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METHODOLOGY ARTICLE Open Access
A robust and efficient statistical method for
genetic association studies using case and control
samples from multiple cohorts
Minghui Wang1,2, Lin Wang1, Ning Jiang1,3, Tianye Jia2 and Zewei Luo1,2*
Abstract

Background: The theoretical basis of genome-wide association studies (GWAS) is statistical inference of linkage
disequilibrium (LD) between any polymorphic marker and a putative disease locus. Most methods widely
implemented for such analyses are vulnerable to several key demographic factors and deliver a poor statistical
power for detecting genuine associations and also a high false positive rate. Here, we present a likelihood-based
statistical approach that accounts properly for non-random nature of case–control samples in regard of genotypic
distribution at the loci in populations under study and confers flexibility to test for genetic association in presence
of different confounding factors such as population structure, non-randomness of samples etc.

Results: We implemented this novel method together with several popular methods in the literature of GWAS, to
re-analyze recently published Parkinson’s disease (PD) case–control samples. The real data analysis and computer
simulation show that the new method confers not only significantly improved statistical power for detecting the
associations but also robustness to the difficulties stemmed from non-randomly sampling and genetic structures
when compared to its rivals. In particular, the new method detected 44 significant SNPs within 25 chromosomal
regions of size < 1 Mb but only 6 SNPs in two of these regions were previously detected by the trend test based
methods. It discovered two SNPs located 1.18 Mb and 0.18 Mb from the PD candidates, FGF20 and PARK8, without
invoking false positive risk.

Conclusions: We developed a novel likelihood-based method which provides adequate estimation of LD and other
population model parameters by using case and control samples, the ease in integration of these samples from
multiple genetically divergent populations and thus confers statistically robust and powerful analyses of GWAS. On
basis of simulation studies and analysis of real datasets, we demonstrated significant improvement of the new
method over the non-parametric trend test, which is the most popularly implemented in the literature of GWAS.

Keywords: Case and control samples, Genome-wide association study, Linkage disequilibrium, Multiple cohorts,
Parkinson’s disease, Robust statistical approach
Background
Rapid advancement in high-throughput sequencing techni-
ques has greatly inspired the wave of genome-wide asso-
ciation studies (GWAS) to unravel the genetic basis
underlying complex traits in plants, animals and humans
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[1-3]. The theoretical kernel of these genetic association
studies is statistical inference of linkage disequilibrium (LD)
between a tested polymorphic marker locus and a putative
trait locus in the population of interest. A review of the rich
literature has revealed that a major challenge to association
studies lies in the high level of vulnerability of the LD based
analyses to several demographic factors, the most promin-
ent among which is the population stratification. It has
been well documented that use of samples collected from
the population with genetic structure may result in both
false positive and false negative inferences of association
[4]. Tremendous efforts have been invested to tackle the
td. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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problem through either predicting genetic structure in the
population under study [5] and incorporating this informa-
tion into the association analysis [6] or adjusting the test
statistic through so called genomic control [7].
In contrast to the problem raised from population stratifi-

cation, the consequences of using non-random samples in
association studies are usually neglected. We recently inves-
tigated the effect of using non-random samples in LD ana-
lyses and observed that estimates of LD parameters can be
severely biased and that the statistical power for testing
their significance substantially reduced [8]. In practice, the
sampling schemes of many genetic association studies in-
volve various types of selection and thus the samples col-
lected are no longer random representations of the
corresponding populations. A typical example is the ‘case–
control sample’ used in many association studies of human
diseases. In such instances, the frequencies of some disease
genotypes are artificially inflated relative to the population
frequencies so as to ensure sufficient representation of
those genotypes carrying a rare allele. Although approaches
have been developed to model and analyze ‘case-control’
samples, they are usually based on nonparametric statistical
tests such as χ2 or trend tests etc. and rarely account for
the biases described above [9]. Such approaches are statisti-
cally less sophisticated and often not robust in the presence
of these influences, exposing the corresponding analyses to
the risk of false positive and/or negative inferences of gen-
etic association. We present here a novel likelihood-based
statistical framework that confers improved robustness in
estimation of model parameters to non-randomness of
samples and thus a more powerful statistical test of LD in
the presence or the absence of genetic structure. We dem-
onstrate the improved robustness and statistical power by
re-analyzing the recently published Parkinson’s disease
(PD) case and control datasets [2]. In addition, we illustrate
the statistical properties of the method by computer simu-
lation study.

Methods
We consider case and control samples from k genetically
divergent populations, of which the ith population con-
tributes a proportion of the cases (ri) and a proportion
of the controls (si). In fact, any association study virtually
tests for significance of LD between two polymorphic
loci: a putative disease locus and a genetic marker locus
which is devoid of effect on the disease incidence. The
LD coefficient D(i) measures the level of association
where the superscript refers to the ith population. Let A
and a denote by the two alleles at the disease locus, and
M and m by the two alleles at the marker. Let p(i) and q
(i) be the allele frequencies at the marker and disease loci
respectively in the ith population. Most association stud-
ies using case and control samples virtually test for the
disequilibrium through testing for significance of
difference in frequency of the marker allele between the
case and control groups. In the present notations, the
difference in marker allele frequency has a form of

ΔpM ¼ pcaseM � pcontrolM

¼
Xk
i¼1

friðp ið Þcase
Mja q ið Þcase

a þ p ið Þcase
MjA q ið Þcase

A Þ

�siðp ið Þcontrol
Mja q ið Þcontrol

a þ p ið Þcontrol
MjA q ið Þcontrol

A Þg

¼
Xk
i¼1

�
rifpMja

ðiÞ ð1� q ið Þcase
A Þ þ p ið Þ

MjAq
ið Þcase
A g

�sifp ið Þ
Mjað1� q ið Þcontrol

A Þ þ p ið Þ
MjAq

ið Þcontrol
A g�

¼
Xk
i¼1

f ri � sið Þp ið Þ
Mja þ ð p ið Þ

MjA � p ið Þ
MjaÞ

ðriq ið Þcase
A � siq

ið Þcontrol
A Þg

¼
Xk
i¼1

"
ðri � siÞp ið Þ

M þ D ið Þ

q ið Þ
A ð1� q ið Þ

A Þ
friðq ið Þcase

A � q ið Þ
A Þ

�siðq ið Þcontrol
A � q ið Þ

A Þg
�

ð1Þ

Derivation of equation (1) implies that the conditional
probabilities of a marker allele given an allele at the disease
locus are constant in both cases and controls across differ-

ent subpopulations, that is p ið Þcase
Mja ¼ p ið Þcontrl

Mja ¼ p ið Þ
Mja and

p ið Þcase
MjA ¼ p ið Þcontrl

MjA ¼ p ið Þ
MjA . This is true if all the sub-

populations are no longer subject to any further structure
stratification. The simple algebraic formulation reveals that
any association tests, which are based on comparing the
marker allele frequency between cases and controls, share
at least two common properties. First, the test statistic will
not be zero even though the disease and marker loci are in
linkage equilibrium in all subpopulations, i.e., all D(i) = 0, if
the allele frequency of the tested marker varies from one

population to the other, i.e. p ið Þ
M≠p jð Þ

M i≠jð Þ , suggesting the
risk of making false positive inference of LD if the case and
control samples are collected from genetically divergent
populations. Secondly, the efficiency of the association test
can be greatly influenced by the sampling scheme of the
cases and controls as characterized by the term

riðq ið Þcase
A −q ið Þ

A Þ−siðq ið Þcontrol
A −q ið Þ

A Þ in equation (1) as we and
others have previously demonstrated [4,8].
Method 1 proposed in the present study uses informa-

tion from the conditional probability distribution of gen-
otypes at the disease locus given any genotype at the



Table 1 Conditional probability distributions

a.

