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and weather, whilst controlling for background spa-
tial and demographic differences in internet services. 
Emergent patterns suggest that even before the pan-
demic, online connectivity was in greater demand 
when travel was disrupted or at risk of disruption. 
Our research provides insights into the roles that both 
the supply of and the demand for transport and digital 
technologies might play in increasing resilience and 
maintaining productivity during severe weather and 
other disruptions as experience of both types of work-
ing has become so widespread.

Keywords  Broadband speeds · Telecommuting · 
Extreme weather · Resilience

Introduction

This article analyses how the demand for internet 
access changes during the working day at times of 
adverse weather in order to gain insights into the abil-
ity of online applications to offer resilient accessibil-
ity to work and other activities. Transport research-
ers have long recognised the impact of weather 
parameters such as precipitation, temperature and 
wind-speed on travel behaviour, using surveys and 
transport-derived big data sources to assess whether 
and how people change their travel choices, including 
route, mode, timing, destination, or cancellation, in 
response to adverse weather (Böcker et al., 2013; De 
Palma & Rochat, 1999; Khattak & De Palma, 1997; 

Abstract  The Covid-19 pandemic resulted in an 
unprecedented overnight explosion in telecommut-
ing. It has highlighted a new dependence on digital 
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the resilience of internet connectivity as an alterna-
tive to travel. Pre-pandemic, we considered how tel-
ecommuting could offer an opportunity for resilience 
when travel was disrupted by weather extremes. We 
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tify the changing demand for internet access during 
the working day under adverse weather conditions. 
Slower broadband speeds, also known as conten-
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choice to telecommute instead of travel. A multilevel 
regression model is estimated to investigate the rela-
tionship between contention during the working day 
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Koetse & Rietveld, 2009; Liu et al, 2015; Sabir et al., 
2010). However, most transport research ignores the 
capacity of digital technologies to enable individu-
als to participate in social and economic activities 
remotely even when unplanned due to disruption, and 
thus to substitute some trips with online access. Gain-
ing a better understanding of if and how digital tech-
nologies can do this could improve transport and eco-
nomic policy responses to severe weather events, for 
example, by identifying when it might be appropriate 
to promote telecommuting as a resilient alternative to 
travel.

Although an extreme situation, the current Covid-
19 pandemic has exemplified the capacity of digital 
technologies to enable individuals to change travel 
choices but still participate in productive activities, 
e.g. by working from home. Indeed, research demon-
strates that even before the pandemic, the rate of tel-
ecommuting and periodic home-working was slowly 
increasing in the UK, along with other flexible work-
ing practices and intrapersonal variability in daily 
working and commuting patterns (Crawford, 2020; 
Headicar & Stokes, 2016; Le Vine et al., 2017). Yet 
the extent to which external factors such as weather 
influence the pattern of home-working and intrap-
ersonal daily variability in work access is largely 
unknown, as is the extent to which digital technolo-
gies and, more specifically, internet access and appli-
cations can offer a resilient alternative to travel dur-
ing periods of transport disruption. This is despite the 
expectation that such disruptions will cause a spike 
in demand for robust, quality internet services (Fu 
et al., 2016). Therefore, this research aimed to quan-
tify whether the pattern of internet activity on work-
ing days is influenced by the expectation of severe 
weather or potential travel disruption, and what this 
tells us about the choice of which days people choose 
to telecommute.

Context of contention

In order to conduct this analysis, we utilise the 
records of millions of individual, geo-located and 
timestamped, anonymised broadband speed tests to 
expose experienced internet demand and quality of 
service changes at temporal and spatial resolutions 
granular enough to link these changes with changes 
in weather parameters and thresholds that reflect the 
types of adverse weather which often cause transport 

disruption. This data source is suitable because most 
online access from homes in the UK is achieved via 
fixed broadband networks, the availability and quality 
of which is time-sensitive. Residential fixed broad-
band access in the UK was initially provided to most 
dwellings over a pre-existing national network of 
copper telephone lines, or ‘ADSL’ connections. Cop-
per lines are gradually being replaced by fibre optic, 
either between the telephone exchange and the street 
cabinet (known as ‘FTTC’ – Fibre to the cabinet) or 
direct to residential and business premises (‘FTTP’) 
either from the cabinet or from the exchange. Inter-
net Service Providers (ISP) compete for custom-
ers, despite using the same infrastructure installed 
by the formerly state-owned company, BT (known 
as local loop unbundling). The exception is Virgin 
broadband, who use their own infrastructure, which 
was originally installed to provide cable television. 
Thus, maximum speeds available to a household are 
determined by the type of connection, e.g. ADSL or 
FTTC, competition between providers, and the loca-
tion of the end user, with urban residents benefitting 
most (Nardotto et al., 2015; Philip et al., 2017; Tranos 
et al., 2013).

However, there is a difference between maximum 
available or advertised speeds and actual experi-
enced speeds. Broadband is subject not only to out-
ages, but also to what Ofcom, the industry regulator 
of Information and Communication Technologies 
(ICT) in the UK, defines as: “a slowdown in perfor-
mance caused when multiple users share the same 
bandwidth within a network and the bandwidth avail-
able is less than the aggregate demand” (2018, p89). 
Contention, like congestion on transport networks, 
is not a measurement of the total capacity of a link, 
but rather a measure of the relative broadband down-
load (and upload) speeds at different times for the 
same service depending on how many individuals are 
sharing the same bandwidth, which is often a greater 
number in urban areas, and how the ISP manages 
peaks in demand (Nardotto et al., 2015; Ofcom, 2018; 
Riddlesden & Singleton, 2014).

Ofcom consistently reports that the lowest aver-
age speeds on all connection types occur during the 
evening peak of 20.00–22.00, and this is what they 
measure relative to a 24-h average as an indicator 
of broadband performance for different ISPs. How-
ever, contention can occur at other times, such as has 
been observed during mass streaming of sporting 
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and entertainment events taking place outside of 
’prime time’ (Ofcom, 2014a). Therefore, we hypoth-
esise that if severe weather conditions led to unusu-
ally high demand for internet services and data traf-
fic because household members unexpectedly choose 
to stay home, the resulting contention will illustrate 
the temporal and geographical extent of increased 
internet activity, in this case in England and Wales. It 
will also provide insights into how broadband speed 
checks provide evidence of increased online interac-
tions and activity and thus a resilient access alterna-
tive to transport during the working day to maintain 
productivity.

In the next section, we review the literature on the 
resilience of transport and broadband infrastructure to 
extreme weather, as well as the literature on telecom-
muting trends, and explore the gap between these 
areas of study which this article aims to address. 
Then we describe the data and the methods employed 
before the fourth and fifth sections detail the results of 
our multilevel model and sensitivity testing. Finally, 
we conclude with a discussion of the importance of 
our insights into how online activity varies in time 
and space and its relevance to resilient accessibility.

