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Abstract 11 

The interactions between exhaust gas species and their effect (promotion or inhibition) on the light-off 12 

and activity of a diesel oxidation catalyst (DOC) for the removal of pollutants are studied, using actual 13 

engine exhaust gases from the combustion of diesel, alternative fuels (rapeseed methyl ester and gas-14 

to-liquid fuel) and diesel/propane dual fuel combustion. The activity of the catalyst was recorded 15 

during a heating temperature ramp where carbon monoxide (CO) and hydrocarbon (HC) light-off 16 

curves were obtained. From the catalyst activity tests, it was found that the presence of species 17 

including CO, medium-heavy HC, alkenes, alkanes and NOx and their concentration influence the 18 

catalyst ability to reduce CO and total HC emissions before release to the atmosphere. CO could 19 

inhibit itself and other species oxidation (e.g. light and medium-heavy hydrocarbons) while suffering 20 

from competitive adsorption with NO. Hydrocarbon species were also found to inhibit their own 21 

oxidation as well as CO through adsorption competition. On the other hand, NO2 was found to 22 

promote low temperature HC oxidation through its partial reduction, forming NO. The understanding 23 

of these exhaust species interactions within the DOC could aid the design of an efficient 24 

aftertreatment system for the removal of diesel exhaust pollutants. 25 

 26 
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Introduction 30 

Recently, the International Agency for Research on Cancer (IARC) changed the classification of 31 

diesel engine exhaust from possibly carcinogenic to human (Group 2A) in 1988 to carcinogenic to 32 

human (Group 1) in 2012 [1]. This classification justifies the ever tightening emission legislations 33 

imposed on diesel cars affecting the air pollution. The trend for this legislation is now to focus more 34 

on cold start and low to medium load emissions which can be produced in the urban environment 35 

when low vehicle speed, stop/start and idle phases are frequent [2]. It is also in these urban 36 

environments that humans are more exposed to vehicle exhaust gas. Several strategies have been 37 

developed in order to reduce the quantity of pollutants emitted to the atmosphere and among them is 38 

the use of the diesel oxidation catalyst (DOC) which oxidises CO and HC to CO2 and water before 39 

release to the atmosphere. Another potential role of the DOC is to oxidise NO to NO2 for use in 40 

passive regeneration of the diesel particulate filter (DPF) downstream of the DOC in the engine 41 

exhaust [3] or to enhance NOx reduction in the selective catalytic reduction (SCR) process [4]. The 42 

limiting factor for the DOC efficiency is its light-off temperature, i.e. the temperature below which 43 

the oxidation is kinetically limited [5], which can reduce its efficiency, especially during urban 44 

operating conditions.  45 

Other parameters also affecting the catalyst efficiency, apart from the temperature, are the exhaust gas 46 

residence time within the catalyst [6], the oxygen availability, the choice of catalytic components and 47 

loadings used to promote the oxidation reactions [7] and the ageing state of the coating and catalyst 48 

substrate caused by the thermal and chemical environment. Finally, the presence and concentrations 49 

of some exhaust species and their interactions with each other can also affect the catalyst behaviour, 50 

promoting or inhibiting oxidation, especially at low temperatures. Therefore, at an engine operating 51 

condition where the exhaust temperature is limited, pollutant removal could still take place, by 52 

encouraging promoting effects and limiting inhibition of DOC activity, which can be achieved with a 53 

clear understanding of these species interactions. 54 

These interactions between exhaust components and their capacity to be oxidised have been 55 

researched and modelled using synthetic mixtures of gases to represent engine exhaust gas in order to 56 

understand the kinetics and oxidation mechanisms within the oxidation catalyst [7-13]. The majority 57 

of these studies focus on tracing the behaviour of an individual or a limited number of exhaust gas 58 

species in a synthetic gas mixture with a known composition. However, a single exhaust species can 59 

have different oxidation behaviour depending on whether it is studied on its own or as part of a 60 

mixture [13]. To our understanding the number of studies using actual engine exhaust gas to examine 61 

the interactions between different exhaust components is limited and focused upon exhaust gases from 62 

conventional fuel combustion [14-16]. In this study, a single cylinder engine is fuelled with diesel, 63 

alternative fuels and advanced combustion modes [17] to produce a variety of exhaust gases. The use 64 
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of genuine exhaust gas allows a valuable comparison with vehicle emissions met on the road and 65 

targeted by the emission legislations for air pollution. The efficiency of a DOC fed with these 66 

different exhaust gas compositions is studied in order to gain a wider knowledge of the diversity and 67 

priority among the various interactions existing between exhaust pollutant species (CO, hydrocarbon 68 

species and NOx) within the DOC. A better understanding of these interactions and their effect 69 

