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Abstract
Background: The Audic-Claverie method [1] has been and still continues to be a popular
approach for detection of differentially expressed genes in the SAGE framework. The method is
based on the assumption that under the null hypothesis tag counts of the same gene in two libraries
come from the same but unknown Poisson distribution. The problem is that each SAGE library
represents only a single measurement. We ask: Given that the tag count samples from SAGE
libraries are extremely limited, how useful actually is the Audic-Claverie methodology? We
rigorously analyze the A-C statistic that forms a backbone of the methodology and represents our
knowledge of the underlying tag generating process based on one observation.

Results: We show that the A-C statistic and the underlying Poisson distribution of the tag counts
share the same mode structure. Moreover, the K-L divergence from the true unknown Poisson
distribution to the A-C statistic is minimized when the A-C statistic is conditioned on the mode of
the Poisson distribution. Most importantly, the expectation of this K-L divergence never exceeds
1/2 bit.

Conclusion: A rigorous underpinning of the Audic-Claverie methodology has been missing. Our
results constitute a rigorous argument supporting the use of Audic-Claverie method even though
the SAGE libraries represent very sparse samples.

Background
It is of utmost importance for biologists to be able to ana-
lyze patterns of expression levels of selected genes in dif-
ferent tissues possibly obtained under different
conditions or treatment regimes. Even subtle changes in
gene expression levels can be indicators of biologically
crucial processes such as cell differentiation and cell spe-
cialization [2]. Measurement of gene expression levels can
be performed either via hybridization to microarrays, or
by counting gene tags (signatures) using e.g. Serial Analy-
sis of Gene Expression (SAGE) [3] or Massively Parallel
Signature Sequencing (MPSS) [4] methodologies. The
SAGE procedure results in a library of short sequence tags,

each representing an expressed gene. The key assumption
is that every mRNA copy in the tissue has the same chance
of ending up as a tag in the library. Selecting a specific tag
from the pool of transcripts can be approximately consid-
ered as sampling with replacement. The key step in many
SAGE studies is identification of "interesting" genes, typi-
cally those that are differentially expressed under different
conditions/treatments. This is done by comparing the
number of specific tags found in the two SAGE libraries
corresponding to different conditions or treatments. Sev-
eral statistical tests have been suggested for identifying dif-
ferentially expressed genes through comparing such
digital expression profiles, e.g. [1,2,5,6].
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Audic and Claverie [1] were among the first to systemati-
cally study the influence of random fluctuations and sam-
pling size on the reliability of digital expression profile
data. Typically, cDNA libraries contain a large number of
different expressed genes and observing a given cDNA
qualifies as a rare event [1]. For a transcript representing a
small fraction of the library and a large number N of
clones, the probability of observing x tags of the same
gene will be well-approximated by the Poisson distribu-
tion parametrized by λ ≥ 0.

The unknown parameter λ signifies the number of tran-
scripts of the given type (tag) per N clones in the cDNA
library. When comparing two libraries, it is assumed that
under the null hypothesis of not differentially expressed
genes the tag count x in one library comes from the same
underlying Poisson distribution P(·|λ) as the tag count y
in the other library. However, each SAGE library repre-
sents a single measurement only. From a purely statistical
standpoint resolving this issue is potentially quite prob-
lematic. One can be excused for being rather skeptical
about how much can actually be learned about the under-
lying unknown Poisson distribution from a single obser-
vation.

The key instrument of the Audic-Claverie approach is a

distribution (y|x) over tag counts y in one library
informed by the tag count x in the other library, under the
null hypothesis that the tag counts are generated from the

same but unknown Poisson distribution. (y|x) is
obtained by Bayesian averaging (infinite mixture) of all

possible Poisson distributions P(y|λ') with mixing pro-

portions equal to the posteriors p(λ'|x) under the flat prior

over λ. When the two libraries are of the same size, we
obtain [1]:

We will refer to (y|x) as Audic-Claverie statistic (A-C sta-

tistic) based on counts x and y. Note that (y|x) is sym-

metric, i.e. for x, y ≥ 0, (y|x) = (x|y). Audic and
Claverie [1] point out that this is a desirable property,
since if the counts x, y are related to two libraries of the
same size, they should be interchangeable when analyz-

ing whether they come from the same underlying process

or not. The A-C statistic (y|x) can be used e.g. for princi-
pled inferences, construction of confidence intervals, sta-
tistical testing etc. For further details regarding the
derivation and mathematical treatment of the A-C statistic
see [1].

