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Abstract
Just-in-Time Software Defect Prediction (JIT-SDP) operates in an online scenario where
additional training data is received over time. Existing online JIT-SDP studies used online
Oza ensemble learningmethodswithHoeffdingTrees as base learners to learn and update JIT-
SDPmodels over time in this scenario.However, it is unknownhow these approaches compare
against offline learning approaches adapted to operate in online scenarios, and how the use of
any other online or offline base learners would affect online JIT-SDP in terms of predictive
performance and computational cost. We therefore propose a new approach called Batch
Oversampling Rate Boosting (BORB) that is able to use offline base learners in an online
JIT-SDP scenario. Based on 10 open source projects, we provide a comprehensive evaluation
of BORB with 5 different base learners and the existing online approach Oversampling Rate
Boosting with 4 different base learners, both in within-project and cross-project online JIT-
SDP scenarios. The results show that offline learning can lead to better predictive performance
than the top performing online learning approaches considered in our study, at a higher
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computational cost. Cross-project data was helpful to improve predictive performance both
for offline and online learning, but especially for online learning.

Keywords Within-project software defect prediction · Cross-project software defect
prediction · Online learning · Offline learning

1 Introduction

Software systems are nowadays essential in our everyday lives. The structures of these sys-
tems have been growing larger and ever more complex to fulfill the increasing demands
from various different sectors. Hence, ensuring the quality of software systems has become a
critical task. Improving software quality highly depends on reducing the amount of software
defects. Currently, one of the most active research areas in the Software Engineering domain
is Software Defect Prediction (SDP) (Li et al. 2018; Catal and Diri 2009; Hall et al. 2011).
The main objective of SDP is to predict which parts of the software are likely to contain
defects so that resources such as time and budget can be more effectively allocated to support
software quality assurance activities.

Early work on SDP typically focused on predicting defects in files or modules. In recent
years, another branch of SDPhas emerged that focuses on predicting defect-inducing software
changes. This is known as Just-in-Time Software Defect Prediction (JIT-SDP). JIT-SDP
predicts whether a change in the code will induce defects or not as soon as it is committed to
a software repository. The main advantages of JIT-SDP over file level prediction are Kamei
et al. (2012): (i) predictions are performed at fine granularity, helping to reduce the effort
required to fix the defects; (ii) the defect fixing task can be assigned to the right developer as
changes can be easilymapped to the personwho committed them; and (iii) defect prediction is
made immediately after committing the change so that the code is still fresh in the developer’s
mind, facilitating code inspection.

Most of the existing JIT-SDP studies implicitly assume an offline scenario, where a
pre-existing training set is available beforehand and additional training examples are never
received anymore (Kamei et al. 2012, 2016). However, in practice, JIT-SDP operates in an
online scenario, where software changes become labelled as either clean or defect-inducing
and become available as training data over time. McIntosh and Kamei (2017) showed that
there can be fluctuations in the importance of the characteristics of defect-inducing software
changes over time, which may be a result of concept drift during the software development
process. Concept drift can be described as a change in the data generating process, affecting
the underlying probability distribution of the data. It may negatively impact predictive per-
formance of the models, if they are predominantly built on old data. To deal with this issue,
it is important for models to be able to learn and adapt to new data over time.

Both online and offline learning models can be used to learn additional data received over
time in online scenarios. Online learning models are models that consider training examples
one at a time, with the model parameters being updated after the presentation of each training
example (Bishop 2006). Therefore, they naturally fit online scenarios, as they can be updated
with each new training example generated by the online scenario separately, without requiring
access to past data. Offline learning models are models that process the entire training set in
one go (Bishop 2006). Even though they require the whole training set to be available before
learning commences and cannot process each training example separately upon arrival, they
can also be adapted for use in online scenarios. This can be done by retraining the model on
new data together with (a sufficient amount of) past data. Both offline and online learning
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models need to be combined with special strategies to deal with concept drift to be able to
address changes in the underlying data distribution. However, as online learning models do
not require retraining on past data, their training process is usually faster. Such advantage
can also become a weakness depending on the problem being learned. In particular, as online
learning models do not conduct multiple learning passes through the data, they may present
poorer predictive power, for instance as a result of catastrophic forgetting (McCloskey and
Cohen 1989).

Therefore, this paper aims at analyzing whether offline learning models can improve
predictive performance in online JIT-SDP scenarios compared to online learningmodels, and
whether this would be at the cost of higher computational requirements. This investigation
will be carried out both on Within-Project (WP) and Cross-Project (CP) online JIT-SDP
scenarios. In particular, these two scenarios may lead to different conclusions in terms of
which type of learning models perform better, due to the different amounts of training data
used. The following research questions (RQs) are addressed:

RQ1 Can offline learning help to improve predictive performance compared to online learn-
ing in online WP JIT-SDP scenarios? Which base learners usually perform best?

RQ2 How beneficial is CP data to improve predictive performance of offline models com-
pared to online models in online CP JIT-SDP scenarios?

RQ3 How high is the computational cost of offline learning in online JIT-SDP scenarios
compared to that of online learning models?

To answer the above research questions, we propose a new approach called Batch Over-
sampling Rate Boosting (BORB) that is able to use different offline base learners and can
operate in the online JIT-SDP scenario by learning from new training data. BORB is an
offline version of the online JIT-SDP approach Oversampling Rate Boosting (ORB) (Cabral
et al. 2019). It translates the online resampling concepts of ORB which have been previ-
ously shown to be useful for online JIT-SDP scenarios (Cabral et al. 2019) into an offline
resampling approach. Therefore, in this paper, offline learning implies using BORB, whereas
online learning implies using ORB, unless stated otherwise.

BORB and ORB approaches are compared using 5 and 4 different base learners, respec-
tively. The use of different base learners enables a more complete investigation of offline
and online learning, as different base learners may lead to different conclusions. Our experi-
ments based on ten open source projects show that offline learning (BORB) helped to improve
predictive performance compared to online learning (ORB) when using most base learners
with WP data. Even though CP data helped to improve BORB’s predictive performance fur-
ther, it was more helpful to improve ORB’s predictive performance. The training process of
online learning throughORBwas less computationally expensive than that of offline learning
through BORB. However, the magnitude of the differences in predictive performance and
computational cost between the top ORB and BORB approaches were not very large.

The contributions of this work are following:

• We provide the first comparison between offline base learners and online base learners in
a realistic online JIT-SDP scenario, revealing that offline learning can slightly improve
predictive performance compared to online learning. Therefore, if researchers or practi-
tioners have predictive performance as a priority when choosing a JIT-SDP model, we
recommend them to consider offline JIT-SDP as a possible choice.

• We show how to adapt offline base learners so that they can use adaptive resampling rates
to deal with class imbalance in online scenarios for JIT-SDP.

• We show that CP data can improve predictive performance. This happens both when
using offline BORB and online ORB, even though CP data was particularly beneficial
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for online ORB. Therefore, we recommend researchers and practitioners to consider
adopting CP learning especially if they are using online ORB.

• We show that online learning required less computational cost than offline learning.
Therefore, we recommend researchers and practitioners to consider online learning if
computational cost is a concern for them. This may be a concern when there is a need
for comparing several JIT-SDP models to decide which one to adopt. However, it may
not be a concern when adopting a single online or offline JIT-SDP model over time as
the cost of these approaches becomes negligible in this context.

• While one may intuitively assume that it is better to use online learning models for
online JIT-SDP scenarios, we show that both online and offline learning models can
bring benefits in such realistic scenarios and are worth further exploring.

This paper is further organized as follows. Section 2 presents related work. Section 3
presents background knowledge. Section 4 introduces the proposed approach. Section 5
presents the details of the investigated datasets. Section 6 explains the experimental setup
for answering the RQs. Section 7 explains the results of the experiments. Section 8 presents
threats to validity. Section 9 presents the conclusions and future work.

2 RelatedWork

This section discusses online and offline models for JIT-SDP using both WP and CP data.
As our previous work Tabassum et al. (2020, 2022) also involves online CP JIT-SDP, there
are some commonalities between the related work listed here and that of those studies.

2.1 OfflineWP JIT-SDP

Kim et al. (2008) conducted one of the first studies on JIT-SDP. They proposed an approach
to classify software changes, as defect-inducing or not, based on features extracted from
the change metadata such as author name, commit hour, code entropy, lines of comments,
cyclomatic complexity, etc. Their approach achieved an accuracy rate of 78% on average in
a study involving 12 open source software projects. Śliwerski et al. (2005) investigated the
connection among defects in a defect-tracking system and a control version system in order to
identify ‘fix-inducing changes’ (changes able to identify previous defect-inducing changes).
They investigated which properties of these changes are correlated with inducing fixes. They
showed, for example, that if the change is large it is more likely to induce a fix. Eyolfson
et al. (2011) showed that commits submitted during certain time of the day, day of the week
and the daily commit frequency of the developer may influence the “bugginess” of a commit.
Kamei et al. (2012) performed a large scale investigation of JIT-SDP by building logistic
regression models using 6 open source and 5 commercial projects. They used 14 different
features extracted from code changes to predict defect inducing changes and achieved an
average accuracy of 68% and an average recall of 64%.

Other studies focused on the machine learning approach being used to create JIT-SDP
models. Chen et al. (2018) considered JIT-SDP as a multi objective problem by maximizing
the number of identified defect-inducing changes and minimizing efforts to fix them. They
used logistic regression models to conduct the prediction using 6 open source datasets con-
sidering the 14 metrics described in Kamei et al. (2012). Their approach managed to identify
63.8% of the defect-inducing changes on average when using only 20% of the software
quality team effort. Yang et al. (2017) proposed a two-layer ensemble learning approach
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TLEL. In the inner layer, they used Decision Trees and Bagging models to create a Ran-
dom Forest model. In the outer layer, they grouped many different Random Forest models
using stacking (Aggarwal CC et al. 2015). They have also investigated other base learners
than Decision Trees, including Naive Bayes, Support Vector Machines, Linear Discriminant
Analysis and Nearest Neighbor Classifiers. They showed that ensembles of Decision Trees
to create Random Forests performed better than using other base learners in 5 out of 6 open
source projects. Their approach detected 70% of defect-inducing changes by reviewing 20%
of the code. The TLEL also achieved higher F1-score compared to three baseline approaches
– Deeper, DNC and MKEL. Yang et al. (2015) proposed a deep learning method called
‘Deeper’ for JIT-SDP. They compared their approach with the approach proposed by Kamei
et al. (2012) and showed that their approach was able to discover 32.22% more defects,
based on a study with 6 open source datasets. Li et al. (2020) investigated the impact of
different combinations of base learners such as Support Vector Machines (SVMs), Logistic
Regression (LR), Random Forest (RF), Multi-layer Perceptron (MLP), Naive Bayes (NB)
and Decision Trees (DTs). They showed that the diversity of base learners plays an important
role for achieving promising performance.

