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METHODOLOGY

Sample size determination for external pilot 
cluster randomised trials with binary feasibility 
outcomes: a tutorial
K. Hemming1*, M. Taljaard2,3, E. Gkini1 and J. Bishop1 

Abstract 

Justifying sample size for a pilot trial is a reporting requirement, but few pilot trials report a clear rationale for their 
chosen sample size. Unlike full-scale trials, pilot trials should not be designed to test effectiveness, and so, con-
ventional sample size justification approaches do not apply. Rather, pilot trials typically specify a range of primary 
and secondary feasibility objectives. Often, these objectives relate to estimation of parameters that inform the sample 
size justification for the full-scale trial, many of which are binary. These binary outcomes are referred to as “feasibility 
outcomes” and include expected prevalence of the primary trial outcome, primary outcome availability, or recruit-
ment or retention proportions.

For pilot cluster trials, sample size calculations depend on the number of clusters, the cluster sizes, the anticipated 
intra-cluster correlation coefficient for the feasibility outcome and the anticipated proportion for that outcome. Of 
key importance is the intra-cluster correlation coefficient for the feasibility outcome. It has been suggested that cor-
relations for feasibility outcomes are larger than for clinical outcomes measuring effectiveness. Yet, there is a dearth 
of information on realised values for these correlations.

In this tutorial, we demonstrate how to justify sample size in external pilot cluster trials where the objective is to esti-
mate a binary feasibility outcome. We provide sample size calculation formulae for a variety of scenarios, make avail-
able an R Shiny app for implementation, and compile a report of intra-cluster correlations for feasibility outcomes 
from a convenience sample. We demonstrate that unless correlations are very low, external pilot cluster trials can be 
made more efficient by including more clusters and fewer observations per cluster.

Key messages

•	 Justifying sample size for an external pilot trial is a 
reporting requirement, but few pilot cluster trials 
report a clear rationale for their chosen sample size.

•	 In this tutorial, we demonstrate how to justify sample 
size in external pilot cluster trials where the objective 
is to estimate a binary feasibility outcome.

•	 We make available an R Shiny app for implementa-
tion and compile a report of intra-cluster correlations 
for feasibility outcomes from a convenience sample.
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Introduction
What are pilot cluster trials and why are they needed?
Cluster randomised trials (CRTs) involve randomisation 
of whole groups of individuals, referred to as clusters, 
to intervention or control conditions [6, 7]. Cluster ran-
domisation has become an increasingly popular design 
choice over the past couple of decades [18, 19]. As with 
any randomised trial, cluster trials require careful fea-
sibility testing and piloting of trial processes before 
initiating a full-scale trial, especially given its added 
complexity, financial cost and resources. Thus, it can 
be good practice to conduct either a feasibility study 
(for example to identify if the intervention is accept-
able) or a pilot trial (to pilot a future study) in advance 
of the full-scale cluster trial [12]. Unlike full-scale tri-
als, external pilot trials should not formulate primary 
objectives around testing effectiveness but, instead, 
focus on determining feasibility of the full-scale trial. 
The focus of pilot work is often around estimating the 
parameters that will be used in a sample size calcula-
tion of the full-scale trial, including estimating recruit-
ment, retention and primary outcome availability [5]. 
Thus, pilot trials therefore typically specify a range of 
primary and secondary feasibility objectives, which 
often include estimation of binary feasibility outcomes 
(e.g. proportion with primary outcome availability).

Why sample size justification is necessary in pilot trials?
This different focus of pilot studies means conven-
tional sample size justification methods, which focus 
on hypothesis testing, do not apply. However, external 
pilot studies still require careful sample size justifica-
tion, both so that funders can be satisfied that pilot tri-
als will be of sufficient size to meet their objectives and 
also to ensure research integrity (it would be unethical 
to conduct a pilot trial that was either much larger than 
it needed to be or much smaller than would be useful) 
[10]. When the key objectives relate to binary feasibility 
outcomes, the sample size can be justified on the basis 
of estimating a proportion with “sufficient” or “accept-
able” precision. Clearly, the concept of “sufficient” pre-
cision is not an objective construct. However, some 
idea of how precise a particular proportion or per-
centage can be estimated is important — as it provides 
insights into how well the pilot trial will be able to meet 
its objectives. For example, if it were known that a pilot 
trial will only be able to estimate a key proportion to 
within 20% error — this would mean at the end of the 
study, it would be known that this percentage is some-
where between 30 and 70% — which is likely not very 
informative to design most full-scale trials.