Literature review

Extreme weather, risk and resilience

Storms, floods, and other severe weather events are 
occurring more frequently and arguably pose the 
greatest hazard of climate change to transport infra-
structure in the UK (Dawson, 2016; Jaroszweski 
et  al., 2010). As Government reviews following 
extreme weather events detail, choosing to travel 
involves risking exposure to disruptions such as 
road closures, rail cancellations, reduced speeds and 
delays, as well as risks to personal safety due to the 
physical damage to infrastructure and property, and 
increased levels of road traffic accidents (Chatterton 
et al., 2016; Quarmby et al., 2010). Meanwhile, ICT 
infrastructure is more resilient than transport infra-
structure during these events because components 
are often designed for climates more extreme than 
the UK; technology updates result in more frequent 
maintenance and replacement; and the national net-
work has high levels of redundancy, with a density 
of interconnected links that can maintain service for 

a high proportion of end users most of the time (Daw-
son, 2016; Fu et  al., 2016; Horrocks et  al., 2010). 
For example, the period of well-documented storms 
between December 2013 and February 2014 had sig-
nificant transport impacts (Chatterton et  al., 2016), 
but minimal impacts on broadband infrastructure, as 
analysis conducted by Ofcom indicated that only 1% 
of the incidents reported to them were attributed to 
severe weather (2014). Therefore, whilst weather can 
cause technical failures in ICT infrastructure, such 
failures usually manifest as localised losses of con-
nection, often to individual premises, creating issues 
which, in the UK, occur at a rate considered an inter-
nationally competitive benchmark, and are therefore 
more matters of customer service, maintenance, and 
standards, rather than of national resilience (Lazarus, 
2013, 2014; Ofcom, 2014b; Schulman & Spring, 
2011). This means that if online access is chosen over 
travel, it could reduce a severe weather event’s asso-
ciated risks, mitigate the impacts on the productivity 
and / or personal safety of the individual not travel-
ling, and reduce delays and damages for those who do 
travel.

Surveys of commuters following Hurricane Sandy 
in New York and major flooding events in the UK 
provide evidence of increased telecommuting and 
related coping strategies (Allen et al., 2015; Kaufman 
et  al., 2012; Marsden & Docherty, 2013; Marsden 
et al., 2016). An analysis of one of the London Inter-
net eXchange Points or IXPs, which form the locally 
specific part of the wider internet service network, 
tracked a large increase in the volume of data traf-
fic during consecutive extreme weather events in the 
UK in early March 2018, indicating that people were 
working remotely, checking traffic updates more, 
and streaming video (Stubbings & Rowe, 2019). 
However, whilst these case studies provide valuable 
insights, they focus on extreme weather events with 
known transport disruption, rather than the occur-
rence of adverse weather which only increases the 
risk of transport disruption. There is little evidence of 
a more direct relationship between increased internet 
activity and adverse weather parameters and thresh-
olds over time.

The choice to telecommute

Studies of daily weather variation and travel do indi-
cate that commuters are less likely to cancel their 
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trips than those travelling for other purposes (De 
Palma & Rochat, 1999; Khattak & De Palma, 1997; 
Sabir et al., 2010). Work (or education) activities are 
the most frequent, ‘non-discretionary’ interactions 
external to the home around which daily trip and 
activity patterns coalesce, even during severe weather 
events (Budnitz et  al., 2020; Le Vine et  al., 2017; 
Miller, 2005). However, these studies do not investi-
gate whether cancellations of travel equate to cancel-
lation of activities, or whether online access provides 
a substitute. Furthermore, Marsden et al. (2016) sug-
gest that when faced with transport disruption, people 
prefer to choose an alternative means of access with 
which they are already familiar, such as telecommut-
ing. Regular telecommuting is part of a growing trend 
in spatially and temporally flexible working patterns 
that include the use of digital technologies to replace 
all or some of the journey to and from work or to 
commute at different times (Felstead, 2012; Haddad 
et al., 2009; Siha & Monroe, 2006). Thus, even before 
the pandemic, it was a familiar access alternative to a 
growing population.

There are studies from the UK, United States and 
elsewhere in Europe that aim to characterise this 
population in terms of its preference, opportunity 
and frequency of choice to telecommute. Conclu-
sions suggest that the characteristics of those who tel-
ecommute, but are not home-based workers, include 
the holding of  professional or managerial positions, 
being more educated and wealthier, having longer 
commutes when they do travel to their main place of 
work, and the tendency to live in suburban/outer met-
ropolitan neighbourhoods rather than fully rural areas 
(Ellen & Hempstead, 2002; Headicar & Stokes, 2016; 
Peters et  al., 2004; Singh et  al., 2013; Walls et  al., 
2006). Research further indicates considerable sup-
pressed demand for the flexibility to work from home 
once or twice a week, particularly among women 
and part-time workers, fewer of whom telecommute 
regularly, but who are more likely to say they want to 
(Headicar & Stokes, 2016; Lavieri et al., 2018; Singh 
et  al., 2013). Yet this literature barely touches the 
surface of what determines which days or part-days 
people choose to work from home, even though there 
is some acknowledgement that this may vary from 
week to week and month to month rather than be a 
product of fixed work schedules (Allen et  al., 2015; 
Haddad et  al., 2009). Thus, this article aims to pro-
vide insights on the question of whether the choice to 

telecommute on some days rather than others could 
be influenced by external factors such as the expecta-
tion of severe weather or potential travel disruption.

Data and methods

Modelling speed test data

In order to test the influence of weather conditions on 
internet activity, data were provided by Speedchecker 
Ltd,1 a private company that allows internet users 
to check their own broadband upload / download 
speeds. The result of every speed-check is stored with 
a timestamp and geographical coordinates. Datasets 
from Speedchecker Ltd have been the subject of pre-
vious studies on the geographic equity of broadband 
speeds (Riddlesden & Singleton, 2014), and on the 
service quality benefits of competition and local loop 
unbundling (Nardotto et  al., 2015). However, whilst 
both studies investigated spatial variation in internet 
access and quality of service, neither assessed the 
implications of daily variability, the effects of adverse 
weather conditions, or contention during the work-
ing day or between working days. Both mention that, 
even assuming fast connections to a property and 
proactive ISP management, contention occurs due 
to demand at peak times, generally in the evening, 
when people are likely to be streaming video content 
for leisure purposes (Nardotto et  al., 2015; Ofcom, 
2014a; Riddlesden & Singleton, 2014). This demand 
is specifically for download speeds, which are “by far 
the most important feature for household users” (Nar-
dotto et  al., 2015, p336), and are more temporally 
variable, so we too use download speeds as a proxy 
for internet activity. Only the extreme demand for 
internet services during the pandemic, including mas-
sive increases in video-conferencing have made con-
tention in upload speeds visible during the working 
day (Budnitz & Tranos, 2021).