AA Aa aa

MM Mm mm MM Mm mm MM Mm mm

g11 g12 g13 g21 g22 g23 g31 g32 g33

Q2 2Q(1-Q) (1-Q)2 QR Q + R-2QR (1-Q)(1-R) R2 2R(1-R) (1-R)2

where Q = p + D/q and R = p - D/(1-q)

b.

MM Mm mm

AA Aa aa AA Aa aa AA Aa aa

h11 h12 h13 h21 h22 h23 h31 h32 h33

Q2 2Q(1-Q) (1-Q)2 QR Q + R-2QR (1-Q)(1-R) R2 2R(1-R) (1-R)2

where Q = q + D/p and R = q - D/(1-p)

c.

Cases Controls

MM Mm mm MM Mm mm

AA f1 × g11 f1 × g12 f1 × g13 (1-f1) × g11 (1-f1) × g12 (1-f1) × g13

Aa f2 × g21 f2 × g22 f2 × g23 (1-f2) × g21 (1-f2) × g22 (1-f2) × g23

aa f3 × g31 f3 × g32 f3 × g33 (1-f3) × g31 (1-f3) × g32 (1-f3) × g33

#observed n11 n 12 n13 n21 n22 n23
Conditional probability distribution of (a) marker genotypes on a given disease genotype, (b) disease genotypes on a given marker genotype and (c) marker
genotypes given a genotype at the disease locus under the penetrance model of the disease gene in case/control samples. fi is the penetrance that an individual
in the population is affected with disease given its genotype at the disease locus is i (i = 1, 2 and 3 for genotypes AA, Aa and aa respectively).
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tested marker (Table 1), and develops a likelihood-based
framework to infer the LD parameter. On the one hand,
this provides a natural way to incorporate samples from
multiple resources into the association study, and thus
effectively removes the risk of false positive inference
due to the genetic structure. On the other, the way, by
which the likelihood analysis is formulated on the condi-
tional probability distributions, has virtually avoided the
influence of any non-randomness in sample and thus
confers robustness to the sampling influence. To com-
pare the method with one of the most popularly used
approaches in the current literature of genetic associ-
ation study, the Armitage’s trend test [9] was implemen-
ted to analyze the same datasets in parallel to Method 1,
and we denote the Armitage’s trend test by Method 3.
Based on the form of equation (1), we proposed Method
2, which is a modified version of the Armitage test
(Method 3 here) by removing the population structure

specific term
Xk
i¼1

ri � sið Þp ið Þ
M from the numerator of the

Armitage’s trend test statistic. All three methods are
detailed in the following text.

In Method 1, we first consider a case–control sample of
size n collected only from a single randomly mating popu-
lation. The method focuses on gene segregation at a mar-
ker locus and a putative disease locus in this population.
There are two alleles, M and m, segregating at the marker
locus and two alleles, A and a, at the disease locus. For
simplicity but without loss of generality, A is assigned to be
the disease causing allele. The population genetic para-
meters characterising genotypic distribution of genotypes
at the marker and disease loci include p (or q), frequency
of marker alleleM (or the disease allele A), and D, the coef-
ficient of LD between genes at the two loci. Distribution of
genotypes at the two loci can be expressed in terms of the
population genetic parameters. Let gij = Pr{Y = j | X = i} be
the conditional probability of marker genotype Y = j (j = 1,
2 and 3 for marker genotypes MM, Mm and mm respect-
ively) given the disease genotype X = i (i = 1, 2, 3 for the
disease genotypes AA, Aa and aa accordingly). Let hij = Pr
{X = i | Y = j} be the conditional probability of disease
genotype X = i given the marker genotype Y = j. These
conditional probability distributions can be expressed in
terms of the population genetic parameters p, q and D as
given in Table 1a and 1b respectively.
The cases and controls collected from the population

can be classified according to their genotypes at marker
loci, while the sample size n is equal to sum of nij repre-
senting the number of individuals with jth marker geno-
type (j = 1, 2 and 3) in cases (i = 1) or controls (i =2).
Table 1c illustrates the conditional probability distribu-
tion of genotypes at the disease locus for any given
genotype at the marker locus among cases or controls. It
can be seen that the conditional probability distribution
is a function of the penetrance parameters that
characterize the inheritance of the disease genes as well
as the population genetic parameters. Table 1c is derived
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from Table 1a by noting that each disease genotype pre-
sents a unique disease risk. The model involves a total of
six parameters, leaving their estimation as a typical over-
parameterization problem. To ease the problem, we
fixed the penetrance parameters f1-3 to take either of
values (1, 1, 0), (1, ½, 0) or (1, 0, 0), which correspond to
the dominant, additive or recessive inheritance of the
disease gene A. Our focus was on estimation of the
population genetic parameters. Consequence of possible
mis-specification of penetrance parameters will be evalu-
ated through simulation study as detailed in Results sec-
tion below.
The marker allele frequency p can be derived through

an independent population survey, or, if taking controls
as a random sample of the population in regard to the
marker genotypes, approximately estimated from con-
trols as p̂ ¼ n21 þ 0:5n22ð Þ=n2, where n2 = n21 + n22 + n23.
Appropriateness will be discussed for estimating fre-
quency p from control subjects in Discussion. Let N =
(n11,n12,n13,n21,n22,n23) be a vector of the observed num-
bers of individuals with different marker genotypes in
the case and control samples. The logarithm of the like-
lihood function of the parameters, q and D, given the
observed vector N and the penetrance parameters can
be expressed as

L p; q;D N ; f1; f2; f3j Þ∝
X3
j¼1

X3
i¼1

n1jwij þ n2jvij
� �

log gij
� �� �" #

;

 

ð2Þ

where

wij ¼ fihij
f1h1j þ f2h2j þ f3h3j

and

vij ¼ 1� fið Þhij
1� f1ð Þh1j þ 1� f2ð Þh2j þ 1� f3ð Þh3j

ð3Þ

are the conditional probabilities that any case or control
individual with the jth marker genotype (j =1, 2, 3 for
MM, Mm and mm respectively) has the ith genotype at
the disease locus (i = 1, 2, 3 for AA, Aa and aa respect-
ively). Two facts should be noted to the likelihood
function (2). Firstly, information about the disease
genotypes is missing and n1jwij (or n2jvij) represents
the expected number of individuals with the ith dis-
ease genotype and jth marker genotype in the case
(or control) sample. Secondly, the conditional prob-
ability hij is a function of parameters p, q and D as
given in Table 1b. The partial derivatives of the
likelihood function with respect to the unknown para-
meters q and D led to two normal equations