Some studies have also suggested effort-aware prediction of defect-inducing software
changes, leading to approaches such as EALR (Kamei et al. 2012), CBS (Huang et al. 2017)
and CBS+ (Huang et al. 2019). However, the effort-aware components of these approaches
require a whole set of software changes to be available for sorting in order of inspection
priority. As being able to make predictions “just-in-time”, at commit time, is one of the key
advantages of JIT-SDP (Kamei et al. 2012), it is unsuitable to wait for such whole set of
changes to be produced for sorting in JIT-SDP.

All of the above discussed studies considered JIT-SDP in an offline scenario (i.e., all the
learning algorithms used in these studies are offline and were not retrained with new data
over time). These studies did not take into account the fact that the label of a training data
may not be available immediately after the software change submission, i.e., they overlook a
problem known as verification latency which consists in the delay for obtaining the class (or
label) of a software change. The chronology of the data was also disregarded. As a result, in
these works, future examples may have been used to train models for predicting past data.
Hence, these offline WP JIT-SDP studies are not applicable in a realistic scenario.

2.2 OnlineWP JIT-SDP

Tan et al. (2015) investigated JIT-SDP in a scenario where new batches of training examples
arrive over time and can be used for updating the classifiers. To the best of our knowledge, even
though previouswork considered verification latency in defect models that are updated online
(Kim et al. 2007), Tan et al. were the first work to consider this issue in JIT-SDP. Regard-
ing the classifiers, they used 7 updatable algorithms based on Naive Bayes (Bayes, LWL),
instance-based learning (IBK, KStar), boosting (LogitBoost), nearest-neighbors (NNge), and
Support Vector Machines (SPegasos) to learn over time. In addition, they used resampling
techniques to tackle the inherent class imbalance problem. Based on a study with one propri-
etary and six open source projects, the authors claim that both resampling techniques and the
updatable classification improve the precision by 12.2-89.5%. In this work they mention that
overlooking the data chronology and the verification latency problem lead to a false impres-
sion of higher predictive performance. Therefore, it is important to take the data chronology
and verification latency problem into account in order to reproduce more realistic scenarios.
However, their approach assumes that there is no concept drift, i.e., that the defect generating
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process does not suffer variations over time. Their approach also assumes a fixed gap of
time between the training and test examples, where no training examples can be produced.
In practice, some software changes may be found to be defect-inducing during that gap, but
their use for training will be delayed by their approach. Moreover, they have not compared
online versus offline learning models in their work.

McIntosh and Kamei (2018) performed a longitudinal case study of 37,524 changes from
the rapidly evolving QT and OPENSTACK systems and found that fluctuations in the impor-
tance of the features of fix-inducing changes can impact the performance of JIT-SDPmodels.
They showed that JIT-SDP models typically lose predictive power after one year, possibly
as a result of concept drift. Hence, they suggest to continuously update the JIT-SDP model
with recent data.

Cabral et al. (2019) proposed amethod calledOversamplingRateBoosting (ORB) to tackle
a type of concept drift called class imbalance evolution, where the proportion of examples
of the defect-inducing and clean classes change over time. Their work investigates an online
JIT-SDP scenario taking verification latency into account. They considered a waiting time
(w days) after the commit time to safely label the change as clean. If a defect is found within
w days, the change is labeled as defect-inducing and used for training. If no defect associated
to a change has been found in w days from its commit time, this gives confidence that this
change is clean and therefore be labeled and used for training. If a change that has already
been labeled as clean is found to be defect-inducing after w days, the training example
corresponding to that change will be updated with the correct label and be presented again
for learning.

ORBhas a resampling rate to tackle class imbalance evolutionbasedon themoving average
over the predictions provided by the JIT-SDP model. In Cabral et al. (2019) this mechanism
has shown to be able to improve predictive performance over JIT-SDP approaches that assume
a fixed level of class imbalance. ORB achieved better |R0 − R1| up to 45.38% and 63.59%
compared to the state-of-the art class imbalance evolution algorithms Undersampling Online
Bagging (UOB) and Improved Oversampling Online Bagging (OOB) (Wang et al. 2015),
respectively.

2.3 Offline CP JIT-SDP

JIT-SDP classifiers require sufficient amount of training data to provide useful predictions.
Such data is not available at the beginning of a software project as data arrives sequentially
over time. Cross-Project (CP) JIT-SDP can overcome this issue by using data from past
projects to build the classifier. Several studies investigated CP JIT-SDP. Kamei et al. (2016)
conducted one of the first studies. They carried out an empirical evaluation of CP JIT-SDP
performance by using data from 11 open source projects. They investigated five CP JIT-SDP
approaches based on project similarity, three variations of data merging approaches, and
ensemble approaches where each model was trained on data from a different project. All
approaches employed random forests as base learners. They found that simple merging of
all CP data into a single training set and ensemble approaches obtained similar predictive
performance to that of WP models. Different from SDP at the component level, other more
complex approaches, including similarity-based approaches, did not offer any additional
advantage compared to these. Another study Catolino et al. (2019) investigated CP JIT-SDP
for mobile platforms using 14 apps extracted from the CommitGuru platform (Rosen et al.
2015). They compared the CP performance of four different well-known classifiers and four
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ensemble techniques. Naive Bayes performed best compared to other classifiers and some
ensemble techniques. They did not check how CP compared against WP results.

Chen et al. (2018) considered JIT-SDP as a multi-objective problem to maximize the
number of identified defect-inducing changes while minimizing the effort required to fix
the defects. They proposed a multi-objective optimization-based supervised method called
MULTI to build logistic regression JIT-SDP models. They used six open source projects.
MULTI was evaluated on three different performance evaluation scenarios (cross-validation,
cross-project-validation, and timewise-cross-validation) against 43 state-of-the-art super-
vised and unsupervised methods. They found that it can perform significantly better than
WP methods in terms of Accuracy and Popt metrics. Zhu et al. (2020) proposed a JIT-SDP
approach called DAECNN-JDP based on denoising autoencoder and convolutional neural
networks. WP and CP defect prediction experiments were performed on six large open
source projects and DAECNN-JDP was compared with 11 baseline models, including eight
machine learning models, EALR, Deeper and CNN-JDP. The results show that DAECNN-
JDP achieved better predictive performance than the baseline models for both CP and WP
JIT-SDP.However, the predictive performances ofCP andWPapproacheswere not compared
against each other.

The studies above considered offline scenarios where the model is never updated with new
data and, hence, cannot deal with concept drift. They did not take into account the chronology
and verification latency of the data as well. It is unknown whether their conclusions would
hold in realistic online JIT-SDP scenarios.

2.4 Online CP JIT-SDP

Tabassum et al. (2020, 2022) first investigated CP learning for online JIT-SDP based on
OOB (Wang et al. 2013) and ORB (Cabral et al. 2019). They proposed three online CP
approaches called AIO (that builds a single model by training with all WP and CP data
together), Filtering (that filters out CP instances dissimilar to target project) and Ensemble
(that builds an ensemble of models, where each model is trained by data from a different
project) based on Hoeffding tree as base learners. Their study based on 10 open source and
9 proprietary datasets showed that their online CP approaches (AIO and Filter) achieved
up to 53.89%, 37.35% and 29.03% improvements in terms of G-Mean compared to a WP
online approach. They have also shown that enabling the CP approaches to be updated with
additional training data received over time in an online CP scenario leads to better predictive
performance than adopting an offline CP scenario, where only CP data available before the
target project commences is used for training.

3 Background

This section explains the online JIT-SDP scenario adopted in this work and some background
required to understand it. It also explains the ORB approach upon which BORB is based.

3.1 Definitions

Definition (Data Stream):A data stream is a potentially infinite sequence of training exam-
ples S = {(xi , yi )}∞i=1, where i is a natural sequential number (time step) indicating the order
with which the training examples were labeled, xi are the input features describing example
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i , and yi is the label of example i . In JIT-SDP, the input features are features describing the
software change, as will be explained in Section 5. The label is defect-inducing or clean.

Definition (Online Scenario With Verification Latency): An online scenario is a sce-
nario where training examples are produced over time, forming a data stream. JIT-SDP
operates in an online scenario where the labels of the software changes arrive with a delay,
which is referred to as verification latency (Ditzler et al. 2015). Specifically for JIT-SDP,
labelled examples can be produced following the procedure defined by Cabral et al. (2019).
When a change is committed to the repository the developers hope it to be clean, but it
may, instead, induce a defect. To label this change as clean, we need to wait for a period
of time (waiting period w) to be confident that the change is really clean. If no defect is
reported to be associated to this change within w days, the change is labeled as clean at the
end of the waiting period, producing a training example. If, on the other hand, a defect is
found to be linked to this change during these w days, the change is immediately labeled
as defect-inducing, without having to wait until the end of the waiting period. It may also
happen that a change that was initially labeled as clean is found to be defect-inducing after
the w days. When this happens, this change is relabeled as defect-inducing, producing a new
labeled training example of the defect-inducing class. This procedure respects chronology,
being able to capture a realistic scenario that reflects the labelling procedure that would be
observed in practice. The waiting period w can be considered as a pre-defined parameter.

Definition (Online Learning):Given a data stream formed by training examples ordered
by the time they were produced S = {(xi , yi )}∞i=1, an online learning model is a model that
is immediately updated whenever a new training example (xi , yi ) ∈ S becomes available.
Strict online learning models must be able to process (learn) each training example once and
only once. So, the classifier is always updated with new examples, without requiring any
retraining on past examples. This is useful to speed up learning for cases where storing and
reprocessing past training examples may be computationally infeasible, e.g., for very large
data streams, or data streams where the frequency of incoming data is very large. However,
some (non-strict) online learning algorithms may access a memory containing past training
examples to support the learning process. The classifier may also have strategies to speed up
adaptation to changes (a.k.a., concept drifts) that may affect the underlying data generating
process.

Definition (Offline Learning):Consider a finite set τ = {(xi , yi )}ni=1 containing n exam-
ples that are available for training at a given time. This set can be referred to as a batch. Being
a set and not a stream, the time order of these examples is ignored. An offline learning model
is trained on τ such that the training and testing phases cannot intersect in time, i.e., the
classifier is only available to use when the training procedure has ended.

