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Precise temperature measurements on systems of few ultracold atoms is of paramount importance in
quantum technologies, but can be very resource intensive. Here, we put forward an adaptive Bayesian
framework that substantially boosts the performance of cold atom temperature estimation. Specifically,
we process data from real and simulated release-recapture thermometry experiments on few potassium
atoms cooled down to the microkelvin range in an optical tweezer. From simulations, we demonstrate that
adaptively choosing the release-recapture times to maximize information gain does substantially reduce
the number of measurements needed for the estimate to converge to a final reading. Unlike conventional
methods, our proposal systematically avoids capturing and processing uninformative data. We also find
that a simpler nonadaptive method exploiting all the a priori information can yield competitive results,
and we put it to the test on real experimental data. Furthermore, we are able to produce much more
reliable estimates, especially when the measured data are scarce and noisy, and they converge faster to the
real temperature in the asymptotic limit. Importantly, the underlying Bayesian framework is not platform
specific and can be adapted to enhance precision in other setups, thus opening new avenues in quantum
thermometry.

DOI: 10.1103/PRXQuantum.3.040330

I. INTRODUCTION

Precise low-temperature thermometry is a key enabler
for cold-atom-based quantum technologies. In particular,
analog quantum simulation in optical lattices [1,2], com-
putation on large-scale programmable simulators [3,4], the
study of thermalization in closed quantum systems [5–7],
or the realization of thermodynamic cycles [8–10]. The
most common thermometric technique for cold atoms is
time-of-flight imaging, which infers temperature from the
velocity distribution of a free-expanding atomic cloud.
However, this is not sufficiently accurate in optical lattices.
It also becomes unsuitable in more advanced setups like
optical tweezers, which allow us to independently trap and
manipulate only one or few atoms [3,4,11–13]. In these
cases, alternatives such as Raman sideband spectroscopy
[12], release-recapture thermometry [14–16], or selective
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atom spilling [11] must be employed. Often, however, such
techniques require a large number of experimental repeti-
tions to be accurate, rendering thermometry expensive in
terms of machine time.

On the theoretical side, the application of estimation-
theoretic methods to low-temperature thermometry has
consolidated into the novel field of “quantum thermom-
etry” [17,18]. Specifically, progress has been made on
establishing fundamental scaling laws for the signal-to-
noise ratio of low-temperature estimates [19–21], or on the
identification of design prescriptions that can make a probe
more responsive to temperature fluctuations [22–28]. As a
result, precision tuning in sensing applications with atomic
impurities is starting to be informed by estimation theory
[7,29,30].

Most of the existing literature on quantum thermome-
try relies on local estimation theory [17,18], and adopts
the (quantum) Fisher information F as the figure of
merit to be maximized [31]. Indeed, in the asymptotic
limit of a large number of measurements (i.e., μ → ∞),
and for unbiased estimators, F controls the scaling of
the best-case signal-to-noise ratio of temperature esti-
mates, as per (T/δT)2 ∼ μFT2. However, in the experi-
mentally relevant scenario of finite measurement records,
with just tens or hundreds of shots, F does not always
capture—even qualitatively—the behavior of optimal
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temperature estimates. In these cases, one must adopt
the more general Bayesian framework [32–34]. This has
recently led to a wealth of new results in quantum ther-
mometry [35–41], although there had been earlier applica-
tions [42,43].

While experimental proposals haven been put forward
within quantum thermometry [7,23,25,30,44,45], the field
has remained eminently theoretical and mostly concerned
with setting ultimate precision bounds [18]. With this work
we want to take a more practical turn by exploiting the
theory to process actual experimental data. This has been
facilitated by the adoption of the Bayesian framework that,
not only provides precision bounds as in local estima-
tion theory, but also allows for the construction of optimal
estimators from measurement outcomes [32–34,40].

By exploiting Bayesian methods, here we develop an
adaptive strategy to optimally assess the temperature of
single- or few-atom systems. Namely, given a set of mea-
surement outcomes and a model for the experiment, we
find the estimate that minimizes, on average, a suitably
defined error. Crucially, we can compute the expected
information gain shot by shot, which allows us to adjust
the experiment in real time so that each measurement is
maximally informative.

We illustrate the benefits of our adaptive Bayesian
protocol by optimizing a release-recapture thermometry
experiment on a few 41K atoms tightly confined in an
optical tweezer at microkelvin temperatures. This is a par-
ticularly challenging system in which precise thermometry
is usually exceedingly expensive in terms of the num-
ber of measurements needed. Indeed, as already advanced,
single-shot procedures like time-of-flight absorption imag-
ing cannot be used with a single or few atoms, due to the
vanishing optical density. On the other hand, alternative
methods like Raman sideband spectroscopy operate at far
lower temperatures, which leaves release and recapture as
the only option. Our aim here is to show how resource opti-
mization can help to overcome the two main weaknesses of
release-recapture thermometry, namely, that it inherently
needs many experimental repetitions, and that it is usu-
ally less accurate than other methods. To do so, we use the
light-off time of free expansion of the atoms as the control
parameter in our optimization.

Working with both real and simulated data, we show
that our adaptive Bayesian protocols largely outperform
conventional release-recapture thermometry in practice.
Specifically, our methods showcase a much reduced esti-
mate variability when applied to finite measurement
records with an equal number of data points. Our approach
is thus more dependable. Furthermore, we find that,
in the asymptotic limit of many data, the estimates
from our Bayesian protocols converge faster to the true
temperature than conventional estimates. Finally, we show
how guiding data acquisition by information gain can
substantially reduce the number of measurements needed

for an estimate to converge to a stable value, thus help-
ing to optimize resources. Ultimately, in this work we
demonstrate in practice how quantum thermometry can
provide concrete design prescriptions capable of making
a difference in experiments.

This paper is structured as follows. In Sec. II A we intro-
duce our Bayesian method. In Sec. II B we describe a
simple analytical model for the recapture probability. Next,
in Sec. II C, we describe three different thermometric pro-
tocols and compare their performance. These consist in the
mere Bayesian processing of data captured at unoptimized
times, the repeated measurement at the a priori optimal
recapture time, and a fully adaptive method. Details on
our experimental setup and on how real data are processed
are given in Sec. III. In Sec. IV, we rank the protocols in
terms of estimate variability and asymptotic convergence
speed and show how information-maximization reduces
the required number of measurements for estimates to con-
verge to a target precision. Finally, in Sec. V we draw our
conclusions.

II. ADAPTIVE BAYESIAN THERMOMETRY

A. Bayesian data analysis and global thermometry

We start by outlining the Bayesian-global paradigm
introduced by some of us in Refs. [35,40]. Even though
we later focus on the specific release-recapture setup, this
framework is fully applicable to any thermometry experi-
ment in which temperature behaves as a scale parameter
[40,46]. For a more detailed account of this paradigm
and why it applies to release-recapture thermometry, see
Appendix A.

Our aim is to estimate a temperature T from a set of mea-
surement outcomes n = (n1, . . . , nμ) recorded in μ runs of
a given experiment. In addition, we consider a controllable
parameter t that we set to t = (t1, . . . , tμ) in each subse-
quent run. In order to extract maximum information from
these data, we need a likelihood function [33,34]. Assum-
ing all shots to be independent, this amounts to finding a
probability p(ni|T, ti) for obtaining the outcome ni given ti
and T. Furthermore, since the true temperature is unknown,
we work with a hypothesis θ ∈ [θmin, θmax] about its value.