Even though there have been further developments in
comparison techniques for cDNA libraries (e.g. while
Audic and Claverie [1] only deal with two libraries, Stekel
et al. [7] suggest an approach to compare gene expressions
across multiple cDNA libraries; for links to further
approaches see [2]), the Audic-Claverie method has been
and still continues to be a popular approach in current
biological research, e.g. [8-17], with 427 citations (based
on ISI Web of Knowledge), over 100 citations in the past
3 years. Given the widespread use of the Audic-Claverie
method, it is somewhat surprising that a rigorous under-
pinning of the methodology has not yet been fully devel-
oped. Audic and Claverie did demonstrate the desirable
behavior of their method through Monte Carlo simula-
tions randomly sampling tags based on two experimen-
tally obtained sequence tag distributions [1]. The rate of
false alarm, e.g. how often random fluctuations in tag
counts are interpreted as significant differences, was small
for genes associated with small tag counts and increased
for higher tag counts, but never exceeded the significance
level of the test. Of course, one may argue that false alarm
rate (false positives) is only one side of the story and ide-
ally one would like to minimize both the false positive
and false negative rates. The false negative rate quantifies
how often significant differences get interpreted as just
random fluctuations. However, of equal importance is the
issue of why the Audic-Claverie approach seems to be
well-behaved, e.g. when compared to an approach based
on Ricker's confidence intervals (see [1]). In this contribu-
tion, we provide rigorous arguments as to why the Audic-
Claverie method can be expected to work well, even
though from the purely statistical standpoint one could be
excused for being skeptical. We start by assuming that for
a given gene there is a hidden (unobserved) underlying
Poisson distribution generating the tag counts. We then
go beyond simple Monte-Carlo-style verification by rigor-
ously studying how much and in what form can be actually
learned about the distribution in the Audic-Claverie
framework, given a single observation provided by a
SAGE library. In particular, we ask:

1. How natural is the A-C statistic's representation of
the underlying unknown Poisson distribution govern-
ing the tag counts?

2. Given that the observed tag count sample is very
limited, how well can the Audic-Claverie approach
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work, i.e. how well does the A-C statistic capture the
underlying Poisson distribution?

Methods
Basic properties of the A-C statistic

In this section we answer the first question posed above.
It turns out that the A-C statistic and the underlying Pois-
son distribution are quite similar in their nature: for any

(integer) mean tag count λ ≥ 1, the Poisson distribution

P(·|λ) has two neighboring modes located at λ and λ - 1,

with P(λ|λ) = P(λ - 1|λ). When it comes to the observed

tag counts, given a count x ≥ 1, the A-C statistic (y|x) has
two neighboring modes, one located at y = x, the other at

y = x - 1, with (x|x) = (x - 1|x). As in Poisson distribu-

tion, the values of (y|x) decrease as one moves away
from the modes in both directions.

Theorem 1 Let x, y and d be integers with ranges specified
below. It holds:

1. (x|x) > (x + d|x) for any x ≥ 0 and d ≥ 1.

2. For x ≥ 1, (x|x) = (x - 1|x).

3. (x|x) > (x - d|x) for any x ≥ 2 and 2 ≤ d ≤ x.

Proof:

1. We have

In particular,

Hence,

Now, for x ≥ 0, we have

This can be easily seen, as for j ≥ 1, 2(x + j) > 2x +
j. It follows that

2. and 3) For d ≤ x,

Hence,

If d = 1,

When 2 ≤ d ≤ x, we have for all j such that 1 ≤ j ≤ d
- 1,

This follows from 2(x - d + j) <2x - d + j, which can
be easily verified, since for j ∈ {1, 2,..., d - 1}, we
have (j - d) > 2·(j - d).

For j = d, we have the equality (2x - d + j)/(x - d + j)
= 2.

Finally, form (4),
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Q.E.D

We have shown that after observing a count x, the A-C sta-
tistic expects counts y = x and y = x - 1 with the highest and
equal probability. The other values of count y are, as one
would naturally expect, less probable.

