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Abstract 

The hydrocarbon-selective catalytic reduction (HC-SCR) activity of an Ag/Al2O3 catalyst was 

investigated. The function on catalytic NOx reduction of different fuel properties using alternative 

reactants such as gas-to-liquid (GTL) and butanol was studied. This work proves that such 

improvements are due to the high reactivity, polarity and diffusivity of butanol within the catalyst 

enhancing NOx conversion. Furthermore, it is suggested that HC components such butanol share 

some of the reaction mechanisms to hydrogen as a promoter in addition to his role as a reductant 

leading to improve NOx reduction. Therefore, it is proposed the simultaneous dual role of butanol as a 

reactant and as promoter. 

Catalyst performance at low temperature was further improved with the addition of hydrogen (H2). 

However, this performance was found to degrade as temperature increases, due to H2 reactant 

selectivity changing, directly being oxidised. Increased NOx conversion was dependent on HC:NOx 

ratio, showing at low temperature a low HC:NOx ratio is required. As temperature increases, so does 

the required HC:NOx ratio to compensate for hydrocarbons partial and complete oxidation. These 

results demonstrate a method of gaining significant NOx reduction through the combination of 

environmental catalysts and alternative reactants. 

Keywords: HC-SCR, Alternative fuels, hydrogen, NOx conversion   
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1. Introduction 

Diesel engines are becoming prominent due to the superior fuel efficiency over petrol engines [1]. 

However, the high levels of nitrous oxides (NOx), particulate matter and their trade-off limits their 

environmental benefits being required the use of after treatment to reduce pollutant emissions. NOx 

has become a significant pollutant within urban areas and is linked to health issues, acid rain and 

photo-chemical smog [2]. This has led to increasingly stringent legislation being implemented across 

Europe and the rest of the world to limit NOx emissions from all modes of vehicular transport. Diesel 

engines operate in lean-burn (excess of air) conditions meaning they cannot be treated by three way 

catalytic converters to reduce NOx, as in petrol engines [3]. Several key approaches have been 

identified (some already in commercial production) to reduce NOx emissions in diesel engines. The 

most used are lean NOx trap (LNT) [4][5], ammonia selective catalytic reduction (NH3-SCR) [6], 

their combination [6]-[7] and hydrocarbon-selective catalytic reduction (HC-SCR). 

This research is focused on HC-SCR which could eliminate the need for a secondary fuel tank [8]-

[12] and the use of expensive platinum group metal (pgm) loadings. A hydrocarbon (HC) containing 

reactant is injected into the exhaust gas upstream the HC-SCR catalyst and those hydrocarbons then 

react with the NOx on the catalyst’s active sites to reduce the NOx levels downstream the catalysis. 

The fuel injected into the exhaust not only increases catalytic NOx conversion, but also helps to 

regenerate the catalyst via high temperature treatment with the fuel present preventing deactivation 

from sulphur poisoning/ageing [4]. The catalyst selected for this project is a silver aluminium oxide 

catalyst Ag/Al2O3, chosen as it is effective at NOx reduction over large temperature ranges with high 

thermal stability [3]. 

In previous studies it has been proven that the Ag/Al2O3 performance is highly influenced by the 

hydrocarbon type injected into the system [13]-[17]. As paraffin HC chain length increases and 

becomes unsaturated, so does NOx conversion, allowing the catalyst to become more active and 

reducing NOx emissions at lower temperatures [3],[13],[18]. As chain length and unsaturation 

increases, coke production and rate of coke deposition on the catalyst increases, limiting NOx 
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reduction [3],[13],[15]. It has also been found that aromatic hydrocarbons increase coke deposition on 

the catalyst surface inhibiting the catalyst activity [3],[15]. Therefore, it has been previously showed 

that gas to-liquid (GTL) produced via the Fischer-Tropsch process which does not contain aromatic 

and unsaturated components has a higher de-NOx activity compared with conventional diesel [3]. 