This study models a subset of the data provided 
by Speedchecker Ltd, which incorporates 2,556,025 
individual speed tests run on 1239  days from 2012 
to 2016 in England and Wales during the working 
hours of 08.00 to 18.00, Monday to Friday, exclud-
ing bank holidays and 24 December to the first of 

1  http://​www.​broad​bands​peedc​hecker.​co.​uk

http://www.broadbandspeedchecker.co.uk
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January inclusive.2 These five years capture a period 
when download speeds could broadly be expected 
to include superfast connections of above 30Mbit/s, 
but prior to any substantial roll-out of ultrafast full 
fibre services of over 300Mbit/s. Thus, outlier tests 
recording download speeds of under 0.5Mbit/s or 
over 100Mbit/s could be removed prior to analy-
sis following the approach taken by Riddlesden and 
Singleton (2014). Tests run during Storm Jude on 28 
October 2013 were also excluded as outliers, as our 
data indicated download speeds unusually faster than 
surrounding working weekdays (08.00–18.00), and 
industry investigations revealed a record number of 
faults reported to BT on that day, likely due to the 
weather causing a widespread loss of power (Met 
Lazarus, 2014; Office, 2013). Indeed, when power 
outages are widespread, concurrent broadband out-
ages are common and can result in increasing rather 
than decreasing broadband speeds where services are 
still available. However, the lack of consistent report-
ing make it difficult to pinpoint mass outages and 
what may have caused them except via the occasional 
media report. The reports Ofcom receives from ISPs, 
often during the later stages of an incident, are not 
publicly available (John, 2017). Therefore, we were 
unable to corroborate other dates of mass outages to 
exclude from our analysis.

The subset of download speeds formed the depend-
ent variable for a multilevel regression model. We 
control for characteristics relevant to individual tests 
as well as for higher-level, socio-economic and geo-
graphic attributes, which are consistent over time and 
reflect some of the differences of broadband supply 
and demand ‘between’ defined areas in order to iso-
late any significant, time-variant or ‘within’ area con-
tention effects that might be attributed to the weather 
(Bell & Jones, 2015). Our random intercept model is 
shown in Eq. (1), where the Test Speed variable rep-
resents the download speed for each individual test i 
which took place in the higher spatial unit j. Nardotto 
et  al. similarly varies predictor variables by higher 
geographic units, in his case the telephone exchange 
catchment (2015). The Test Speed variable is highly 

skewed, so a transformation using the logarithmic 
function is included in the model.

All variables in Eq.  (1) are described in Table 1. 
The main broadband speed data also included details 
of the ISP, who may approach the management of 
contention differently. To control for this choice of 
broadband package by individual households, we 
include the variable ISPij in (1). Furthermore, only 
some areas have the option of Virgin’s cable service, 
which usually offers faster top speeds but has limited 
bandwidth available for connections that serve multi-
ple properties and thus suffers more from contention 
(Ofcom, 2018). No further data was available on sup-
ply-side characteristics of broadband provision, which 
was one reason to apply a multilevel model so that 
tests would be grouped by small enough geographic 
areas to control for this variation. Therefore, although 
data was not available on the distance from the near-
est street cabinet to individual properties, which often 
limits achievable broadband speeds for the end user in 
rural areas, the spatial units j will be relatively homo-
geneous in terms of urban form (Nardotto et al., 2015; 
Philip et al., 2017). Data on Distance to the Nearest 
[telephone] Exchange was acquired separately and is 
included (Nardotto et al., 2015).

Annual average broadband speeds increased sub-
stantially over the five years. This time progres-
sion was expected, as the improvement of broad-
band coverage and speeds is a key government 
policy, although a comparison of speeds reported by 
Ofcom to those in this data set suggest that possible 
speeds are increasing faster than experienced speeds 
as shown in Table  2. Thus, the time trend variable, 
Annual Trendij in Eq.  (1) controls for the annual, 
nation-wide improvement in broadband speeds, with 
2012 coded as one, 2013 as two and so on.

In terms of other temporal variation not related to 
the weather, the dependent variable is a subset that 
includes only broadband speed tests run on work-
ing days. As work is an essential activity for those in 

(1)

log
(

Test Speedij
)

=�00 + �10ISPij

+ �11Distance to Nearest Exchangeij

+ �12Annual Trendij + �13weekdayij

+ �14Ratio Speed Tests to populationij

+ �01Control_Variablesj

+ �02Weather_Variablesj + �0j + �ij

2  No speed-check data were available for the weekdays 6 
March 2012, 11–14 February 2014 nor 22 September 2016, 
presumably due to server or software failures.
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employment, trip volumes and concentrations show 
less variation between working days than between 
work days and weekends, or between Saturdays and 
Sundays, making daily, intra-personal variability 
more visible (Crawford et al., 2017). We believe that 

this is also the case for contention. Furthermore, it 
is important to note that the working day is not nor-
mally considered the peak time for internet activity 
and therefore contention, which occurs in the even-
ing. Nor does our subset include the early morn-
ing hours until 06.00, when there are unusually high 
speeds because activity is extremely low (Nardotto 
et al., 2015; Ofcom, 2014a; Riddlesden & Singleton, 
2014). Since those with high speed connections are 
likely to consume more data of all sorts and use their 
connections for a variety of purposes, we expect that 
those who usually generate internet activity in the 
evening are likely to generate it during the working 
day if they unexpectedly choose to stay home (Hauge 
et  al., 2010; Ofcom, 2016). However, an array of 
dummy variables for weekdayij in Eq.  (1) represent 
days of the week, such as Monday, Tuesday, and so 
on to control for some residual variation.

Table 1   Descriptive statistics for model variables

Source *Column 2 indicates the number or sample size of speed tests that could be matched to the weather variables spatially and 
temporally. The other columns describe the key statistics of each variable respectively

Variable Source Sample size* Mean St. Dev Min Max

Mean speed (Kbps) Speedchecker Ltd; 2012–2016 2,556,025 16,432.98 17,734.98 513 102,397
Annual trend Derived from time stamp 3.116 1.524 1 5
Day of the week Derived from time stamp 4.021 1.408 2 6
Distance to nearest Exchange (km) Provided by Dr M Nardotto to 

authors (Nardotto et al., 2015)
0.236 0.171 0 0.68

Ratio Speed Tests to population ONS Mid-2014 population estimates 0.074 0.162 0.007 1.689
Ratio of population working in High-

tech industries
ONS 2011 Census data 0.053 0.033 0.006 0.237

Ratio of population with higher 
professional status

0.231 0.072 0.042 0.582

Average Commuting Distance (km) 16.31 4.419 5.9 37.5
More urban location 0.843 0.364 0 1
Ratio of population who mainly work 

from home
0.031 0.018 0.002 0.116

Household net weekly income (£) ONS 2013–14 small area income 
estimates

514.665 112.205 230 990

Rainy day British Atmospheric Data Cen-
tre archives 2012–2016

2,551,210 0.249 0.432 0 1
Windy day 2,552,299 0.208 0.406 0 1
Heavy rain 2,551,210 0.022 0.146 0 1
Storm 2,553,455 0.01 0.097 0 1
Freezing day 2,555,551 0.099 0.299 0 1
Snowfall 2,272,718 0.03 0.171 0 1
Hot day 2,555,551 0.004 0.06 0 1