How to perform sample size calculations for pilot cluster 
trials?
As with the case of individually randomised trials, sam-
ple size justification for pilot trials depends on specifi-
cation of a series of parameters for which there is likely 
to be much uncertainty. For example, if estimating the 
prevalence of a key outcome, then an estimate of this 
prevalence is needed to input into these calculations. 
These calculations are further complicated in cluster 
randomised trials due to the need to account for the 
intra-cluster correlation coefficient. Whilst estimates of 
intra-cluster correlations for effectiveness outcomes are 
available within the literature [1, 3, 21], this is not the 
case for intra-cluster correlation coefficients for feasibil-
ity outcomes. Thus, whilst it is anticipated that correla-
tions for feasibility outcomes are higher than those for 
effectiveness outcomes, there is little evidence to back 
this up [10]. This is important because these parameters 
are key to estimation of the required sample size.

How are pilot cluster trials justifying their sample size 
currently?
Unfortunately, few pilot CRTs report a clear rationale 
or justification for their chosen sample size [5]. Further-
more, most pilot CRTs by their nature are small: typi-
cal number of clusters included in pilot CRTs is about 
8 [IQR: 4 to 16] and average cluster size 32 [IQR: 14 to 
82]) [5]. Whether or not these sizes are too small to esti-
mate key feasibility outcomes with reasonable precision 
depends crucially on likely values of intra-cluster correla-
tion coefficients [10]. In addition, there is often a trade-
off between increasing the number of clusters versus the 
size per cluster, especially when wider considerations 
mean only a limited number of clusters can be included 
[14]. These considerations complicate sample size deter-
mination for pilot CRTs.

Methods
Objectives
In this tutorial, our objective is to provide statisticians 
with accessible guidance on how to determine the sam-
ple size (both number of clusters and number per cluster) 
in external pilot CRTs to estimate a key proportion, such 
as the proportion with primary outcome available, with a 
degree of precision that will mean that something useful 
can be inferred about this proportion at the end of the 
pilot trial. To this end, we provide examples of margins 
of errors, so that researchers can understand the impli-
cations of conducting pilot trials that do not allow use-
ful inferences about target parameters. In particular we 
compile a completion of intra-cluster correlation coeffi-
cients for feasibility outcomes from a small convenience 
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sample of trials. We provide worked examples, outline 
formulae, and provide resources and recommendations 
for setting typical parameters required in these sample 
size calculations. We make available an R Shiny app to 
implement these calculations. Finally, in the discussion, 
we provide reminders of what objectives are typically 
infeasible within the remit of a pilot trial, such as prelimi-
nary estimates of effect sizes and estimates of intra-clus-
ter correlations. Ultimately, this should lead to pilot trials 
that are designed in such a way so as to be able to meet 
their objectives.

Margin of error for estimated proportions in cluster 
randomised trials
When the key objectives of a pilot cluster trial relate to 
estimation of a binary feasibility outcome (e.g. propor-
tion with primary outcome availability), the sample size 
can be justified on the basis of estimating a proportion 
with sufficient or acceptable precision (see later explana-
tion of “sufficient”). In this case, sample size justification 
will depend on the number of clusters, the cluster sizes, 
the anticipated intra-cluster correlation coefficient for 
the feasibility outcome, and the anticipated proportion 
for that outcome. Using a similar approach to Eldridge 
et al. [10], we can determine the margin of error or pre-
cision that will be realised around a given proportion 
under a given sample size. Under the central limit theo-
rem (thus making large sample approximations), the 
“margin of error” for the estimation of a combined pro-
portion (across both arms) is as follows [8, 10]:

where:
α = Value to specify a 100*(1-α )% confidence interval 

(set at 5% here)
m = The number of observations per cluster
k = The total number of clusters (both arms)
π = Best guess of the proportion being estimated
ρ = Intra-cluster correlation coefficient (ICC) for the 

proportion being estimated

(1)