3.2 Discussion on Adopting Offline Learning in Online Scenarios

Even though the time order of the examples within τ is ignored by the offline learning
procedure, it is still possible to create a sequence of training sets τ j , j ≥ 0, where each
training set τ j is updated with one or more new training examples that may become available
until the current time step. We refer to the number of time steps that we wait before creating
a new training set as retraining period (rp). At every rp time steps, τ j is created with all τ j−1

training examples plus the new rp training examples. The batch τ j is then used to retrain
the offline learning model from scratch. The larger the rp, the longer we will have to wait
before the predictive model can be retrained. If a concept drift happens during this period,
the outdated model is unable to react to this drift until the new τ j is created, potentially
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hindering the predictive performance. On the other hand, the larger the rp, the higher the
computational cost of the approach, as the model is retrained from scratch more often.

Despite the training process of the offline learning model ignoring the time order of
examples within a given training set, this process would still ensure that only training data
that is really available at a given point in time would be used for training, i.e., the JIT-SDP
online scenario described in this section would still be respected.

As the data stream generated by the software changes submitted to a software repository
is not a high frequency stream, it may be computationally acceptable to store past changes
and rebuild classifiers from scratch when new training sets become available. Moreover,
managing the whole historical data stream enables us to access all the benefits of offline
learning over online learning. In particular, by ignoring the time order of examples, offline
learning models frequently process the training set several times, which can help to produce
stronger (more accurate) classifiers. In face of verification latency, revisiting all software
changes labeled so far allows us to delete any training examples whose label was incorrectly
assigned as clean for software changes that have now been found to be defect inducing. This
prevents the classifier to learn noisy information, different from online learning models such
as ORB (Cabral et al. 2019), where the mislabeled training example is definitely incorporated
into the classifier. Nevertheless, a potential disadvantage of using offline learning for online
scenarios is that this could make it more difficult to deal with certain types of change in the
defect generating process, as each given training set may contain a mix of examples produced
by different defect generating processes.

3.3 The ORB Approach

Cabral et al. (2019) tackled the problem of the class imbalance evolution over time when
dealing with online JIT-SDP. They showed that this evolution negatively impacts the pre-
dictive performance by making the classifier to become highly skewed towards one of the
classes during different periods of the project. They also considered the verification latency
problem for receiving the class labels. Their proposed Oversampling Rate Boosting (ORB)
approach was able to improve the predictive performance in comparison to algorithms that
assume a fixed imbalance ratio over time and to the existing class imbalance evolution algo-
rithms Undersampling Online Bagging (UOB) and Improved Oversampling Online Bagging
(OOB) (Wang et al. 2015).

ρ(t)
c = θ ′ρ(t−1)

c + (1 − θ ′)(y(t) == c) , (1)

Algorithm 1 shows the pseudocode of the ORB approach. It is important to note that
the ORB is built upon the OOB (Wang et al. 2015) approach. Thus, in Algorithm 1, the
numbered black lines correspond to the original OOB while the blue lines correspond to the
ORB. ORB calculates the moving average of the predictions ma(t) using a time window of
size ws . JIT-SDP is a binary problem where 0 represents the clean class and 1 represents
the defect-inducing class. Calculating the moving average allows us to detect a bias in the
predictions towards any particular class. Depending on this bias, the resampling rate of one
of the classes is boosted (increased).

As JIT-SDP is a class imbalanced problem, an effective classifier would provide class
imbalanced predictions. So, ORB is set to make the predictions rate as close as possible to
a parameter th that represents the desired imbalance ratio of the predictions. For example,
if ma(t) is close to 1, it means that the classifier is producing many false alarms, then the
resampling rate for the class 0 (clean class) will be increased in order to reduce the classifier’s
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Algorithm 1 Oversampling Rate Boosting (ORB) (Cabral et al. 2019)
Input: Ensemble size n, incoming training example d, parameters of the adjustment function (th, l0, l1,m),
noise mechanism parameter o, decay factor θ ′, window size ws

for each training example d(t) = (x(t), y(t)), t ← 0 to ∞ do
Obtain the ensemble prediction y(t) for x(t)

Compute the average ma(t) over the predictions on the most recent ws examples, including d(t)

Update the proportions ρ
(t)
0 and ρ

(t)
1 of each class using Eq. 1

for i ← 0 to n do
λ = 1
if y(t) == 1 and ρ

(t)
1 < ρ

(t)
0 then

λ = ρ
(t)
0 /ρ(t)

1
end if
if y(t) == 1 and ρ

(t)
0 < ρ

(t)
1 then

λ = ρ
(t)
1 /ρ(t)

0
end if
Set k ∼ Poisson(λ)

Calculate OBF(t) (ma(t), th, l0, l1,m) using Eq. 2 or Eq. 3
k = k . OBF(t)

Run noise safety mechanism with parameter o
/* Depending on the noise safety mechanism outcome, update the ith Hoeffding tree with k copies of

dt */
Update(HTi , k, dt )

end for
end for

skew, making it closer to the desired skew th. The adjustment in the resampling rate is made
through boosting factors computed according to Equations 2 and 3. The final oversampling
rate is then the product between ob f0 or ob f1 and the resampling rate k necessary to balance
the classes computed by OOB. These boosting factors are responsible for adding an extra
emphasis to one of the classes in order to yield balanced predictions.

OBF (t)
0 (P0) =

⎧
⎨

⎩

(
mma(t)−mth

(m−mth )
∗ l0

)

+ 1, if ma(t) > th

1, otherwise
(2)

OBF (t)
1 (P1) =

⎧
⎨

⎩

(
m(th−ma(t))−1

(mth−1)
∗ l1

)

+ 1, if ma(t) ≤ th

1, otherwise
(3)

In equations 2 and 3, P0 and P1 are sets of hyperparameters containing the parameters:m -
determines the growth of the exponential function, th - stands for the threshold that indicates
the desired class imbalance in the predictions; mat - the predictions moving average at time
t ; l0 and l1 - control the maximum boosting factor values.

In short, ifma(t) ≤ th, this suggests that less than th%of the commits are being classified
as defect-inducing. Hence, the resampling rate of the defect-inducing class should be boosted.
If ma(t) > th, then more than th% of the commits are classified as defect-inducing. Hence,
the resampling rate of the clean class should be boosted. For further details regarding the
ORB, please refer to Cabral et al. (2019).
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Algorithm 2 BORB’s testing and training procedure
Input: data stream S, ORB parameters (th, l0, l1,m), window sizews , training sample size n, retraining time
period rp, number of training iterations i t , waiting time period w

1: θ ← 0.5 
 decision threshold adopted by the classifier
2: X ← ∅ 
 set of software changes received so far
3: for x(t) ∈ S do 
 x(t) change (example) committed at timestep t
4: if clf is already trained then
5: c ← ∅
6: for i ← (ws − t) to t do
7: c ← c ∪ score(cl f , θ, x(i))
8: end for
9: θ ← quantile(c, th)

10: ŷ(t) ← pred(cl f , x(t), θ)

11: else
12: ŷ(t) ← 0 
 for this problem, class 0 refers to the clean class
13: end if
14: X .add(x(t))
15: τ ← updateTrainingSet(τ , X , w) 
 update the training set with any new label
16: if modulo(t , rp) == 0 then 
 an entire training procedure is performed
17: cl f ← restart(clf) 
 restart or instantiate a new classifier
18: ob f0 ← 1
19: ob f1 ← 1
20: for i ← 0 to i t do
21: S ← skewedSample(τ, ob f0, ob f1, n)

22: cl f ← train(cl f , S)

23: ma ← 1
ws

∑t
j=t−ws

pred(cl f , x( j), 0.5)
24: ob f0 ← OBF0(ma, th, l0,m)

25: ob f1 ← OBF1(ma, th, l1,m)

26: end for
27: end if
28: end for

4 Proposed Approach

To investigate the influence of offline learning in online JIT-SDP scenarios we propose a
novel approach called Batch Oversampling Rate Boosting (BORB), which consists of an
adaptation of Oversampling Rate Boosting (ORB) (Cabral et al. 2019). Our RQs require us
to isolate the effects of offline vs online learning as much as possible, so that we can analyze
the potential benefit of offline learning without being affected by other mechanisms that one
may design to further improve predictive performance of the state-of-the-art. Therefore, such
adaptation was designed to be as similar as possible to the ORB approach, but using core
offline learning mechanisms instead of online ones.

BORB is an offline learning algorithm which periodically rebuilds its JIT-SDP models
incorporating newly labeled training examples. This is achieved by updating the training set
with the most recently labeled examples. The updated training set, containing all training
examples received so far, is then used as a batch for retraining the JIT-SDP model from
scratch based on an offline learning algorithm. Different from the offline learning approaches
presented in Section 2.1, such training process ensures that only training examples whose
labels are already available with respect to the dataset chronology can be used for training
(i.e., it takes the verification latency problem into account and follows the online JIT-SDP
scenario explained in Section 3).

Overall, BORB and ORB share the following similarities:
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• Both methods use resampling to deal with class imbalanced based on the same oversam-
pling rate boosting function (Equations 2 and 3).

• They are both capable of detecting when the classifier is performing badly based on the
rule involving ma and th explained in Section 3.3 and to react to it by adjusting the
resampling rate based on the above mentioned oversampling rate boosting function.

• They are both able to take into account verification latency through the waiting time
strategy from Cabral et al. (2019).

• They both ensure that the online scenario explained in Section 3.1 is respected. In partic-
ular, both of them ensure that only training examples that are already available at a given
point in time can be used for training at this point in time.

Their key differences are related to replacing the core online mechanisms of ORB by core
offline ones:

• Being an offline learning approach, BORB stores and can learn multiple times past data,
while ORB sees each training example only once.

• Being an offline learning approach, BORB collects the training examples into a training
set. As such, the order of examples within this set is not respected when training on them,
even though the online scenario explained in Section 3.1 is respected.

• When collecting new training examples over time, BORB is able to note if these examples
correspond to previously seen training examples whose label has changed due to a late
detection of a defect associated to them. Therefore, BORBcan replace the oldmislabelled
clean examples by the new corresponding defect-inducing ones. ORB is able to learn the
new defect-inducing example, but is unable to remove the old example which has already
been learned.

• BORB is periodically retrained to enable offline learning models to be used, whereas
ORB learns each training example separately.

Algorithm 2 presents BORB’s pseudocode. For each new incoming software change (x (t))
received at timestep t , the base learner cl f , if already trained, provides a class prediction (line
10). Note that cl f is not useful until τ contains at least one labeled software change from
each class (clean and defect-inducing). Before that, all provided predictions are assigned to
the clean class.

Different from online learning models, BORB stores all historical software changes in
X . As new class labels arrive (following the procedure described in Section 3 and using
waiting period w), they are immediately used to create training examples corresponding to
their respective software changes in X (line 15). These training examples are added to the
training set τ . If a given new defect-inducing class label corresponds to a software change
that was previously labeled as clean, the previous training example in τ is replaced by the
new one with the defect-inducing label. The base learner is periodically reset whenever the
modulo operation between the timestep (t) and the parameter rp is zero (line 16), and the
training set τ is used to retrain it (lines 16 to 27).