Table 2   UK annual mean speeds (Mbit/s) reported by Ofcom 
(over 24 h) and the annual means of the modelled data set for 
working days in England and Wales 

‘Average actual broadband speeds’ reported in graph on page 8 
of Ofcom, 2018. This graph is derived from data provided by 
SamKnows, who connect monitors to a representative panel of 
residential routers

Year Ofcom data Modelled data

2012 12 8.9
2013 17.8 12.8
2014 22.8 16.6
2015 28.9 19.5
2016 36.2 23.9
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Multilevel modelling and weather

We have chosen Middle Layer Super Output Areas 
(MSOAs) for our higher-level spatial areas. These 
are statistical units in the UK created following each 
10-year census – 2011 in this case – by grouping 
areas with populations of between 2000 and 6000 
households by their geographic and socio-economic 
characteristics. Characteristics considered include 
predominant land use, density, affluence, and accessi-
bility, which affect not only travel behaviour, but also 
the ability to telecommute. The MSOA spatial unit is 
expressed with the index j. A chi-square, likelihood 
ratio test: χ2(1) = 258,516, p < 0.0001 confirmed that 
a model with ‘random’ intercepts, in other words, 
constants that can vary between each of the 7201 
MSOAs in England and Wales, offers a significantly 
better fit than one with a single, fixed intercept. Fur-
thermore, despite the spatial granularity of individual 
speed tests, this is ‘volunteered geographic informa-
tion’, so there are MSOAs with no speed tests on a 
given date, and others with many tests on most days. 
The application of a random effects model addresses 
some of the concerns that might otherwise arise 
from analysing such a data set, as these models bet-
ter accommodate missing data and do not assume 
the independence of observations from the same spa-
tial unit (Field et  al., 2012). A variable to account 
for the number of tests per head of home population 
in each MSOA was added as � 14 Ratio Speed Tests 
to populationij in Eq.  (1) in order to further moder-
ate any sampling bias inherent in this crowd-sourced 
data. Finally, tests of the intra-class correlation (ICC) 
suggests that about 9% of the variation in broadband 
speeds recorded can be accounted for by geographic 
location at the MSOA level (see Fig. 3 in Sect. 5).

� 01 in (1) is the vector of coefficients for the fixed 
geographic and socio-economic attributes included in 
the matrix Control_Variablesj for each MSOA within 
which the individual tests occurred. These attributes 
were chosen to account for how socio-demographic 
and geographic characteristics influence demand for 
broadband services, including the ability and ten-
dency to work from home regularly or occasionally 
as discussed in the literature review. The presence 
of people who say they mainly work from home or 
who are in certain occupations are likely to generate 
some of the background demand or daily variability 
for online access that cannot be attributed to weather. 

Variables to represent these characteristics were 
derived mainly from census data compiled into neigh-
bourhood statistics’ tables produced by the Office for 
National Statistics (ONS) at MSOA level, divided by 
the MSOA’s home population where relevant (ONS, 
2014). Net weekly household income estimates were 
available for financial year 2013–14 (ONS, 2016a). 
The urban or rural character of an MSOA gives some 
indication of the supply available as well as demand 
for quality broadband services, as rural areas can 
still lag far behind in terms of adequate internet ser-
vices (Philip et  al., 2017). After some iterations of 
the developing model, a binary variable of the two 
most rural classifications (ONS, 2016b)  versus the 
other four more urban classifications was included 
in the main model as offering the best improvement 
on model fit. The inclusion of these control variables 
also addressed the assumption of multilevel models 
that the random coefficients should be normally dis-
tributed (Field et al., 2012).

The matrix of Weather_Variablesj in (1) aim to 
capture how certain weather conditions relate to 
internet speeds, and thus online activity. Weather 
observations are recorded by the UK Met Office, 
including the daily parameters relevant to this study: 
hourly rainfall aggregated to 24  h, daily maximum 
wind speeds, daily maximum gusts, daily minimum 
and maximum temperatures, and observations of 
snowfall. These weather records are kept in the Brit-
ish Atmospheric Data Centre  (BADC) archives held 
at the Centre for Environmental Data Analysis and 
contain data from weather stations located through-
out the UK (Met Office, 2006a, b, c, d). However, 
weather does not follow local administrative or sta-
tistical boundaries any more than does the transport 
infrastructure which is affected by that weather, and 
weather data is not collected in every MSOA.

Therefore, synoptic, regional weather stations 
as shown in Fig.  1 were chosen for both the com-
pleteness of their data and how well they repre-
sented each climatic region of England and Wales 
as defined by the Met Office and the World Mete-
orological Organization (Dobney et  al., 2009; Met 
Office, 2016b). MSOAs were matched to the relevant 
regional weather station, so the weather variables 
are expressed with an index j in (1). Minimizing the 
number of weather stations from which data inputs 
were gathered acted as a quality control on the data, 
increasing its consistency. In more rural regions, such 
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as Wales and East of England, stations closer to the 
larger population centres were preferred, stations 
near military or civilian airports / airfields proved 
most comprehensive, and the most exposed coastal 
and high-altitude stations were avoided. These crite-
ria helped ensure a more conservative identification 
of weather extremes, as such stations were unlikely 
to record the strongest wind gusts or lowest tempera-
tures in a given region.

We also aggregated weather parameters to iden-
tify daily extremes, as this was deemed likely to 
capture more impacts on transport infrastructure, 
which can be immediate or delayed, than estimat-
ing weather effects at a more granular temporal 
scale. Thus, daily, regional weather parameters 
were matched to the broadband speed tests by date 
and location, then transformed into binary dummy 
variables to better capture the most adverse weather 
conditions. The most contentious dummy to set was 
that for Rainy Days, an issue cited in the litera-
ture, which recognises the complexity of individual 
response to precipitation, which may depend on 
season, time of day, or other factors (Hooper et al., 
2014). In this study, a ‘Heavy Rain’ dummy was 

set at >  = 15 mm in 24 h according to Hofman and 
O’Mahony (2005) who reviewed daily variability in 
bus travel in Ireland, whilst iterations of the devel-
oping model were used to set a simpler ‘Rainy Day’ 
dummy at accumulations of >  = 2 mm and < 15 mm 
in 24  h. The ‘Windy Day’ dummy captured days 
with wind speeds of levels five to nine on the Beau-
fort Scale, whilst the Storm dummy captured any 
date / MSOA combinations with at least some pre-
cipitation and maximum gusts of level ten: ‘Storm’ 
and above (Met Office, 2016c). Maximum gusts, 
rather than maximum wind speeds, better capture 
extremes (McColl et  al., 2012), and minimised 
overlap between the ‘Windy Day’ and ‘Storm’ dum-
mies. Furthermore, the Met Office considers strong 
winds as the most likely to have impacts on infra-
structure and property, according to their publicity 
on their first trial of naming storms (Eysenck, 2016; 
Met Office, 2016a).