Light alcohols specifically ethanol has been identified as good reductant, which assists in the 

performance of the Ag/Al2O3 catalyst to selectively reduce NOx emissions [2][6],[14],[16]-[17],[19]. 

Chain lengths longer than butanol (C4) and shorter than ethanol (C2) were identified as significantly 

less reactive with the catalyst [14],[16]. There is still limited research using pure butanol [14],[16] and 

there is not research investigating the effect of butanol-diesel-like fuels over HC-SCR catalyst. 

Furthermore, the benefits of butanol when blended with diesel-like fuels in terms of blend fuel 

properties [20], combustion and emissions [21] has the potential to be used in the engine and as a 

reductant for the aftertreatment system. 

From past studies hydrogen (H2) has been identified to significantly increase catalyst activity, (acting 

as a promoter) especially at low temperature when enough reductants are injected [16][18],[22]-[23]. 

This is thought to be caused by H2 allowing the formation of reactive species at lower temperature and 

the oxidation of NO to NO2 over the catalyst. This enables a larger NOx conversion to be gained at 

lower temperatures as well as a significantly reduction of coking on the catalyst surface [16],[23]. 

Based on the different mechanisms previously mentioned to explain the ‘hydrogen promoter effect’ 

on HC-SCR, similar mechanisms-effects are desirable to be found in the HC fuels. 

The aim of this research is to investigate NOx abatement using HC-SCR to create a better 

understanding of the role that different types of hydrocarbons and hydrogen play in improving the 

catalytic activity of NOx reduction. It is believed that this knowledge will contribute in identifying 

HC components that promote the HC-SCR as the H2 does. The investigation also considers whether 

the blending of the two reductants (butanol and GTL) keeps the good catalyst’s activity seen with 

light alcohols. Finally further tests have been conducted into how the catalyst performs at different 
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HC:NOx and H2:NOx ratios, to find enhanced performance conditions, at specific temperatures for 

the selected blend.  

2. Materials and Methods 

A schematic of the experimental installation used in this research is presented in Figure 1. The engine 

used was a single cylinder direct injection diesel engine producing the exhaust gas stream that was 

used for NOx reduction. The main engine specifications are detailed in Table 1. The engine was fixed 

with a running speed of 1500rpm and load set at 2bar indicated mean effective pressure (imep) whilst 

was operated by ultra low sulphur diesel (ULSD) fuel. Thermocouples (accuracy ±2.2°C) were placed 

in the system and connected to PicoLog software enabling real time temperatures to be continuously 

monitored at all times.  

A low loading supported platinum based diesel oxidation catalyst (DOC) coated onto a cordierite 

honeycomb monolith substrate was placed in the exhaust system to eliminate the effect of any unburnt 

hydrocarbons from the combustion process which could influence the results (the DOC performance 

in reducing HC was around 60-70% for this engine operating condition). Thus, when measuring NOx 

reduction from HC injection it will only be caused by those that are injected into the exhaust system 

downstream the DOC. In the reactor, a SiC-Diesel Particulate Filter (DPF) was placed upstream the 

SCR to trap carbonaceous species, preventing them from blocking the active sites on the HC-SCR 

catalyst, alleviating the risk of poisoning. This was followed by the Ag/Al2O3 2% catalyst which was 

prepared by impregnating γ-alumina (surface area = 150m2/g) with aqueous AgNO3 before drying and 

calcining in air for 2hours at 500°C to achieve a silver loading of 2wt%. This non-commercial catalyst 

provided by Johnson Matthey was made into an aqueous suspension, which was then uniformly 

coated onto ceramic monolith substrates (Ø = 115mm, L = 75mm) with a high cell density (600cpsi).  

The NOx concentration was measured before and after every test in the different sampling points 

using a MultiGas 2030 Fourier Transform Infrared Spectroscopy (FTIR), to ensure stability of the 

testing and that the catalyst had not become deactivated. The engine exhaust emissions in the 

sampling points 2 and 3 as noted in Figure 1 (before and after hydrocarbons were injected, 
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respectively) were monitored and it was found that the NOx level stabilized at 300ppm. This enabled 

a constant HC:NOx ratio to be set. A constant Gas Hourly Space Velocity (GHSV) was set at 30kh-1. 