(inhibition/promotion) on CO and HC oxidation can eventually support the design of the 70 

aftertreatment system to enhance the removal of pollutants, most especially at low temperatures.  71 

Methodology and Experimental Setup 72 

Methodology 73 

In order to obtain a diverse spectrum of exhaust gas compositions, a single cylinder diesel engine was 74 

operated with different diesel fuels (diesel, Rapeseed Methyl Ester (RME), Gas-to-Liquid (GTL)) as 75 

well as with propane/diesel in a dual fuel combustion mode. Exhaust gas recirculation (EGR) was also 76 

used in most of the cases, as it is a well known engine calibration strategy currently used to reduce 77 

NOx. During the experiment, the engine was run at a steady state point (40% load at 1500 rpm). In the 78 

case of the dual fuel combustion experiment, diesel was used as the pilot fuel and 0.2% or 0.5% of 79 

gaseous propane (based on the volume of intake air replacement) was injected in the intake manifold. 80 

These percentages were chosen in order to limit the usual loss in volumetric efficiency caused by the 81 

replacement of a portion of intake air by a gaseous fuel while maintaining combustion stability.  82 

The concentrations of the engine exhaust species used to study the DOC activity are shown in Figure 83 

1 a) and b) and were recorded under the following operating conditions: 84 

• Diesel without EGR (Ultra Low Sulfur Diesel) used as a reference fuel produces the lowest 85 

level of CO and greatest level of NO. 86 

• Diesel with EGR shows a significant reduction of NOx emissions, while CO and THC 87 

concentrations are higher compared to diesel without EGR.  88 

• RME with EGR produces a similar level of CO compared to diesel without EGR with a 89 

lower THC concentration. It is assumed that the exhaust content of aromatic hydrocarbons is 90 

lower (RME does not contain aromatics) than those emitted using conventional diesel but the 91 

hydrocarbons produced are on average heavier than for diesel [18,19].  92 

• GTL with EGR produces a higher level of CO and a level of THC similar to the baseline. 93 

However, it is assumed that these hydrocarbons contain less aromatics than those emitted 94 

using conventional diesel, similarly to RME, as GTL does not contain aromatics. This 95 

condition also produces the lowest NOx emission compared to the other studied exhaust 96 

gases. 97 
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•  Dual fuel combustion shows a rather different exhaust gas composition compared to single 98 

fuel combustion, with a dramatic increase in CO and THC exhaust concentration. It also 99 

produces higher concentrations of light hydrocarbon species and especially light alkanes 100 

(propane) and alkenes (ethylene and propylene). Medium-heavy hydrocarbon concentration is 101 

similar to single fuel combustions, as those hydrocarbons are produced from the combustion 102 

of diesel fuel. The use of propane also produces a lower level of NO but increases the level of 103 

NO2 compared to single fuel combustions.  104 

For diesel fuel combustion, heavy hydrocarbons represent around 80% of the total hydrocarbon 105 

concentration found in the engine exhaust. Diesel/propane dual fuel combustion produces a more 106 

varied spectrum of hydrocarbon species as can be seen in Figure 1 b). Therefore, dual fuel combustion 107 

exhaust gases are used to study individual hydrocarbon species interactions while for the other fuels, 108 

only medium-heavy hydrocarbon oxidation is studied.  109 

The exhaust system was fitted with a diesel oxidation catalyst and CO, HC species and NOx 110 

conversion efficiencies were monitored during a heating temperature ramp. For every tests, the 111 

oxidation catalyst was subjected to a heating temperature ramp of around 2°C/min and an exhaust gas 112 

space velocity of 35,000/h. Engine out exhaust concentrations were measured at the beginning and at 113 

the end of each experiment in order to compare any changes in the exhaust gas composition during the 114 

test. Throughout the experiment, the evolution of the DOC outlet exhaust gas concentration was 115 

continuously recorded to calculate the conversion efficiency based on the inlet concentration. 116 