As an illustrative example we show in figure 1 plots of

both the A-C statistic (y|x) and the corresponding Pois-

son distribution P(y|λ) at λ = x for two values of x, x = 10
and x = 30. As a result of Bayesian averaging in the A-C sta-

tistic, (y|x) is less peaked at its modes than the Poisson

counterpart P(y|x). However, both (y|x) and P(y|x) have
two modes located at x and x - 1.

Information theory of the A-C statistic

We now answer, in the framework of information theory,
the second question posed in the 'Background' section.
Assume that there is some "true" underlying Poisson dis-

tribution P(y|λ) (1) over possible counts y ≥ 0 with

unknown parameter λ. In the same process, we first gen-

erate a count x and then use the A-C statistic (y|x) (3) to
define a distribution over y, given the already observed
count x. We ask: How different, in terms of Kullback-Lei-
bler (K-L) divergence, are the two distributions over y? For

the A-C statistic to work, one would naturally like (y|x)
to be sufficiently representative of the true unknown dis-

tribution P(y|λ). In other words, one would expect P(y|λ)

and (y|x) to be close, with the smallest "distance" at

(y|x = λ) (for λ integer), that is, when count x is exactly
equal to the expected tag count under the Poisson distri-

bution P(y|λ). In this section we provide a quantitative
answer to the above question and show, perhaps surpris-

ingly, that the "statistical distance" between P(y|λ) and

(y|x) is not minimized at x = λ, but it attains minimum

at the mode of P(y|λ), i.e. when x = λ - 1.

First, define the K-L divergence from P(y|λ) to (y|x):

The divergence D(λ, x) has a nice information-theoretic

interpretation: When the log is base 2, D(λ, x) expresses
the number of bits of additional information one needs in

order to fully specify (y|x), provided one has a perfect

knowledge of P(y|λ). The divergence D(λ, x) is non-nega-
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A-C statistic vs. Poisson distributionFigure 1

A-C statistic vs. Poisson distribution. Graphs of A-C statistic (y|x) (solid line) and the corresponding Poisson distribu-
tion P(y|λ) at λ = x (dashed line) for x = 10 (A) and x = 30 (B).
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tive, with D(λ, x) = 0 if and only if the two distributions

(y|x) and P(y|λ) coincide.

Naturally,

where

is the entropy of P(y|λ) and EQ(y)[f (y)] denotes the expec-
tation of the quantity f (y) under the distribution Q(y).

We have

and so

where for each integer d ≥ 0,

As discussed above, one would intuitively expect D(λ, x)
to be minimal for x = λ, as then the conditioning count in
the A-C statistic would be the mean of the underlying
Poisson distribution. However, the mode of that Poisson
distribution, λ - 1, is surrounded by enough probability
mass to yield the following result:

Theorem 2 For any integer λ ≥ 1, it holds D(λ, λ) > D(λ, λ -
1). In other words,

Proof: Using (6), we have

Now,

and by Jensen's inequality,

By (8), D(λ, λ) - D(λ, λ - 1) = log(2λ) + F(λ, λ - 1) - F(λ,
λ), and since

we have D(λ, λ) - D(λ, λ - 1) > 0, implying D(λ, λ) > D(λ,
λ - 1).

Q.E.D

We proceed our investigation by asking the following
question: Given an underlying Poisson distribution

P(x|λ), if we repeatedly generated a "representative" count

x from P(x|λ), what would be the average divergence of

the corresponding A-C statistic (y|x) from the truth

P(y|λ)? In other words, we are interested in the quantity

Lemma 3 For any λ ≥ 0,

Proof: Employing Malmstén's formula,

we write
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The last equality follows from EP(y|2λ)[y] = 2λ and

Let us now evaluate

Using Malmstén's formula again, we obtain

Expansion similar to that in (12) leads to:

Plugging (14) into (13) we obtain (11).

Q.E.D

We will now show that up to terms of order O(λ-1), the

expected divergence of A-C statistic (y|x)] from the true

underlying Poisson distribution P(y|λ) is equal to (1/2)
log 2.