During testing concentrations of NO, NO2, N2O, CO, CO2, NH3 and total un-burnt hydrocarbons were 

recorded using the FTIR analyser. Prior to perform the tests as well as at the end of each experiment, 

nitrogen was introduced to the FTIR inlet to avoid any contamination and or condensation of the 

residual hydrocarbons or water of the exhaust gases. 

The injected reactants used in the study were GTL, ULSD, butanol and blends of GTL and butanol at 

70%-30% and 30%-70% GTL-Butanol ratio (%v/v). The hydrocarbon components properties are 

listed in Table 2. From Table 2 it can be seen that the lubricity of the blends containing 30% and 70% 

(% v/v) of butanol as well as pure butanol are well above the recommended 460µm. However, the 

blend GTL70-Butanol30 is below the maximum value of 520µm allowable in a diesel engine. This 

means that the GTL70-Butanol30 blend could be used to operate the diesel engine and be used to 

enhance the de-NOx catalyst performance without the need of a secondary fuel tank. 

The tests conducted are noted as follows:  

a) Influence of different type of reactants and their blends on HC-SCR NOx reduction 

performance. The different hydrocarbon components were injected individually into the 

exhaust system downstream of the DOC (as seen in Figure 1), through a heated line at 140°C. 

This used an electronic syringe pump to regulate the reactant flow rate and an atomiser, 

enabling the liquid fuel to be injected as a fuel mist, allowing better mixing with the exhaust 

gas. This ensured the reactant was injected at a set HC: NOx ratio of 3:1, chosen from 

previous tests [3],[24]. NOx conversion was then monitored on a continuous temperature 

ramp from 130-350°C. To confirm the reproducibility and significance level of the results, the 

tests were repeated three times for the pure components (e.g. GTL and butanol). Error bars 

have been calculated based on the standard deviation of the results considering a 95% 

confidence level. 
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b) H2 addition on NOx reduction. GTL, GTL70-Butanol30 and butanol were injected with and 

without H2 (8000ppm) with a continuous temperature ramp from 130-350°C and an HC:NOx 

ratio of 3:1. 

c) Impact of HC:NOx (1:1, 3:1 and 6:1) and H2:NOx (8.34:1, 16.67:1 and 26.65:1) ratio on NOx 

reduction at different set temperatures. The selected temperatures included: i) a low 

temperature/activity region (180°C), ii) a reactive temperature region (230°C) and iii) high 

temperature region (330°C). The GTL70-Butanol30 blend was selected for this further testing 

due to its promising de-NOx selectivity and its superior lubricity properties compared to other 

blends.  

3. Results and Discussion 

3.1 Influence of hydrocarbon components on NOx reduction performance 

Figure 2 shows that the Ag/Al2O3 catalyst without HC injection has poor de-NOx performance being 

lower than 10% (passive conditions). Conventional diesel fuel was injected to provide a base level 

that can be gained from diesel-like fuels (50%). When GTL was injected, a continuous superior NOx 

conversion was obtained compared to ULSD over the entire temperature range. This is due to 

aromatic and unsaturated hydrocarbon content of ULSD which are prolific in causing catalyst coking 

(<250°C) [6],[14],[24] as well as the longer paraffin chain length of GTL which has been reported to 

be more reactive for de-NOx catalytic activity in Ag/Al2O3 catalysts [3]. On the other hand, the effect 

of butanol depends on the temperature as it is explained as follows. 

a) Low-medium temperature 

The increased Ag/Al2O3 activity at low-medium temperature demonstrated a strong dependence on 

the butanol level contained within the mixture. Figure 2 shows that the increasing butanol level 

promotes the catalyst activity at low temperature and demonstrates that with butanol higher levels of 

performance are achieved compared with GTL. The combination of several factors is proposed here to 

explain the dual role of butanol as a reactant and promoter resulting in superior catalytic activity at 

those temperatures:  