The use of EGR in an engine decreases the oxygen content of the exhaust [20]. To eliminate the effect 117 

of this reduced oxygen availability on the catalyst activity, oxygen was injected upstream of the DOC 118 

when EGR was used, in order to maintain a similar level of oxygen at the inlet of the catalyst, for all 119 

the tests.  120 

Experimental Setup 121 

The engine used in this study is a single cylinder, direct injection, diesel engine [17]. The test rig is 122 

composed of a DC motor-generator dynamometer coupled to a load cell used to load and motor the 123 

engine. Other standard engine test rig instruments are used to monitor intake air flow, temperatures 124 

and pressures (air, oil, inlet manifold and exhaust system). The EGR system is externally cooled and 125 

its flow is controlled by a valve. The EGR level is determined volumetrically as the percentage 126 

reduction in volume flow rate of inlet air at a fixed engine operating point. The fuels used in the study 127 

were supplied by Shell Global Solutions UK and their properties can be found in [17].   128 

A schematic of the experimental setup used in this study is shown in the Supporting Information 129 

section (Figure S1). A MultiGas 2030, FTIR spectrometry based analyser was used for the 130 

measurement of gaseous emissions (CO, HC and NOx). A temperature controlled line was used to 131 
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direct a portion of the exhaust gas towards the catalyst placed in a furnace whose temperature was 132 

externally controlled. The sampling line temperature was maintained at 150°C to limit the 133 

condensation of hydrocarbons and water that could affect the measurements. The exhaust gas oxygen 134 

content was measured using an AVL DiGas analyser fitted with an electrochemical oxygen sensor. 135 

The measurement determined the quantity of oxygen to be added to the sample flow throughout the 136 

experiment, to equal the 15% oxygen concentration found in the engine exhaust gas when no EGR 137 

was used. The diesel oxidation catalyst used in this study is a 120 g/ft3 Platinum/Palladium (weight 138 

ratio 1:1) with alumina and zeolite washcoat (2.6 g/in3 loading) coated on a cordierite honeycomb 139 

monolith (25.4 mm x 91.4 mm) of 400 cells per in2 and 4.3 mil wall thickness.  140 

Results and Discussions 141 

CO Oxidation 142 

The start of CO oxidation in the DOC is dependent on its concentration in the exhaust gas (Figure 2). 143 

As CO concentration increases (except for diesel combustion without EGR), its light-off is delayed 144 

towards higher temperatures. CO can strongly adsorb onto active sites at low temperatures and cover 145 

the majority of the catalyst surface [7,8,14]. This, in return, limits oxygen access to the catalytic sites, 146 

preventing the start of CO oxidation which is directly released to the atmosphere. This CO self 147 

inhibition is reduced under lower concentration of CO, as can be seen in the case of RME exhaust gas. 148 

The presence of hydrocarbons can also affect CO oxidation by competing for the same active sites. 149 

This inhibition can be altered as some of the hydrocarbons are adsorbed onto the zeolites coated on 150 

the catalyst, limiting the quantity of tailpipe hydrocarbons emitted at low temperature. The lower HC 151 

concentration recorded in the exhaust gas from RME combustion (Figure 1 a)) can also reduce the 152 

potential inhibition from CO and HC competition and allows earlier CO light-off. In dual fuel 153 

combustion, at 130°C-140°C, both CO and light alkenes (Figures 2 and 3) show some limited 154 

conversion (up to 15% conversion) which could highlight mutual inhibition as, similarly to CO, light 155 

alkenes strongly adsorb on active sites, due to their double bonds [9,21]. The greater light alkene 156 

concentration recorded in dual fuel combustion (Figure 1 b)) would therefore affect more CO light-157 

off, as can be noticed in Figure 2. It is unlikely that propane has any influence on CO light-off as, 158 

when its oxidation starts, CO is already fully oxidised. Moreover, light alkanes adsorb poorly on 159 

metallic surfaces [11] and therefore are not supposed to compete to a large extent with respect to CO 160 

strong adsorption.  161 

NOx species can also compete with CO for adsorption and potentially inhibit CO oxidation [8,10]. It 162 

can be noticed that the exhaust gases containing the lowest NO concentrations are the ones showing 163 

an earlier CO light-off (RME, GTL and Diesel combustion with EGR). On the opposite, the exhaust 164 

gas from the combustion of Diesel without EGR contains the highest level of NO and the lowest level 165 
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of CO while showing a rather delayed start in CO oxidation. CO inhibition from NO is especially 166 