a6q
6 þ a5q

5 þ a4q
4 þ a3q

3 þ a2q
2 þ a1q þ a0 ¼ 0 ð4Þ

and

b5D
5 þ b4D

4 þ b3D
3 þ b2D

2 þ b1Dþ b0 ¼ 0: ð5Þ

The coefficients ai (i = 0,1,. . .,6) and bi (i = 0,1,. . .,5) in
equations (4) and (5) were functions of the sample
observations N = (n11,n12,n13,n21,n22,n23) and the condi-
tional probabilities wij and vij. Mathematical forms of
these coefficients were derived using the computer
software Mathematica [10] and listed in Additional file
1. We proposed here an EM algorithm to calculate the
maximum likelihood estimates (MLEs) of parameters q
and D. The algorithm starts with the estimate of mar-
ker allele frequency, p̂ , and initial guess for values of
the other two model parameters, D and q. With these
parameter values, the conditional probabilities wij and
vij can be calculated from equation (3). This constitutes the
expectation (E) step of the EM algorithm. The maximization
(M) step calculates new values of the parameters by solving
equations (4) and (5) respectively. It should be noted that
the coefficient of the leading term in the polynomial equa-
tions (4) and (5) is a positive constant, warranting the exist-
ence of at least one real root to these equations. Although
there was no analytical solution to these equations, they can
be solved numerically [11]. When multiple real roots were
found, we selected the one that was within the correspond-
ing theoretical bounds (0 < q < 1 and/or max{−pq, -(1-p)
(1-q)} ≤ D ≤ min{p(1-q), (1-p)q}) and also resulted in the
highest value of the likelihood. As the E and M steps are
iteratively repeated, the likelihood function increases
monotonically along the sequence of the newly deter-
mined estimates of the parameters, which converge to
the MLEs of the model parameters, q̂ and D̂ . Signifi-
cance of the disequilibrium parameter D can be tested
using the likelihood ratio (LR) test statistic given by

LR ¼ �2 L p̂; q̂;D ¼ 0 N ; f1; f2; f3j Þ � L p̂; q̂; D̂ N ; f1; f2; f3j Þ� ���
ð6Þ

It is important to note that the likelihood function
under the null hypothesis can be simplified to be L(p, q,
D = 0|N, f1, f2, f3) = (n11 + n21)Log[p

2] + (n12 + n22)Log[2p
(1 − p)] + (n13 + n23)Log[(1 − p)2], which is a function of
the vector N and marker allele frequency p only and is
independent of the other parameters, q and D. Thus, the
likelihood ratio test statistic can be approximated
by a χ2 distribution with 2 degrees of freedom (d.f.). Under
D = 0, the MLE of p is given by p̂ ¼ 2n11 þ 2n21þð n12 þ
n22Þ=2n as expected.
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When the cases and controls are collected independ-
ently from k subpopulations or genetic cohorts, we for-
mulate the likelihood of the congregate case and control
sample as the sum of the likelihoods for the case and
control sample from each of these cohorts as given by

Lðp 1ð Þ; p 2ð Þ; ::; p kð Þ; q 1ð Þ; q 2ð Þ; ::; q kð Þ;D 1ð Þ;D 2ð Þ; ::;

D kð Þ N 1ð Þ;N 2ð Þ; ::;N kð Þ; f1; f2; f3
�� �

¼
Xk
i¼1

L p ið Þ; q ið Þ;D ið Þ N ið Þ; f1; f2; f3
�� 	
 ð7Þ

where the superscript is used to denote the parameters for
each subpopulation. To calculate the above likelihood func-
tion, we proposed firstly to work out the population specific
parameters q(i) and D(i) from the case and control sample of
the ith subpopulation separately using the method
described above, and then to sum up the likelihoods for all
the case and control samples. Although the likelihood ratio
statistic confers the flexibility to test for significance of LD
in any subpopulations, we are interested here in testing for
a conservative null hypothesis that there is no LD between
marker and disease loci in all the subpopulations based on

the ratio of the congregate likelihood with D̂
ið Þ

over the
likelihood with D(i) = 0. This likelihood ratio test statistic
was approximated by a χ2 variable with 2 k d.f..
Method 2 was modified from the Armitage’s trend test

[9] for genetic association using case and control samples
and from our formulation of the trend test statistic when
the cases and controls are collected from k genetically di-
vergent populations or cohorts as demonstrated in equa-
tion (1). The Armitage’s method basically tests for
association of a polymorphic genetic marker with a disease
phenotype through testing for significance of the difference
in allele frequency at the marker between cases and con-
trols. In the presence of genetic structure, the difference in
frequency of the marker allele M between the cases and

controls contains a term
Xk

i¼1
ri−sið Þp ið Þ

M in which ri and si
stand for proportion of cases and controls collected from

the ith population and p ið Þ
M for frequency of the marker al-

lele M in the population as shown in equation (1). We
removed this term from the numerator of Armitage’s trend
test statistic, adjusted the corresponding sampling variance
of the difference term and proposed

χ2G ¼
Δp̂M �

Xk

i¼1
ri � sið Þp̂

ið Þ
M

� �2

Xk

i¼1
0:5p̂

ið Þ
M

1� p̂ ið Þ
M


 	
fr2i =n

case
i þ s2i =n

control
i

þ ri � sið Þ2=n ið Þg
ð8Þ

to be the test statistic which follows the chi-square distri-
bution with 1 d.f.. In equation (8), the denominator was
the sampling variance of the numerator under the null hy-
pothesis, i.e. there is no LD in either subpopulation. ncasei

(or ncontroli ) and n(i) are the number of cases (or controls)
and size of cases and controls from the ith population or
cohort.
Method 3 is virtually the Armitage’s trend test, which

is the most commonly implemented approach in the lit-
erature of GWAS with a case and control design. The
test statistic is built upon the number of genotypes, nij
with i =1, 2 corresponding to case and control and j = 1,
2, 3 to three genotypes at a tested marker, and has a
form of

Y 2 ¼
n n

X3

j¼1
n1jxj � n1⋅

X3

j¼1
n⋅jxj


 	2
n1⋅n2⋅ n

X3

j¼1
n⋅jx

2
j �

X3

j¼1
n⋅jxj


 	2� � ð9Þ

Under the null hypothesis of no association between
the marker and the disease locus, this follows a χ2 distribu-

tion with 1 d.f., where n ¼
X2

i¼1

X3

j¼1
nij , ni⋅ ¼

X3

j¼1
nij ,

n⋅j ¼
X2

i¼1
nij and the trend coefficients xj (j = 1, 2, 3) are

the weights of effects of different marker genotypes on the
disease trait [9]. When x1-3 take a form of (1, 1, 0), (1, 0, 0)
or (2, 1, 0), the test statistic corresponds to testing for
genetic association of the tested marker with a putative
disease trait showing dominant, recessive, and additive ge-
netic inheritance respectively. As demonstrated by Jackson
et al. [12], the Armitage’s trend test statistic can be ex-
pressed as

Y 2 ¼ n n 2n11 þ n12ð Þ � n1⋅ 2n⋅1 þ n⋅2ð Þf g2
n1⋅n2⋅ n 4n⋅1 þ n⋅2ð Þ � 2n⋅1 þ n⋅2ð Þ2� �

¼ p̂case
M � p̂Mcontrol

� �2
p̂M 1� p̂Mð Þ þ p̂MM � p̂M2
� �

1=2n1⋅ þ 1=2n2⋅ð Þ
ð10Þ

under an additive genetic inheritance model [9,13],
where p̂M ¼ 2n11 þ n12 þ 2n21 þ n22ð Þ=2n , p̂MM ¼
n11 þ n21ð Þ=n , p̂Mcase ¼ 2n11 þ n12ð Þ=2n1⋅ , and
p̂Mcontrol ¼ 2n21 þ n22ð Þ=2n2⋅ . Note that the denomin-
ator in equation (10) has a term p̂MM � p̂M2 , which is
zero when the case–control sample is in Hardy-
Weinberg Equilibrium (HWE). This term is proposed to
be a correction for bias in variance estimation when there
is departure from HWE due to several factors including
population structure [13]. However, there is no such a cor-
rection term under dominant and recessive models.