Margin of Error (MoE) = tα/2,k−2
(1+ (m− 1)ρ)π(1− π)

mk

MoE = Margin of error
If proportions are expected to be close to the bounds 

of 0 or 1, then these approximations might not be appro-
priate [8]. See supplementary material for an alternative 
approach, known as the Wilson-Score approach [20]. We 
use a t-distribution with k-2 degrees of freedom as nor-
mal approximations are known to not hold in settings 
with fewer than about 40 clusters (which is typically the 
case in pilot cluster trials) [5, 17]. In settings where it is 
known that there might be some variation across clusters 
in their sizes, Eq. 1 can be modified as follows:

where m is the anticipated average cluster size and cv is 
the coefficient of variation of cluster sizes [9]. Of note, 
this provides a conservative estimate of extra inflation 
due to variation in cluster sizes and can likely be ignored 
if the anticipated coefficient of variation is less than about 
0.23 [9].

These equations allow estimation of precision of a 
pooled proportion across k clusters. In pilot CRTs, k will 
often represent the total number of clusters included. 
Where it is anticipated, these proportions might vary 
across arms; they can be estimated separately in each 
arm, in which case k would be the number of clusters 
in each arm. Pooling across arms naturally increases the 
sample size and in practice can often be the only feasi-
ble approach. Moreover, the intra-cluster correlation 
coefficient (ρ) relates to the primary feasibility outcome 
(e.g. proportion on whom primary outcome is available). 
It is important to note that these intra-cluster correla-
tion coefficients might very well be different to those that 
relate to the anticipated primary effectiveness outcomes 
(see later section for guidance on likely values).

These margins of errors are a measure of preci-
sion that are anticipated to be realised, under various 
assumptions about key parameters, and are probably 
best understood by considering likely ranges of 95% 
confidence intervals for different proportions and dif-
ferent margins of errors (Table  1). For example, if the 

(2)
Margin of error (MoE) = tα/2,k−2

√

(

1+
(

(1+ cv2)m− 1
)

ρ
)

π(1− π)

mk

Table 1  Aid to communicate meaning of margin of error

NA confidence interval not presented as would be out of boundary of parameter space (< 0 or > 100); CI confidence interval

95% CI for different margins of error (as percentage)

1% 5% 10% 20%

Anticipated proportion (presented as a percentage 
for ease of understanding)

5% 4–6% 0–10% NA NA

15% 14–16% 10–20% 5–25% NA

25% 24–26% 20–30% 15–35% NA

50% 49–51% 45–55% 40–60% 30–70%
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percentage of participants on whom the primary out-
come is available is anticipated to be about 50%, set-
ting the margin of error to 5% would result in the 95% 
confidence interval ranging from 45 to 55% (assuming 
the realised percentage was also 50%). This 95% confi-
dence interval can be used as an aid to communicat-
ing how precisely the proportion is estimated. This 
margin of error is sometimes referred to as the half-
width of the confidence interval. Increasing the margin 
of error increases the width of the confidence inter-
val. For example, a margin of error of 10% around an 
anticipated percentage of 50% would result in a 95% 
confidence interval ranging from 40 and 60% — that is, 
much less precise.

To determine the margin of error around a given pro-
portion estimated from a pilot CRT, various parameters 
must be specified, including the anticipated value for the 
proportion to be estimated ( π ). This can appear counter-
intuitive but is nonetheless necessary. These prior esti-
mates can often be informed by similar studies or other 
literature. Furthermore, for cases where these propor-
tions are not anticipated to be very low or very high, we 
show below how assuming that the proportion is 50% can 
be a sensible approach.

Conducting sample size calculations for pilot CRTs
Scenario 1: Determining the maximum likely error 
given a fixed number of clusters and fixed cluster size
To achieve the largest possible margin of error for a 
given sample size, and thus set a conservative upper 
bound on the required sample size, a proportion of 
π = 0.5 (i.e. assuming that the anticipated percentage of 
50%) can be used in calculations. This is the most con-
servative approach because at proportions of 0.5, the 
standard error π (1-π) is at its largest. In these settings, 
the margin of error can be thought of as the “maximum 
likely error”:

Figure  1 illustrates how the maximum likely error 
decreases with increasing number of clusters. The 
figure also illustrates how the maximum likely error 
decreases with increasing cluster size, but as in full-
scale cluster trials, there is a plateauing effect such that 
beyond a certain point the material contribution of 
observations to statistical precision will become neg-
ligible [14]. Furthermore, the maximum likely error is 
also highly dependent on the anticipated intra-cluster 
correlation coefficient. The plateauing effect can be 
seen to kick in at smaller cluster sizes when the intra-
cluster correlation coefficient is larger — meaning that 
the incremental contribution of increasing cluster sizes 
become more questionable in such settings. Perhaps 
most strikingly, this plot illustrates how for pilot CRTs 
with 10 or fewer clusters the maximum likely error is 
likely to be large. For example, for an intra-cluster cor-
relation coefficient of 0.05, with 10 clusters and cluster 
size of 25 (the size of a typical pilot CRT [5]), the max-
imum likely error is around 10% (meaning a percent-
age of 50% would be estimated to be between 40 and 
60%),for an intra-cluster correlation coefficient of 0.10, 
this increases to be between 30 and 70%.

Scenario 2: Determining the number of clusters for fixed 
maximum likely error when cluster sizes are fixed
The formulae above can be used to determine the maxi-
mum likely error when the number of clusters and 
cluster sizes are fixed, for example, when the trial only 
has resources to include a fixed number of clusters and 
when there are a fixed number of participants available 
within each cluster. Alternatively, the cluster size may be 
fixed and it may be of interest to determine the number 
of clusters needed for a specified maximum likely error.

(3)
Maximum likely error (max. error) = tα/2,k−2

√

((1+ (m− 1)ρ))× 0.25

mk

Fig. 1  Maximum likely error by cluster size (m), number of clusters (k) and intra-cluster correlation coefficient (ICC)
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We rearrange the above equations to obtain the min-
imum number of clusters (k) and to achieve a desired 
margin of error (MoE) around an anticipated propor-
tion ( π ), for a fixed cluster size (m), and assumed intra-
cluster correlation coefficient ( ρ):

To be conservative, and setting π = 0.5 to provide a 
specified maximum likely error (max error), this sim-
plifies to the following:

In practice, the value for k needs to be a whole num-
ber and so needs to be rounded up. Furthermore, in a 
randomised pilot trial (with a 1:1 allocation), this would 
also need to be rounded up to the nearest even number. 
Again, this formula can be modifed for varying cluster 
sizes:

Scenario 3: Determining the cluster size for a specified 
maximum likely error and fixed number of clusters
Alternatively, it might be the case that the number of 
clusters is fixed, the desired margin of error fixed, and 
it is required to determine the cluster size. To deter-
mine the number of observations per cluster (m) that 
are needed for a fixed number of clusters (k) and intra-
cluster correlation coefficient ( ρ ) to estimate a propor-
tion with a margin of error of MoE, we rearrange the 
above equation to obtain:

(4)

MoE > tα/2,k−2

√

(1+(m−1)ρ)π(1−π)
mk

k

(

MoE

tα/2,k−2

)2
>

(1+(m−1)ρ)π(1−π)
m

k >
(1+(m−1)ρ)π(1−π)

m

(

MoE

tα/2,k−2

)2

(5)k >
1+ (m− 1)ρ

4m
(

Max Error

tα/2,k−2

)2

k >
1+

(

(1+ cv2)m− 1
)

ρ

4m
(

Max Error

tα/2,k−2

)2

MoE > tα/2,k−2

√

(1+ (m− 1)ρ)π(1− π)

mk

m

(

MoE

tα/2,k−2

)2

>
(1+ (m− 1)ρ)π(1− π)

k

m

1+ (m− 1)ρ
>

π(1− π)

k

(

MoE

tα/2,k−2

)2

This can be rearranged easily, to solve for m. Again, this 
simplifies, when assuming π = 0.5, to provide a specified 
maximum likely error (max error):

Modify these for varying cluster sizes:

R Shiny app for sample size justification for binary 
feasibility outcomes in cluster randomised trials
An R Shiny app that implements these calculations can 
be found at https://​clust​errcts.​shiny​apps.​io/​Rshin​yAppP​
ilotS​tudies/. To use the app, users need to specify the 
intra-cluster correlation coefficient for the outcome of 
interest, the number of clusters, the average cluster size 
along with a coefficient of variation of cluster sizes, the 
anticipated proportion to be estimated (with a default of 
0.5 to be conservative), and the required confidence limit 
(with a default of 95%). The resulting output includes a 
graphical representation of the anticipated half-with of 
the confidence interval (or equivalently the maximum 
likely error) against the number of clusters (default range 
0 to 100 clusters), text interpreting the output (at the 
number of clusters fixed by the user), and tabulated out-
put (for exact values where required). Where proportions 
are expected to be very low or high (say less than 10% or 
greater than 90%), then the Wilson-Score version of the 
estimates should be used (supplementary material A).