The idea is then to assign a weight to the different θ in
light of the measurement record (n, t). This is achieved by
constructing the probability p(θ |n, t) [33,34]. Using Bayes
theorem, such a distribution can be cast as (cf. Appendix B)

p(θ |n, t) ∝ p(θ)

μ∏

i=1

p(ni|θ , ti), (1)

where p(ni|θ , ti) is our likelihood model evaluated at θ ,
and p(θ) is a probability representing information about T
prior to collecting the data.

Since one does not, in general, have any prior
knowledge about T, we choose the distribution p(θ)
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corresponding to maximum ignorance within [θmin, θmax]
[33,47]. As we will see next, the energy scale in which
our model p(ni|T, ti) for release-recapture thermometry
is applicable is determined by the unknown temperature
itself. We thus say that temperature is a scale parameter
[35,40,42,46], and adopt Jeffreys’s prior

p(θ) =
[
θ log

(
θmax

θmin

)]−1

(2)

to represent maximum ignorance about it [33,34,48].
Having fixed p(θ) and p(ni, ti|θ), Eq. (1) is used as fol-

lows. Upon recording (n1, t1), the likelihood p(n1|θ , t1)
is calculated as a function of θ . The functions p(θ) and
p(n1|θ , t1) are multiplied and the result normalized—this
operation is interpreted as having updated the initial infor-
mation with the first pair of data. Next, (n2, t2) is recorded
and the resulting probability, multiplied by p(n2|θ , t2),
and normalized. After μ iterations, one finally arrives at
p(θ |n, t), which does encode all the available tempera-
ture information. That is why p(θ |n, t) is referred to as the
posterior probability.

At this point, one can already extract an estimate and
its associated error. As shown in Ref. [35], whenever T
behaves as a scale parameter, the optimal estimator is given
by

ϑ̃(n, t) = θu exp
[ ∫

dθ p(θ |n, t) log
(

θ

θu

)]
, (3)

where θu simply neutralizes the units within the logarithm
[49] without affecting the value of ϑ̃(n, t). In this work, we
set θu = 1 μK. In turn, the “error bar” on estimator (3) is

�ϑ̃(n, t) = ϑ̃(n, t)
√

ε̄MLE(n, t), (4a)

where

ε̄MLE(n, t) =
∫

dθ p(θ |n, t) log2
[
ϑ̃(n, t)

θ

]
(4b)

is the mean logarithmic error—a relative error—evaluated
for the specific dataset at hand. Ultimately, we report
Bayesian temperature estimates as ϑ̃(n, t) ± �ϑ̃(n, t).

We also exploit the notion of mean information gain for
a single shot. As per Ref. [35], this can be quantified as

K(t) =
∑

n

p(n|t) log2
[
ϑ̃(n, t)

ϑ̃p

]
, (5)

where

ϑ̃p = θu exp
[ ∫

dθ p(θ) log
(

θ

θu

)]
, (6a)

p(n|t) =
∫

dθ p(θ)p(n|θ , t). (6b)

This allows us to adaptively adjust the control parameter
t so as to maximize K(t) at every step, thus making each
measurement maximally informative.

The Bayesian-global paradigm summarized here will
suffice to optimize release-recapture experiments. Never-
theless, we note that alternative formulations of Bayesian
thermometry [36,38,39,41,50] exist. For a perspective on
when it is appropriate to employ these, see Refs. [35,40].

B. The release-recapture method

In a release-recapture thermometry experiment, the trap
confining an ultracold gas at temperature T is switched
off during a time t, so that the atoms expand ballistically.
Upon reactivating the trap, the number of recaptured atoms
n is measured by fluorescence imaging. The temperature
is obtained by fitting measurement outcomes at different
times to a model f (T, t) for the fraction of recaptured
atoms [16].

Let us start with the simple case of a trap determin-
istically loaded with one atom, deferring the multiatom
scenario to Sec. III C. In that case, the probabilities for suc-
cessfully recapturing or losing the atom after time ti are
respectively

p(ni = 1|T, ti) = f (T, ti), (7a)

p(ni = 0|T, ti) = 1 − f (T, ti); (7b)

this gives us the required likelihood model.
Next, we need to calculate the recaptured fraction

f (T, t). The trapping potential is created by focusing a
laser beam to a narrow waist, which produces tight con-
finement in the transverse x-y plane. This is described
by

U(r) = −U0exp
(

− 2r2

w2
0

)
, (8)

where U0 is the trap depth, w0 is the beam waist, and r2 =
x2 + y2. At low T, i.e., U0/kBT � 1, Eq. (8) leads to [16,
51] (cf. Appendix C)

f (T, t) = 1
g(η)

g
[
ηW(t̃2)

t̃2

]
, (9)

where g(s) = 1 − e−s, η = U0/(kBT), t̃2 = 4U0t2/(mw2
0),

m is the mass of the atom, and W(·) is the Lambert func-
tion, defined implicitly as W(s)eW(s) := s. By resorting to
numerical simulations, one could further account for the
axial motion of the atoms, i.e., their initial position distri-
bution and the effect of gravity. However, Eq. (9) is in very

040330-3



JONAS GLATTHARD et al. PRX QUANTUM 3, 040330 (2022)

good agreement with such simulations in the low-T regime
(see Appendix C).

To estimate T in practice, one conventionally chooses a
range of free-expansion times {t1, . . . , tν} so that the decay
of f (T, t) is well sampled [14,15]. At each time ti, αi inde-
pendent photon-count measurements are performed, so as
to infer the number of recaptured atoms {nij }αi

j =1. Even-
tually, one records the average ni for every ti, and fits
these to λf (T, t) via least squares. The light-off time t then
acts as the independent variable, while T and λ are fitting
parameters [16].

In spite of the simplicity of the method, two issues
must be noted. First, assuming that the empirical average
n̄i is close to its true value presupposes an indeterminate
“large” number of measurements αi. Hence, should αi not
be “large enough,” the final estimate could become unre-
liable [52,53]. Second, the method discards most of the
information available—the full measurement record {nij }
is known and yet one chooses to work only with the aver-
ages {ni}, which likely leads to precision loss [33]. Here,
i ∈ {1, . . . , ν} and j ∈ {1, . . . , αi}. Both issues are naturally
bypassed by the Bayesian estimation framework of global
thermometry [35], as discussed below.

C. Adaptive maximization of the information gain

We now move on to discuss how Bayesian methods
can be employed to process the data from conventional
release-recapture experiments and, more importantly, how
Bayesian data analysis can inform the measurement strat-
egy. Before we proceed, some remarks are in order.

First, we have just seen that the validity of Eq. (9) rests
on the condition U0/(kBT) � 1, so that it is the unknown T
itself that determines the energy scale in which our model
for the fraction of recaptured atoms is applicable. Hence,
we are dealing with a scale-estimation problem [40,46] for
which Eqs. (2–5) are appropriate.

As for the range [θmin, θmax], a conservative choice for
the lower bound is 5% of the trap depth in units of the
Boltzmann constant (i.e., U0/kB), as the final cooling stage
that the atoms undergo in the trap is not expected to reach
such low temperatures (see Sec. III A). On the other hand,
we choose θmax as the temperature at which Eq. (9) starts
to break down (see Appendix C).