Re-analysis of the Parkinson’s disease datasets
We implemented the three methods described above to
re-analyze the PD dataset which was recently published
by Simon-Sanchez et al. [2]. The study carried out a
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genome wide screen for genetic variants predisposing
susceptibility to the PD through a two-stage case–con-
trol design. In stage I, 4,005 individuals (971 cases and
3,034 cases) recruited from the United States and 1,686
individuals (742 cases and 944 cases) recruited from
Germany were genotyped at 507,861 SNPs using Infi-
nium BeadChips of which 463,185 SNPs with genotyping
call rate larger than 95%, minor allele frequency (MAF)
above 0.05 and no departure from HWE (p > 0.01) were
remained [2]. Because estimates of allele frequency from
a small sample may vary greatly, we further excluded
those markers, at which there were less than five indivi-
duals for any genotype, from further analysis. After this
quality control, a total of 447,270 SNPs were used in the
present study. Principal component analysis (PCA) from
genotype data was carried out to investigate the popula-
tion structure for the stage I dataset by using program
GCTA [14]. In stage II, which was designed as a con-
firmation stage, 3,392, 3,223 and 1,319 individuals were
recruited from three different cohorts: the USA (1,473
cases and 1,919 controls), Germany (1,074 cases and
2,149 controls) and the UK (814 cases and 505 controls)
respectively. All 7,934 individuals were genotyped for
345 SNPs which showed significant associations in ana-
lysis with stage I dataset. After applying the same quality
check on the SNP data, two SNPs were excluded from
the present study. The genetic association for each SNP
marker was evaluated by Armitage’s trend test (Method
3 here) and the genome-wide significance level was
determined by the Bonferroni correction for the prob-
ability of an overall type I error at 5%.

Simulation model and method
To investigate statistical properties and limitations of the
method developed in the present study, we considered
three schemes for sampling cases and controls from
computer simulated randomly mating populations. In
the first two sampling schemes, scheme A and B, we
fixed the penetrance parameters f1-3 for genotypes at
the disease locus to be (1, ½, 0), while in the third sam-
pling scheme, scheme C, mild penetrance parameters
(i.e. f1-3 < 1) were used. Sampling schemes A and C col-
lected cases and controls from a single population, while
scheme B sampled individuals from two genetically di-
vergent populations with regard to a tested marker and
a putative disease locus. A simulated population in the
present study was fully characterized by a set of popula-
tion genetic parameters, p, q and D (frequencies of
alleles M and A at a marker locus and a disease locus re-
spectively and the coefficient of LD between the two
loci), and quantitative genetic parameters, f1, f2 and f3
(penetrance of three genotypes at the disease locus). For
a given set of these parameters, genotype of a case or
control subject at both the marker and disease loci was
generated by randomly sampling from the conditional
probability distribution given in Table 1c. The sampling
process continued until the required number of cases or
controls was obtained. The computer programs imple-
menting the simulation were described and modified in
Luo [15] and Wang et al. [8].

Results
Re-analysis of the Parkinson’s disease datasets
To assess the population structure in the stage I dataset,
PCA was carried out using whole-genome genotype data
and illustrated in Additional file 2. The analysis revealed
genetic structure between the US and German individuals.
Figure 1a-c illustrate distributions of the logarithmic sig-
nificance levels (P) of genetic association tests across the
23 human chromosomes using the three PD case and con-
trol SNP datasets from the stage I, stage II and stage I and
II combined, respectively. We analyzed each of the datasets
using the three methods described above. For Method 1,
the associations were detected under additive genetic in-
heritance mode with f1-3 = 1, ½, 0. It can be seen from the
stage I data analysis (Figure 1a) that Method 1 developed
in the present study (black labels) detected 44 significant
SNPs, which are distributed across 25 chromosomal
regions of size < 1 Mb (Table 2).Methods 2 and 3 detected
significant SNPs in only two (4q21 and 17q21) of the 25
regions at the same Bonferroni corrected significance
threshold (P ≤ 1.1 × 10-7). No extra significant association
was detected by Method 2 or 3 outside the 25 regions
screened by Method 1. To explore genetic dependence
among the 44 significant SNPs detected using Method 1,
we calculated the coefficient of LD between all SNP pairs
using an approach that accounts properly for the case and
control sampling scheme [8]. The disequilibrium structure
illustrated at the bottom of Figure 1a shows that the signifi-
cant SNPs are not associated with each other across the
different regions (maximum disequilibrium measured by r2

is 0.002 between different chromosome regions), removing
the concern that the detected SNP-disease associations
might be due to autocorrelation in genotypic distribution
among the SNPs between these regions. In particular,
Method 1 uniquely detected six SNPs on chromosome re-
gion 10p11.21, of which, rs7923172 and rs4934704 locate
at the introns of gene CUL2. The CUL2 gene encodes a
protein of the E3 ubiquitin ligase complex [16]. The fact
that another PD susceptible gene PARK2 also encodes a
parkin protein in the same complex [17] suggests that
CUL2 could be a newly detected PD candidate gene.
Moreover, Method 1 detected three SNPs on chromo-
some region 8p22 (the most significant P = 9.9 × 10-10 at
rs2736050), which were only 1.2 Mb apart from a previ-
ously reported PD susceptible gene FGF20. FGF20 and
SNCA have previously been reported to be synergistically
associated with PD [18].



Figure 1 Genome-wide association scan. Graphic presenting association results from (a) stage I, (b) stage II and (c) two-stage combined case
and control samples. The analysis with each of the three datasets was done using Method 1 (black circles), 2 (red circles) and 3 (blue circles)
accordingly. The red horizontal dashed lines indicate the Bonferroni significance threshold of P value 1.1 × 10-7 (a) and 1.5 × 10-4 (b and c). The
triangle at the bottom of (a) is the estimated linkage disequilibrium structure for the 44 most significant SNPs listed in Table 2. The diamonds and
squares in (a) illustrates the SNPs at which the bootstrap posterior probability for genetic association are either > 80% or within 60 ~ 80%.
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To assess variation of the predicted genetic associations,
we carried out bootstrap sampling with replacement from
the stage I dataset (1,000 replicates) and calculated the em-
pirical posterior probability at each of the 44 significant
SNPs. Table 2 summarizes the significance levels (P values)
and the bootstrap posterior probabilities (BPP) calculated
for each of the three methods. BPP was calculated as the
proportion of bootstraps in which the SNP of interest was
detected given the empirical Bonferroni P value threshold
of 1.1 × 10-7. Of the three methods tested on the stage I
dataset, we find that Method 1 confers the most powerful
test for the genetic association. The BPP values calculated
from repeated bootstrap samples by analysis using Method
1 were consistently higher (Wilcoxon signed-rank test



Table 2 Summary of top associations from stage I dataset

Locus SNP name Dist(kb) *
P value BPP (%)