7 

i) Reactivity. It is suggested that at low temperature butanol has high activity to react with active 

oxygen components (e.g. superoxide O2
-). Active intermediates such as butyraldehyde is produced, 

which is very reactive [6],[14] to produce ammonia  to react with NOx to produce nitrogen, water and 

COx species. The high reactivity of butanol and its intermediates at low temperature is confirmed by 

the higher consumption of THC and NO reduction compared to GTL (see Figure 3). 

ii) Production of active oxygenated components. It is proposed the possibility that oxygenate 

hydrocarbon components such as butanol could enhance the formation of active oxygenated 

components to produce NO2 and O2
- (superoxide) [22],[25] enhancing catalyst’s performance. The 

higher production of NO2 at low temperatures in the case of butanol and its blend can be confirmed in 

Figure 3. At very low temperature (lower than 160°C) NO2 emissions downstream the catalyst are 

negligible for all the reactants. However, it is suggested that in the case of butanol the NO to NO2 

reaction is in excess enhanced at low temperature, hence some of the NO2 formed within the catalyst 

(between 170-200°C) is not reduced to nitrogen. In the case of GTL the excess of NO2 production 

occurs at higher temperatures (200-270°C) compare to butanol. In the case of the GTL-Butanol blend 

two small NO2 peaks are observed, the first one at low temperature corresponding to butanol and the 

other one at higher temperature corresponding to GTL. 

iii) NH3 production. Butanol and its intermediates are more reactive than GTL producing a higher 

production of NH3 within the catalyst. This higher production of ammonia within the catalyst can also 

contribute to the high reduction of NOx emissions with butanol via NO-NH3, NO2-NH3 and 

(NO+NO2)-NH3 (fast-SCR) reactions. Nevertheless, once NO2 is totally consumed, NH3 cannot be 

used within the catalysis resulting is some NH3 slippage when pure butanol is used. 

iv) Polarity. Alcohols are polar and water soluble in nature which enable them to compete 

successfully with water for adsorption sites on the catalyst [14].  

v) Diffusivity and chain length. The low molecular mass, low viscosity and short chain length of 

butanol are factors which provide a higher diffusivity compared to most of the hydrocarbon 

components present in GTL. This would result in an easier accessibility to the catalyst active sites 
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where the surface reactions occur to reduce NOx emissions. Furthermore, longer chain length 

components could create olefins by the dehydration reaction which will easy polymerize yielding 

coke deactivating the catalysts. Coke formation due to olefin polymerization will be higher with the 

increase of the chain length. 

b) High temperature 

On the other hand, there is considerable fall-off shown at high temperatures for all reactants achieving 

almost the same performance at temperatures above 330°C. The reason for this is that as temperature 

increases, so does the required HC:NOx ratio, to compensate for hydrocarbons direct oxidation with 

O2. This direct oxidation begins to be dominant at these higher temperatures as reductant selectivity 

changes [16]. This means hydrocarbons injected are less likely to be broken down into usable NOx 

reducing species over the Ag/Al2O3 catalyst. It can also be observed from Figure 2 that as the butanol 

level increases, so does the NOx conversion drop off at higher temperatures. This may suggest that 

the reductant selectivity of butanol changes at a faster rate compared with GTL and ULSD at these 

high temperatures. 

The formation of nitrous oxide (N2O) which is known to be a harmful greenhouse gas promoter has 

been also studied. It is known that NOx can be reduced to N2O in the presence of hydrocarbon species 

under low exhaust gas temperatures over platinum catalyst. However, it has to be noted that in this 

case where a Ag/Al2O3 catalyst is used the N2O emissions are low (lower than 15ppm) for all the 

reductants (see Figure 3). 

Due to the varying chain length, density and molecular mass of the different blends used in these 

experiments, the fuel flow rates were different for every reactant injected to obtain the same HC:NOx 

ratio. Therefore, a higher fuel flow rate is required for butanol and its blends compared to GTL, due to 

the shorter carbon chain length of butanol. However, fuel penalty can be calculated as the proportion 

of the energy of the reductant injected to obtain the desired HC:NOx compared to the fuel energy 

required to operate the engine (see Table 3). It can be observed that as the butanol level increases, the 
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penalty caused from the HC injection is maintained constant or even falls slightly. Therefore, the 

incorporation of butanol results in higher de-NOx activity for similar energy penalty compare to GTL. 