1. Unoptimized Bayesian protocol

Let us consider a release-recapture experiment such as
those described in Sec. II B. In this case, the vector t of
expansion times would be

t = (t1, . . . , t1︸ ︷︷ ︸
α1 times

, . . . , tν , . . . , tν︸ ︷︷ ︸
αν times

),

where the values ti would be chosen “by eye” such that the
decay of the survival probability (7) is well sampled. Pro-
cessing the resulting measurement record (n, t) with Eqs.
(2)–(5) may return slightly better estimates than the con-
ventional least-squares fit of the recaptured atom averages
{ni}, since we make use of all the available data (see Secs.
II D and IV B).

Not all expansion times ti are equally informative, how-
ever. Intuitively, if the temperature is low, the recapture
probability at short enough times is roughly constant, as
the atoms have no time to move far—it is those measure-
ments at longer times that carry most of the temperature
information. The opposite is true if T is large. Hence,
given that the temperature is unknown, by evenly sam-
pling a time interval we are likely to generate and process
many uninformative data points. Instead, as the temper-
ature information is updated by feeding in measurement
outcomes, efforts should be concentrated in sampling only
those times ti that maximize information gain. As we will
see next, this speeds up the convergence of the temper-
ature estimate and, more importantly, it largely reduces
the spread of estimates drawn from small measurement
records.

2. A priori optimization of the expansion time

Even in the absence of measured data and starting from
maximum ignorance about T, one can make the most of
the available information—namely, the parameters of the
trap—in order to determine an optimal expansion time ts
for the first shot of the protocol. This amounts to searching
for the time at which K(t) in Eq. (5) is maximal, which can
be calculated before any measurement is carried out. The
simplest strategy would then consist in performing every
subsequent measurement at the same recapture time ts, i.e.,

t = (ts, . . . , ts︸ ︷︷ ︸
μ times

).

The intuition behind this approach is that, by keeping the
uncertainty of the most uninformed shot—the first one—to
a minimum, one can boost the convergence of the esti-
mate to the true temperature as knowledge is updated, as
per Eq. (1). This kind of a priori optimization was first
explored in Mach-Zehnder interferometry [54], and it has
also been proven informative in distributed sensing [55].
For a discussion about the construction and application of
single-shot optimized protocols, see Ref. [56].

3. Adaptive optimization of the expansion time

Instead of continuing to measure at the a priori optimal
time ts, we can change the recapture intervals at each step
so as to maximize the information content of the posterior
probability adaptively [37]. Specifically,
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1. given the prior p(θ) and the likelihood p(n|θ , t) for
the first shot, maximize K(t) over t to find t1 = ts;

2. perform a measurement at t1 = ts and record n1;
3. normalize p(θ)p(n1|θ , t1) and use it as the new

“prior” for a second run [33,34]; then apply step 1
to find the optimal expansion time t2, and measure
n2;

4. iterate μ times. The resulting data can then be
processed using Eqs. (3) and (4).

D. Performance comparison on single-atom
simulations

Let us now make a preliminary analysis of how these
Bayesian strategies compare to each other, and with the
nonlinear fit described in Sec. II B. To that end, we simu-
late a trap loaded deterministically with one atom, choos-
ing a trap depth of U0/kB = 29 μK and a beam waist
w0 = 1.971 μm. In these simulations, the temperature is
set to T = 40 μK. The parameters are taken to be the same
as in our actual experiment.

For the nonlinear fit and the unoptimized Bayesian pro-
tocol, we generate 30 measurement outcomes at each of the
seven expansion times (5, 10, 20, 30, 50, 70, 100) μs. The
a priori optimized and fully adaptive protocols are applied
on simulated records with the same number of entries as
the other two methods (i.e., 210). All three Bayesian strate-
gies use Jeffreys’s prior in Eq. (2), with support between

θmin = 14.5 μK and θmax = 125 μK. For these param-
eters, the a priori optimal expansion time evaluates to
ts = 14 μs.

Figure 1 illustrates the estimate variability of each
method. The advantage of time optimization seems clear,
as both the a priori and adaptively optimized methods
(rhombs and squares, respectively) yield much more accu-
rate estimates than the fits to data collected at unoptimized
recapture times (circles and triangles). Furthermore, in
insets (a)–(c) we show how the time-optimized protocols
converge to the true temperature with significantly less
data than their unoptimized counterpart. In the next two
sections we put these preliminary observations on a more
solid basis.

III. EXPERIMENTAL REALIZATION

A. The experimental setup

We now apply our Bayesian framework on actual exper-
imental data. Details on our experimental setup can be
found in Ref. [57]. In this work, 41K atoms are loaded into
an optical tweezer from a dark magneto-optical trap. The
number of atoms transferred into the tweezer can be con-
trolled by varying the magneto-optical trap loading time.
The tweezer is realized by focusing a beam at 790nm, pro-
duced by a Ti:sapphire laser, to a waist of � 1.9 μm using
a 20× apoplanar infinity corrected objective. This realizes
an elongated tweezer trap, with a radial-to-axial dimension
ratio of 1 : 249. As discussed in Sec. II B, such a setup
can be described by the model in Eq. (9) to a very good

Least squares Unoptimized Bayesian A priori optimized Adaptive

20

40

60

0 30 60 90
0

30

60

90 (a)

k
0 30 60 90

(b)

k
0 30 60 90

(c)

k

FIG. 1. Reliability of estimation strategies for a trap loaded with a single atom. Temperature estimates and their error bars, obtained
from processing simulated release-recapture measurements on a single 41K atom with different protocols (see Sec. II D for details).
The results obtained from ten different realizations are shown. The underlying true temperature is set to 40 μK (dashed gray). First,
a record with 30 measurements at seven unoptimized expansion times is fitted to the recapture probability, as discussed in Sec. II B
(red circles), as well as processed with our Bayesian-global technique (blue triangles). The time-optimized methods are also applied
to the same overall number of data points (i.e., 210), respectively simulated at the optimal a priori recapture time ts (orange rhombs)
and at adaptively chosen variable optimal times (green squares). Optimization of the recapture times noticeably reduces the variability
of the estimates. Note that there is no abscissa axis in the main plot; the estimates have been squeezed together to help visualize
their variability. Insets (a)–(c) show the typical convergence of global estimates with the number of measurements k. As shown, time-
optimized methods typically require much less data to converge, when compared with their unoptimized counterparts. Also, the final
error bars are smaller in (b) and (c).
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approximation. The temperature of the few-atom system is
determined by the depth of the optical tweezer. Evapora-
tion cooling brings down the temperature from its initial
higher value of the atom source.

The release-recapture protocol is realized by switching
off the tweezer’s light for a variable amount of time and
then switching it on again. To measure the number of
atoms left in the tweezer, we utilize fluorescence imag-
ing switching on a series of dedicated resonant beams.
The light emitted by the recaptured atoms is collected with
the same microscope objective that is used to create the
tweezer, and detected with a scientific CMOS camera. In
order to avoid antitrapping while imaging [58], we chop
the tweezer and imaging lights out of phase at 1 MHz
for the duration of the measurement. Once the detection
is completed, the 41K atoms are lost. A new batch of atoms
needs to be loaded in the tweezer, and the process above is
repeated.