Specification of intra‑cluster correlation coefficients
Designing a cluster pilot trial using the methodology 
above requires an advance estimate for the intra-cluster 
correlation coefficient (for the feasibility outcome). One 
way of obtaining an estimate is to use values reported 
in previously published trials. Unfortunately, report-
ing correlations for feasibility outcomes is not standard 
practice [11]. Another option is to use rules of thumb. In 
full-scale cluster trials, typical intra-cluster correlation 
coefficients tend to be quite small (e.g. in primary care 
datasets, the upper inter-quartile range for the intra-
cluster correlation coefficient is 0.02) [1, 3]. However, it 
is known that intra-cluster correlation coefficients for 
process measures (variables that capture the process of 
patient care, such as adherence to clinical guidelines) 
tend to be larger than for clinical outcomes [3]. This is 
because process outcomes are more likely to vary by 

(6)m >
1− ρ

4k
(

Max Error

tα/2,k−2

)2
− ρ

m >
1− ρ

4k
(

Max Error

tα/2,k−2

)2
− (1+ cv2)ρ

https://clusterrcts.shinyapps.io/RshinyAppPilotStudies/
https://clusterrcts.shinyapps.io/RshinyAppPilotStudies/
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centre due to staff behaviour. For example, across a large 
sample of process outcomes measuring maternity care, 
the upper interquartile range for the intra-cluster cor-
relation coefficient is 0.33 [21]. For similar reasons it has 
been hypothesised that intra-cluster correlation coef-
ficients for feasibility outcomes (variables that measure 
trial processes, such as primary outcome availability) 
might also be larger than for clinical outcomes [10]. 
Therefore, whilst when designing full-scale CRTs, it is 
typical to assume a fairly low intra-cluster correlation 
coefficient,when designing pilot trials, intra-cluster cor-
relation coefficients are anticipated to be larger [10].

Table  2 reports empirical estimates of intra-cluster 
correlation coefficients for feasibility outcomes from a 
convenience sample of randomised trials. These include 
cluster randomised trials and multicentre individu-
ally randomised trials and both pilot and full-scale tri-
als (see supplementary material B for details of studies 
included). Note that data from both cluster randomised 
trials and individually randomised multicentre trials 
allow estimation of correlations within clusters/centres. 
All outcomes relate to what might be considered feasibil-
ity outcomes, including primary and secondary outcome 
availability, measures of adherence, and questionnaire 
return. All are UK- or European-based trials; most 
include more than 20 clusters/centres, and the total sam-
ple size is greater than 500 for the majority. We estimate 
the correlations on the proportions scale (as is appro-
priate for binary outcomes) [24, 25], using REML and 
implemented in Stata 17 using mixed (with the exception 
for two outcomes where mixed failed to converge and 
we used ANOVA implemented in Stata using loneway). 
The upper interquartile range across all available intra-
cluster correlation coefficients is 0.11 [IQR: 0.05 to 0.18].

As with any sample size justification, it is good prac-
tice to explore sensitivity to values assumed, and where 
appropriate, to assume values for correlations that pro-
vide more conservative estimates of maximum likely 
error, so as to avoid confidence intervals around primary 
feasibility parameters being wide and uninformative.

Results
The Antenatal Preventative Pelvic floor Exercises And 
Localisation (APPEAL) study is a pilot CRT [2]. The unit 
of randomisation is a community midwifery team with 
clusters allocated with a 1:1 allocation ratio to inter-
vention or control. Key quantitative objectives relate to 
determining the proportion of participants with available 
data for the primary outcome. This information could be 
used to both infer generalisability and inform future sam-
ple size calculations for the full-scale trial.