3.2 Impact of H2 addition on NOx reduction performance with different reactants 

In Figure 4 it can be seen that the addition of H2 allows the fuels to be more active at lower 

temperatures, shifting the peak temperatures of GTL and GTL70-Butanol30 to 230°C and butanol 

from 240°C to 200°C. This shows that in the presence of hydrogen, butanol still is able to act as a 

promoter enhancing NOx conversion at low temperature, with GTL70-Butanol30 consistently 

outperforming GTL at temperatures up to 220°C. The addition of hydrogen to the GTL70-Butanol30 

resulted in a similar performance to that of butanol without H2 injection. As in the previous section, 

the hydrogen effect is explained also depending on the exhaust temperature. 

a) Low-medium temperature 

i) Activation of O2. Based on the obtained results, it is suggested that hydrogen promotes the 

activation of molecular O2 into reactive species (e.g.  O2
-) which enhances NOx reduction within the 

catalyst in the different steps of the HC-SCR mechanism as it is explained below.  

1) HC conversion. Comparing between Figure 3 and Figure 5, it can clearly be seen that for all 

fuels the presence of H2 significantly increases the total HC conversion. It is suggested that 

these oxygen species are reactive towards the C-H bonds of the injected hydrocarbons 

[22],[26] which enable the formation of active hydrocarbon components from the parent 

reactant to reduce NOx. 

2) Ammonia production. These active oxygen species also can take part in the production of 

ammonia as well as in the activation of NH3 to reduce NO and NO2 to N2 [25]. Figure 5 

shows that ammonia slippage is produced at lower temperature when butanol and hydrogen 

are combined with respect to the rest of studied conditions (Figure 3). Therefore, it is though 

that NH3 production is enhanced at low temperature by both hydrogen addition and butanol, 

further reacting with NO and NO2 to produce N2. However, once NO2 is fully reduced there is 
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ammonia slippage as it cannot find enough NO2 to react with as well as being limited the fast-

SCR reaction. In the case of butanol the consumption of NO2 and appearance of NH3 slippage 

occur at lower temperature compare to GTL. However, in the GTL-Butanol blend NH3 

slippage is minimal; it is though that the enhancement in the ammonia production is optimal 

for the NO/NO2 availability, limiting ammonia slippage to a very low concentration (lower 

than 15ppm) for all the studied temperature range.  

3) NO2 production. Furthermore, these species also enhance the NO to NO2 conversion, enabling 

NO2 to be more readily converted to the desired N2 [22],[25]. With the addition of hydrogen 

the NO2 peak is produced at lower temperature than without hydrogen for all the studied 

reactants (see Figure 3 and Figure 5). It has to be noted the high reactivity of butanol which 

enables the produced NO2 to be consumed within the catalyst at lower temperatures than in 

the case of GTL. It is suggested that this NO2 can be reduced with the NH3 created in the 

intermediate steps  producing the desired N2.  

ii) Removal of nitrates. The addition of H2 also enables the removal of strongly adsorbed nitrates from 

the catalyst’s active sites and support which, previously at low temperatures would have inhibited 

NOx conversion [27]-[28]. 

iii) Removal of carbon deposits. Hydrogen promotes the oxidation of NO to NO2 which could oxidise 

the carbon deposits at low temperature, removing the carbon-rich surface species which inhibit the 

SCR reaction [15]. 

iv) Improve the selectivity to N2. According to [29] the addition of hydrogen increases the selectivity 

to N2 in the de-NOx reaction by lowering the amount of hydrogen cyanide (HCN) downstream the 

catalyst.  

b) High temperature 

At temperatures above 300°C, H2 addition becomes less effective in the de-NOx reactions with all 

reactants. It is suggested that there is a change in the hydrocarbon selectivity and hydrogen enhances 
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hydrocarbon oxidation to COx rather than promoting the HC-SCR reactions, producing a shortage of 

the reductant available for NOx removal. Furthermore, H2 can be also consumed by O2 rather than the 

reductant [16] directly forming H2O and heat, neither advantageous for de-NOx performance.  