B. Mapping photon counts into atom numbers

The experimental measurement record is a list of photon
counts np ,i at each shot at time ti. We must, however, con-
vert each photon count into a number of recaptured atoms
ni to be fed into the vector n. To do so, we take a set
of calibration fluorescence images. The histogram of the
resulting photon counts produces a multimodal distribu-
tion, where each peak is associated with a different number
of atoms in the trap. Applying a multimodal Gaussian fit to
these data gives us the position m of the peak correspond-
ing to an empty trap, as well as the spacing � between
the (equispaced) peaks. Hence, the photon-count-to-atom
conversion is simply

ni = round
(

np ,i − m
�

)
;

that is, we map each photon-count measurement to the
atom number associated with the nearest peak.

C. Multiatom model

Although the initial atom number can be controlled to
some degree, our assumption of deterministic single-atom
loading certainly needs to be relaxed before we can process
experimental data. This can be achieved by upgrading the
measurement model p(ni|T, ti) in Eq. (7).

Assuming distinguishable atoms with negligible mutual
interactions, the probability for recapturing ni of them dur-
ing the ith run, given that the trap is loaded with N0 atoms,
can be cast as

p(ni|N0, T, ti) = B[ni|N0, f (T, ti)], (10)

where B(ni|N0, q) is the binomial distribution

B(ni|N0, q) =
(

N0

ni

)
qni(1 − q)N0−ni (11)

with success probability q = f (T, ti), as defined in Eq. (9).
Here N0 appears as a nuisance parameter and thus needs

to be marginalized over. To do so, we first note that, in this
type of problem, the probability of starting with N0 atoms
can be described by a Poisson distribution [59,60], denoted

P(N0|λ) = λN0

N0!
e−λ, (12)

where λ is the mean initial atom number. In practice, this
can be inferred from a sufficiently large set of calibration
measurements at zero recapture time (i.e., on unreleased
atoms). In such a case (cf. Appendix D),

p(ni|T, ti) =
∞∑

N0=0

P(N0|λ)B[ni|N0, f (T, ti)]

= P[ni|λf (T, ti)]. (13)

The model for the multiatom scenario is thus a Poisson
distribution with mean equal to λf (T, ti). With the sole
exception of this change, the Bayesian protocols from Sec.
II C can be directly applied to experimental data.

IV. RESULTS AND DISCUSSION

A. Processing real data at unoptimized recapture times

Let us start by analyzing experimental measurement
records taken at unoptimized light-off times. We apply
the conventional method of least-squares fitting, as well
as our Bayesian technique. Specifically, we work on two
sets of measurements on 41K atoms, which are performed
in a shallow and a deep trapping potential. These have
depths U0/kB = 110 μK and 290 μK, respectively. For
the shallow configuration, we perform 50 measurements of
the number of recaptured atoms at each of the expansion
times ta = (5, 10, 15, 20, 30, 40, 50) μs, plus 100 calibra-
tion measurements without release. In turn, for the deep
trap, we take 30 measurements at expansion times tb =
(5, 10, 20, 30, 50, 70, 100) μs, and 60 calibration measure-
ments at zero expansion time.

Let us now process these data via the nonlinear fit to the
mean number of recaptured atoms (cf. Sec. II B). We note
that the average atom number at t = 0 is also a point for
the fit. This returns temperature estimates of 15.8 ± 32 μK
and 57 ± 11 μK for the shallow and deep configurations,
respectively. The fits are shown in Fig. 2 (solid red lines).

We next apply our Bayesian methods to the same data.
From the calibration measurements, we find the initial
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FIG. 2. Temperature estimation from measurements at unop-
timized recapture times. Empirical mean and standard error of
the number of recaptured 41K atoms (black dots) at each free-
expansion time in the two experiments described in Sec. IV A
for a (a) shallow and (b) deep trapping potential. The solid
red curves are two-parameter nonlinear fits to λf (T, t) in λ

and T, where f (T, t) is the survival probability from Eq. (9).
These yield (a) Ta = 15.8 ± 32 μK and λa = 1.84 ± 11 and
(b) Tb = 57 ± 11 μK and λb = 1.66 ± 9. In turn, the Bayesian
strategy (cf. Sec. II C 1) applied to the full measurement record
gives (a) T′

a = 15.0 ± 17 μK and (b) T′
b = 45 ± 7 μK. The

insets show the estimates. The dashed blue curves correspond to
λf (t, T) evaluated at temperatures T′

a and T′
b, with initial average

atom numbers λ′
a = 1.88 and λ′

b = 1.65, as calculated from the
calibration measurements.

mean atom numbers λ = 1.88 and λ = 1.65 for the shal-
low and the deep traps, respectively. As discussed in Sec.
II A, the support of our prior p(θ) is set to 5.5 ≤ θ ≤
30 μK (shallow) and 14.5 ≤ θ ≤ 125 μK (deep). Fol-
lowing the Bayesian procedure we arrive at the estimates
15.0 ± 17 μK and 45 ± 7 μK (dashed blue lines in Fig. 2).

Although the Bayesian and non-Bayesian estimates
seem roughly comparable, we note that the Bayesian tem-
perature estimate for the deep-trap experiment does fall
below the error bars of the conventional method. Indeed,
some discrepancy could have been expected in the second
experiment, due to the smaller number of measurements
performed. It is precisely in these cases when the Bayesian
analysis pays off.

B. Finding the most reliable strategy

Since the analysis above has shown that conventional
and Bayesian processing of the same experimental data can
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FIG. 3. Estimate variability of different strategies. Tempera-
ture estimates drawn from simulated release-recapture measure-
ments on 41K. The parameters for the simulations are those of
the deep-trap experiment from Sec. IV A and Fig. 2(b), and the
true temperature is set to 40 μK (dashed gray). In (a), the mean
number of atoms loaded into the trap is assumed to be known,
and equal to λ = 1.65. In each case, ten independent runs of
the experiment are simulated, consisting of 30 measurements
generated at each of the seven unoptimized recapture times tb.
The estimates are calculated via the conventional least-squares
method (red circles) and the Bayesian approach (blue triangles).
Since λ is known, the least-squares method becomes a one-
parameter fit. Orange rhombs and green squares correspond to
estimates drawn from the a priori optimized and fully adaptive
protocols, respectively. These also run on datasets of 210 mea-
surements. The a priori optimal recapture time here is ts = 22 μs.
In (b) λ is not known (its true value continues to be λ = 1.65).
A calibration set of 60 measurements at t = 0 is thus needed,
in addition to the 210 data points. In this case, the least-squares
method becomes again a two-parameter fit in T and λ. For all
three Bayesian variants, λ is recalculated at every run from a
fresh calibration set. Hence, the λ used for estimation differs
slightly between independent simulations. The overall variabil-
ity of the estimates thus increases. This is particularly apparent
for both the a priori optimized and adaptive protocols, as the
optimizations are done with the estimated λ, resulting in slightly
off optimal times. Markers in (b) are the same as in (a).

yield different temperature estimates, we need to establish
which one is more dependable and should thus be trusted.
To that end, we now simulate multiple runs of the deep-trap
experiment (see Fig. 3 for details), setting the temperature
to 40 μK.

Let us start by focusing on the red circles and blue tri-
angles in Fig. 3(b), which correspond to ten simulated
deep-trap experiments processed with the conventional
and Bayesian methods, respectively. Each run thus consists
of 30 data points simulated at each of the seven recapture
times in tb, plus 60 calibration measurements, at t = 0. As
we can see, the estimate variability is substantial, although
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the Bayesian estimates have a narrower spread and more
consistent error bars.