Theorem 4 Consider an underlying Poisson distribution
P(·|λ) parametrized by some λ > 0. Then

Proof: Since

and

we have

By lemma 3,

We next approximate the terms F(λ, 0) and F(2λ, 0). To
that end, note that the entropy H[P(y|λ)] can be approxi-
mated as [18]

Hence,

By the same token

Plugging (18) and (19) into (17) we obtain

Q.E.D

In fact, one can obtain a more precise characterization of
the expected divergence ε(λ) by using a higher order
entropy expansion (for log base 2):

After expressing F(λ, 0) and F(2λ, 0) in the style of (18)
and (19), respectively, we obtain an expression for the
expected divergence measured in bits:

Figure 2 presents values of the expected divergence ε(λ)
(measured in bits) calculated numerically from the defini-
tion (9), as well as their analytical approximation calcu-
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lated from (20). As expected, the two curves are in good
correspondence, as our approximation is O(λ-3).

Results of this section suggest that if the true Poisson

source P(·|λ) is not known, the A-C statistic (y|x), based

on a single observed tag count realization x from P(·|λ), is on

average not further away from the truth P(y|λ) than half a

bit of additional information. As the mean tag count λ
increases, so does the uncertainty in the generating Pois-

son distribution P(·|λ). As a consequence, the average K-

L divergence ε(λ) from P(·|λ) to the approximating A-C

statistic (based on a single realization from P(·|λ)) gets
larger. The average K-L divergence expressed in bits

increases with increasing λ from about 0.42 bits to 0.5
bits.

Results and Discussion
The Audic-Claverie method [1] has been and still contin-
ues to be a popular approach for detection of differentially
expressed genes in the SAGE framework. The method is
based on the assumption that under the null hypothesis
the tag counts x, y in two libraries come from the same but

unknown Poisson distribution P(·|λ). The problem is
that each SAGE library represents only a single measure-
ment. We have rigorously analyzed usefulness of the
Audic-Claverie method by investigating the A-C statistic

P

Expected K-L divergence from the underlying Poisson distribution to A-C statisticFigure 2
Expected K-L divergence from the underlying Poisson distribution to A-C statistic. Expected K-L divergence ε(λ) 
(measured in bits) from the true unknown Poisson distribution to the A-C statistic (solid line) and its analytical approximation 
(20) (dashed line).
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(y|x) that forms a backbone of the method and repre-
sents our knowledge of the underlying Poisson distribu-

tion P(·|λ) based on only one tag count x drawn from it.

It turns out that the Poisson distribution is rather "rigid"
in the sense that it is unimodal and parametrized by a sin-
gle parameter λ representing both its mean and variance.
Learning about P(·|λ) from a very limited sample (as one
is effectively bound to do in the SAGE framework) is
much less suspicious than one might naively expect.

We have first shown that the A-C statistic (y|x), even
though not a Poisson distribution itself, naturally cap-
tures the distribution of further tag counts y, given a single

observation x from the unknown P(·|λ). According to

Theorem 1, for integer λ, both (·|x) and P(·|λ) have
two neighboring modes with decreasing probability val-
ues as one moves away from the modes in either direc-

tion. In particular, P(·|λ) has the modes located at λ and

λ - 1, with P(λ|λ) = P(λ - 1|λ). Given a tag count x ≥ 1,

(y|x) has the modes located at x and x - 1, with (x|x)

= (x - 1|x).

We then analyzed how 'close' is the A-C statistic (·|λ)
(in terms of K-L divergence) to the underlying Poisson dis-

tribution P(·|λ) of tag counts. It turns out that the K-L

divergence from P(y|λ) to (y|x) is minimized at the

mode of P(y|λ), i.e. when x = λ - 1 (Theorem 2). Most
importantly, by Theorem 4, on average, the A-C statistic is
never too far from the true underlying distribution. To be

precise, up to terms of order O(λ-3), on average, the A-C

statistic is never further away from the truth P(·|λ) than
half-a-bit of additional information. Hence, the Audic-
Claverie method can be expected to work well even
though the SAGE libraries represent very sparse samples.