BORB tackles the class imbalance problem at two different moments: in the test phase by
picking a presumable adequate classifier prediction threshold (lines 5 to 9) and in the training
phase by means of an oversampling mechanism (lines 16 to 27). For the testing phase, BORB
considers that classifiers usually make predictions based on a prediction threshold θ . The
value of θ is typically set to 0.5. If the score given by the classifier is smaller than 0.5, class
0 is predicted. Otherwise, class 1 is predicted. However, this threshold can potentially be
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adjusted to help dealing with class imbalance. BORB does that in lines 5 to 9. In particular, c
(line 7) stores the prediction scores over the lastws software changes. The decision threshold
θ to be adopted by the base learner is a quantile in c corresponding to a hyperparameter
th. This hyperparameter represents the proportion of the predictions that is targeted to be
defect-inducing predictions (th). E.g., if th = 0.5, θ = median(c). As JIT-SDP is a class
imbalanced problem, the target proportion should normally be less than 0.5.

For the training phase, similar to ORB (Cabral et al. 2019), BORB deals with class
imbalance based on oversampling as follows. The oversampling rate is used to decidewhether
and by how much to oversample examples of a given class for training the base learner.
The oversampling rate is adjusted based on the predictions given to the most recent test
software changes. This enables adjustments on the base learners without having to wait for
the labels of these software changes. In particular, a proportion ma of predictions given to
the defect-inducing class over the most recent ws software changes is determined (line 23).
This proportion is compared to the same hyperparameter th used in the test phase. If ma
indicates that BORB is predicting the defect-inducing class more/less often than the target
proportion th, we need to oversample the clean/defect-inducing class, so that BORB focuses
more on learning how to identify examples of this class. The idea is that if S (i.e., a sample
of the training set) is skewed towards the defect-inducing class, the classifier should also
incorporate this skewness in its predictions.

The iterations from lines 20 to 26 are responsible for updating the base learner based on the
oversampling rate. The function skewedSample (line 21) retrieves the sample S containing
n training examples from τ , based on the oversampling rate, which is determined according
to the factors ob f0 and ob f1, as detailed in Algorithm 3. Therefore, many training iterations
will be performed on different training sets S in order to make the base learner converge to
a skew respecting th. The idea is that if ma (line 23) gets more distant from th, the ob f s are
adjusted so that S contains the necessary class imbalance tomake the base learner accumulate
new biased information such that at the last training iterations ma approaches th.

As an illustrative example of the impact of skewedSample function, consider using
a Multilayer Perceptron (MLP) as a base learner and th = 0.4 (i.e., classes proportions
(0.6:0.4)). If in the first epoch of the MLP the base learner average prediction for the last ws

test examples is 0.7, th = 0.4 and ma = 0.7 will be used to compute ob f0 and ob f1. The
factors ob f0 and ob f1 will result in a new sample S containing training examples with the
class proportions ( ob f0

ob f0+ob f1
: 1− ob f0

ob f0+ob f1
), which will then be used for the second training

epoch. Since in the first training epochma > th, in the second training epoch the proportion
of examples from class 0 will be larger than the proportion of examples of class 1 (i.e., the
oversampling rate for class 0 will be boosted). Eventually, repeating this process for many
epochs will lead to the base learner’s average predictions to be close to the target th.

As in ORB, Equations 2 and 3 (Cabral et al. 2019) compute ob f0 and ob f1 (lines 24 and 25
of Alg. 1), respectively. Figure 1 presents the behaviour of these equations. Figure 1 a) shows
the ob f0 and ob f1 curves generated by the parameters (th = 0.4, l0 = 5, l1 = 12,m = 1000
and ma ∈ 0..1) while in Fig. 1 b) the parameters l0 = 9 and m = 10. Due to different values
for parameter m, in Fig. 1 a), when ma ≈ th, ob f0 and ob f1 are less impacted than in Fig. 1
b). As in JIT-SDP the class 0 (clean class) is usually the majority class, it is advisable to use
ob f upper limits values (l0) lower than the ones for defect-inducing class (l1).

We investigated BORB for both WP and CP learning, respecting the online scenario
introduced in Section 3. For WP learning, the JIT-SDP model is trained with data from
the target project only. For CP learning, the JIT-SDP model is trained both with data from
the target project (WP data) and from all other available projects (CP data). Hence, for CP
learning, BORB model is trained with both CP and WP data together similar to the All-in-
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Algorithm 3 skewedSample function
Input: n - the number of examples in the training set S, ob f0 and ob f1 - the absolute values for computing
the desired proportions of clean and defect-inducing examples in S, τ(lab)
S ← ∅
for i ← 0 to n do

r = rand(0, ob f0 + ob f1) 
 r is a random number between 0 and ob f0 + 0b f1
if r < ob f0 then

S ← S ∪ pickRandom(τ, 0) 
 S is incremented with a random example of the clean class from τ

else
S ← S ∪ pickRandom(τ, 1) 
 S is incremented with a random example of the defect-inducing class

from τ

end if
end for

Return: S

One approach from Tabassum et al. (2020, 2022). This means that any benefits of CP data
mentioned in this study refer to the benefits obtained from combining both CP and WP data.
This is reasonable in online scenarios, as both CP and WP data become available over time
during the course of a project (Tabassum et al. 2020).

5 Datasets

Wehave used ten open source datasets extracted fromopen sourceGitHub repositories, which
were made available by Cabral et al. (2019) at https://zenodo.org/record/2594681. Table 1
shows details about these datasets. All datasets were extracted based on CommitGuru (Rosen
et al. 2015). The change metrics include 14 metrics (input features) that can be divided into
five groups: i) diffusion of the change, including input features NS (number of modified
subsystems), ND (number of modified directories), NF (number of modified files), Entropy
(distribution of modified code across each file), ii) size of the change, including input features
LA (lines of code added), LD (lines of code deleted), LT lines of code in a file before the
change), iii) purpose of the change, including input features FIX (whether or not the change is
a defect fix), iv) history of the change, including input features NDEV (number of developers
that changed the modified files), AGE (average time interval between the last and the current
change), NUC (number of unique changes to the modified files) and v) experience of the
developer that made the change, including input features EXP (developer experience), REXP

Fig. 1 Oversampling rate boosting function (Cabral et al. 2019) for two different set of parameters. The x-axis
is the average of the last Ws test examples while the y-axis depicts the resulting oversampling boosting factor
(obf) according to Equations 2 and 3
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Table 1 An overview of the projects (adapted from Tabassum et al. (2020))

Project Total
Changes

#Defect-
inducing
Changes

%Defect-
inducing
Changes

Median
Defect
Discovery
Delay
(days)

Time Period Main
Language

Tomcat 18960 5223 27.55 200.58 27-03-2006 - 06-12-2017 Java

JGroups 18434 3185 17.28 117.12 09-09-2003 - 05-12-2017 Java

Spring-Int 8750 2333 26.66 415.12 14-11-2007 - 16-01-2018 Java

Camel 30739 6360 20.69 27.73 19-03-2007 - 07-12-2017 Java

Brackets 17572 4143 23.58 14.69 07-12-2011 - 07-12-2017 JavaScript

Nova 48989 12430 25.37 88.56 28-05-2010 - 28-01-2018 Python

Fabric8 13483 2736 20.29 36.57 13-04-2011 - 06-12-2017 Java

Neutron 19689 4689 23.82 82.51 01-01-2011 - 27-12-2017 Python

Npm 7920 1407 17.77 111.51 29-09-2009 - 28-11-2017 JavaScript

Broadleaf- 15010 2531 16.86 42.58 19-12-2008 - 21-12-2017 Java

Commerce

(recent developer experience), SEXP (developer experience on a subsystem). These software
change metrics have been shown to be adequate for JIT-SDP in previous work (Kamei et al.
2012) and have been adopted in previous online JIT-SDP work (Cabral et al. 2019; Tabassum
et al. 2020, 2022).

6 Experimental Setup

This section explains the experimental setup for answering the RQs introduced in Section 1.
To perform the analysis for RQ1, we compare the predictive performances of BORB-WP and
ORB-WP (Cabral et al. 2019) approaches; for RQ2, we compare the predictive performances
of BORB-WP, BORB-CP and ORB-CP (Tabassum et al. 2020, 2022) approaches; and for
RQ3, runtimes for BORB-WP, BORB-CP and ORB-CP are compared. Our analyses are
based on various online and offline base learners, as listed in Section 6.1. For RQ1 and RQ2,
we compared all approaches against a dummy classifier that predicts defect-inducing or clean
uniformly at random. This is because being able to outperform a dummy classifier in terms of
overall predictive performance means the JIT-SDP model was able to learn relevant JIT-SDP
knowledge.

Given a certain project P , we are interested in using JIT-SDP to predict the software
changes of P as defect-inducing or clean. Such predictions should respect chronological
order according to the scenario explained in Section 3. Chronology is determined based on
author timestamp, as recommended in Flint (2021).

When creating a predictive model for a given project P , WP approaches make use of only
WP data from P for training. CP approaches make use of data from all projects for training,
including P . The training procedure of all approaches at a given timestamp t ensures that only
training examples that have already been labeled by timestamp t based on their chronology
and waiting period are used for training, as explained in Section 3.1 (Cabral et al. 2019).
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Waiting period of 90 is used as in previous studies (Cabral et al. 2019; Tabassum et al. 2020)
for open source data.

All approaches have been executed 30 times on each data set. A replication package can be
found in the JIT-SDP-NN repository, https://github.com/dinaldoap/jit-sdp-nn. The datasets
generated during and/or analysed during the current study are available in the JIT-SDP-DATA
repository, https://github.com/dinaldoap/jit-sdp-data.

6.1 Base Learners

This section lists all the base learners that are investigated with the BORB and ORB
approaches in this study. Altogether, our base learners were selected so as to: (1) cover a
variety of different types of learning approaches for both offline and online learning (function-
based, probabilistic and tree-based), as we wish to check what kind of online/offline model is
most beneficial for JIT-SDP, (2) make the evaluation fair in the sense that we will select both
online and offline approaches that are expected to achieve good results (in particular including
Logistic Regression and Iterative RandomForest for fairness towards offline learning (Kamei
et al. 2012; Chen et al. 2018; Li et al. 2020) and Oza Bagging of Hoeffding Trees and Naive
Bayes for fairness towards online learning (Tabassum et al. 2020; Cabral et al. 2019; Turhan
et al. 2009)) and (3) include the use of base learners that are the same as much as possible
between online and offline learning (Logistic Regression and Multilayer Perceptron).