visible for diesel without EGR exhaust gas as CO presents some limited conversion between 50°C 167 

and 110°C (5% oxidation) before the reaction rate increases (Figure 2). This shows that even if CO 168 

oxidation starts at similar temperatures for diesel without EGR exhaust gas compared to the other 169 

exhaust gases, it remains limited to just a few percentage of conversion for some time before 170 

increasing again. The comparison of CO oxidation from diesel combustion with and without EGR 171 

confirms that a higher level of NO (diesel without EGR) seems to be more detrimental on CO light-172 

off than a higher level of CO and HC (with zeolites present) for these ranges of concentrations. As can 173 

be noticed from the NOx catalyst outlet concentration during the experiment (Figure 4), all exhaust 174 

gases show an increase of NO at low temperature from NO2 partial reduction with hydrocarbons, 175 

except for diesel without EGR exhaust gas (NO remains constant before decreasing). It has been 176 

observed [14,22,23] that NO and NO2 can easily adsorb onto Pt and Pd active sites and efficiently 177 

dissociate, producing a high coverage of adsorbed nitrogen species and oxygen atoms on the active 178 

sites and limiting other species adsorption (e.g. CO). 179 

The competitive adsorption at low temperatures between CO, light alkene and NOx species only 180 

happens once CO oxidation starts, as before that, CO was strongly covering most of the active sites. 181 

Once the temperature allows CO oxidation to start, its oxidation products desorb, freeing some active 182 

sites on which CO, as well as NO and alkenes try to adsorb [10]. This adsorption competition 183 

eventually reduces CO access to the active sites and limits its oxidation (5-10% conversion efficiency) 184 

over a certain range of temperatures until the other adsorbed species react and desorb, freeing the 185 

active sites for more CO to adsorb again, allowing the oxidation rate to increase. 186 

While CO oxidation in the DOC is kinetically limited at low temperatures when exhaust gases from 187 

the combustion of RME, GTL and diesel with EGR are used, for the exhaust gas from the combustion 188 

of diesel without EGR and dual fuel combustion, the limiting factor is CO access to the active sites, as 189 

previously mentioned. Thus, once CO overcomes the inhibitions and adsorbs on the active sites at 190 

higher temperatures, its oxidation shows greater reaction rates as most of the catalytic sites were 191 

already kinetically active for CO oxidation. Another reason for the sharp increase in CO conversion 192 

efficiency noticed in dual fuel combustion exhaust gas is that CO oxidation reaction is exothermic. As 193 

CO concentration in dual fuel combustion is much higher than in the other exhaust gases, it involves a 194 

greater heat release during the reaction. This increases the catalyst local temperature once the 195 

oxidation starts and especially increases the catalytic site activity which would translate into greater 196 

reaction rate. As a result, the maximum CO conversion efficiency in dual fuel combustion is reached 197 

at similar temperatures to that of the exhaust gases from the other operating conditions, even though 198 

the light-off was considerably later.  199 



7 

 

Figure 5 summarises the required temperatures for the different exhaust gases to reach 10%, 50% and 200 

100% CO conversion efficiency in the DOC. The graph shows that the exhaust gas with an early start 201 

of oxidation is not necessarily the one that will reach its maximum conversion first and that, after the 202 

oxidation has started, its reaction rate can still be affected by competition with other species. It can be 203 

noticed that the more the start of oxidation is delayed, the greater the reaction rate is. 204 

Finally, once CO oxidation starts (Figure 2), some inflections can be noticed in RME and diesel 205 

combustion with EGR light-off curves at 120°C and 130°C respectively, as it has been noticed in 206 

other studies [10]. This change in oxidation rate can be related to an increase in medium-heavy 207 

hydrocarbon conversion happening at the same temperature (Figure 6). Once hydrocarbons are 208 

released from the zeolites and become active for oxidation, they compete for the same sites as CO, 209 

limiting its oxidation. This is particularly affecting RME as its hydrocarbon oxidation starts at lower 210 

temperatures and the hydrocarbons produced are on average heavier compared to other exhaust gases, 211 

possibly affecting CO accessibility to the active sites. Therefore, the competition for active sites takes 212 

place when the catalyst is not yet able to fully oxidise CO (only 55% conversion efficiency), affecting 213 

more strongly CO oxidation. This inflection in CO reaction rate can also be noticed for diesel with 214 