To quantify such variability, we use the empirical error
[61] Var ϑ̃/〈ϑ̃〉2 of a set of estimates, where

Var ϑ̃ = 〈ϑ̃2〉 − 〈ϑ̃〉2, (14a)

〈ϑ̃〉 = 1
N

N∑

i

ϑ̃i. (14b)

For these parameters, and considering 100 simulated runs,
the variability of the conventional least-squares method
evaluated to 0.064, while the Bayesian analysis proved
slightly more reliable, with Var ϑ̃/〈ϑ̃〉2 = 0.057.

However, the full potential of the Bayesian method is
unleashed when the light-off times are picked to maxi-
mize information gain. Back to Fig. 3(b), we now turn
our attention to the results for the a priori optimized and
fully adaptive protocols (orange rhombs and green squares,
respectively). These use datasets of the same length as the
unoptimized schemes (i.e., 210 points and 60 calibration
measurements). In order to evaluate the information gain in
Eq. (5), we must truncate the Poisson distribution (12) for
the number of atoms initially loaded into the trap. Specifi-
cally, we set N0 = 7 as the maximum, since the probability
of loading more atoms is negligible for λ = 1.65, which is
the true value of the initial number of atoms in our sim-
ulations. It is important to emphasize that λ is assumed
unknown when processing data and, thus, needs to be
recalculated from the calibration data at every simulated
run (see the caption of Fig. 3). Furthermore, in order to
account for the finite resolution when adjusting the recap-
ture times in the lab, in our calculations we replace the
exact optimal times by integer multiples of a minimum
resolution of 2 μs.

As it could be expected in light of Fig. 1, the fully
adaptive protocol is the most dependable, visibly outper-
forming its unoptimized counterparts. In terms of vari-
ability, Var ϑ̃/〈ϑ̃〉2 = 0.034 for 100 runs. That is a 40%
improvement with respect to the Bayesian processing of
unoptimized data, and over 50%, with respect to the con-
ventional method. Interestingly, the a priori optimized
protocol is comparable in variability to the fully adap-
tive one and yet it is much simpler to implement. This
is our first main result, and it supports using the a priori
optimized protocol as the new default when it comes to
practical release-recapture thermometry.

The fact that the initial average number of atoms in the
tweezer is unknown certainly interferes with estimate vari-
ability. Namely, the empirical average of the simulated
calibration data differs slightly from run to run, even if
λ is fixed in the simulation. In order to single out the
temperature-estimation aspect of the calculations, we also
run variability checks, treating λ as a known parameter.
As we can see in Fig. 3(a), the overall variability is much

smaller in this case, but the hierarchy among the protocols
is maintained.

As an alternative, we might want to adapt our Bayesian-
global processing to a multiparameter scenario, so that
both λ and T can be estimated. The procedure is sum-
marized in Appendix E. Although this certainly deserves
further investigation, Bayesian multiparameter adaptive
estimation seems, at this stage, too time-consuming to be
practical.

C. Assessing convergence speed

So far, we have shown that taking release-recapture data
at the fixed a priori optimal expansion time ts, and process-
ing them with our global thermometry technique yields a
clear advantage—in terms of reliability—over the conven-
tional unoptimized protocol. However, in order to optimize
the experimental resources it is also important to consider
the speed of convergence that is, the amount of data needed
for the variability to settle into an asymptotic regime, and
the rate at which the variability is reduced once in that
limit.

In Fig. 4 we compare the conventional non-linear-fit
method and our a priori optimized Bayesian-global pro-
tocol in terms of convergence. We do this using the same
parameters as in Sec. IV B. Specifically, we compute the
estimate variability from Eqs. (14) for 5000 simulated runs
of the experiment, and gradually increase the number of
measurements per run k. As can be seen from the figure, as
k grows, the variability of both protocols eventually scales
as

Var ϑ̃

〈ϑ̃〉2
∼ 1

kF
,

where F is a free parameter [62]. To get a rough idea of
the onset of this scaling, we take the logarithm of the cal-
culated variabilities and fit it to −a log k − log F . We start
from the largest k and work backwards, adding points at
lower k to the fit. We then search for the number of shots
at which the exponent a first deviates from 1 by more than
2.5%. This gives kc � 350 for the conventional method
and kap � 200 for our a priori optimized protocol.

Hence, for k > kc, we can be certain that both protocols
have entered the asymptotic regime in k. From their ratio
we find that the a priori optimized method affords a 43%
variability reduction with respect to the common practice
in the release-recapture method, even in the asymptotic
limit. We have thus shown that our method is not only
more reliable when processing short data sets, but that it
also requires less measurements to attain the same pre-
cision as the conventional protocol. In our experimental
setup, this roughly translates into halving the number of
measurements needed to hit any target precision. This is
our second main result.
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FIG. 4. Convergence of conventional and a priori optimized
protocols. Log-log plot of variability versus the number of
measurements k, calculated from 5000 simulated runs of the
deep-trap experiment from Sec. IV B. The measurement count
k excludes any calibration measurements at t = 0. Specifically,
(2/7) k calibration outcomes are generated for each run. All
other parameters are the same as in Fig. 3. The conventional non-
linear-fit release-recapture (red circles) is compared to our a pri-
ori optimized protocol (orange rhombs). Note the vast superiority
of the optimized method for low k, i.e., scarce data. Asymptot-
ically, the variability takes the approximate form 1/(kF). This
occurs for k > 350 for the conventional protocol and k > 200
for the optimized one. The dashed and dash-dot lines highlight
the asymptotic variability scaling for both methods. The offset
between these lines indicates that the asymptotic convergence
speed to the true temperature is roughly twice as fast for the a pri-
ori optimized protocol. The insets enlarges the region in which
our Bayesian technique enters the asymptotic regime.

D. Time optimization on an individual experiment

We now illustrate what an a priori optimized release-
recapture experiment might look like (cf. Fig. 5). To that
end, we retrospectively analyze the data from the shallow-
trap experiment processed in Fig. 2(a). Just like in Sec.
IV B, we cap the distribution of initial atom numbers in the
trap at N0 = 7, which allows us to compute ts = 42 μs (see
the inset of Fig. 5). We then process, with our Bayesian-
global technique, those measurement outcomes captured
at the times closest to ts. In this case, those would be the
50 measurements at 40 μs. The a priori optimized method
from Sec. II C 2 would demand to continue measuring at
the same time. However, having run out of data, we move
on to process the measurements at the second closest time
in the dataset (i.e., 50 μs), and so on.

The estimate and error bars resulting from the Bayesian
processing of the first k entries of the reordered record
are plotted in orange in Fig. 5. We observe that over 100
points seemingly add no information about temperature,
and could thus have been spared. That is, by aiming to uni-
formly sample the decay of the survival probability, nearly
30% of the experimental resources are wasted. To further
emphasize the important difference that time optimization
can make to the convergence of the estimate, we overlay
(in blue) a similar plot, in which the measurement record is
ordered from lowest to largest information gain per entry.