Overall, the following base learners were adopted by the ORB and BORB approaches in
our experiments:

• ORB: Logistic Regression, Multilayer Perceptron, Naive Bayes and Oza Bagging of
Hoeffding Trees.

• BORB: Logistic Regression, Multilayer Perceptron, Naive Bayes, Iterative Random For-
est and Iterative Hoeffding Forest.

6.1.1 Offline Base Learners

• Logistic Regression (LR): Logistic regression is a well known offline linear classifier
(Kleinbaum et al. 2002). Its training requires iterating through all the training data mul-
tiple times (epochs), and it has been successfully used for offline JIT-SDP in previous
work (Kamei et al. 2012; Chen et al. 2018). LR approaches can be affected by multi-
collinearity. To cope with that, the LR approach used in our experiments is regularized
with elastic net, and the overall effect of elastic net is grouping correlated coefficients
and selecting the groups that are relevant for the model.

• Multilayer Perceptron (MLP): MLP is an Artificial Neural Network that consists of three
layers of interconnected nodes (Gardner and Dorling 1998), being able to model any
function. Training also requires iterating through all the training data multiple times
(epochs) based on the backpropagation algorithm. It has been included here for being a
universal approximator, able tomodel any function.MLP approaches can also be affected
bymulti-collinearity. To dealwith that, theMLPadopted in our experiments is regularized
with dropout. This avoids collinearity by disabling some input features on each step of
backpropagation algorithm.

• Iterative Random Forest (IRF): IRF consists of an ensemble of CART decision trees
(Breiman et al. 1984). It is similar to a Random Forest (Breiman 2001), but the decision
trees are trained with different subsets of the training data to encourage more diversity. It
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was included here as previous work has shown that diversity is important in ensembles
for JIT-SDP (Li et al. 2020).

• Iterative Hoeffding Forest (IHF): IHF is the same approach as IRF, but using online
Hoeffding trees as the base learners instead ofCARTs.As the iterative ensemble approach
itself is an offline learning approach, we classify this approach as an offline learning
approach. We have adopted it with BORB in this study so that we can evaluate the
benefits of the approach BORB itself compared with ORB, without being affected by the
benefits of the offline decision tree over the online one. This evaluation can be conducted
by comparing BORB-IHF against ORB-OHT.

6.1.2 Online Base Learners

• Logistic Regression (LR): despite Logistic regression being an offline algorithm, it is
possible to set the number of epochs to one so that the algorithm becomes online. The
downside of using logistic regression as an online learning algorithm is that the resulting
model is likely to become weaker, i.e., to have poorer predictive performance.

• Multilayer Perceptron (MLP): similar to LR, it is also possible to set the number of epochs
for training MLPs to one, so that MLPs become online learning models. The downside
is similar to that of LR, i.e., its predictive performance may considerably reduce when a
single epoch is used.

• Naïve Bayes (NB): NB is a well known Bayesian classifier that can be trained through
one pass over the training data. This approach is inherently online, as the equations
used to update the model parameters can process each training example separately. It is
included here because it has been successfully used in component-based software defect
prediction (Turhan et al. 2009).

• OzaBagging of Hoeffding Trees (OHT): OzaBagging is an online version of the Bagging
ensemble learning algorithm. It requires a single pass through the training data to learn
it. It is typically run with Hoeffding Trees, which are online decision trees suitable for
large complex datasets (Domingos and Hulten 2000). Different from LR and MLP, it is
not possible to make offline decision trees into online approaches by changing any of
their hyperparameter values. Hoeffding Trees are a specific type of decision trees that can
learn through a single pass through the training data. Due to its theoretical foundations
on the Hoeffding bound, Hoeffding trees are able to produce online models with strong
performance guarantees, reasonwhy this approach is being adopted in this and in previous
JIT-SDP work (Tabassum et al. 2020; Cabral et al. 2019; Tabassum et al. 2022).

6.2 PerformanceMetrics

The metrics adopted for measuring predictive performance are Geometric Mean (G-Mean)
of Recall0 and Recall1, where Recall0 is the recall on the clean class and Recall1 is the recall
on the defect-inducing class. Different from biased metrics such as Matthews Correlation
Coefficient, F1-Score, Accuracy, Precision and G-Mean of Precision and Recall, the G-Mean
of Recall0 and Recall1 adopted in our work is a metric that is not biased by class imbalance
(Zhu 2020), being suitable for class imbalanced problems such as JIT-SDP. For simplicity, we
will refer to this metric simply as G-Mean from here onward. We have also chosen G-Mean
instead of AUC because AUC incorporates several threshold values that are not meaningful
in practice and makes comparison between approaches difficult, hence discouraged in the
context of software defect prediction (Song et al. 2018).
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While computing the metrics in a prequential way, a fading factor is used to track changes
in predictive performance over time as recommended for problems that may suffer concept
drift (Gama 2013). As mentioned in our previous study (Tabassum et al. 2022), if the current
example belongs to class i , Recall(t)i = θRecall(t−1)

i +(1−θ)1ŷ=i , where i is zero or one, t is
the current time step, θ is a fading factor set to 0.99 as in Cabral et al. (2019), ŷ is the predicted
class, and1ŷ=i is the indicator function, which evaluates to one if ŷ = i and to zero otherwise.

If the current example does not belong to class i , Recall(t)i = Recall(t−1)
i .Also,G-Mean(t) =

√

Recall(t)0 × Recall(t)1 . It is worth noting that Recall0 = 1− FalseAlarmRate, i.e., false
alarms are taken into account through Recall0 and G-Mean.

The performance metric used to measure the computational cost is the amount of time in
seconds used to train and test the JIT-SDP models.

6.3 Statistical Tests and Effect Size

Scott-Knott procedure (Mittas and Angelis 2012) is used to compare the performance
obtained by all BORB and ORB approaches across datasets, ranking the models and separat-
ing them into subgroups. The use of statistical tests across datasets has been recommended
by Demsar to reduce problems with multiple comparisons (Demšar 2006). Each group of
observations compared through the test corresponds to one learning approach run across all
projects (data streams) as illustrated in points (1) and (2) of Fig. 2. Therefore, given that
we use 19 approaches (including the dummy approach) and 10 projects in our experiments,

Fig. 2 Overview of Experiments. (1) Training and testing of a given learning model Mi on each Project Pj ’s
data stream, where 1 ≤ j ≤ N and N = 10 is the number of projects. (2) Group of observations corresponding
to learning approachMi created for the Scott-Knott.BA12 test. (3) A12 effect sizes computed against a dummy
approach
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Table 2 Average G-Mean for BORB-WP

Dataset BORB-NB-WP BORB-MLP-WP BORB-LR-WP BORB-IRF-WP BORB-IHF-WP

Tomcat 29.87(0.57) [-b] 69.08(0.23) [b] 69.58(0.04) [b] 68.54(0.48) [b] 66.55(0.32) [b]

JGroups 52.4(0.41) [b] 64.81(0.22) [b] 62.78(0.08) [b] 63.2(0.31) [b] 60.88(0.41) [b]

Spring-Int 41.18(0.83) [-b] 64.27(0.46) [b] 65.55(0.14) [b] 63.84(1.2) [b] 49.94(1.57) [s]

Camel 48.29(0.19) [-b] 69.97(0.13) [b] 70.42(0.06) [b] 69.91(0.16) [b] 65.18(0.17) [b]

Brackets 61.21(0.08) [b] 72.09(0.1) [b] 71.32(0.05) [b] 70.98(0.09) [b] 66.39(0.37) [b]

Nova 62.31(0.52) [b] 80.62(0.07) [b] 79.79(0.03) [b] 79.9(0.11) [b] 78.74(0.07) [b]

Fabric8 55.32(0.22) [b] 62.8(0.53) [b] 64.46(0.08) [b] 65.3(0.48) [b] 63.75(0.3) [b]

Neutron 35.74(0.19) [-b] 83.39(0.1) [b] 82.12(0.03) [b] 81.54(0.24) [b] 82.14(0.16) [b]

Npm 44.6(0.22) [-b] 64.45(0.42) [b] 65.89(0.11) [b] 62.38(1) [b] 58.21(0.72) [b]

Broadleaf 54.5(0.25) [b] 70.73(0.21) [b] 70.13(0.1) [b] 68.77(0.73) [b] 65.57(0.26) [b]

there are 19 groups with 10 observations each in the test. As recommended by Menzies et al.
(2017), this test uses non-parametric bootstrap sampling. This makes this a non-parametric
test which is adequate for comparison across data sets (Demšar 2006). Scott-Knott.A12 is
used both to compare predictive performance in terms of G-Mean and computational cost in
Seconds, but for the computation cost we remove the dummy approach, leading to 18 groups.
This is because a comparison of computational cost against the dummy approach would be
meaningless, as this approach does not spend any time on learning (there is no learning) and
provides extremely fast predictions (it simply predicts randomly, rather than making pre-
dictions based on a predictive model). To rule out insignificant differences in performance,
this test uses A12 effect size (Vargha and Delaney 2000). Approaches are placed in separate
groups by Scott-Knott test only if the A12 size is significant (Menzies et al. 2017). We will
refer to Scott-Knott based on Bootstrap sampling and A12 as Scott-Knott.BA12 in this paper.
Smaller Scott-Knott.BA12 rankings are better rankings.