An ice dummy was set where the minimum air 
temperature was 0 °C or below, and the snow dummy 
simply used the ‘snowfall’ record from the relevant 
data set. Unfortunately, records of snowfall in the 
Northwest region were unavailable for the chosen sta-
tion, so records from another station, Hazelrigg, near 
Lancaster, improved the completeness of the data. 
The records were still more limited for that region 
than others, resulting in fewer days without missing 
data, and thus a smaller matching sample of speed 
tests as can be seen in Table 1. Finally, the definition 
of a heatwave varies by region and time of year, so a 
simplified heat dummy used the threshold for the Met 
Office heat-health watch: maximum daily tempera-
tures of over 30 °C (2017c).

Thunderstorms or other convective storms which 
may cause more localised impacts, e.g. flash flood-
ing, are unpredictable, and difficult to identify from 
incomplete observations of ‘thunder’ in the weather 
records, and so are not included as a separate variable 
in the model. Thunderstorms with their likelihood of 
electrical discharge are also more likely to affect ICT 
infrastructure and cause loss of connection than other 
weather systems (Schulman & Spring, 2011; Del-
jac et  al., 2016), but again such effects could cause 
increased speeds, as they did in this data set dur-
ing a major outage reported in the media on 20 July 
2016 (Titcomb, 2016). Flooding is also not included 
as a variable in the model, partly because it is not a 
weather parameter and there are time lags between 

Fig. 1   Representative weather stations chosen for each Met 
Office ‘climate region’ (2016b)
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rainfall and fluvial (river) or groundwater flooding. 
Furthermore, the flooding of ICT infrastructure can 
also cause outages and tends to have more lasting 
impacts, as such faults are often more complex and 
take more time to fix, resulting in a potential time lag 
for repair (Horrocks et al., 2010; Lazarus, 2013).

The variables at test level i and the control vari-
ables at level j formed the base models (Model 1 
and Model 2) of background variation. Each weather 
variable was inserted individually in Models 3–9 to 
test for effects on broadband speeds. Then they were 
tested jointly in Model 10, for although there are 
logical correlations between weather variables, e.g. 
Freezing Day and Snowfall, these are all under ± 0.3, 
a reasonably small effect (Field et al., 2012), and the 
changes in the coefficients for each when all weather 
variables are included in the estimation of (1) are of 
interest. Finally, sensitivity tests on subsets of data 
and interactions between the weather and the geo-
graphical variables were run to further explore the 
results.

Main results

Once all the chosen variables described above were 
cleaned and matched to create a single data set, we 
conducted an exploratory analysis to test our hypoth-
esis that contention during extreme weather events 
was detectable prior to modelling. Calendar plots3 
like the one in Fig.  2 demonstrated that days of 
severe weather and likely increased internet activ-
ity are visible in the mean working day speeds when 
compared with Met Office weather event summaries 
(2012–2016a, 2012–2016b). Manual checks further 
compared storm and snow dates captured by the dum-
mies to dates with weather impacts noted by the Met 
Office (2012–2016a; 2012–2016b). Many storm days 
were correctly picked up by the model and some oth-
ers were captured by the Snow Day dummy, but a 
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Fig. 2   Calendar plot of mean download in speeds (Kbps) for all working days (0800–1800) in 2012. A selection of storm days with 
known impacts are circled in blue

3  These ‘calendar plots’ were created using functions in R 
from Carslaw, D. and Ropkins, K., 2019. Package ‘openair’.
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few impactful storms in certain regions were missed 
altogether, particularly thunderstorms, which may 
not be accompanied by high winds, whilst for some 
dates with storm winds and precipitation, the Met 
Office did not record a notable event or impacts 
(2012–2016a; 2012–2016b). This analysis highlights 
the temporal variation that might be attributed to the 
presence and timing of not only weather parameters, 
but also weather impacts. Impacts also vary depend-
ing on what infrastructure is affected and the length 
of advance warning and preparation before the storm 
or snow – in other words, where and when adverse 
weather is more expected, preparation is likely to be 
better.

The results of the main multilevel model4 based 
on Eq. (1) with intercepts that are allowed to vary by 
MSOA are shown in Table  3. The annual improve-
ment in broadband speeds captured by the ‘Annual 
Trend’ coefficient is intuitive. The 26.3% average 
annual improvement that the coefficient represents 
is only slightly different from the average annual 
increases in 24-h broadband speed of about 26.7% 
as reported by Ofcom for the UK between 2013 and 
2016, although in the first year of analysis from 2012 
to 2013, 24-h speeds rose much faster – see Table 2 
(2016). The coefficients for ISP are also as expected, 
and people clearly do test their broadband more often 
when it is running slower than expected, as shown by 
the negative coefficient for tests per head of popula-
tion, although any bias resulting from the fact that 
tests in this data set are more likely to be run “when 
there is other network activity ongoing” or speeds are 
lower than the customer expects (Riddlesden & Sin-
gleton, 2014, p. 26), may be countered by the likeli-
hood that those who seek to test their broadband may 
be doing so because they are more ‘tech-savvy’ and / 
or have purchased higher speed packages that are not 
delivering the promised level of service.

The signs of the coefficients for the MSOA-level 
control variables are as expected, and the mostly 
high levels of significance indicate their relevance 
to broadband speeds. Those neighbourhoods with 
more residents on higher incomes or who are more 
tech-savvy due to the industry in which they work are 
more likely to purchase faster broadband connections, 
and such connections are more reliably available 

in more urban locations. Conversely, the higher the 
proportion of home workers, and, minimally, those 
with more occupational autonomy to telecommute, 
the more demand for broadband and the slower the 
speeds on the network. All the temporal trend, speed 
test, and control variable coefficients are broadly con-
sistent across the different estimations of the model. 
The largest differences are found where the sample 
size used in the estimation is substantially smaller 
due to inclusion of the Snowfall dummy.

In terms of the research question, our results show 
that severe weather conditions have small, but highly 
significant effects on broadband speeds. Days record-
ing storm-force winds, ice and snow appear to lower 
broadband speeds by around 3–5% individually or 
jointly, which could represent noticeable reductions 
in the level of service, depending upon the applica-
tions in use and the speeds normally available over a 
particular connection. Indeed, this level of contention 
is directly comparable to the level of daily contention 
during the evening peak at 2.6–5.5%, as measured by 
Ofcom for all connection types (2018). There are no 
significant effects on broadband speeds due to rain, 
perhaps because rainy days are so common in the UK 
that behaviour is unlikely to change in response, espe-
cially where the variable relates to amount of precipi-
tation, not intensity.