0 100 200 300
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20

k

0 10 20 30 40 50
0

0.01

0.02

time (μs)

FIG. 5. Recapture-time optimization. Estimate and error bar
from the first k entries of the measurement record of the shallow-
trap experiment from Fig. 2(a), reordered to mimic the a priori
optimized protocol (orange). The optimal recapture time ts =
42 μs is calculated as per Sec. II C 2. The a priori information
gain K as a function of the recapture time is shown in the inset
for this model (gray dots). The gray line is a mere guide to the
eye. The 50 measurements at the closest recorded time (40 μs)
are moved to the top of the list. The set of measurements at the
second closest recorded time (50 μs) are picked next, and so
forth, until exhausting the 350 available data. The estimate and
error bars of that exact same list, but processed in the reverse
order, are shown in blue for comparison. As we can see, the
orange curve already converges to the final estimate by process-
ing the 200 most informative data. At that point, the estimate
is 14.7 ± 1.7 μK. The remaining 150 data carry practically no
information, since the estimate drawn from the full measurement
record is 15 ± 1.7 μK.

Hence, the effect of optimizing over the recapture time
to increase information gain is threefold. First, it produces
more reliable estimates when data are scarce. Second, it
ensures a faster convergence towards the true temperature
in the asymptotic limit of many measurements. Finally, it
allows us to significantly reduce the number of data points
needed for the point estimate to converge (i.e., to stabilize
at a certain value) in a single experimental run. The latter
observation is the final main result of this work.

E. A priori optimized protocol versus fully adaptive
protocol

As illustrated in Sec. IV B, the a priori optimized and
the adaptive protocols can have almost identical estimate
variability. This advised us to focus on the former, due to
its simplicity. In some situations, however, the effort of
adaptively recalculating optimal expansions in real time
might pay off. To see this, we go back to the deep-trap
configuration of Fig. 2(b), to make another showdown
between these two protocols. Proceeding exactly as in Sec.
IV B, we simulate ten independent experiments for each
method but, in this case, we work with a wider support
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FIG. 6. A priori optimized protocol versus adaptive protocol.
Comparison between the a priori optimized (orange rhombs) and
fully adaptive (green squares) protocols. Ten independent runs
of the deep-trap experiment are simulated for each method. All
parameters are the same as in Fig. 3(b), except for θmin, which
is set here to 0.5% of the trap depth U0/kB (see Sec. IV E). The
inset shows the optimal expansion time as a function of k for
one of the simulated measurement records (solid green). The a
priori optimal recapture time for this wider hypothesis support
is indicated by the orange dashed line. In contrast, the a priori
optimal time for the narrower support used in Figs. 1–5 is the
orange dash-dot line. Our observation that the a priori optimized
method seems to perform equally well than the arguably superior
fully adaptive scheme is explained by the fact that, for the nar-
rower prior, ts almost coincides with the true optimum for most
of the experiment.

for our prior, stretching it by one order of magnitude into
colder temperatures. Namely, 1.45 ≤ θ ≤ 125 μK.

As we can see in Fig. 6, the adaptive protocol exhibits
here a reduced variability with respect to the a priori
optimized method. This is due to the fact that the a
priori optimal time is nearly 60 μs, while the true opti-
mal release-recapture delay stabilizes around 20 μs after
few measurements (see the inset of Fig. 6). This quickly
renders the a priori optimized method inefficient when
it comes to information acquisition. The fully adaptive
protocol, however, does not share this problem.

V. CONCLUSIONS

In this paper we have demonstrated how temperature
measurements can be substantially improved in practice
by actively exploiting Bayesian-global thermometry tech-
niques. We do so on a concrete experimental setup, namely,
release-recapture measurements on few tightly confined
41K atoms at μK temperatures. The conventional protocol
samples the fraction of recaptured atoms evenly and fits
the data to a model for the recapture probability. Instead,
we propose to choose the delay between release and recap-
ture so as to maximize information gain, and to process the
measured data with our Bayesian technique [35].

Working with real experimental data as well numeri-
cal simulations, we have shown that our method has three
important advantages. First, the variability of estimates
extracted from small data sets is largely reduced when
compared to the conventional protocol. This results in

much more dependable thermometry. Second, time opti-
mization also leads to a faster convergence towards the
true temperature in the asymptotic limit of many mea-
surements. Finally, the optimization of the recapture time
substantially reduces the number of measurements needed
for estimates to stabilize to a final temperature reading.
Put differently, the conventional approach wastes resources
by performing and processing a sizeable proportion of
uninformative measurements.

We have also demonstrated that the best results are
obtained with a fully adaptive approach, in which each new
release-recapture interval takes in all previous measure-
ments. Interestingly, a simpler protocol can yield surpris-
ingly competitive estimates, namely, measuring repeatedly
at a single expansion time—the a priori optimal one. That
is, the delay that maximizes the information gain in the
first measurement. This follows from the parameters of the
experiment and the range of temperatures being probed.
Other than an arbitrarily broad temperature range, we have
assumed no prior knowledge about the temperature.

We have shown how quantum thermometry can
deliver practical solutions leading to quantifiable preci-
sion enhancements, once the quantum Fisher informa-
tion–based local paradigm [18] is abandoned in favor
of the global framework. While the former has proven
useful when studying fundamental precision limits and
maximizing the responsiveness of temperature sensors,
the more general Bayesian framework can, in addition to
that [40,47], process finite experimental records optimally.
Importantly, the exact same fundamental principles can be
applied to other techniques in different temperature ranges
and experimental platforms, which opens a new exciting
avenue in quantum thermometry.
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APPENDIX A: SCALE-INVARIANT
THERMOMETRY

This appendix applies the framework of (quantum) scale
estimation in Refs. [35,40] to release-recapture thermome-
try.
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1. Temperature as a scale parameter

Let us first examine the multiatom measurement model
for our experiment. That is, the probability function
p(ni|T, ti) for recapturing ni atoms after time ti during the
ith run, given that their temperature is T. As shown in Secs.
II B and III C and in Appendix C, p(ni|T, ti) takes the form

p(ni|T, ti) = e−λf (T,ti)

ni!
[λf (T, ti)]ni . (A1)

Since both temperature and the other dimensioned quan-
tities appear only within the fraction of recaptured atoms,
we can base our analysis on the function f (T, t) alone. This
implies that the discussion in this appendix also applies to
the single-atom model in the main text.

Let us now define the kinetic energy

Ek := 1
2

m
(

l
t

)2

(A2)

of an atom having moved by the characteristic length scale
l = w0/

√
2 at time t. Using this, the fraction of recaptured

atoms can be cast as

f (T, t) = g{[Ek/(kBT)]W(U0/Ek)}
g[U0/(kBT)]

. (A3)

That is, our statistics is invariant under transformations
U′

0 �→ γ U0, E′
k �→ γ Ek, and T′ �→ γ T, where γ is an arbi-

trary positive constant. This implies that temperature sets
the energy scale of the problem, and so it is a scale
parameter from the point of view of estimation theory
[33,35,40,42,46].

2. Protocol optimization

This work optimizes release-recapture experiments in
two ways. First, by constructing an estimator function
mapping the measurement outcomes n = (n1, . . . , nμ) and
the release times t = (t1, . . . , tμ) to the optimal tempera-
ture estimate ϑ̃(n, t), where μ is the number of experi-
mental runs. Second, by identifying the most informative
values for the release times t = (t1, . . . , tμ).