We also report theA12 effect sizes against the dummyapproach for each learning approach
on each dataset individually to support the analysis of predictive performance, as illustrated
in Point (3) of Fig. 2. Symbols [*], [s], [m] and [b] represent insignificant (A12< 0.56), small
(A12≥0.56),medium (A12≥0.64) and large (A12≥0.71)A12effect size. Presence/absence

Table 3 Average G-Mean for ORB-WP

Dataset ORB-OHT-WP ORB-NB-WP ORB-MLP-WP ORB-LR-WP

Tomcat 64.27(0.41) [b] 48.33(6.77) [*] 49.21(4.92) [-*] 46.68(0.59) [-b]

JGroups 60.89(0.48) [b] 55.47(1.11) [b] 46.6(4.85) [-b] 47.21(0.55) [-b]

Spring-Int 41.08(0.7) [-b] 50.24(1.92) [m] 39.71(8.32) [-b] 37.82(0.93) [-b]

Camel 53.17(0.8) [b] 51.9(1.86) [b] 48.64(4.47) [-s] 48.27(0.37) [-b]

Brackets 67.81(0.36) [b] 61.39(1.9) [b] 42.42(12.67) [-m] 44.7(0.57) [-b]

Nova 77.86(0.2) [b] 68.63(1.24) [b] 43.5(12.56) [-b] 46.31(0.32) [-b]

Fabric8 63.27(0.71) [b] 56.68(1.67) [b] 40.6(11.88) [-b] 42.92(0.88) [-b]

Neutron 77.03(0.47) [b] 39.99(5.4) [-b] 49.14(11.45) [-*] 49.52(0.51) [-b]

Npm 57.45(0.83) [b] 45.45(1.8) [-b] 48.77(5.02) [-s] 49.9(0.66) [*]

Broadleaf 64.25(0.83) [b] 55.7(2.32) [b] 46.61(5.92) [-b] 46.76(0.53) [-b]

123



Empirical Software Engineering

Table 4 Average G-Mean for BORB-CP

Dataset BORB-NB-CP BORB-MLP-CP BORB-LR-CP BORB-IRF-CP BORB-IHF-CP

Tomcat 46.84(0.67) [-b] 68.76(0.18) [b] 69.59(0.14) [b] 69.11(0.12) [b] 65.38(0.25) [b]

JGroups 43.83(0.62) [-b] 64.63(0.25) [b] 63.11(0.06) [b] 63.28(0.34) [b] 60.93(0.32) [b]

Spring-Int 44.13(1.39) [-b] 72.38(0.17) [b] 72.32(0.05) [b] 72.12(0.13) [b] 70.14(0.4) [b]

Camel 46.57(0.57) [-b] 70.42(0.11) [b] 69.96(0.03) [b] 69.51(0.07) [b] 66.74(0.19) [b]

Brackets 55.86(1.31) [b] 77.57(0.1) [b] 78.15(0.04) [b] 77.64(0.1) [b] 72.11(0.2) [b]

Nova 54.62(1.11) [b] 81.5(0.06) [b] 81.56(0.02) [b] 81.46(0.05) [b] 77.87(0.08) [b]

Fabric8 50.35(1.24) [s] 68.34(0.15) [b] 66.76(0.07) [b] 68.47(0.14) [b] 65.21(0.29) [b]

Neutron 70.82(1.77) [b] 82.8(0.08) [b] 83.49(0.07) [b] 83.34(0.07) [b] 80.77(0.19) [b]

Npm 48.29(1.37) [-b] 66.77(0.39) [b] 67.37(0.1) [b] 66.14(0.17) [b] 62.58(0.27) [b]

Broadleaf 50.02(0.99) [*] 71.26(0.14) [b] 71.54(0.05) [b] 71.04(0.12) [b] 70.38(0.25) [b]

of the sign “-” in the effect size means that the corresponding approach was worse/better than
the corresponding WP approach.

6.4 Hyperparameter Tuning

Random search is used for hyperparameter tuning as suggested in Bergstra and Bengio
(2012); Mantovani et al. (2015), which show that random search performed similar or better
compared to grid search for hyperparameter optimisation. For each hyperparameter of each
configuration of a classifier, a random value is chosen regarding the probability distribution
specified (either uniform or log-uniform, depending on the hyperparameter being tuned).
ORB and BORB (meta-models) are associated with OHT, IHF, LR, MLP, NB and IRF (base
learners). So, the overall configuration of the classifier includes the BORB, ORB and the
base learner’s hyperparameters. The first 3000 training examples from each data stream
are used for hyperparameter tuning for both WP and CP approaches. For BORB and ORB

Table 5 Average G-Mean for ORB-CP

Dataset ORB-OHT-CP ORB-NB-CP ORB-MLP-CP ORB-LR-CP

Tomcat 66.66(0.28) [b] 49.94(2.41) [-*] 48.16(3.87) [-m] 49.63(0.69) [-b]

JGroups 60.95(0.44) [b] 52.07(1.78) [b] 46.79(4.38) [-b] 47.6(0.61) [-b]

Spring-Int 70.36(0.61) [b] 52.2(3.87) [b] 48.3(4.36) [-s] 49.37(1.04) [-m]

Camel 69(0.25) [b] 55.66(1.53) [b] 47.54(5.64) [-b] 49.26(0.29) [-b]

Brackets 75.94(0.37) [b] 64.15(3.88) [b] 49.38(7.4) [-*] 48.55(0.43) [-b]

Nova 79.9(0.21) [b] 69.52(4.62) [b] 48.95(10.99) [-s] 49.49(0.23) [-b]

Fabric8 69.28(0.44) [b] 54.87(3.88) [b] 48.55(3.1) [-m] 49.77(1.02) [-s]

Neutron 81.94(0.25) [b] 79.04(3.35) [b] 51.53(8.11) [s] 49.55(0.43) [-b]

Npm 65.18(0.6) [b] 43.32(4.03) [-b] 47.41(3.76) [-b] 48.31(0.98) [-b]

Broadleaf 71.41(0.34) [b] 52.84(5.57) [b] 50.36(4.05) [-s] 48.24(0.88) [-b]

Standard deviations are shown in brackets. Symbols [*], [s], [m] and [b] represent insignificant, small, medium
and large A12 effect size against the Dummy approach (which always gets 50%G-Mean). Presence/absence of
the sign “-” in the effect size means that the corresponding approach was worse/better than the corresponding
Dummy approach
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Table 6 G-Mean ranking of approaches based on the Scott-Knott.BA12 test

Ranking Approach

1 BORB-MLP-CP BORB-LR-CP BORB-IRF-CP

2 ORB-OHT-CP BORB-MLP-WP BORB-LR-WP BORB-IRF-WP BORB-IHF-CP

3 BORB-IHF-WP

4 ORB-OHT-WP

5 ORB-NB-CP

6 ORB-NB-WP

7 Dummy BORB-NB-WP ORB-LR-CP BORB-NB-CP ORB-MLP-CP

8 ORB-LR-WP ORB-MLP-WP

BORB approaches are shown in yellow, the Dummy approach is shown in red, and the ORB approaches are
shown in white background. Scott-Knott.BA12 was run for all BORB and ORB-basedWP and CP approaches
together. The groups’ rankings retrieved by Scott-Knott.BA12 are shown in the ranking rows, with smaller
numbers indicating better rankings

approaches with each dataset, base learner and hyperparameter configuration, 3 executions
have been performed for tuning purposes. For each dataset and classifier, 128 configurations
were evaluated. More details of the investigated hyperparameter values are given in Table 1
in the supplementary material. It is worth noting that the application of log as a preprocessing
step is considered as a hyperparameter choice when using MLP and LR as base models, as
they can be affected by skewed distributions.

7 Experimental Results

Tables 2, 3, 4 and 5 present the average G-Mean with standard deviation and A12 effect size
against the dummy classifier for the BORB andORB approaches with different base learners,
using WP and CP data. Table 6 presents the corresponding Scott-Knott.BA12 ranking of
BORB and ORB approaches with different base learners. Tables 7, 8, 9 and 10 present the
average runtime. Table 11 presents the corresponding Scott-Knott.BA12 ranking. Section 7.1
focuses on the comparison between WP approaches to answer RQ1; Section 7.2 focuses on
the comparison between CP and WP approaches to answer RQ2; and Section 7.3 focuses on
the computational cost analysis of each approach to answer RQ3.

Table 7 Average run time in seconds for BORB-WP

Dataset BORB-IHF-WP BORB-IRF-WP BORB-LR-WP BORB-MLP-WP BORB-NB-WP

Tomcat 910.58 454.93 315 242.39 332.7

JGroups 715.85 852.89 294.09 660.12 100.01

Spring-Int 131 234.67 31.65 464.56 27.38

Camel 1716.91 1878.08 1409.7 1246.01 91.71

Brackets 220.21 137.98 185.63 305.66 301.64

Nova 1891.89 1811.11 2497.66 1228.41 136.09

Fabric8 516.39 671.02 139.03 92.02 209.79

Neutron 1699.08 1068.19 784.8 652.13 353.53

Npm 583.67 188.23 134.03 409.15 111.06

Broadleaf 710.65 465.07 214.11 260.27 243.71
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Table 8 Average run time in seconds for ORB-WP

Dataset ORB-LR-WP ORB-MLP-WP ORB-NB-WP ORB-OHT-WP

Tomcat 61.94 83.7 52.48 178.4

JGroups 43.68 52.73 34.36 88.44

Spring-Int 33.66 38.77 25.82 124.14

Camel 148.73 170.75 128.25 489.43

Brackets 74.29 80.32 58.32 249.94

Nova 274.3 315.55 296.86 851

Fabric8 51.89 54.4 36.05 193.94

Neutron 101.13 110.94 71.44 167.34

Npm 26.97 30.93 21.9 47.63

Broadleaf 53.15 64.34 59.42 227.93

Table 9 Average run time in seconds for BORB-CP

Dataset BORB-IHF-CP BORB-IRF-CP BORB-LR-CP BORB-MLP-CP BORB-NB-CP

Tomcat 1092.86 1870.01 1146.12 3132.75 227.69

JGroups 728.93 1087.48 415.02 823.94 130.83

Spring-Int 1266.79 696.39 702.49 1109.44 86.17

Camel 3377.94 3280.28 3631.75 5758.18 549.3

Brackets 2445.16 1849.88 1994.94 3211.3 1396.35

Nova 6895.04 5650.16 5985.78 9761.95 679.11

Fabric8 788.67 1568.29 1356.3 2592.88 189.01

Neutron 1231.14 2496.1 1678.75 4460.94 896.24

Npm 1107.54 272.53 908.56 278.32 103.25

Broadleaf 852.48 1710.54 1929.85 3027.45 223.94

Table 10 Average run time in seconds for ORB-CP

Dataset ORB-LR-CP ORB-MLP-CP ORB-NB-CP ORB-OHT-CP

Tomcat 262.85 394.22 134.9 1646.8

JGroups 206.96 331.56 83.73 710.85

Spring-Int 205.72 362.32 85.34 523.09

Camel 364.98 499.95 240.91 964.85

Brackets 217.11 361.34 137.68 1275.75

Nova 578.34 744.04 494.33 2986.95

Fabric8 207.88 336.39 105.32 692.34

Neutron 267.73 425.42 177.64 1402.65

Npm 175.24 296.97 68.26 617.2

Broadleaf 239.91 407.53 144.37 823.43
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Table 11 Runtime ranking of approaches based on the Scott-Knott test

RankingApproach

1 ORB-NB-WP ORB-LR-WP

2 ORB-MLP-WP

3 ORB-NB-CP

4 ORB-OHT-WP BORB-NB-WP

5 BORB-NB-CP ORB-LR-CP

6 BORB-LR-WP ORB-MLP-CP BORB-MLP-WP

7 BORB-IRF-WP

8 BORB-IHF-WP

9 ORB-OHT-CP

10 BORB-IHF-CP BORB-LR-CP BORB-IRF-CP

11 BORB-MLP-CP

The BORB approaches are shown in yellow, and the ORB approaches are shown in white background

7.1 RQ1: Can offline learning help to improve predictive performance in onlineWP
JIT-SDP scenarios?Which base learners usually perform best?