Here, we illustrate sample size justification related to 
the key objective of estimating the proportion for whom 

primary outcome is available. Note that some of these 
examples match examples in Eldridge [10],slight dif-
ferences between values presented are due to use of the 
t-distribution (here) as opposed to the z-distribution in 
Eldridge [10].

Specifically, the objective was to estimate this propor-
tion along with a 95% confidence interval to reflect the 
uncertainty around this estimate. The anticipated pro-
portion was approximately 0.5, which also corresponds 
to the proportion yielding the most conservative estimate 
of precision. For the purposes of the pilot, a fixed ran-
dom sample was taken from each cluster, and therefore, 
no allowance for varying cluster sizes is required. Using 
historical data in a similar setting and for similar clusters, 
a conservative estimate for the intra-cluster correlation 
coefficient (for the proportion with primary outcome 
availability) was estimated to be in the region of 0.10 [2].

Scenario 1: Estimate the maximum likely error 
around the primary feasibility outcome given a fixed 
sample size
It was anticipated that within the pilot trial, it might be 
feasible to include around 14 clusters each with a sam-
ple size of 100 per cluster (i.e. total sample size of 1400). 
Using Eq.  3, and assuming an intra-cluster correlation 
coefficient of 0.10 and an anticipated percentage of 50% 
(percentage for whom primary outcome is available), we 
calculated that a trial of this size would estimate this pri-
mary feasibility outcome with a 95% confidence interval 
from 40 to 60% or alternatively, to within a maximum 
likely error of 10% (the half-width of the 95% confidence 
interval).

Scenario 2: Estimate the number of clusters needed 
for a fixed cluster size and specified maximum likely error
Suppose the cluster size is fixed and it is desirable to esti-
mate the percentage with primary outcome availability to 
within ± 10%. For a fixed cluster size, the number of clus-
ters needed to obtain a maximum likely error of 10% is 
presented in Table  3 (using Eq.  4). For example, with an 
anticipated cluster size of 100 and setting the maximum 
likely error to 10%, then for an intra-cluster correlation 
coefficient of 0.10, 13 clusters are required. After round-
ing, 14 clusters in total would allow a 1:1 allocation across 
arms. Note, if the intra-cluster correlation coefficient for 
this outcome was larger than 0.10, a larger number of clus-
ters would be required. For example, if the intra-cluster 
correlation coefficient is 0.30, then 32 clusters are required 
— more than double that which are required under the 
smaller intra-cluster correlation coefficient of 0.10.

Values rounded up to nearest whole number (further 
rounding up to an even number required if a 1:1 ran-
domised allocation is used).
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Scenario 3: Estimate the cluster size needed for a fixed 
number of clusters and specified maximum likely error
For a fixed number of clusters, the cluster sizes needed 
to obtain a maximum likely error of 10% are presented in 
Table 4 (using Eq. 6). Assuming the anticipated number 
of clusters is 14 and maximum likely error is 10%, for an 
intra-cluster correlation coefficient of 0.10, the required 
cluster size is 51. However, notice that if the intra-cluster 
correlation coefficient was, for example 0.15, irrespective 
of cluster sizes, it is not possible to obtain a maximum 
likely error of 10%. This illustrates the likely futility of set-
ting the cluster sizes as large as 100 in this example (with 
14 clusters).

Discussion
Justification of sample sizes for external pilot cluster tri-
als is known to be poor [5]. Whilst pilot trials can have 
several objectives, typical objectives are often related 
to estimation of prevalence of a binary outcome — for 
example the proportion completing follow-up. This tuto-
rial guides researchers through sample size justification 
in these settings, where sample size justification is essen-
tially about determining the number of clusters and clus-
ter size that will allow estimation of these quantities with 
reasonable precision. We provide these formulae for a 
variety of scenarios — so as to match variation in prac-
tice — for example allowing determination of the number 

of clusters (where other quantities are fixed) or determin-
ing maximum likely error (where the total sample size 
is fixed). Crucial to this is the pre-specification of “best 
guesses” of both the anticipated proportion and the intra-
cluster correlation coefficient of this outcome. Here, we 
provide some practical guidance: setting the proportion 
to be 0.5 in calculations will be the most conservative, 
and we report a small compilation of estimates of intra-
cluster correlation coefficients for feasibility outcomes. 
An R Shiny app allows implementation of these calcula-
tions without requiring the use of statistical packages or 
coding of these formulae (which can be prone to error).