Given that T is unknown, both optimizations need to be
carried out with respect to a temperature-independent mea-
sure of uncertainty. In addition, they need to be performed
before the experiment is run (see Sec. II C), meaning that
the uncertainty must also be outcome independent. We thus
use the uncertainty quantifier

ε̄(t) =
∫

dn p(n|t)ε̄(n, t), (A4)

where

ε̄(n, t) =
∫

dθ p(θ |n, t)D[θ̃ (n, t), θ ]. (A5)

Here, θ is a hypothesis about the true value of T, θ̃ (n, t)
is a generic temperature estimator, and D[θ̃ (n, t), θ ] is a
deviation function gauging the deviation of θ̃ (n, t) from θ .
Furthermore, p(n|t) = ∫

dθ p(θ)p(n|θ , t), while the prob-
abilities p(θ), p(n|θ , t), and p(θ |n, t) are defined in the
main text and in Appendix B.

To use Eqs. (A4) and (A5), we must choose a devi-
ation function D. As shown in Ref. [35], the scale-
invariant nature of the protocols in this work (see Sec. A 1)
leads to the logarithmic deviation function D[θ̃ (n, t), θ ] =
log2[θ̃ (n, t)/θ ]. Using this, Eqs. (A4) and (A5) become the
mean logarithmic errors ε̄(t) �→ ε̄MLE(t) and

ε̄(n, t) �→ ε̄MLE(n, t) =
∫

dθ p(θ |n, t) log2
[
θ̃ (n, t)

θ

]
,

(A6)

respectively. Unlike the more familiar square errors, which
are based on the deviation function [θ̃ (n, t) − θ ]2 [33,53],
logarithmic errors respect the scale invariance of the prob-
lem, i.e., D(γ θ̃ , γ θ) = D(θ̃ , θ), and they do so while
relying on minimal assumptions [35,40]; hence, their use
in this work. We can then minimize ε̄MLE(t) with respect
to θ̃ (n, t), finding the optimal temperature estimator [35]

ϑ̃(n, t) = θu exp
[ ∫

dθ p(θ |n, t) log
(

θ

θu

)]
(A7)

used in the main text.
To find the optimal release times t, we first insert the

estimator above into the expression for ε̄MLE(t), arriv-
ing at the fundamental lower bound ε̄MLE(t) ≥ ε̄p − K(t)
[35,40]. Such a bound is the result of taking the uncer-
tainty prior to performing the experiment, denoted by ε̄p ,
and subtracting the mean information gain K(t) associated
with the measurement protocol under consideration. The
expression for K(t) is given in the main text for a single
shot, while that for ε̄p can be found in Refs. [35,40]. For
our purposes, the key property of ε̄p is its lack of depen-
dence on the release times t. Given this, if we wish to
optimize our protocol by minimizing the bound above for a
single shot, as done in this work, we simply need to replace
t �→ t and maximize K(t) with respect to t.

We finally note that, once the optimal strategy has
been found, the theoretical error in Eq. (A4) ceases to
be relevant from an experimental point of view. Indeed,
since our final goal is processing real data, the associ-
ated error bars must rely on a temperature-independent but
outcome-dependant uncertainty, i.e., that in Eq. (A6).

APPENDIX B: POSTERIOR PROBABILITY

In this appendix we derive Eq. (1). First, the posterior
probability p(θ |n, t) is given by Bayes theorem as [33,34]

p(θ |n, t) ∝ p(θ |t)p(n|θ , t).
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We now note that the expansion times t = (t1, . . . , tμ) do
not (by themselves) inform how likely different hypotheses
θ about T are. Hence, we take p(θ |t) �→ p(θ). Assum-
ing statistical independence between measurements further
leads to

p(n|θ , t) =
μ∏

i=1

p(ni|θ , t).

But we also see that expansion times other than ti do not
inform the likelihood for the number of recaptured atoms
ni recorded in the ith measurement. One thus finally arrives
at

p(θ |n, t) = 1
A

p(θ)

μ∏

i=1

p(ni|θ , ti),

as stated in the main text. The normalization factor A is
found by integrating over the hypothesis range [θmin, θmax],
i.e.,

A =
∫ θmax

θmin

dθ p(θ)

μ∏

i=1

p(ni|θ , ti).

APPENDIX C: CALCULATION OF THE
RECAPTURED FRACTION

For the sake of completeness, we summarize the main
steps of the derivation of Eq. (9) as given in Ref. [51].
Let us load N0 atoms of mass m at low temperature, i.e.,
kBT � U0, into the tweezer trap. Specifically, the temper-
ature is low enough so that the atoms are well localized at
the center of the trap. Furthermore, we neglect interatomic
interactions, the influence of gravity, and the movement
along the z axis. After a free-expansion time t, the trap is
reactivated. An atom may only be recaptured then if

1
2

m
(

r
t

)2

≤ U0 exp
(

− 2r2

w2
0

)
,

where r is the distance from the center of the trap
(see Sec. II B). One then defines rmax as the distance
that saturates the above inequality. It is convenient to
introduce the dimensionless variables r̃2 = 2r2/w2

0 and
t̃2 = 4U0t2/(mw2

0), so that t̃2 = r̃2
max exp(r̃2

max) or, equiva-
lently, r̃2

max = W(t̃2), where W(·) is the product-logarithm
or Lambert-W function defined in the main text. Hence,
r2

max = w2
0W(t̃2)/2, so the maximal speed of a recaptured

atom is

v2
max(t) =

(
rmax

t

)2

= w2
0

W(t̃2)
2t2

.

Only those particles with velocity below vmax(0) =√
2U0/m would be initially captured by the trap. On the

other hand, only those with velocity under vmax(t) would

be recaptured after free expansion during time t. Therefore,
the recapture fraction simply reads

f (T, t) =
∫ vmax(t)

0 dv F(v)
∫ vmax(0)

0 dv F(v)
= 1

g(η)
g
[
ηW(t̃2)

t̃2

]
, (C1)

where F(v) = (mv/kBT) exp[−mv2/(2kBT)] is the
Maxwell-Boltzmann distribution in two dimensions,
g(s) = 1 − e−s, and η = U0/(kBT). Equation (C1) follows
from

∫ u

0
dv F(v) = g

(
mu2

2kBT

)
.

Equation (C1) is useful due to its simplicity. However,
we may loosen most of the underlying assumptions by
simulating many individual trajectories of atoms. At low-
enough temperatures, these can be sampled from a Gaus-
sian distribution in position as well as in velocity in spite
of the anharmonicity of the trap. The effects of gravity and
the subsequent axial motion can also be included.

As we can see in Fig. 7, our simple model from Eq. (C1)
is in very good agreement with the numerically calculated
recaptured fraction over a broad range of temperatures and
recapture times. As expected, some deviations start to be
appreciated as the temperature nears U0/kB.

It must be noted that limiting ourselves to the regime in
which Eq. (9) is applicable is not as restrictive as it might
seem. As we can see, the numerically calculated recap-
tured fraction becomes almost independent of T when the
model and simulation start to diverge. Hence, when Eq.
(9) ceases to apply, release-recapture thermometry itself
becomes inefficient.

APPENDIX D: PROOF OF EQ. (13) IN THE MAIN
TEXT

Starting from the left-hand side of Eq. (13), we have

p(ni|T, ti) =
∞∑

N0=0

P(N0|λ)B[ni|N0, q = f (T, ti)]

=
∞∑

N0=0

λN0e−λ

N0!