To answer RQ1, we compared the predictive performances of offline (BORB) and online
(ORB) approaches with different base learners for WP data. As existing online WP JIT-SDP
studies have never explored any other base learners except OHT, it is interesting to know
whether using different base learners would improve the predictive performance not only of
offine WP approaches, but also of online WP approaches.

From Table 6, we can see that offline WP approaches in general outperformed online
WP approaches, being better ranked. In particular, BORB-MLP-WP, BORB-LR-WP and
BORB-IRF-WP achieved similar predictive performance to each other, and better than the
other BORB-WP and ORB-WP approaches. However, interestingly, when using the exact
same base learner, NB for ORB and BORB, BORB-NB-WP did not outperform ORB-NB-
WP. This suggests that BORB’s adaptive resampling mechanism is not necessarily better
than ORB’s adaptive resampling mechanism, and that BORB’s ability to enable offline base
learners to be adopted is the likely reason for the generally better results obtained by the
offline WP approaches.

When comparing BORB-MLP-WP against ORB-MLP-WP and BORB-LR-WP against
ORB-LR-WP, it is thus clear that the single epoch used by the online base learners MLP
and LR is the likely reason for the poorer predictive performance results obtained by ORB,
rather than the different resamplingmechanisms used by ORB and BORB. Such single epoch
resulted in similar or worse predictive performance even than the dummy classifier, which is
a very poor result.

When comparingBORB-IHF-WP andBORB-IRF-WP against ORB-OHT-WP, the offline
IHF and IRF are also the likely the reason for the better predictive performance achieved by
BORB. Nevertheless, the ranking of these tree-based ORB and BORB approaches is not far
from each other – BORB-IHF-WP and BORB-IRF-WP were ranked second and ORB-OHT-
WP was ranked third. This confirms our hypothesis mentioned in Section 1 in that OHT may
be better suited for achieving good predictive performance in online JIT-SDP learning than
MLP and LR.
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Fig. 3 G-Mean for all datasets through time for best ranked BORB and ORB approaches with WP data
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When comparing the offline approach BORB-MLP-WP (ranked 2nd when consider-
ing all approaches investigated in this paper) against the online approach ORB-OHT-WP
(ranked 3rd), we can see from Tables 2 and 3 that the absolute improvements in predictive
performance obtained by BORB-MLP-WP varied from 2.76% (for Nova) to 23.19% (for
Spring-Integration), varying from small to moderate improvements and with median of with
a median of 6.36%. Both these approaches performed better than the dummy approach with
large effect size [b], except for Spring-Integration, where ORB-OHT-WP performed worse
than the dummy with large effect size [-b].

FromFig. 3, it is visible that the best 3 BORB-WP approaches (MLP, LR and IRF as shown
in blue, orange and green, respectively) performed on average very similar to each other, and
comparatively better than the best ORB-WP approach (OHT as shown in black). Previous
work Tabassum et al. (2020) showed that WP approaches can suffer with low performance
in the very beginning of a project, when there is lack of sufficient data. This initial period
of low performance can be seen in most datasets for ORB-WP. BORB-WP approaches also
suffered in such initial period, but was sometimes able to improve the G-Mean during the
initial period (e.g., for Npm and Neutron).

Apart from the initial period, some other large performance drops can be observed in
Camel, Npm and Spring-Integration (Fig. 3c, h and i) for ORB-WP. For these datasets, all
3 BORB-WP approaches managed to maintain stable performance during the drop periods.
Hence, BORB-WP with MLP, LR and IRF are the best options compared to ORB-WP when
considering the predictive performance.

It is worth noting that, if JIT-SDP often had concept drifts affecting the relationship
between input features and the label (clean or defect inducing), retraining with all historical
data as done by BORB-MLP-WP, BORB-LR-WP and BORB-IRF-WPwould likely be detri-
mental to the predictive performance. This is because different portions of the training set
would correspond to different relationships. The models would thus try to learn a mix of rela-
tionships, being unable to learn any of the individual relationships well enough. However, we
have found in previous work Tabassum et al. (2022); Cabral and Minku (2022) that, despite
sometimes happening, changes in such relationship are much less common than changes in
the values of the input features. Therefore, retraining with historical data multiple times may
offer some benefits, as shown in this section.

7.2 RQ2: How beneficial is CP data to improve predictive performance of offline
models compared to onlinemodels in online CP JIT-SDP scenarios?

Previous studies Tabassum et al. (2020, 2022) investigated the use of CP data for online JIT-
SDP and found that, with the use of CP data, online learners are exposed to more data and are
able to improve the predictive performance of the JIT-SDP model compared to using only
WP data. These studies also showed that CP data was helpful to maintain stable predictive
performance during the periods when the WPmodels typically suffered sudden performance
drops (Tabassum et al. 2022). From Section 7.1, we found that BORB’s offline learners
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outperformed ORB’s online learners with WP data. In particular, some offline models iterate
over the training data several times, simulating the existence of a larger data set. It is unknown
whether incorporating CP data with BORB would further improve predictive performance
for offline models. Moreover, no other base learners were explored for online CP JIT-SDP
except OHT. It is not known whether CP data would still be useful for JIT-SDP using other
online base learners. Hence, it is important to investigate the use of CP data not only for
offline models, but also for other online models than OHT.

To answer RQ2, we compare 4 approaches – ORB-WP, ORB-CP, BORB-WP and BORB-
CP. According to the Scott-Knott.A12 test shown in Table 6, BORB-CP with MLP, LR and
IRF are the best ranked approaches and outperformed all other BORB-WP, ORB-CP and
ORB-WP approaches. Even though BORB-IHF-CP is also a BORB-CP approach, it did not
rank best (instead it ranked second). Even though IHF is classified as an offline approach,
it uses online Hoeffding Trees as base learners (Section 6.1). It is possible that using online
Hoeffding Trees resulted into a weaker model for BORB.

When using the exact same base learner, NB, BORB-CP performed worse than ORB-
CP. This corroborates the results presented in Section 7.1, suggesting that BORB’s offline
resampling mechanism is not necessarily better than that of ORB, and that its ability to
enable the use of offline base learners is the likely reason for the typically better predictive
performance achieved by BORB-CP approaches.

To address RQ2, we compare BORB-CP against BORB-WP approaches.We can see from
Table 6 that BORB-MLP-CP (ranked first) outperformed BORB-MLP-WP (ranked second).
Similarly, BORB-LR-CP also outperformed BORB-LR-WP, BORB-IRF-CP outperformed
BORB-IRF-WP and BORB-IHF-CP outperformed BORB-IHF-WP. Only when using NB as
the base learner, BORB-CP did not outperform BORB-CP, but both of these approaches are
using online base models and performed worse than the dummy classifier, meaning that the
comparison between the two of them is not necessarily meaningful in this specific context.
Therefore, these results show that CP data is helpful to improve predictive performance when
using offline learning for JIT-SDP. However, themagnitude of the improvements in predictive
performance were not very large. For instance BORB-MLP-CP (ranked 1st) approach had
absolute improvements inG-Mean from 0.45% (for Camel) to 8.11% (for Spring-Integration)
with a median of 2.32% against BORB-MLP-WP (ranked 2nd), and led to slightly worse
G-Mean for some projects, as can be computed based on Tables 4 and 2.

We also compare ORB-CP against ORB-WP approaches. We can see from Table 6 that
ORB-OHT-CP outperforemd ORB-OHT-WP, ORB-NB-CP outperformed ORB-NB-WP,
ORB-LR-CP outperformedORB-LR-WP andORB-MLP-CP outperformedORB-MLP-WP.
Therefore, these results show that CP data is helpful to improve predictive performance when
using online learning for JIT-SDP, for all base learners investigated.When comparing the best
ORB-CP and ORB-WP approaches against each other (ORB-OHT-CP and ORB-OHT-WP),
we can see that the absolute improvements in G-Mean varied from 0.06% (for JGroups)
to 29.28% (for Spring-Integration) with a median of 6.59%. Therefore, CP data was more
helpful for improving predictive performance in the context of online learning than offline
learning.

Such larger increase in the competitiveness of the ORB approach when using CP data
is also reflected in the magnitude of the differences in performance of the best BORB-CP
approach (e.g., BORB-MLP-CP) against the best ORB-CP approach (ORB-OHT-CP). Even
though BORB-MLP-CP was ranked better than ORB-OHT-CP, the absolute improvements
in G-Mean varied from 0.86% (for Neutron) to 3.68% (for JGroups), being always small.
Moreover, for some projects, BORB-MLP-CP obtained slightly worse G-Mean than ORB-
OHT-CP. Therefore, even though BORB-CP can achieve better rank in terms of predictive
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Fig. 4 G-Mean for all datasets through time for best ranked BORB and ORB approaches with WP and CP
data

123



Empirical Software Engineering

performance than ORB-CP, the magnitudes of the differences in predictive performance are
not large.

It is alsoworth noting that all best rankedBORB-CPapproaches (BORB-MLP-CP,BORB-
LR-CP and BORB-IRF-CP) outperformed the dummy classifier with large [b] effect size,
for all projects. The best ranked ORB-CP approach (ORB-OHT-CP) also outperformed the
dummy classifier with large [b] effect size for all projects. Therefore, the weakness of ORB-
OHT-WP, which had performed worse than the dummy classifier for Spring-Integration, is
overcome when using CP data.

From Fig. 4, it is also visible that performance of best BORB-CP and ORB-CP were very
similar. BothBORB-CP andORB-CPwere able to achieve better predictive performance dur-
ing initial portion of the data streams than BORB-WP and ORB-WP. For Spring-Integration,
BORB-CP managed to provide stable performance by eliminating the drops suffered by
BORB-WP (Fig. 4i). These results suggest that CP data can be useful for both BORB and
ORB during initial period of the project, and to help reducing drops in predictive performance
over time for ORB.

RankingApproach

1 ORB-NB-WP ORB-LR-WP

2 ORB-MLP-WP

3 ORB-NB-CP

4 ORB-OHT-WP BORB-NB-WP

5 BORB-NB-CP ORB-LR-CP

6 BORB-LR-WP ORB-MLP-CP BORB-MLP-WP

7 BORB-IRF-WP

8 BORB-IHF-WP

9 ORB-OHT-CP

10 BORB-IHF-CP BORB-LR-CP BORB-IRF-CP

11 BORB-MLP-CP

7.3 RQ3: How high is the computational cost of offline learning in online scenarios
compared to that of online learningmodels?