So far the Audic-Claverie methodology for detection of
differentially expressed genes has been verified only
empirically through a series of specific Monte Carlo simu-
lations [1]. It has not been clear how general the appar-
ently stable simulation findings were. Besides detailed
explanations of the nature of A-C statistic capturing the
unknown Poisson distribution based on single observa-
tion only, we showed that the A-C statistic is universally
applicable in any situation where inferences about the
underlying Poisson distribution must be made based on
an extremely sparse sample. Such situations are referred to
in machine learning as 'one-shot-learning'. In the Monte
Carlo simulations of [1] the false alarm rate was small for

genes associated with small tag counts and gradually
increased for higher tag counts. The false alarm rate, how-
ever, never exceeded the significance level of the test.
These findings are consistent with the theoretically calcu-
lated divergence function ε(λ) (eq. (20)) illustrated in fig-
ure 2. With increasing mean tag count λ, it is more likely
that increased counts x will be observed. But as λ
increases, so does the uncertainty in the generating Pois-
son distribution P(·|λ). Consequently, the average K-L
divergence ε(λ) from P(·|λ) to the approximating A-C sta-
tistic (based on a single realization x from P(·|λ)) gets
larger. For smaller λ the underlying Poisson distribution is
well captured by the A-C statistic and the test that operates
on it will be well behaved. As λ grows, the average K-L
divergence ε(λ) saturates at 0.5 bits implying that the test
based on the A-C statistic will continue to be well behaved
even for large values of the mean tag count λ.

The Audic-Claverie method has also been formulated for
the case of two cDNA libraries of unequal size. Similar
methodologies have been proposed for the case of multi-
ple cDNA libraries (e.g. [7]). Even though developed
under the limited assumption of two libraries of the same
size, theoretical results obtained in this paper offer deep
insights into the workings of the Audic-Claverie approach
and provide an information theoretic justification for its
use when analyzing expression patterns in cDNA arrays.
Of course, when using libraries of unequal size, the A-C
statistic will no longer be symmetric, putting more weight
on the more populated library. Information theoretic
investigation of statistics developed for pattern analysis in
the cases of unequal multiple libraries is a matter for our
future work.

Conclusion
Detection of differentially expressed genes is a crucial step
in any large scale automated analysis of patterns of gene
expression data. One of the most popular techniques for
identifying genes with statistically different expression in
SAGE libraries is the methodology of Audic and Claverie
[1]. The methodology relies on learning the underlying
Poisson distribution of tag counts from a single observa-
tion from it in the form of (A-C statistic). In this paper we
rigorously analyzed the A-C statistic. We have shown that
under the null hypothesis of not differentially expressed
genes:

1. The A-C statistic and the underlying Poisson distri-
bution share the same mode structure.

2. The K-L divergence from the true unknown Poisson
distribution to the A-C statistic is minimized when the
A-C statistic is conditioned on the mode (not mean)
of the Poisson distribution.
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3. The expected K-L divergence from the true unknown
Poisson distribution to the A-C statistic is never larger
than 1/2 bit, irrespective of the mean of the Poisson
distribution.

4. The expected K-L divergence from the true unknown
Poisson distribution to the A-C statistic can be approx-
imated up to order O(λ-3) by a simple function of the
form a0 + a1λ-1 + a2λ-2. For the divergence measured in
bits, a0 = 1/2, a1 = 1/24 and a2 = 1/32.

Even though the A-C statistic infers the unknown underly-
ing Poisson distribution based on one count observation
only, the Audic-Claverie method should work reasonably
well in most cases, since under the null hypothesis, the
average divergence from the unknown Poisson distribu-
tion to the A-C statistic is guaranteed not to exceed 1/2 bit.
This constitutes a rigorous quantitative argument, extend-
ing the empirical Monte Carlo studies of [1], that supports
the wide spread use of Audic-Claverie method, even
though by their very nature, the SAGE libraries represent
very sparse samples.

Authors' contributions
I am the sole author of this paper.

Acknowledgements
I would like to thank Hong Yan for introducing me to the problem of cDNA 
array analysis and Somak Raychaudhury for inspiring me to study estimation 
of Poisson processes based on extremely limited samples.

References
1. Audic S, Claverie J: The significance of digital expression pro-

files.  Genome Res 1997, 7:986-995.
2. Varuzza L, Gruber A, de B Pereira C: Significance tests for com-

paring digital gene expression profiles.  Nature Precedings 2008.
npre.2008.2002.3

3. Velculescu V, Zhang L, Vogelstein B, Kinzler K: Serial analysis of
gene expression.  Science 1995, 270:484-487.

4. Brenner S, Johnson M, Bridgham J, Golda G, Loyd D, Johnson D, Luo
S, McCurdy S, Foy M, Ewan M, et al.: Gene expression analysis by
massively parralel signature sequencing on microbead
arrays.  Nature Biotechnol 2000, 18:630-634.