M 1 M 2 M 3 M 1 M 2 M 3

1p13.2-13.3
rs17654531 - 1.9 × 10-9 3.2 × 10-6 1.2 × 10-5 37 22 14

rs10857899 328 2.7 × 10-8 3.1 × 10-6 3.1 × 10-6 57 25 27

2p23.3 rs7564397 - 9.7 × 10-8 0.013 0.033 55 0 0

2q21.2 rs1474406 - 4.3 × 10-8 2.3 × 10-3 0.001 57 1 3

2q36.1 rs1447108 - 5.5 × 10-8 2.5 × 10-4 4.4 × 10-4 59 4 3

3p24.3 rs1605527 - 2.0 × 10-8 1.0 × 10-4 9.4 × 10-5 53 9 10

4p15.2

rs6820719 - 1.6 × 10-9 0.23 0.30 74 0 0

rs7676830 23 8.6 × 10-10 0.12 0.15 77 0 0

rs12649499 11 4.8 × 10-10 0.20 0.26 77 0 0

4q21

rs11931074 - 3.9 × 10-8 5.1 × 10-8 4.8 × 10-8 56 54 54

rs356220 2 7.7 × 10-11 3.4 × 10-8 7.0 × 10-8 81 56 52

rs3857059 34 5.3 × 10-8 4.0 × 10-8 3.6 × 10-8 56 55 56

rs2736990 3 6.3 × 10-12 2.9 × 10-9 5.7 × 10-9 88 71 67

6q27 rs2072638 - 1.1 × 10-11 0.014 0.012 86 0 0

7p14-p13 rs859522 - 1.8 × 10-8 9.7 × 10-6 3.4 × 10-5 62 21 14

7q21 rs3779331 - 6.6 × 10-8 0.028 0.01 56 0 0

7q21.11 rs10246477 - 9.3 × 10-8 2.3 × 10-5 5.3 × 10-5 56 13 10

8p23.2
rs7013027 - 5.8 × 10-8 4.3 × 10-6 1.9 × 10-6 56 23 29

rs4875773 63 1.6 × 10-8 0.02 0.044 63 0 0

8p22

rs7828611 - 8.4 × 10-8 1.2 × 10-4 6.2 × 10-4 55 6 3

rs2736050 1 9.9 × 10-10 1.0 × 10-5 2.0 × 10-4 74 18 5

rs2009817 3 2.0 × 10-9 1.3 × 10-5 2.1 × 10-4 72 16 5

8q24.23-24.3

rs4556079 - 4.8 × 10-8 5.0 × 10-6 4.8 × 10-6 60 20 22

rs11781101 14 7.3 × 10-8 5.4 × 10-6 5.3 × 10-6 56 21 22

rs7004938 12 3.1 × 10-8 3.0 × 10-6 3.0 × 10-6 59 24 25

rs11783351 1 7.7 × 10-8 5.0 × 10-6 5.5 × 10-6 53 21 21

9q21.31 rs2378554 - 6.6 × 10-8 2.0 × 10-6 2.9 × 10-5 54 29 13

10p11.21

rs2492448 - 3.8 × 10-8 1.6 × 10-6 3.8 × 10-6 61 29 24

rs11591754 12 4.8 × 10-10 2.5 × 10-7 1.7 × 10-6 80 43 30

rs7923172 102 7.0 × 10-8 1.1 × 10-5 1.4 × 10-5 54 17 16

rs4934704 23 7.3 × 10-8 1.2 × 10-5 1.5 × 10-5 54 17 16

rs10827492 97 9.7 × 10-8 1.3 × 10-5 1.7 × 10-5 52 16 16

10q24.3 rs17115100 - 2.7 × 10-8 6.9 × 10-6 2.5 × 10-5 37 19 13

11p15.2
rs11605276 - 3.4 × 10-11 0.079 0.19 86 0 0

rs10500796 45 1.9 × 10-8 0.18 0.30 61 0 0

11q13 rs1726764 - 6.6 × 10-8 0.088 0.20 53 0 0

12p13 rs10849446 - 6.7 × 10-9 1.1 × 10-4 3.7 × 10-5 68 6 12

16p13.3 rs11648673 - 5.5 × 10-8 1.3 × 10-5 4.8 × 10-7 56 15 38

17q21
rs169201 - 1.0 × 10-7 6.5 × 10-6 1.2 × 10-7 57 19 49

rs199533 39 4.1 × 10-8 2.8 × 10-6 5.0 × 10-8 60 24 55

17q24.3 rs558076 - 6.6 × 10-8 1.0 × 10-4 2.5 × 10-5 57 7 14
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Table 2 Summary of top associations from stage I dataset (Continued)

rs817097 42 5.0 × 10-8 8.1 × 10-6 6.2 × 10-6 56 18 18

20p12.1 rs6041636 - 9.9 × 10-9 0.16 0.24 66 0 0

21q22.3 rs2070535 - 5.0 × 10-8 0.060 0.096 54 0 0

Significance and bootstrap posterior probabilities (BPP) for the 44 significant SNPs detected by Method 1 (M 1) from stage I dataset. Shadowed are the regions at
which the genetic association was tested by Method 2 (M2) and Method 3 (M 3) at the same significance level. *Distance (kb) from previous significant SNP in the
same chromosome region.
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P value 5.8 × 10-9), suggesting the method is more robust
to variation caused from sampling than the other two
methods tested in this study. Method 2 and 3 had compa-
rable BPP values (Wilcoxon signed-rank test P value 0.57)
and hence similar robustness to sampling variation.
Before reporting our analysis of the stage II dataset, it is

worth stressing that the 345 SNPs originally genotyped
were selected only from the previous analysis using
Method 3 [2]. The dataset contains only 27 of the 44 sig-
nificant SNPs identified using Method 1 in our analysis of
the stage I data. Using a Bonferroni corrected genome-
wide P = 0.05 significant threshold (1.5 × 10-4), we found
the SNPs located within 4q21 and 17q21 to be repeatedly
detected by all the three methods in the stage II dataset,
while an additional six SNPs were detected by Method 1
to be in significant association with the disease trait at the
Bonferroni genome-wide threshold (Figure 1b). The max-
imum r2 between the six SNPs identified only by Method
1 was 0.0013. In particular, analysis using Method 1
detected a significant SNP (rs11564162) within chromo-
some 12q12, (P = 2.2 × 10-5), located just 176 Kb from the
previously identified PD candidate gene PARK8 [19]; nei-
ther Method 2 nor 3 detected this significant SNP. In
addition, a significant SNP (rs2878172) within chromo-
some 14q22.2 detected by Method 1 is only 4 Kb from
the gene GCH1, which was recently found to be asso-
ciated with PD through meta-analysis of multiple PD
GWAS datasets and curated in the PDGene database [20].
A full list of significant SNPs detected by the three meth-
ods in the analysis of the stage II dataset are shown in
Additional file 3.
When the two datasets (stage I and stage II) were

combined, 90 SNPs were detected significant at the
Bonferroni corrected P = 0.05 threshold (1.5 × 10-4) using
Method 1, including all the twenty seven significant
SNPs detected using the same method in stage II ana-
lysis and eight significant SNPs detected by the same
method in stage I data analysis (Figure 1c and Additional
file 3). The 55 SNPs undetected in individual dataset
were distributed in 39 chromosomes regions (r2 between
regions was less than 0.0012). The SNP marking the PD
candidate gene, PARK8, detected in the analysis of the
stage II dataset, was also repeated in analysis with the
combined dataset. Query against the PDGene database
[20], we found another 6 out of the 55 SNPs that had
been reported to be associated with PD: rs6812193 (OR
0.89, 95% confidence interval (CI) 0.85-0.93), rs6532197
(OR 1.31, 95% CI 1.19-1.44), rs7077361 (OR 0.86, 95%
CI 0.79-0.93), rs11191425 (OR 0.84, 95% 0.75-0.93),
rs12413409 (OR 0.84, 95% CI 0.75-0.95) and rs1481088
(OR 1.08, 95% CI 1.01-1.16). A majority of the thirty-five
significant SNPs that replicated the stage I or II analysis
were detected with markedly more stringent significant
levels, reflecting the increased size of the combined dataset.
There have been a total of twenty five candidate genes