As one weather parameter can affect another, such 
as high temperatures making intense rainfall more 
likely, the last estimation includes all weather vari-
ables together. Although the effects are clearly not 
cumulative, the negative influence of storm-force 
winds almost doubles to 5%. This suggests that the 
wind gust parameter has a stronger relationship with 
contention when controlling for heavy rain, snowfall, 
or a heatwave, which may be because there is more 
advance warning not to travel during major wind 
storms than at times of high winds during hot weather 
and heavy rain. The latter are more common in the 
afternoon or evening, when people are already out 
for the day, and the choice not to travel is less via-
ble. Likewise, speeds increase on ‘Hot Days’ where 
the model controls for other weather parameters that 
might keep people from enjoying such days out of 
doors. Summer heatwaves also often occur when a 
substantial proportion of the working population are 
on holiday and, with school traffic absent, transport 
infrastructure is less congested and internet usage is 
generally lower.4  The model was estimated using the ‘nlme’ package for R.
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Sensitivity testing

Spatial sensitivity testing

The results in Table  3 provide some clear insights 
into whether weather causes contention. However, 
we undertook sensitivity testing in order to reduce 
some of the statistical noise generated by a spatially 
and temporally heterogeneous dependent variable. As 
shown in Fig. 3, there is substantial variation in aver-
age speeds at MSOA level, with faster average speeds 
generally found in more urban areas. The results of 
the main model address this spatial heterogeneity by 
applying a multilevel model with random intercepts 
and including variables controlling for certain geo-
graphic and socio-economic characteristics. However, 
there are other methodologies, so the first sensitivity 
test defined repeated observations for each MSOA by 
date as ‘panel data’ using the ‘within effects trans-
formation’ applied to OLS regressions.5 This estima-
tion produced similar results as shown in Table A1 in 
Appendix A.

Next, an interaction term between the weather 
variables and the binary urban–rural dummy was 
added to the original model, as there are fewer trans-
port options in rural areas if there is disruption or 
reduced road access. The results, shown in Table A2 
in the Appendix, indicate that rain, snow, and freez-
ing weather all have less impact on broadband speeds 
in urban areas than in the 652 MSOAs classified as 
dispersed rural settlements. One explanation for this 
relationship to winter weather might be the additional 
vulnerability of rural roads to snow and ice, due in 
part to their low priority for winter road maintenance. 
Thus, the negative effect of snowy weather on inter-
net speeds is greater, indicating more internet activity 
and a greater reliance on virtual accessibility in rural 
areas at such times. It is less obvious why internet 
activity in rural areas increases in wet weather but 
decreases in response to storm-level winds, although 
it is possible this correlation is associated not with 
daily travel, but with local, outdoor, rural activi-
ties, such as farming and tourism. Outdoor activities 
are often more difficult or less attractive in the rain, 
whilst storm-level winds may not be relevant if the 
activity is in a sheltered area or if impacts are more 
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localised and thus affect a lower proportion of a dis-
persed population.

However, neither the binary urban–rural variable in 
the model, nor any of the other levels of urban–rural 
classification used by the ONS capture suburban 
areas of conurbations independently of those conur-
bations’ central cores. These ‘suburban’ geographies 
and smaller urban areas are where telecommuters are 
most likely to be located, and where the relationship 
between adverse weather and internet accessibility 
is more relevant. Such areas have neither the rural 

economic activities and relatively slow broadband 
speeds under typical weather conditions of dispersed 
settlements, nor do they have the high densities of 
local employment options, other activities, and trans-
port services of central cities, and particularly central 
London neighbourhoods. Therefore, residential popu-
lation density by MSOA using the 2014 population 
estimates (ONS, 2017), was used to subset the model 
for further sensitivity analysis. According to Welch’s 
t-tests, the subset of MSOAs with a population den-
sity of between 1000 and 15,000 residents per km2 

Fig. 3   Mean speeds (Kbps) by MSOA for 2012–2016 working days
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had mean speeds on ‘Storm’ days half a Mb/s less 
than the average for non-stormy days, which was sig-
nificant at p = 0.002, suggesting that the null hypoth-
esis of no difference in means could be rejected (Field 
et  al., 2012). Furthermore, as shown in Fig.  4, this 
subset excluded both dispersed rural areas and those 
exceptional, central London neighbourhoods.

The model results in Table 4 for this subset repre-
sent over half the total data set at 1,434,642 observa-
tions. In these neighbourhoods the impact of storms 
on broadband speeds is a 4% decrease in speeds with-
out controlling for other weather variables and 6.6% 
with controls. The effect of snowfall is also greater. 
In partial confirmation that rural responses to weather 
differ from more urban ones, the effect of home work-
ers on broadband speeds changes from significantly 
negative to significantly positive. This implies that 
those in suburban and more urban locations who 
work mainly at or from home have the opportunity 
and are investing in higher speed services to support 
such work. Average commuting distance within each 
MSOA becomes positive and more significant, per-
haps because this subset excludes outliers from rural 
villages with particularly long-distance commutes 
and slower home broadband. Overall, this sensitiv-
ity test offers additional evidence that internet activ-
ity and contention increase in adverse weather when 
people may prefer to stay home to avoid the risk of 
transport disruption or may be forced to stay home 
due to transport disruption. It further indicates that 
this effect is stronger in areas where people may be 
more likely and able to telecommute.

Temporal sensitivity testing

The exploratory analysis described how the weather 
parameters in the model capture some, but not all of 
the temporal variation attributable to weather. There 
is also non-weather-related variation in broadband 
activity over time, which could be due to service 
upgrade promotions, special events that generate 
weekday internet activity, or direct impacts on broad-
band infrastructure like power cuts or hardware fail-
ure. These could not be modelled due to lack of data. 
The weather dummies account for some seasonal 
effects, and the ‘month’ variable was likewise tested, 

but the upward trend was inconsistent at the monthly 
scale, and could not be compared to Ofcom’s annual 
reports.

Figure 5 shows that whilst broadband speeds rose 
year on year, the trend within each year varied. The 
temporal profile is broadly similar for 2012 and 2013, 
fluctuates widely in 2014, shows a different curve in 
2015 and is fairly flat in 2016. There are large fluc-
tuations within the annual rising trend in 2014, which 
included missing data during the storms and flooding 
of February 2014. Meanwhile, the manual checks in 
our exploratory analysis revealed that the Storm and 
Snow dummies picked up more days which were not 
matched by known impacts in 2015 than in the other 
years of analysis. Mean speeds in 2015 also increased 
more steeply in the Autumn than the Spring, further 
masking any daily impact of increased internet activ-
ity during known storms in November / December 
2015. Therefore, a regression was run on a subset 
including observations only from 2012, 2013, and 
2016, in order to test whether effects might be greater 
if other temporal variation is more muted. The results 
in Table  A3 in Appendix A included a Storm coef-
ficient indicating speed reductions of 10%. This gives 
weight to the possibility that the patterns of signifi-
cant effects on broadband speeds in Table  3, which 
suggest contention in response to extreme weather 
parameters, are likely conservative estimates.