5. Ruijter J, Kampen AV, Baas F: Statistical evaluation of SAGE
libraries: consequences for experimental design.  Physiol
Genomics 2002, 11(2):37-44.

6. Ge N, Epstein C: An empirical Bayesian significance test of
cDNA library data.  Journal of Computational Biology 2004,
11(6):1175-1188.

7. Stekel D, Git Y, Falciani F: The comparison of gene expressiom
from multiple cDNA libraries.  Genome Research 2000,
10:2055-2061.

8. Bortoluzzi S, Coppe A, Bisognin A, Pizzi C, Danieli G: A multistep
bioinformatic approach detects putative regulatory ele-
ments in gene promoters.  BMC Bioinformatics 2005, 6:121-136.

9. Medina C, Rotter B, Horres R, Udupa S, Besser B, Bellarmino L, Baum
M, Matsumura H, Terauchi R, Kahl G, Winter P: SuperSAGE: the
drought stress-responsive transcriptome of chickpea roots.
BMC Genomics 2008, 9:553.

10. Kim H, Baek K, Lee S, Kim J, Lee B, Cho H, Kim W, Choi D, Hur C:
Pepper EST database: comprehensive in silico tool for ana-
lyzing the chili pepper (Capsicum annuum) transcriptome.
BMC Plant Biology 2008, 8:101-108.

11. Zhao Y, Li Q, Yao C, Wang Z, Zhou Y, Wang Y, Liu L, Wang Y, Wang
L, Qiao Z: Characterization and quantification of mRNA tran-

scripts in ejaculated spermatozoa of fertile men by serial
analysis of gene expression.  Human Reproduction 2006,
21(6):1583-1590.

12. Metta M, Gudavalli R, Gibert J, Schlötterer C: No Accelerated
Rate of Protein Evolution in Male-Biased Drosophila pseu-
doobscura Genes.  Genetics 2006, 174:411-420.

13. Morin R, O'Connor M, Griffith M, Kuchenbauer F, Delaney A, Prabhu
A, Zhao Y, McDonald H, Zeng T, Hirst M, Eaves C, Marra M: Appli-
cation of massively parallel sequencing to microRNA profil-
ing and discovery in human embryonic stem cells.  Genome
Research 2008, 18:610-621.

14. Borecký J, Nogueira F, de Oliveira K, Maia I, Vercesi A, Arruda P: The
plant energy-dissipating mitochondrial systems: depicting
the genomic structure and the expression profiles of the
gene families of uncoupling protein and alternative oxidase
in monocots and dicots.  Journal of Experimental Botany 2006,
57(4):849-864.

15. Lin C, Mueller L, Carthy JM, Crouzillat D, Pétiard V, Tanksley S: Cof-
fee and tomato share common gene repertoires as revealed
by deep sequencing of seed and cherry transcripts.  Theor Appl
Genet 2005, 112:114-130.

16. Cervigni G, Paniego N, Pessino S, Selva J, Diaz M, Spangenberg G,
Echenique V: Gene expression in diplosporous and sexual Era-
grostis curvula genotypes with differing ploidy levels.  BMC
Plant Biology 2008, 67:11-23.

17. Miles J, Blomberg A, Krisher R, Everts R, Sonstegard T, Tassell CV,
Zeulke K: Comparative Transcriptome Analysis of In Vivoand
In Vitro-Produced Porcine Blastocysts by Small Amplified
RNA-Serial Analysis of Gene Expression (SAR-SAGE).  Molec-
ular Reproduction and Development 2008, 75:976-988.

18. Evans R, Boersma J: The Entropy of a Poisson Distribution.
SIAM Review 1988, 30(2):314-317.
Page 9 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9331369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9331369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7570003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7570003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12407185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12407185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15662205
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15662205
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11116099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11116099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15904489
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15904489
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15904489
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19025623
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19025623
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18844979
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18844979
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16501037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16501037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16501037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16816428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16816428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16816428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18285502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18285502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18285502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16473895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16473895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16473895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16273343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16273343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16273343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18357560
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18357560
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18357560
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Basic properties of the A-C statistic
	Information theory of the A-C statistic

	Results and Discussion
	Conclusion
	Authors' contributions
	Acknowledgements
	References