EGR. However, this effect is to a lower extent as hydrocarbons oxidise at higher temperatures 215 

(130°C), when more catalytic sites are available and active for both CO and HC oxidation, reducing 216 

the inhibition effect on CO. A minor slowdown in CO conversion can also be noticed at 135°C for 217 

diesel without EGR and 150°C for 0.2% propane, when hydrocarbon oxidation starts to increase. This 218 

effect cannot be noticed for the other exhaust gases due to either lower hydrocarbon concentration or 219 

hydrocarbon conversion starting at higher temperatures when a greater proportion of catalytic sites is 220 

already active for CO oxidation.  221 

A schematic summarising exhaust species interactions affecting CO oxidation as presented above can 222 

be found as Figure S2 in the Supporting Information section of this paper. 223 

HC Oxidation 224 

Medium-Heavy Hydrocarbons 225 

The oxidation catalyst used in this study contains zeolites which can trap medium-heavy 226 

hydrocarbons at low temperature and release them later on. Therefore, any low temperature 227 

conversion can be considered as ‘virtual’ conversion as the hydrocarbons are not actually oxidised but 228 

only removed from the exhaust gas and stored momentarily within the zeolites [24].  229 

In Figure 6, it can be noticed that zeolites behave similarly for most of the exhaust gases used in the 230 

study, showing 60%-75% conversion efficiencies at 70°C. The light-off curve from the 0.5% propane 231 

dual fuel combustion behaves differently even though it contains a similar concentration of medium-232 

heavy hydrocarbons. This highlights some strong inhibition effects as zeolite trapping efficiency is 233 
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reduced. A comparison between the exhaust composition from the combustion using 0.2% and 0.5% 234 

propane in the engine shows higher CO and light HC species concentration for 0.5% propane (Figure 235 

1 b)). Nevertheless, these exhaust species would not have a direct deactivation effect on the zeolites 236 

activity as they are short hydrocarbon chains and therefore not trapped by zeolites. Further 237 

investigations are required in that case, in order to understand what would cause such a great 238 

inhibition in zeolites trapping.  239 

Once the trapped hydrocarbons are released from the zeolites, different oxidation behaviours are 240 

recorded as the reaction activation energy and rate depend on the hydrocarbon nature, molecular 241 

structure (saturated, unsaturated, cyclic, aromatics, etc.) and chain length which influence their 242 

adsorption strength [12]. HC light-off curves from the combustion of RME and GTL show a plateau 243 

in conversion efficiency while hydrocarbon conversions from the rest of the studied fuels show a drop 244 

in conversion efficiency. This drop can be explained by the higher concentration of aromatic 245 

hydrocarbons in comparison to RME and GTL. Aromatic hydrocarbons require on average higher 246 

temperatures to get oxidised as they are more weakly adsorbed due to their ring shape and can suffer 247 

from inhibition from other species [13,21,25]. The depth of the loss in conversion efficiency depends 248 

on how efficiently these hydrocarbons are adsorbed on the zeolites and oxidised as they are released. 249 

The greater drop in conversion efficiency recorded is from dual fuel combustion exhaust gas which 250 

could be due to the presence of more numerous short chain hydrocarbons limiting the oxidation of the 251 

released hydrocarbons [9].  252 

It has been previously reported that NO could compete with hydrocarbons for adsorption on the 253 

catalytic sites and limit their oxidation [8,26,27]. Nevertheless, several studies have also investigated 254 

the capacity of hydrocarbons to partially or completely reduce NO2 to NO, depending on the type of 255 

hydrocarbon used [10,16,26,28]. Thus, the availability of NO2 within the catalyst should be 256 

considered. It can be noticed on Figure 4 that no NO2 is recorded at the catalyst outlet, even though 257 