Discussion and conclusion

This article has argued that adverse weather condi-
tions can be seen to create contention, or lower expe-
rienced internet speeds during the working day due to 
increased internet use and demand. We interpret this 
as an indication that people are choosing ‘not travel-
ling’ as a viable, resilient alternative to avoid delay 
and disruption. Our approach using broadband speed 
data to quantify temporal variation within a multi-
level modelling framework has enabled us to provide 
evidence that winter weather and storm-level winds 
show significant, albeit small, effects, and thus detect-
able contention. Conversely, demand appears to fall 
during a heatwave. The temporal sensitivity test dem-
onstrates that the model may underestimate, rather 
than overestimate the relationship between weather 
and broadband speeds, as removing 2014 and 2015, 
when there were known divergences between weather 

Fig. 4   The subset of MSOAs with between 1000 and 15,000 
resident population / km in 2014

◂
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Table 4   Estimation of observations for MSOAs with a population density between 1000 and 15,000 people per km2, excluding 
Urban / Rural classification

Dependent variable: download test speed (log)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Annual Trend 0.238*** 0.238*** 0.238*** 0.238*** 0.238*** 0.237*** 0.235*** 0.238*** 0.235***

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Distance to 

Nearest 
Exchange

0.018 0.018 0.017 0.018 0.018 0.018 0.017 0.018 0.018

0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.016 0.017
Virgin Media 

compared 
to BT

0.536*** 0.536*** 0.536*** 0.536*** 0.536*** 0.536*** 0.538*** 0.536*** 0.538***

0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
Other com-

pared to BT
− 0.546*** − 0.546*** − 0.546*** − 0.546*** − 0.546*** − 0.546*** − 0.541*** − 0.546*** − 0.541***

0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
Ratio of 

Speed Tests 
to popula-
tion

− 0.415*** − 0.414*** − 0.414*** − 0.414*** − 0.414*** − 0.413*** − 0.436*** − 0.415*** − 0.434***

0.072 0.072 0.072 0.072 0.072 0.072 0.079 0.072 0.079

Ratio of pop 
working in 
High-tech 
industries

0.652*** 0.655*** 0.644*** 0.654*** 0.646*** 0.633*** 0.969*** 0.653*** 0.946***

0.193 0.193 0.193 0.193 0.193 0.193 0.214 0.193 0.214

Ratio of pop 
with higher 
professional 
status

− 0.389*** − 0.389*** − 0.384*** − 0.389*** − 0.384*** − 0.380*** − 0.519*** − 0.389*** − 0.506***

0.096 0.096 0.096 0.096 0.096 0.096 0.107 0.096 0.107

Average 
Commuting 
Distance 
(log)

0.062*** 0.063*** 0.062*** 0.063*** 0.062*** 0.062*** 0.077*** 0.062*** 0.077***

0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.016 0.017

Ratio of pop 
with home 
as main 
workplace

2.104*** 2.103*** 2.111*** 2.104*** 2.108*** 2.115*** 1.832*** 2.104*** 1.849***

0.439 0.439 0.439 0.439 0.439 0.439 0.493 0.439 0.493

Household 
net weekly 
income 
(log)

0.052** 0.052** 0.050** 0.052** 0.050** 0.049** 0.069*** 0.052** 0.065***

0.022 0.022 0.022 0.022 0.022 0.022 0.025 0.022 0.025

Rainy Day 0.003 0.002
0.002 0.002

Windy Day − 0.001 − 0.005*

0.002 0.002
Heavy Rain 0.006 0.009

0.006 0.006
Storm − 0.039*** − 0.066***

0.008 0.01
Freezing Day − 0.037*** − 0.029***

0.003 0.003
Snowfall − 0.062*** − 0.048***

0.005 0.005
Hot Day − 0.006 0.018

0.013 0.015
Constant 8.239*** 8.237*** 8.250*** 8.238*** 8.248*** 8.259*** 8.111*** 8.239*** 8.137***

0.121 0.121 0.121 0.121 0.121 0.121 0.136 0.121 0.136
Observations 1,434,642 1,431,499 1,432,712 1,431,499 1,433,407 1,434,470 1,246,216 1,434,470 1,243,644
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parameters and weather impacts resulted in larger 
effects. The spatial sensitivity tests also demonstrated 
the heterogeneity in response between rural, suburban 
and central urban areas.

Indeed, this very heterogeneity also reveals the 
limitations of our data sources and our modelling 
framework in detecting contention as a proxy to 
both quantify the demand for internet access dur-
ing the working day at times of adverse weather or 
severe weather events and to investigate the impact 
of external factors like weather on the choice to tel-
ecommute. Since weather impacts have greater tem-
poral variation than the weather parameters used 
in the model, it was difficult to choose thresholds 
that neither over-selected nor under-selected storm 
dates. It is also unknown whether the contention 
identified occurs in response to the weather param-
eter itself, short-term weather warnings of poten-
tial impacts that are often broadcast at the regional 
level, or transport disruption caused by the weather. 
The models could also only imperfectly capture 
the geographic / socio-demographic constraints on 
internet use and quality of service. For example, 
there are local initiatives to improve broadband 
infrastructure in some rural areas, but not others, 
whilst the occurrence of local faults and outages 
due to weather are unlikely to be evenly distributed 
in space or time. Nor was data available on mass 
outages, no matter their cause. Finally, measure-
ments of contention cannot confirm which activities 
are represented in  the change in demand for online 
access. The data is at the level of the household, not 
the individual, and there is no knowing how many 
of the household are staying home and who in the 
household is generating increased demand. Chil-
dren at home during school closures may be watch-
ing videos or playing games that require substantial 

broadband capacity, whilst any adults staying at 
home, even if they are undertaking work tasks 
online, might generate a fraction of the demand.

On the other hand, a study of internet traffic found 
significant positive correlations between work or eco-
nomic activity and the volume of data being transmit-
ted by time of day and day of week, and a negative 
correlation between data flows and commuting peak 
hours (Stubbings & Rowe, 2019). The spatial data 
used in this research was nowhere near as granular 
as our data, but further research along these lines 
could usefully uncover more detailed relationships in 
suburban geographies where telecommuting is most 
likely, using additional transport data sources, dif-
ferent socio-economic variables, interaction terms, 
weather thresholds, and ‘suburban’ subsets. Fur-
thermore, the substantial increase in experience of 
telecommuting during the pandemic may mean that 
future demand during adverse weather may be suffi-
cient to detect contention in upload speeds (Budnitz 
& Tranos, 2021), which can be more easily linked to 
work activities. Finally, a case study approach build-
ing upon the understanding of contention described 
in this article could use broadband speeds in combi-
nation with other detailed data sources for periods of 
weather disruption in order to determine the extent 
of weather impacts, which depend on the time of day 
or locally-specific characteristics of infrastructure 
or population. One criticism of transport research is 
that “our approach to understanding travel is not par-
ticularly insightful in understanding reasons for not 
travelling” and instead participating in non-domestic 
activities online (Marsden et  al., 2018, p50). Our 
research offers an alternative approach to gaining 
such insights by using broadband speed variation dur-
ing working hours in a multilevel model to measure 

Table 4   (continued)

Dependent variable: download test speed (log)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Log Likeli-
hood

− 2,004,639 − 2,000,369 − 2,001,845 − 2,000,370 − 2,002,875 − 2,004,293 − 1,741,277 − 2,004,384 − 1,737,522

Akaike Inf. 
Crit

4,009,312 4,000,774 4,003,726 4,000,776 4,005,786 4,008,622 3,482,591 4,008,803 3,475,092

Bayesian Inf. 
Crit

4,009,519 4,000,993 4,003,945 4,000,995 4,006,005 4,008,842 3,482,807 4,009,022 3,475,381

* p < 0.1; **p < 0.05; ***p < 0.01
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internet accessibility and activity in real time with a 
high level of spatial granularity.