Limitations
The methods of calculation used here do have some limi-
tations. Whilst we used the t-distribution to accommo-
date a small number of clusters, we relied on large sample 
approximations to the variance of a binary outcome. 
Alternative approaches will be necessary when working 
on the boundary of the parameter space (proportions 
close to 0 or 1) [7, 19]. These alternative approaches make 
fewer assumptions, are not symmetrical and so do not 
produce confidence intervals outside the boundary of the 
parameter space, have better coverage properties (at least 
in the non-clustered setting), and typically require larger 
sample sizes than under the approach used here [7, 19]. 
These alternatives are programmed in the accompanying 
app, but their performance has not been evaluated in the 
clustered data setting.

We have not considered the method of analysis here. In 
practice, rather than analysing cluster-level proportions, 
analysis could be conducted on the logit scale prior to 
back-transformation. This would mitigate the problem of 
values out of the bounds of parameter space in the analy-
sis [13]. Analysis of cluster-level proportions, as with 
sample size justification, should also use t-distributions 
on k-2 degrees of freedom and might need to consider 
weighting if cluster sizes vary considerably [15]. The use 
of mixed models and generalised estimating equations 
should probably be used with some caution because of 

Table 3  Illustrative example to determine the number of 
clusters (k) for a fixed cluster size (m) and set maximum likely 
error (10%) across range of intra-cluster correlation coefficients 
(ICCs)

Number of clusters (k) needed by cluster size (m) and ICC

m = 10 m = 20 m = 50 m = 75 m = 100

0.30 38 35 33 33 32

0.15 26 21 19 18 18

0.10 21 17 14 14 13

0.05 17 12 10 9 9

Table 4  Illustrative example to determine the cluster size (m) for a fixed number of clusters (k) and set maximum likely error (10%) 
across a range of intra-cluster correlation coefficients (ICCs)

NA non-applicable, meaning that it is not possible to estimate with 10% maximum likely error under that scenario; values rounded up to nearest integer

Cluster size (m) needed by number of clusters (k) and ICC

k = 6 k = 8 k = 10 k = 14 k = 20

ICC 0.30 NA NA NA NA NA

0.15 NA NA NA NA 28

0.10 NA NA NA 51 12

0.05 NA 276 38 14 8
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small sample issues and, if used, should ideally use the 
t-distribution with k-2 degrees of freedom (known as the 
between-within correction in mixed models) [16].

Furthermore, the methods presented here are based on 
estimating the proportion across both arms of the study 
combined (pooled proportion) — and not in each arm 
separately. Estimation within one arm only is feasible and 
could be implemented using the calculations presented 
here by modifying k to be the number in each arm (rather 
than the number in both arms combined).

Broader considerations
There are of course wider issues to consider when plan-
ning pilot CRTs. Some of these relate to broader aspects 
of the design, including the selection of clusters and the 
specification of progression criteria. These might not 
seem to be directly related to estimation of key propor-
tions, but do have important and related considerations. 
For example, if the selected clusters are not representa-
tive of those to be included in the full-scale trial, the esti-
mated parameters might not be transferable. Moreover, if 
the progression criteria fix hard and fast rules, for exam-
ple that follow-up should be greater than 70%, a focus on 
point estimates might be misguided if confidence inter-
vals are wide (although arguably, values at the tails of the 
confidence intervals might be equally unlikely). We have 
also only considered external pilot trials. Alternatives 
are to conduct what is known as an internal pilot trial, 
in which the main trial continues in a seamless way, pro-
vided progression criteria hold. Internal pilots can have 
important benefits in minimising the required number 
of clusters and participants, especially when an external 
pilot trial might be required to be too large to fully align 
with its objectives [23].

