sampling frequency and Q-factor. We have:

)/1( msamuu ffbQQ  (48)
where mf is the central frequency of the quantum well gain
spectra, which can be obtained from Eq. (37) and b is an integer
representing the band number and can be obtained from the
following expression [2]:

))]}((min[))](({max[2
))](()),((min[

12

21
ikfikf

ikfikf
b

tt

tt


 (49)

In the under sampling method, the central frequencies of the
parallel stub filters will decrease by subtracting samufb  . Thus
to minimise the error we have modified the gain model shown
in Fig.7 by cascading it with a compensation stub filter as
shown in Fig.9.

Fig. 9 Gain model of quantum wells using under sampling QW-TLM

This compensation stub filter has the following impedances
(admittances):

1sZ (50)

)tan(
1

Tf
Q

Z
Y

us

us

Cs
Cs 




(51)

)tan(1 TfQ
Z

Y usus
Ls

Ls   (52)

Where
)/1( msamusus ffbQQ  (53)

samumus fbff  (54)
where, sQ is the Q-factor in the compensation filter. Fig. 10
shows the normalized gain spectra of the strained quantum well
obtained by both the under sampling QW-TLM method (i.e.
Fig.9) and the analytical method given in Eq. (37)
from nm1510 to nm1575 . The results confirm that the gain
spectra obtained by the proposed model is in a very good
agreement with that obtained using the analytical expression.
Hence, the under sampling QW-TLM method can be applied to
analyse the dynamic spectral characteristics of quantum well
optical semiconductor devices.
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Fig.10 Normalized gain spectra of a compressively strained quantum well
based on analytical expression (AE) and under sampling QW-TLM
(US-QWTLM)

VI. CONCLUSION

In this paper, we have introduced a new method hereby referred
to as the quantum well transmission line modelling method
(QW-TLM) which is used to model the gain spectra of the
quantum well semiconductor optical devices. The method
consists of a number of QW-TLM units which are connected in
parallel to model the electron transitions in the wave vector
space. Each QW-TLM unit consists of three RLC stub filters
and their corresponding weight coefficients, which represent
the processes that electrons transit from the conduction band to
the heavy hole band, the light hole band and the spin-orbit
split-off band at a given wave vector. Explicit expressions for
the admittances of the stub filters and the weight coefficients of
each unit are provided. The simulation results indicate a very
good agreement between the gain spectra obtained by the
QW-TLM method and that obtained by the analytical
expression within the wavelength band of nm1300 to .1700nm
Also, in order to reduce the computation time the under
sampling QW-TLM method has been introduced where a
cascaded RLC stub filter is added to the output of the gain
model based on QW-TLM. The simulation results of the gain
spectra of a stained quantum well using this model and the
analytical expression are in a very good agreement within the
wavelength band of nm1510 to .1575nm

The QW-TLM method is an effective approach that enables
us to analyse the dynamic spectral characteristics of quantum
well semiconductor optical devices.
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