The effect of H2 on the N2O formation can be observed in Figure 5. When hydrogen was added it 

slightly enhanced N2O formation at low temperature. It is suggested that at these low temperatures 

N2O can be formed by both H2-SCR and through the conventional HC-SCR reaction. N2O production 

is higher and at lower temperature for butanol as it has been shown to be the most reactive 

hydrocarbon. At temperatures above 250°C, no N2O is formed within the catalyst for any of the 

conditions studied. 

3.3 Impact of HC:NOx and H2:NOx ratio 

In Figure 6 can be seen that at low temperature (180°C) the butanol within the blend (GTL70-

Butanol30) has a positive effect in NOx conversion. However, larger additions of this blend decreased 

the catalyst performance, even though the higher availability of butanol (as a constituent of the blend). 

This decrease in performance of the Ag/Al2O3 catalyst can be attributed to the excessive concentration 

of other reductants (e.g. HC components present in the GTL) not being able to break down at this low 

temperature into usable species over the catalyst blocking the active sites on the catalyst.  

Clear stepped improvements are seen with the addition of H2, implying that it allows the catalyst to 

increase activity at low temperatures. It is shown that the optimal HC:NOx ratio at the low 

temperature is approximately 1:1 gaining maximum efficiency with the addition of H2. The Ag/Al2O3 

catalyst performance in reducing NOx at 220°C can be seen in Figure 7. The addition of H2 for all 

conditions allows the catalyst to be more effective with conversion level up to 95%. There is a slight 

reduction in performance of the catalyst with increasing fuel injection from 3:1 HC:NOx ratio to 6:1, 

highlighting that adding extra fuel would be inefficient. This result demonstrates that a higher 

HC:NOx ratio is required at this higher temperature to gain the maximum NOx conversion. At the 

highest studied temperatures, the hydrocarbon level needed into the system increases to obtain high 

NOx conversion. On the other hand, the addition of H2 is ineffective on the NOx conversion, with 
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limited or no benefit for all conditions tested. The optimal HC:NOx ratio was found to be at 6:1 

without H2 addition. This different behaviour of hydrogen depending on the temperature and hydrogen 

level suggest that hydrogen is not a reactant/reducing agent over the Ag/Al2O3, but a promoter of the 

de-NOx activity over Ag/Al2O3 catalysts at low temperature [30] supported by the mechanisms 

previously explained. 

From Table 4 it is clear that as the required HC:NOx ratio increases with temperature, there will be an 

increasing fuel penalty required to maintain a significant level of NOx reduction. This is caused by the 

need to inject a considerably larger proportion of the fuel upstream of the Ag/Al2O3 catalyst to obtain 

the required HC:NOx ratio, making it less attractive in high temperature regions. Overall the results 

show that at higher temperatures (above 300°C), H2 consistently loses its benefit as promoter, which 

supports past research papers on H2 addition into HC-SCR catalysts [16],[22],[25],[28]. In addition 

Figures 6, 7 and 8 also demonstrate that as temperature increases the optimal HC:NOx ratio also 

increases, which is consistent with expectations. 