discovered so far to predispose individuals to Parkinson’s
disease (the OMIM database with entry 168600). We
explored the extent to which these candidate genes can be
revealed in the present genetic association study. Listed in
Figure 2 are the most significant SNPs within a 2.5 Mb
chromosomal region surrounding each of the 25 PD can-
didate genes and estimate of the number of false discove-
ries evaluated at the probability at which the SNP was
claimed significant [21]. It can be seen that all the three
methods detected the SNP, rs2736990, within the PD can-
didate gene SNCA [22] on human chromosome 4q21 as
well as the SNP rs199533, just 0.72 Mb distant from the
PD candidate gene MAPT [23] on chromosome 17q21
with negligible risk of being false positives. In addition to
these, Method 1 discovered two additional SNPs located
1.18 Mb and 0.18 Mb from the PD candidates, FGF20
[18] and PARK8 [19] respectively without invoking the
risk of false positive. The identification of significant gen-
etic markers close (< 1.2 Mb) to the PD genes further sup-
ports the improved efficiency of the newly developed
method for genetic association study.

Simulation study
Table 3 presents the parameters defining 10 simulated
randomly mating populations as well as means and
standard deviations of estimates of the model parame-
ters from 1,000 repeated samples of 200 cases and 200
controls. Methods 1 and 3 were only implemented to
analyze the simulation data because Methods 2 and 3
are effectively interchangeable when the case and control
samples were known to come from a single randomly
mating population. When the marker and disease genes
were in LE (i.e. D = 0 in simulated populations 1–3),
marker genotype provides no information on the unob-
servable genotype at the disease locus and thus no esti-
mate of disease allele frequency q was attempted under
the circumstances. Means of the test statistic in these



Figure 2 Significance of Parkinson’s disease candidate genes. The most significant SNP within ±2.5 Mb chromosome regions surrounding
each of 25 Parkinson’s disease (PD) candidate genes. In parentheses is the physical distance (Mb) of the SNP to the corresponding PD candidate
gene. P values are calculated from analysis of stage I dataset with Method 1 (square) and 2 (up triangle) and 3 (down triangle), and presented in
the color bar depicting varying levels of significance probability. Note some data points are overlapped. nFD refers as to estimate of the number
of false discoveries for a given P value.
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populations were approximately equal to 2.0 or 1.0 for
Method 1 or 3 respectively, corresponding to means of
the chi-square variable with 2 or 1 degree of freedom as
expected for the likelihood ratio test in Method 1 and
the chi-square test in Method 3. This demonstrates the
adequacy of proposed distribution of the test statistic
constructed in these methods under the null hypothesis
and, in turn, the appropriate control of the type I error
of the statistical tests. When LD was actually present
(populations 4–10), Method 1 estimated the model
parameters, q and D, adequately (coefficient of variation
of the square root of the mean square error is less than
0.5 for parameter estimates) and, provided a consistently
higher statistical power (ρ) to test for significance of the
disequilibrium than Method 3. We did also investigate
the performance of Method 1 when the disease allele
showed either dominant or recessive inheritance and the
simulation study demonstrates that the method pre-
dicted the model parameters well under these different
genetic models (Additional file 4).
We explored the influence of using case and control

samples collected from genetically divergent populations
(or cohorts) on performance of the three methods.
Table 4 illustrates 14 sets of simulation parameters de-
fining the genetic structure of two randomly mating
populations and the empirical power of the methods in
the association test using case and control samples from
these populations. The case and control samples were ei-
ther taken separately or using the admixed samples of
which 57% cases and 76% controls were from population



Table 3 Parameters and results of scheme a simulation

Pop. p q D Method 1 Method 3

q̂ � s:d: D̂ � s:d: χ[2]
2 ± s. d. ρ (%) χ[1]

2 ± s. d. ρ (%)

1 0.5 0.5 0 - 0.004 ± 0.012 1.9 ± 2.5 6.9 1.0 ± 1.3 4.2

2 0.3 0.7 0 - 0.005 ± 0.011 2.0 ± 2.8 7.3 1.0 ± 1.4 4.5

3 0.7 0.3 0 - 0.002 ± 0.011 1.9 ± 2.7 6.7 1.0 ± 1.5 5.0

4 0.5 0.5 0.15 0.50 ± 0.05 0.148 ± 0.015 184.4 ± 42.8 100 73.3 ± 14.0 100

5 0.5 0.5 0.10 0.50 ± 0.09 0.097 ± 0.018 73.9 ± 26.5 99.7 33.3 ± 10.6 96.6

6 0.5 0.5 0.05 0.50 ± 0.20 0.043 ± 0.020 18.1 ± 12.0 36.8 8.8 ± 5.6 10.8

7 0.3 0.7 0.07 0.72 ± 0.12 0.064 ± 0.026 68.4 ± 25.4 99.6 29.6 ± 10.2 91.5

8 0.3 0.7 0.05 0.70 ± 0.15 0.047 ± 0.023 33.2 ± 17.6 77.3 15.1 ± 7.5 38.2

9 0.7 0.3 −0.07 0.28 ± 0.14 −0.062 ± 0.028 54.8 ± 23.4 96.8 26.3 ± 9.6 85.2

10 0.7 0.3 −0.05 0.31 ± 0.20 −0.042 ± 0.024 27.8 ± 15.6 66.1 13.7 ± 6.9 31.0

Population genetic parameters for 10 simulated populations and statistical inference of model parameters from 200 cases and 200 controls repeatedly sampled
from the simulation populations. p and q are allelic frequencies at the marker and disease loci, D is the coefficient of linkage disequilibrium (LD) between the two
loci. Means and standard deviations (s.d.) of the model parameters, q and D, and χ2test statistic were calculated from 1000 repeated samples. ρ (%) is the
proportion in 1000 repeats in which the association test surpassed the threshold of P-value at 0.05 when LD is absent and the Bonferroni threshold of P-value at
5 × 10-5 when LD is present.
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1 and the rest from population 2. These two percentage
values were deliberately chosen corresponding to the
constitution of cases and controls in the stage I PD data-
set. When the disequilibrium was absent in either of the
populations (populations 1–6), all three methods shared
a low probability of making false positive inference using
case and control samples from these populations separ-
ately (Table 4). When cases and controls were contribu-
ted by the two populations, the false positive rate
remained at the same lower level for Methods 1 and 2
but increased up to 25% for Method 3. Moreover, the
increase in the false positive probability for Method 3
was in proportion to the difference in marker allele fre-
quency between the two contributing populations. The
larger the difference, the higher the false positive prob-
ability was observed, reflecting the fact that the test stat-
istic of this method is proportionate to the size of
difference between the allele frequencies as expected
from the above theoretical analysis. When the disequilib-
rium did truly exist in either or both simulated popula-
tions (populations 7–14), Method 1 was able to detect it
with a remarkably higher statistical power than the other
two methods. In particular, when the disequilibrium had
opposite signs in the two contributing populations
(populations 13–14, i.e. the scenario where the disease
causing gene was in association with different marker
alleles in different populations), the highest detecting
power was observed for Method 1 no matter whether
the case and control sample was collected from the con-
tributing populations separately or as admixture of the
populations. In contrast, the χ2 test based methods failed
to detect the disequilibrium under such circumstances.
These findings strongly support the improved statistical
efficiency of the likelihood-based method presented here
and its robustness to inherent genetic structure in the
case and control samples.
While the true penetrance parameters at a disease locus