(
N0

ni

)
qni(1 − q)N0−ni ,

where we recall that q = f (T, ti). Given that

(
N0

ni

)
= 0
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FIG. 7. Regime of validity of Eq. (C1) for the recaptured fraction. The analytical approximation (C1) (blue) is compared to the
recaptured fraction computed from 5000 individual simulated trajectories of atoms sampled from a thermal distribution (orange), as a
function of temperature, for different recapture times. Axial motion due to gravity is also factored in the calculation. As can be seen,
for a deep trap with U0/kB = 290 μK (top row), the approximation holds well up to about 125 μK, while it breaks down at about
30 μK in a shallow-trap configuration (bottom row) with U0/kB = 110 μK. Simulations are for 41K and the trap geometry described
in Sec. III A.

for N0 < ni, we only need to sum from N0 = ni, i.e.,

p(ni|T, ti) =
∞∑

N0=ni

λN0e−λ

N0!

(
N0

ni

)
qni(1 − q)N0−ni ,

=
∞∑

N0=ni

λN0e−λ

N0!
N0!

ni!(N0 − ni)!
qni(1 − q)N0−ni

= qnie−λ

ni!

∞∑

N0=ni

λN0

(N0 − ni)!
(1 − q)N0−ni .

Next, we introduce the new variable j = N0 − ni, so that

p(ni|T, ti) = qnie−λ

ni!

∞∑

j =0

λj +ni

j !
(1 − q)j

= (λq)nie−λ

ni!

∞∑

j =0

[λ(1 − q)]j

j !
.

But the remaining sum is just the Taylor expansion of the
exponential function ex around x = 0. Therefore,

p(ni|T, ti) = (λq)nie−λ

ni!
eλ(1−q)

= (λq)nie−λq

ni!

= P(ni|λq), (D1)

which is a Poisson distribution with mean λq = λf (T, ti).

APPENDIX E: BAYESIAN MULTIPARAMETER
ESTIMATION

Our calculations assume that λ in the likelihood model
p(ni|T, ti) = P[ni|λf (T, ti)] is perfectly known. Yet, our
value for λ comes from calibration measurements, and
its uncertainty has not been taken into account explic-
itly. While, as shown in Sec. IV B, our results would
remain unchanged even if λ were exactly known, here we
summarize, for the sake of completeness, how our global-
Bayesian technique can be generalized for multiparameter
estimation.

Firstly, we must think about the likelihood as a two-
parameter model, i.e., p(ni|λ, T, ti) = P[ni|λf (T, ti)]. The
corresponding posterior would then be constructed as

p(θ , λ|n, t) ∝ p(θ , λ)

μ∏

i=1

p(ni|λ, θ , ti), (E1)

in which we additionally allow for uncertainty in λ through
p(θ , λ). We may then treat λ as a nuisance parameter,
which leads to the temperature estimator

ϑ̃(n, t) = θu exp
[ ∫

dλdθ p(λ, θ |n, t) log
(

θ

θu

)]
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with mean logarithmic error

ε̄MLE(n, t) =
∫

dλdθ p(λ, θ |n, t) log2
[
ϑ̃(n, t)

θ

]
.

If we instead wish to estimate λ, we can do so by marginal-
izing over θ in Eq. (E1).
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iński, Few-fermion thermometry, Phys. Rev. A 97, 063619
(2018).

[24] V. Mukherjee, A. Zwick, A. Ghosh, X. Chen, and G. Kur-
izki, Enhanced precision bound of low-temperature quan-
tum thermometry via dynamical control, Commun. Phys.
2, 162 (2019).

[25] M. T. Mitchison, T. Fogarty, G. Guarnieri, S. Campbell, T.
Busch, and J. Goold, In Situ Thermometry of a Cold Fermi
Gas via Dephasing Impurities, Phys. Rev. Lett. 125, 080402
(2020).

[26] J. Glatthard and L. A. Correa, Bending the rules of low-
temperature thermometry with periodic driving, Quantum
6, 705 (2022).

[27] L. A. Correa, M. Perarnau-Llobet, K. V. Hovhan-
nisyan, S. Hernández-Santana, M. Mehboudi, and A.
Sanpera, Enhancement of low-temperature thermome-
try by strong coupling, Phys. Rev. A 96, 062103
(2017).

[28] S. Seah, S. Nimmrichter, D. Grimmer, J. P. Santos, V.
Scarani, and G. T. Landi, Collisional Quantum Thermome-
try, Phys. Rev. Lett. 123, 180602 (2019).

[29] J. Nettersheim, Q. Bouton, D. Adam, and A. Widera, Sen-
sitivity of a collisional single-atom spin probe, (2022),
ArXiv:2203.13656.

[30] M. Mehboudi, A. Lampo, C. Charalambous, L. A. Correa,
M. A. García-March, and M. Lewenstein, Using Polarons
for sub-nK Quantum Nondemolition Thermometry in a
Bose-Einstein Condensate, Phys. Rev. Lett. 122, 030403
(2019).

[31] S. L. Braunstein and C. M. Caves, Statistical Distance and
the Geometry of Quantum States, Phys. Rev. Lett. 72, 3439
(1994).

[32] C. W. Helstrom, Quantum Detection and Estimation Theory
(Academic Press, New York, 1976).

040330-14

https://doi.org/10.1038/nature09378
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/s41586-021-03582-4
https://doi.org/10.1038/s41586-021-03585-1
https://doi.org/10.1038/nphys2739
https://doi.org/10.1146/annurev-conmatphys-031214-014548
https://doi.org/10.1103/PhysRevX.10.011018
https://doi.org/10.22331/q-2019-06-28-155
https://doi.org/10.1088/1367-2630/ab2684
https://doi.org/10.1038/s41467-021-22222-z
https://doi.org/10.1126/science.1201351
https://doi.org/10.1103/PhysRevX.2.041014
https://doi.org/10.1364/OL.37.000851
https://doi.org/10.1103/PhysRevLett.55.48
https://doi.org/10.1103/PhysRevLett.61.169
https://doi.org/10.1103/PhysRevLett.88.253001
https://doi.org/10.1088/1751-8121/ab2828
https://doi.org/10.1103/PhysRevB.98.045101
https://doi.org/10.22331/q-2019-07-09-161
https://arxiv.org/abs/2108.10469
https://doi.org/10.1103/PhysRevLett.114.220405
https://doi.org/10.1103/PhysRevA.97.063619
https://doi.org/10.1038/s42005-019-0265-y
https://doi.org/10.1103/PhysRevLett.125.080402
https://doi.org/10.22331/q-2022-05-03-705
https://doi.org/10.1103/PhysRevA.96.062103
https://doi.org/10.1103/PhysRevLett.123.180602
https://arxiv.org/abs/2203.13656
https://doi.org/10.1103/PhysRevLett.122.030403
https://doi.org/10.1103/PhysRevLett.72.3439


OPTIMAL COLD ATOM THERMOMETRY... PRX QUANTUM 3, 040330 (2022)

[33] E. T. Jaynes, Probability Theory: The Logic of Science
(Cambridge University Press, Cambridge, 2003).

[34] U. von Toussaint, Bayesian inference in physics, Rev. Mod.
Phys. 83, 943 (2011).

[35] J. Rubio, J. Anders, and L. A. Correa, Global Quantum
Thermometry, Phys. Rev. Lett. 127, 190402 (2021).

[36] W.-K. Mok, K. Bharti, L.-C. Kwek, and A. Bayat, Optimal
probes for global quantum thermometry, Commun. Phys. 4,
1 (2021).

[37] M. Mehboudi, M. R. Jørgensen, S. Seah, J. B. Brask, J.
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[53] R. Demkowicz-Dobrzański, M. Jarzyna, and J. Kołodyński,
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