4. Conclusion 

This research has investigated an approach to control NOx emissions from a diesel engine using 

alternative reactants and hydrogen in HC-SCR technology. By studying the trends in NOx conversion, 

it can be seen that increasing the level of butanol promotes the Ag/Al2O3 catalyst to attain higher 

activity in reducing NOx especially at low temperature. It is suggested the dual role of butanol as a 

reductant and as promoter sharing some of the hydrogen mechanisms favouring the production of 

NO2 and NH3 within the catalyst enhancing NOx conversion. The addition of H2 as a promoter to the 

system also allows the catalyst to become more active at lower temperatures. It is though that 

hydrogen promotes the activation of molecular oxygen on the catalysis surface to reactive oxygen 

resulting in higher production of active hydrocarbon species, NO2 and NH3 within the catalysis 

enhancing the de-NOx mechanism. Therefore, hydrogen combined with the incorporation of butanol 

to diesel-like fuels will allow the catalyst to be more active over a larger period in a wide temperature 

range (130-350°C). 
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Overall several findings from this research can be recommended for the combination of Ag/Al2O3 

catalyst and alternative hydrocarbons to reduce NOx emissions. HC:NOx ratios affect NOx 

conversion and the ratio required for high NOx reduction increase with temperature to compensate for 

reductant selectivity changing. The addition of H2 is effective at low-medium temperature while at 

temperature above 300°C, H2 is no longer effective being more effective increasing HC injection to 

enhance the catalyst’s performance. Therefore, the fuel penalty can be minimised by injecting the 

correct level of hydrocarbons and hydrogen into exhaust systems to take into account changing 

temperatures. Further investigation is needed to assess the feasibility of different methods to transport 

or to on-board produce hydrogen. An approach could be exhaust gas reforming converting 

hydrocarbon components as the proposed here to hydrogen rich gas. 
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Tables 

Table 1: Engine specifications 

Engine Specification Data 

Number of cylinders 1 

Bore/Stroke 98.4mm/101.6mm 

Connecting Rod Length 165mm 

Displacement Volume 733cm3 

Compression Ratio 15.6:1 

Rated Power 8.36Kw@2500rpm 

Peak Torque 39.2Nm@1500rpm 

Injection System Three holes pump-line-nozzle 

Injection Timing 22°bTDC 

Engine Piston Bowl-in-piston 

 

Table 2: Fuel properties 

Fuel Property GTL ULSD Butanol GTL70-Butanol30 GTL30-Butanol70 

Chemical Formula C18.4H38.8 C14H26.09 C4H10O C9.64H21.27O.61 C5.52H13.05O0.89 

Density (kg/m3) 784.60 827.10 809.50 792.07 802.03 

Viscosity (cSt) 3.5  2.7 2.22 2.38 2.26 

Heating Value 

(MJ/kg) 
43.90 2.47 33.12 40.16 35.27 

Wear Scar 1.4 (µm) 395 312 620 513 590 

Aromatics (wt%) 0 43.30 0 0 0 

 

Table 3: Fuel penalty constant HC:NOx ratio 

Fuel Fuel Penalty 

GTL 5.09% 

Diesel (ULSD) 5.29% 

GTL70-Butanol30 5.03% 

GTL30-Butanol70 4.97% 

Butanol 4.90% 

 

Table 4: Fuel penalty variable HC:NOx ratio 

HC:NOx Ratio Fuel Fuel Penalty 

1:1 GTL70-Butanol30 3.36% 

3:1 GTL70-Butanol30 5.03% 

6:1 GTL70-Butanol30 8.95% 
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Figure Captions 

Figure 1: Schematic of experimental facility 

Figure 2: Reactant effect on NOx conversion over Ag/Al2O3 catalyst at HC:NOx=3:1 

Figure 3: Reactant effect on THC, CO, NO, NO2, N2O and NH3 concentration downstream the HC-

SCR catalyst 

Figure 4: Impact of H2 addition on NOx reduction over Ag/Al2O3 catalyst with HC:NOx=3 

Figure 5: Hydrogen and reactant effect on THC, CO, NO, NO2, N2O and NH3 concentration 

downstream the HC-SCR catalyst 

Figure 6: GTL70-Butanol30 impact on NOx reduction over Ag/Al2O3 catalyst at 180°C exhaust 

temperature 

Figure 7: GTL70-Butanol30 impact on NOx reduction over Ag/Al2O3 catalyst at 230°C exhaust 

temperature 

Figure 8: GTL70-Butanol30 impact on NOx reduction over Ag/Al2O3 catalyst at 330°C exhaust 

temperature
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