are indeed unknown in practice, we proposed incorpor-
ation of the penetrance parameters with predefined values
of (1, 1, 0), (1, 0, 0) or (1, ½, 0) into the analysis. This is
mainly to ease the problem of over-parameterization and
to set the penetrance differ among the different disease
genotypes whereas the true but unknown penetrance
parameters could be far less than 1 for any single locus
genotype that contributes to genetic variation of common
polygenic disease traits. We investigated how the use of
mis-specified penetrance values would influence perform-
ance of the association tests through computer simulation.
The simulation considered the scenario where the disease
genotypes had very low levels of penetrance. Table 5 illus-
trates means and standard deviations of the test statistics
and empirical power calculated from Method 1 when true
values of the penetrance parameters were used and when
the penetrance parameters were set to be constant, i.e.
f1-3 = (1, ½, 0) as those implemented in the above data ana-
lysis. It can be seen that mis-specification of the pene-
trance parameters in analysis of the simulation data with
the method has not caused a marked loss of statistical
power in detecting the genetic association nor led to in-
crease in false positive inference of association when the
marker and disease loci are truly in linkage equilibrium
(D = 0). This thus removes the concern about appropriate-
ness to use the predefined setting of disease penetrance in
the method developed here.

Discussion
We have shown that Armitage’s trend test [9], the most
popular statistical strategy implemented in the current



Table 4 Parameters and results of scheme b simulation

Pop. p(1) q(1) D(1) p(2) q(2) D(2) Population 1 Population 2 Admixed samples

M 1 M 2 M 3 M 1 M 2 M 3 M 1 M 2 M 3

1 0.40 0.10 0.00 0.70 0.10 0.00 0.1 0.0 0.0 1.6 0.0 0.0 1.2 0.0 25.3

2 0.45 0.10 0.00 0.70 0.10 0.00 0.0 0.0 0.0 1.0 0.0 0.0 0.6 0.0 12.6

3 0.50 0.10 0.00 0.70 0.10 0.00 0.3 0.0 0.0 1.4 0.0 0.0 1.2 0.0 3.7

4 0.55 0.10 0.00 0.70 0.10 0.00 0.2 0.0 0.0 2.1 0.0 0.0 1.1 0.0 0.9

5 0.60 0.10 0.00 0.70 0.10 0.00 0.0 0.0 0.0 1.1 0.0 0.0 1.0 0.0 0.3

6 0.65 0.10 0.00 0.70 0.10 0.00 0.1 0.1 0.1 0.9 0.0 0.0 0.5 0.0 0.0

7 0.40 0.10 0.00 0.50 0.10 0.02 0.1 0.0 0.0 94.3 44.8 45.6 91.1 2.9 50.8

8 0.45 0.10 0.00 0.50 0.10 0.02 0.0 0.0 0.0 93.4 45.7 47.2 90.8 1.4 28.4

9 0.40 0.10 0.02 0.50 0.10 0.00 99.5 93.9 94.7 1.1 0.0 0.0 99.4 70.1 90.0

10 0.45 0.10 0.02 0.50 0.10 0.00 99.7 95.4 95.5 1.1 0.0 0.0 99.3 69.3 77.4

11 0.40 0.10 0.02 0.50 0.10 0.02 99.6 95.0 95.1 93.2 43.7 45.7 100.0 99.7 100.0

12 0.45 0.10 0.02 0.50 0.10 0.02 99.6 95.2 95.6 93.1 47.5 49.0 100.0 99.7 100.0

13 0.40 0.10 0.02 0.50 0.10 −0.02 99.4 95.1 95.3 92.2 45.6 47.0 100.0 4.2 6.1

14 0.45 0.10 0.02 0.50 0.10 −0.02 99.1 93.9 94.0 94.2 45.8 47.8 100.0 3.0 1.4

Population genetic parameters defining two genetically divergent populations and empirical statistical powers of Methods 1–3 (M 1–3) for detecting significance
of linkage disequilibrium between a polymorphic marker and a putative disease locus. The empirical power was calculated from 1,000 repeated samples of 1,000
cases and 1,000 controls as the proportion of the test statistic surpassing the Bonferroni threshold 5 × 10-5. The admixed samples were made up of 57% cases and
76% controls from Population 1 and the rest from Population 2.
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literature of GWAS with a case–control setting, is highly
vulnerable to sampling schemes and genetic structure em-
bedded in the samples. To address this problem, we have
developed a novel statistical method that is robust to these
influential factors and confers a more powerful test. We
have demonstrated the robustness and improved statistical
power of the new method through (i) re-analysis of the
large-scale SNP genotype datasets of the PD cases and
controls collected from multiple geographical cohorts [2],
and (ii) through computer simulation studies. The new
method was able to detect a total of 44 SNPs in significant
Table 5 Parameters and results of scheme c simulation

Pop. p q D f1 f2 f3 p̂ � s:d:

1 0.5 0.5 0 0.1 0.05 0 0.50 ± 0.02

2 0.3 0.7 0 0.1 0.05 0 0.30 ± 0.02

3 0.7 0.3 0 0.2 0.1 0 0.70 ± 0.02

4 0.5 0.5 0.15 0.2 0.1 0 0.48 ± 0.02 5

5 0.5 0.5 0.1 0.1 0 0 0.49 ± 0.02 7

6 0.5 0.5 0.05 0.1 0 0 0.50 ± 0.02 2

7 0.3 0.7 0.07 0.3 0.1 0 0.29 ± 0.02 1

8 0.3 0.7 0.05 0.3 0.1 0 0.29 ± 0.02

9 0.7 0.3 −0.07 0.1 0 0 0.70 ± 0.02 1

10 0.7 0.3 −0.05 0.1 0 0 0.70 ± 0.02 5

Means and standard deviations (s.d.) of estimates of empirical statistical power (ρ) a
computer simulations. The left panel lists values of the simulation parameters and t
the Bonferroni threshold 5 × 10-5 in 1000 simulations.
* when the true simulated parameters were used in the association test.
** when the penetrance parameters f1-3 were constantly set to be (1, ½, 0).
association with the disease phenotype, which distributed
in 25 chromosomal regions of size < 1 Mb largely in LE.
Only two of these regions are detected by the other meth-
ods under comparison. Among the newly detected signifi-
cant SNPs, some are within or nearby the PD candidate
genes previously reported in the literature and the rest
novel discoveries. A Bootstrap-based analysis shows that
the new method has consistently higher posterior prob-
abilities at the significant SNPs than the compared meth-
ods, suggesting the remarkably improved robustness of
the former to the sampling problem.
Method 1* Method 1** Method 3

χ2 ± s.d. ρ (%) χ2 ± s.d. ρ (%) χ2 ± s.d. ρ (%)