An ideal JIT-SDP approach should not be computationally too expensive as such approaches
are not suitable to use in practice. Hence, while comparing between offline and online JIT-
SDP approaches, it is important to consider computational cost (run time) along with the
predictive performance. Typically, offline learners require multiple iterations of the training
data leading to higher computational cost compared to online learners. Offline CP approaches
could be even more computationally expensive than offline WP approaches as they require
retraining with larger amount of data from several projects. An analysis of computational
cost is required to understand how high these computational costs may be and whether they
are feasible for adoption in practice.

Figure 5a shows computational costs of BORB and ORB approaches for all datasets. We
can see that offline (BORB) approaches have higher computational cost than their online
(ORB) counterparts. This is also reflected by the Scott-Knott.BA12 tests shown in Table
11. For instance, ORB-NB-WP is better ranked than BORB-NB-WP, ORB-LR-WP is bet-
ter ranked than BORB-LR-WP, ORB-MLP-WP is better ranked than BORB-MLP-WP. In
particular, the better ranking obtained by ORB-NB-WP compared to BORB-NB-WP shows
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Fig. 5 Computational Cost Analysis for BORB and ORB

us that, even when using the exact same online base learner NB, ORB is still faster than
BORB. The same is valid when comparing ORB-NB-CP against BORB-NB-CP. This means
that the offline resampling and retraining process required by BORB is slower than ORB’s
procedures.

Moreover, the offline base learners MLP, LR, IRF and IHF adopted by BORB are also
themselves generally slower than their online base learner counterparts. This is revealed
by the magnitude of the differences in computational cost between BORB and ORB when
using these base models, which is usually larger than the differences between BORB-NB
and ORB-NB, as we can see from Fig. 5. For instance, the magnitude of the difference in
the computational cost between BORB-MLP-WP and ORB-MLP-WP is much larger than
that between BORB-NB-WP and ORB-NB-WP. This is expected, as offline learning models
frequently have to iterate through the dataset (or portions of it) several times to build the
predictive model, whereas the online base learners require only one pass through the training
examples.

We can also observe that all CP approaches have higher computational cost than their WP
counterparts (note the different scale of the x-axis in Fig. 5a and b). This is also confirmed

123



Empirical Software Engineering

by the Scott-Knott.BA12 results shown in Table 11. For instance, ORB-OHT-CP has higher
computational cost than ORB-OHT-WP, whereas BORB-IRF-WP has higher computational
cost than BORB-IRF-CP. This is also expected, as CP training sets are much larger than WP
ones.

Overall, this shows us that offline learning is in general slower than online learning, and
that CP learning is in general slower than WP learning. In practice, one would be interested
in adopting an approach that has low computational cost but high predictive performance.
Therefore, we compared the computational cost of the offline and onlinemodels that obtained
the best predictive performance.

The best offline approaches in terms of predictive performance are BORB-MLP-CP,
BORB-LR-CP and BORB-IRF-CP (Table 6). As they are all ranked the same in terms of pre-
dictive performance, we pick the one with lowest computational cost for this comparison. As
both BORB-LR-CP and BORB-IRF-CP have the same rank in terms of computational cost
but have better rank then BORB-MLP-CP (Table 11), we randomly pick BORB-LR-CP for
this analysis. The best online approach in terms of predictive performancewasORB-OHT-CP
(Table 6).

ORB-OHT-CP was ranked 9th in terms of computational cost, whereas BORB-LR-CP
was ranked 10th. The differences in computational cost varied from 179.4 seconds (≈ 3
minutes for Spring-Integration) to 2998.83 seconds (≈ 50 minutes for Nova) in total, as
we can see from Tables 10 and 9. In other words, ORB-OHT-CP was from 1.2 to 3.8 times
faster. Such differences in computational cost may be particularly relevant when conducting
experiments to choose an approach for adoption. To give an example, for the most time
consuming dataset Nova, ORB-OHT-CP required 2986.95 seconds (≈ 50 min) for a single
run. As such experiments require multiple runs to lead to more reliable conclusions, one may
opt for performing 30 runs, which would take ≈ 25 hours, just for this dataset. When using
BORB-LR-CP, this amount of timewas approximately the double. If a company is performing
experiments with their projects to double check which approach would be better in their
context, they would need to perform similar experiments with several of their past projects.
If they can narrow down the set of approaches investigated to include less computationally
expensive ones, this could lead to significant savings in computational costs. Moreover, in
the future, if one proposes an approach to automatically tune hyperparameters over time,

Table 12 Computational Cost in Seconds for ORB-OHT-CP and BORB-MLP-CP

Dataset Duration
(year)

ORB-
OHT-
CP

Runtime
Per Year
(ORB)

Runtime
Per Day
(ORB)

BORB-
LR-CP

Runtime
Per Year
(BORB)

Runtime Per
Day
(BORB)

Tomcat 6 1646.8 274.47 0.75 1146.12 191.02 0.52

JGroups 9.01 710.85 78.9 0.22 415.02 46.06 0.13

Spring-Int 10.7 523.09 48.89 0.13 702.49 65.65 0.18

Camel 6.65 964.85 145.09 0.4 3631.75 546.13 1.50

Brackets 14.25 1275.75 89.53 0.25 1994.94 140.00 0.38

Nova 6.99 2986.95 427.32 1.17 5985.78 856.33 2.35

Fabric8 7.68 692.34 90.15 0.25 1356.3 176.60 0.48

Neutron 8.17 1402.65 171.68 0.47 1678.75 205.48 0.56

Npm 10.18 617.2 60.63 0.17 908.56 89.25 0.24

Broadleaf 11.7 823.43 70.38 0.19 1929.85 164.94 0.45
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such approach may also rely on running multiple models concurrently, again resulting in a
non-negligible computational cost.

That said, even though these are considerable computational costs when conducting exper-
imental studies to run, tune and compare multiple approaches, when a given approach is
chosen for adoption and we consider the duration of the projects in practice (e.g., 10.7 years
for Spring-Integration and 6.99 years for Nova), this translates into a difference of only
≈ 0.05 to ≈ 1.18 seconds per day. Therefore, both BORB-LR-CP and ORB-OHT-CP are
feasible for adoption in practice in terms of their computational cost per day, as illustrated in
Table 12.

Even though ORB-OHT-CP is ranked worse in terms of predictive performance than
BORB-LR-CP, the magnitudes of the differences in predictive performance are not high. In
particular, BORB-LR-CP’s predictive performance was better with absolute differences in
G-Mean varying from 0.13% (for Broadleaf) to 2.93% (for Tomcat) with a median of just
1.96%. For one dataset, ORB-OHT-CP had higher G-Mean than BORB-LR-CP (Fabric8).

Similar results would have been achieved if we had compared BORB-MLP-CP against
ORB-OHT-CP, but the magnitude of the differences in predictive performance would have
been slightly larger (BORB-MLP-CP obtained absolute improvements of up to 3.68% over
ORB-OHT-CP as shown in Section 7.2), and so would the differences in computational
cost (ORB-OHT-CP runs up to 5.97 times faster than ORB-OHT-CP). BORB-MLP-CP’s
computational cost would also be feasible for adoption in practice, being up to 3.83 seconds
per day.

8 Threats to Validity

Internal validity: poor hyperparameter choices can affect the predictive performance of
machine learning models. To mitigate this threat, random search was performed on a set
of possible values for the hyperparameters of each approach and base learner based on the
first 3000 training examples of the data streams. It is worth noting that this leads to an
overlap between the examples involved in tuning and the examples used for testing in the
beginning of the data streams. Therefore, for all approaches, the predictive performance in
the beginning of the data streams is likely an overestimation of the predictive performance
that these approaches can achieve in practice. Verification latency was also taken into account
for all approaches respecting the chronology of the software changes. Besides, each of the
approaches with each dataset was executed 30 times tomitigate the threats to internal validity.

Construct validity: the evaluation metrics used in this study were G-Mean, Recall0 and
Recall1. These are widely used metrics appropriate for class imbalance learning (Wang et al.
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2018) and were computed prequentially considering a fading factor recommended in Gama
(2013), that allows the model to give more importance to the most recent data.

Statistical conclusion validity: Scott-Knott test with non-parametric bootstrap sampling
and A12 effect size were used to address conclusion validity. This avoids concluding that
approaches have differences even though the difference in the predictive performance is very
small which is presented by insignificant effect size.

External validity: this study used 10 open source projects fromGitHub repositories. These
projects are based on different programming languages and have different characteristics (e.g.
number of commits per day, starting date, number of modified files). The results obtained by
this study may not generalise for projects with different characteristics to those used in our
study. The conclusions about offline learning drawn by this study are based on the proposed
approach BORB. Other offline learning approaches may lead to different conclusions. Sim-
ilarly, other offline base learners than the ones used in our study may also lead to different
conclusions.

9 Conclusion

This study investigated whether offline JIT-SDP can offer any benefits in terms of predic-
tive performance when applied to online JIT-SDP scenarios compared to online JIT-SDP
approaches, and whether such benefits may come at the cost of higher computational require-
ments. For that, we proposed a new offline approach called BORB that can apply adaptive
resampling to deal with class imbalance in JIT-SDP when applied to online JIT-SDP sce-
narios. These approach’s predictive performance and computational cost were compared
against the existing online approach ORB when using various different base models on 10
open source projects.

Overall, our experiments suggest that, if one is focused on achieving the best possible pre-
dictive performance, it is worth considering offline learning through BORB using CP data as
a possible choice, as it obtained slightly better predictive performance than ORB approaches
while having an acceptable computational cost. If one is interested in saving computational
cost, we recommend considering ORB using CP data with OHT as a possible choice, as
it obtained better computational cost with just slightly worse predictive performance. Such
saving in computational cost (and thus also in energy) may be relevant if multiple of such
approaches are required to be run concurrently, e.g., when performing experimental studies
to run, tune and choose among multiple models.

Future work can consider how to further improve predictive performance in JIT-SDP.
In particular, the finding that offline models can be successfully applied to online JIT-SDP
scenarios through BORB opens up the possibility of investigating other offline base learners
such as deep learning approaches that may lead to even better predictive performance. How-
ever, even though the computational cost of the offline learning approaches adopted in the
current study was feasible for adoption in practice, other more complex offline base learners
such as deep learning may require a much higher computational cost, such that future work
could also consider how to improve the computational cost of BORB. Future work could also
evaluate BORB and ORB with additional projects. Finally, hyperparameter tuning in online
JIT-SDP scenarios is still an open issue. Novel approaches for automatically tuning such
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hyperparameters are desirable and may benefit from faster JIT-SDP models such as ORB to
be computationally feasible.
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