NO2 is present in the feed gas while the NO level increases. At low temperature, hydrocarbons are 258 

preferentially oxidised by NO2. As the temperature increases, they start reacting preferably with 259 

molecular oxygen from O2 rather than NO2, which can be noticed by NO2 concentration increasing 260 

again at the catalyst outlet and NO level reducing to its inlet value. However, it has to be pointed out 261 

that, based on the stoichiometric ratio required for hydrocarbon oxidation with NO2, this reaction 262 

would account for only a limited oxidation of some hydrocarbons. This mechanism could explain the 263 

opposite behaviour of CO and HC light-off for diesel combustion with and without EGR, as diesel 264 

with EGR shows a greater drop in hydrocarbon conversion while having an early CO light-off 265 

compared to diesel without EGR. Therefore, the higher NO concentration which is detrimental for CO 266 

light-off could be promoting low temperature hydrocarbon oxidation through NO2 production. NO 267 

and NO2 can also be stored on the alumina washcoat and form nitrites or nitrates which hydrocarbons 268 

can react with [29,30]. This could also explain the improvement in the hydrocarbon conversion at low 269 
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temperature from diesel combustion without EGR and the lower NO concentration at the catalyst 270 

outlet.  271 

CO has also been considered as an inhibitor for other species oxidation, as previously mentioned. 272 

From CO and HC light-off graphs (Figures 2 and 6), it seems that the start of hydrocarbon oxidation 273 

happens when a portion of CO had already been oxidised, around 50 % of the inlet CO, for most of 274 

the exhaust gases (Figure 7). Catalytic sites become available for hydrocarbons only after CO 275 

oxidation is already well developed [13]. As CO conversion efficiency increases, its concentration 276 

along the catalyst length decreases. This reduces CO inhibition effect on hydrocarbon oxidation by 277 

allowing them to adsorb on available catalytic sites at the rear of the catalyst brick. Therefore, before 278 

this threshold, as hydrocarbons are released from zeolites, most of the active sites can already be 279 

occupied by strongly adsorbed CO, covering the catalyst and limiting the ability of released 280 

hydrocarbons to adsorb on the catalytic sites.  281 

Light Hydrocarbons  282 

From propane, propylene and ethylene light-off curves, it can be observed that zeolites only 283 

selectively trap medium-long chain hydrocarbons at low temperature (Figure 6). 284 

Propylene and ethylene oxidation starts at lower temperature than medium-heavy hydrocarbons and 285 

follows a steady increase until the maximum conversion efficiency, in a similar trend to CO light-off 286 

curve. Light alkene hydrocarbons are short chains of unsaturated hydrocarbons and therefore are more 287 

easily oxidised at lower temperatures than other hydrocarbons. Moreover, their oxidation does not 288 

suffer from competitive adsorption  with other hydrocarbons but it can still be inhibited by a high light 289 

alkene concentration at low temperatures due to their strong adsorption onto the active sites [9,21], 290 

similar to CO. Light alkenes can also suffer from adsorption competition with CO at low 291 

temperatures, as previously mentioned, and it can be noticed that their oxidation commences only 292 

after CO oxidation has started, as more active sites become available for them to adsorb. The fact that 293 

they are less affected by competitive adsorption with other exhaust species justifies why the general 294 

trend of their light-off curve is not much altered when changing from 0.2% to 0.5% propane exhaust 295 

composition. The slightly delayed start of oxidation for 0.5% propane (around 20°C) can be justified 296 

by its higher alkene and CO content. Nevertheless, similarly to CO, once the oxidation starts, a greater 297 

reaction rate is recorded for 0.5% propane, leading to both dual fuel combustion exhaust gases 298 

reaching their maximum conversion efficiency at similar temperatures.  299 

Propane, an alkane hydrocarbon, is a stable component due to its carbon atom being saturated by 300 

hydrogen, requiring more energy to be broken down and therefore greater temperatures to be 301 

oxidised. As previously mentioned, light alkanes are poorly adsorb on active sites and can be affected 302 

by the presence of other species. Therefore, their oxidation can only start when most of the other 303 
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exhaust components are already oxidised, especially strongly adsorbed CO and light alkenes. This is 304 

the reason why propane light-off and reaction rate are greatly affected by the change of exhaust 305 

composition and CO and hydrocarbon concentration increase from 0.2% to 0.5% propane.  306 

Strategies to Enhance DOC Low Temperature Pollutant Removal 307 

The above studied exhaust gas components and catalyst surface interactions allow the design of 308 

strategies to limit the quantity of pollutants emitted to the atmosphere at low exhaust temperatures. To 309 

promote low temperature CO oxidation, NO should be temporarily removed from the exhaust gas to 310 

reduce CO-NOx adsorption competition. The use of EGR strategy also allows an improvement in CO 311 

light-off, by reducing NO engine out concentration, but care should be taken to limit possible fouling 312 

of the EGR cooler at low temperature (use of high pressure loop or temporarily by-pass the cooler at 313 

low temperature). Higher CO concentration can inhibit CO start of oxidation but can also increase its 314 

reaction rate once the reaction has started, due to the heat produced by exothermic CO oxidation. 315 