2.0 ± 6.1 2 1.9 ± 2.9 0 0.9 ± 1.3 0

2.2 ± 5.9 2.1 1.8 ± 2.9 0.2 1.0 ± 1.3 0

1.5 ± 3.9 0.5 2.0 ± 2.8 0 1.0 ± 1.3 0

7.8 ± 21.8 99.2 52.5 ± 19.0 98 24.1 ± 9.2 79.1

4.5 ± 24.1 99.7 68.7 ± 20.9 99.6 35.0 ± 11.0 97.7

0.0 ± 12.3 42.6 19.6 ± 11.9 41.5 9.3 ± 5.8 11.8

6.4 ± 12.7 32.4 14.2 ± 10.9 25 6.5 ± 4.9 4.5

9.5 ± 8.9 12.6 8.2 ± 7.7 8.8 3.7 ± 3.6 1

02.6 ± 29.7 100 93.5 ± 26.1 99.9 44.7 ± 12.0 99.6

3.7 ± 21.1 96.6 50.5 ± 19.3 96.2 24.0 ± 9.0 80.1

nd the test statistic based on 200 cases and 200 controls from 1000 repeated
he right the estimates. ρ is estimated as proportion (%) of significant tests at
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We have solved three major problems in the method-
ology development. Firstly, genotype at the disease locus
is not observable. This has led formulation of the model
parameter estimation to be built on the principles of
statistical analysis with missing data [24]. Secondly, the
case and control samples rather than random samples
are used to infer LD between any polymorphic marker
locus and a putative disease locus. Several recent
researches addressed this problem and developed
methods for association analysis with case and control
samples [25,26]. Our method differs from them in sev-
eral key aspects. The present method is developed on
the basis of an explicit population genetic model
which is fully characterized by population frequencies
of alleles at marker and disease loci as well as the co-
efficient of LD between the two loci. This model
enables development of a novel statistical approach
for directly estimating the model parameters and in
turn statistical test for significance of the genetic asso-
ciation is built on the estimates. Given that the accur-
ate estimation of the disequilibrium parameter is
crucial for the reliability of any LD analysis including
LD-based mapping of complex genetic disease traits
[27], this model based analysis may explain outper-
formance of the parametric approach over the existing
nonparametric rivals. Moreover, we presented a simple
but plausible statistical model (Equation 1) for demon-
strating how the population structure embedded in
the case and control samples would affect any associ-
ation study which tests for significance of the differ-
ence in marker allele frequency between cases and
controls such as the Armitage’s trend test and many
others such as the well-known Mantel-Haenszel test.
With the present notation used to derive equations (1)
and (8), we are able to demonstrate that the Mantel-
Haenszel test statistic has a form of

χ2M≈ Δp̂M �
Xk
i¼1

ri � sið Þp̂
M
ðiÞ

( )2

=

Xk
i¼1

0:5

(
n2risi

n ið Þ
Xk
j¼1

ncasej

Xk
j¼1

ncontrolj

p̂
M

ðiÞ
1�p̂ ið Þ

Mð Þ
)

ð11Þ

which follows a chi-square distribution with 1 d.f..
Comparison of equation (11) to equation (8) shows
that the two test statistics share the same numerator,
and the denominator of χ2G is only slightly larger than
that of χ2M . Thus, the Mantel-Haenszel test is approxi-
mately equivalent to the Method 2 which has been
explored in the present study. Moreover, we
demonstrated in Additional file 5 that the Mantel-
Haenszel test was indeed equivalent to the widely
employed logistic regression approach for analyzing
stratified case and control samples such as the PD
datasets. Either the present Method 2 or the Mantel-
Haenszel test provides an efficient alternative to the
logistic regression in testing for association using case
and control samples with known stratification.
Thirdly, the likelihood-based method developed in the
present study confers the flexibility to fit in different
fixed effects in different populations and is thus logic-
ally appropriate to integrate cases and controls col-
lected from genetically different cohorts or
populations like the PD case and control samples we
thoroughly analyzed here. Although a rich literature
has been available for prediction of genetic structure
of a census population from random samples of the
population, there is no relevant theory and method
established to make the prediction from case and con-
trol samples. In the present study, we have assumed
that the population origin of the case and control sam-
ples is previously known. This assumption is perfectly
satisfied in many association studies, as illustrated by
the PD datasets, where the cases and controls are col-
lected from known populations or cohorts.
It needs to be pointed out that a full model involves

a total of six unknown parameters and thus presents
an over-parameterization problem to statistical analysis
under the model. To ease the problem, we have firstly
proposed to estimate the marker allele frequency, p,
from control samples. This is largely because the likeli-
hood function (2) is formulated in terms of two inter-
mediate variables Q and R as described in Table 1a,
and these have imposed non-linear constraints on the
three parameters p, q and D. It is thus impractical to
work out estimates of these three parameters inde-
pendently and simultaneously. We explored how the
proposed method to estimate p would affect estimation
of the parameters q and D and in turn statistical power
of the association test. In fact, the marker allele fre-
quency, p, in the controls can be expressed in the
present notation as

p0 ¼ Pr Mð jA ÞPr Að jcontrolsÞ

þPr Mð jaÞPr að jcontrolsÞ

¼ pþ D f2 � f1ð Þq þ f3 � f2ð Þ 1� qð Þ½ �
1� π

ð12Þ

where π = f1q
2 + 2f2q(1 − q) + f3(1 − q)2 is the population

prevalence of the disease attributed to the disease
locus. The second term, i.e. the bias, will be negligible



Wang et al. BMC Genomics 2013, 14:88 Page 14 of 15
http://www.biomedcentral.com/1471-2164/14/88
when π is low. To illustrate magnitude of the bias, we
worked out the absolute difference |p’-p| and illu-
strated for a wide ranges of the population settings in
Additional file 6. It is clear that the absolute value of
bias will not exceed 0.05 if π is less than 10%. It should
be stressed that the bias presented here is its largest
possible value because it was calculated at the max-
imum value of the disequilibrium parameter D. In
addition, we compared the rate of false positive and
statistical power of Method 1 when the true and
biased values of marker allele frequency were used in
analysis of simulation data under a wide range of set-
tings. The results of the analysis summarized in Add-
itional file 7 show that use of marker allele frequency
estimates from control samples does not result in any
notable difference in the false positive rate and test
power from use of the true marker allele frequencies.
All these thus suggest that the way we proposed to cal-
culate the marker allele frequency will not lead to any
serious influence of the method developed in the
present study for its efficiency in the association test.
In spite that the population genetic model has been fo-

cused on the most prominent LD measure, D as defined
in Table 1, there are several other scaled or standardized
disequilibrium measures such as D’, r2 and some others
[28], which are frequently used in the literature. The ro-
bustness and improved statistical efficiency achieved in
inferring D will be inherent to that of the transformed
versions of the parameter [8]. Although the method is
developed for complex quantitative traits with discrete
phenotypes, it would not involve major technical diffi-
culty to extend the ideas and principles behind the newly
developed method to cope with continuous phenotypes.
Genetic heterogeneity may add extra complication to
genetic control of common disease traits and is not
taken into account in the present model and analysis.
In presence of genetic heterogeneity, disease disposing
loci may differ in different populations or cohorts. A
direct and intuitive consequence of the heterogeneity
would be a weakened test power because the effective
sample size for detecting the marker-disease association
at a test site is actually reduced when compared to the
census sample size.

Conclusions
We have developed a novel likelihood based statistical ap-
proach to model linkage disequilibrium between any gen-
etic marker locus and a putative disease locus in a
randomly matting population and to infer the disequilib-
rium parameter and other population genetic parameters
from case and control samples from the population under
a likelihood based framework. The model and likelihood
based approach are implemented to re-analyze large SNP
datasets of the Parkinson disease case and control samples
collected from multiple human cohorts. Statistical pro-
perties and utility limitations are investigated through
simulation studies. Based on the simulation data analysis
and analysis with the Parkinson disease case and control
sample, we demonstrate that the likelihood based ap-
proach outperforms the trend test and logistic regression
methods for an increased statistical power and reduced
false positive inference, which are popularly implemented
in the GWAS literature.
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