We have not considered sample size calculation for 
non-binary outcomes, such as estimation of the stand-
ard deviation of continuous outcomes, which might be 
of interest in a pilot trial [23]. Purposively, we have not 
considered the estimation of the intra-cluster correlation 
of the intended primary outcome (for use in the defini-
tive sample size calculation) nor the so-called “prelimi-
nary” estimates of effect sizes for the intended primary 
outcome. Others have underscored the importance of 
not estimating effects of intended primary outcomes 
in pilot trials — as pilot trials are typically too small to 
estimate this with any reasonable precision — and this 
clearly should be left to the full-scale trial [12]. Further-
more, although estimation of the intra-cluster correlation 
coefficient seems to be a useful objective of a pilot trial, 
unfortunately in practice, pilot trials typically have too 
few clusters to yield informative estimates (except in set-
tings of pilot trials with many clusters, or very large clus-
ters, or very low intra-cluster correlations) [10].

Further contextual issues
The average number of clusters included in pilot clus-
ter randomised trials is just 8 (with an upper quartile 
range of 16), and the average cluster size is 32 (with an 
upper quartile range of 82) [5]. It is known that typi-
cal pilot CRTs will therefore not be able to estimate key 
proportions with reasonable precision [10]. The results 
presented here underscore this important message. For 
example, if intra-cluster correlation coefficients are in 
the region of 0.10, typical pilot CRTs will only be able 
to estimate key proportions to within 20% error. Real-
istically, this means that the typical pilot CRT, with say 
10 clusters and a sample size of about 50 per cluster, 
might only be able to infer that some key proportion is 
somewhere between 30 and 70% — which is not very 
informative. However, this critically depends on the 
intra-cluster correlation coefficient. Intra-cluster cor-
relation coefficients are highly context dependent, and 
it might be that in scenarios where correlations are 
lower, valuable information might be obtainable from 
pilot CRTs of these sizes. For example, for intra-cluster 
correlation coefficients in the region of 0.05, it might 
be possible to estimate these quantities to within 10% 
maximum likely error — but even this means confi-
dence intervals around key parameters will be wide. 
Thus, information on intra-cluster correlation coef-
ficients (for pilot study outcomes) is crucial to allow a 
realistic expectation of the likely information available 
from pilot CRTs [11]. The CONSORT for cluster state-
ment includes a recommendation that trialists report 
estimates of ICC for outcomes [4]. We would recom-
mend that authors of full scale and pilot trials report 
ICCs for feasibility outcomes, if even in the supplemen-
tary material, as these can help inform the design of 
pilot CRTs.

There are substantial risks with running small cluster 
trials [22], and this also holds unfortunately for pilot clus-
ter trials with a small number of clusters [10]. The tools 
provided here should allow researchers to appreciate 
this directly, when they are considering designing their 
own pilot CRT. Ultimately, this should help to increase 
awareness that to properly estimate key parameters in 
pilot trials, the pilot trials do need to be large. Of course, 
this leads to somewhat of a conundrum: pilot trials by 
their nature are intended to be small. Potential solutions, 
where practical, would consist of including more smaller 
clusters rather than many larger clusters.

Summary
Sample size in pilot CRTs needs clear justification. When 
trying to estimate key quantitative parameters, such as 
primary outcome availability, justification depends on 
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the number of clusters, the cluster sizes, the anticipated 
intra-cluster correlation coefficients for the pilot out-
come, and the anticipated proportion of that outcome. 
Key to all this is the intra-cluster correlation coefficient. 
Intra-cluster correlation coefficients for key feasibility 
outcomes measured in pilot trials might be substantially 
larger than correlations for typical clinical outcomes. For 
likely values of these correlations, pilot CRTs need to be 
larger than most typically sized pilot CRTs to be informa-
tive. Unless correlations are very low, pilot cluster trials 
can be made more efficient by not including very large 
cluster sizes.

The work presented here would suggest that if pilot 
cluster trials are to be informative in estimating key 
binary feasibility outcomes, then they need around 15 
clusters (the size of each cluster is less important but 
should be greater than about 30 per cluster) under a 
working assumption that the intra-cluster correlation 
coefficient is in the region of 0.10. This would ensure 
that the resulting half-width of the confidence interval 
would be within 10 percentage points (i.e. if the outcome 
occurred in 50% of cases, this would have a 95% CI from 
40 to 60%). Confidence intervals wider than this (e.g. 
from 30 to 70%) are unlikely to be very informative. Only 
in settings where there is good evidence to support the 
intra-cluster correlation being 0.05 or less would around 
10 clusters be sufficient.
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