Moreover, trapping medium-heavy hydrocarbons through the use of zeolites can reduce the 316 

competition for active sites between hydrocarbons and CO, affecting CO oxidation rates (inflection in 317 

CO light-off curve) and delaying hydrocarbon start of oxidation. It is proposed in this study that 318 

promoting CO oxidation at lower temperature would allow more active sites to be available for 319 

adsorption, when hydrocarbons are released from the zeolites. In the meantime, hydrocarbons can 320 

react with stored NOx and partially reduce them at low-medium temperatures. Light alkene 321 

hydrocarbons show early light-off and are not much affected by competition with other species apart 322 

from themselves and CO. Light alkanes on the contrary require higher temperatures to be oxidised. 323 

They do not affect other species oxidation but suffer from stronger adsorption of other species. Due to 324 

their short carbon chains, they are not efficiently trapped in zeolites and therefore are released into the 325 

atmosphere until the temperature is high enough to allow their oxidation. This study did not find any 326 

strategies directly promoting their oxidation, but lower temperature oxidation of other species (e.g. 327 

CO, light alkenes, etc.) can reduce competitive adsorption, increase active site availability and local 328 

temperature which can indirectly promote light alkanes oxidation. 329 

This study gives tools to qualitatively predict how efficiently CO and different hydrocarbon species 330 

will be oxidised, based on the exhaust gas composition. It also gives an insight for the diesel exhaust 331 

aftertreatment design requirements, for selective momentary control of some species in order to 332 

promote the oxidation activity of the catalyst at low temperature. Thus, this study can generate ideas 333 

for identifying synergies between engines calibration (i.e. promotion of light alkenes during 334 

combustion instead of alkanes), fuels specifications and catalyst efficiency. 335 
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Abbreviations 344 

CO  Carbon Monoxide 345 

CO2  Carbon Dioxide 346 

DOC Diesel Oxidation Catalyst 347 

DPF Diesel Particulate Filter 348 

EGR Exhaust Gas Recirculation 349 

GTL Gas to Liquid 350 

HC Hydrocarbons 351 

NO Nitric Oxide 352 

NO2 Nitrogen Dioxide 353 

NOx Nitrogen Oxides 354 

RME Rapeseed Methyl Ester 355 

SCR Selective Catalytic Reduction 356 

THC Total Hydrocarbons 357 

Supporting Information Available 358 

Figure S1 is a schematic of the experimental set up used in this study. Figure S2 represents a 359 

schematic summary of the different interactions affecting CO oxidation. Before the oxidation starts, 360 

the catalyst is covered by carbonaceous species from CO, strongly adsorbed onto the active sites, 361 

restricting oxygen access and limiting CO oxidation. Later, once CO starts desorbing, other species 362 

adsorb onto the free active sites (first light alkenes and then nitrogen oxides) limiting CO adsorption 363 

and oxidation. Finally, when the oxidation is developing, medium-heavy hydrocarbons can also start 364 
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adsorbing on the active sites and compete with CO, affecting the reaction rate of CO oxidation 365 

(inflection in the light-off curve at higher temperatures). This information is available free of charge 366 

via the Internet at http://pubs.acs.org.  367 
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Figure Caption 453 

Figure 1: Engine exhaust gas compositions (a) and exhaust hydrocarbon species concentration from 454 

the engine operation on dual fuelling (0.2% and 0.5% propane with diesel) (b).  455 

Figure 2: CO light-off curves from the different exhaust gas produced. 456 

Figure 3: Light-off curves for light alkene (ethylene and propylene) and alkane (propane) 457 

hydrocarbons for the dual fuel combustion mode. 458 

Figure 4: NO and NO2 catalyst outlet concentration over the temperature ramp (0°C representing 459 

engine-out concentrations). 460 

Figure 5: Catalyst inlet temperature required to reach 10%, 50% and 100% CO conversion for the 461 

different tested fuels. 462 

Figure 6: Medium-heavy hydrocarbon light-off curves. 463 

Figure 7: Catalyst inlet temperature required for 50% CO oxidation and for medium-heavy 464 

hydrocarbon start of oxidation. 465 

466 
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Figure 5.  477 
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Figure 6.  479 
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Figure 7. 481 
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