In conclusion, our study provides pre-pandemic 
insights into patterns of internet activity and resil-
ient accessibility at a level of temporal granularity 
and geographic scale such that a small, but signifi-
cant increase in contention for download speeds 
during severe weather like storms and snowfall is 
detectable. It also provides evidence of the ability of 

online accessibility to replace travel during adverse 
weather conditions, and that external factors like 
the risk of disruption to transport due to severe 
weather may well influence the choice to telecom-
mute. Indeed, the measurable contention is not dis-
similar to what is experienced during peak demand 
for evening entertainment, even though weather 
parameters rather than weather impacts are included 
in the modelling framework. The replacement of 

Fig. 5   Mean broadband 
download speeds (Kbps) by 
date and year for working 
days
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travel with internet access and commuting with 
telecommuting is an important option to promote 
during extreme weather events as the most resilient 
and least risky choice to maintain productivity. The 
Covid-19 pandemic has shown just what is possible 
and will have created unprecedented levels of expe-
rience in this form of access, as well as resulting in 
a step change in both software to support telecom-
muting and investment in broadband infrastructure 
and services, a trend which will no doubt continue. 
Furthermore, by increasing familiarity with tel-
ecommuting, it will become an option to overcome 
disruptions to travel and provide resilience for a 
much greater share of the working population than 
we may have previously thought possible.
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Table 5   Model showing the ‘within effects transformation’ coefficients at the individual and regional scales

* p < 0.1; **p < 0.05; ***p < 0.01

Dependent variable: download test speed (log)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Annual 
Trend

0.263*** 0.263*** 0.263*** 0.263*** 0.263*** 0.263*** 0.263*** 0.262***

0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0004 0.0005
Distance to 

Nearest 
Exchange

0.029* 0.028* 0.029* 0.028* 0.028* 0.027* 0.028* 0.028*
0.015 0.015 0.015 0.015 0.015 0.016 0.015 0.016

Virgin 
Media 
compared 
to BT

0.650*** 0.649*** 0.650*** 0.649*** 0.649*** 0.652*** 0.649*** 0.652***
0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Other 
compared 
to BT

− 0.396*** − 0.396*** − 0.396*** − 0.396*** − 0.396*** − 0.390*** − 0.396*** − 0.389***
0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002

Rainy Day 0.001 − 0.0004
0.001 0.002

Windy Day 0.00001 − 0.001
0.002 0.002

Heavy Rain 0.002 0.005
0.004 0.005

Storm − 0.028*** − 0.049***
0.006 0.008

Freezing 
Day

− 0.037*** − 0.031***

0.002 0.002
Snowfall − 0.057*** − 0.042***

0.004 0.004
Hot Day 0.008 0.032***

0.01 0.012
Observations 2,551,210 2,552,299 2,551,210 2,553,455 2,555,551 2,272,718 2,555,551 2,267,476
R2 0.2 0.2 0.2 0.2 0.2 0.196 0.2 0.197
Adjusted R2 0.198 0.198 0.198 0.198 0.198 0.194 0.198 0.194
F Statistic 70,740*** 

(df = 9; 
2,544,000)

70,858*** 
(df = 9; 
2,545,089)

70,739*** 
(df = 9; 
2,544,000)

70,879*** 
(df = 9; 
2,546,245)

70,945*** 
(df = 9; 
2,548,341)

61,471*** 
(df = 9; 
2,265,508)

70,903*** 
(df = 9; 
2,548,341)

36,857*** 
(df = 15; 
2,260,260)



633GeoJournal (2023) 88:613–638	

1 3
Vol.: (0123456789)

Table 6   Interaction of weather variables with MSOAs’ urban or rural character

Dependent variable: download test speed (log)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Annual Trend 0.263*** 0.263*** 0.263*** 0.263*** 0.263*** 0.262*** 0.263***

0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0004
Distance to Nearest Exchange 0.041*** 0.040*** 0.041*** 0.040*** 0.040*** 0.046*** 0.040***

0.011 0.011 0.011 0.011 0.011 0.012 0.011
Virgin Media compared to BT 0.649*** 0.648*** 0.649*** 0.648*** 0.649*** 0.651*** 0.649***

0.002 0.002 0.002 0.002 0.002 0.002 0.002
Other compared to BT − 0.396*** − 0.396*** − 0.396*** − 0.396*** − 0.396*** − 0.389*** − 0.396***

0.001 0.001 0.001 0.001 0.001 0.002 0.001
Ratio of Speed Tests to popula-

tion
− 0.645*** − 0.645*** − 0.645*** − 0.644*** − 0.643*** − 0.669*** − 0.645***

0.074 0.074 0.074 0.074 0.074 0.08 0.074
Ratio of pop working in High-

tech industries
1.606*** 1.595*** 1.604*** 1.595*** 1.584*** 1.833*** 1.601***

0.174 0.174 0.174 0.174 0.174 0.188 0.174
Ratio of pop with higher profes-

sional status
− 0.186** − 0.181** − 0.185** − 0.180** − 0.176** − 0.239** − 0.184**

0.089 0.089 0.089 0.089 0.089 0.096 0.089
Average Commuting Distance 

(log)
− 0.027* − 0.027* − 0.027* − 0.027* − 0.027* − 0.014 − 0.027*

0.014 0.014 0.014 0.014 0.014 0.015 0.014
More urban location 0.335*** 0.341*** 0.342*** 0.343*** 0.341*** 0.341*** 0.343***

0.012 0.012 0.012 0.012 0.012 0.013 0.012
Ratio of pop with home as main 

workplace
− 4.826*** − 4.825*** − 4.832*** − 4.829*** − 4.823*** − 5.087*** − 4.829***

0.291 0.291 0.291 0.291 0.291 0.315 0.291
Household net weekly income 

(log)
0.171*** 0.170*** 0.171*** 0.170*** 0.169*** 0.167*** 0.171***

0.021 0.021 0.021 0.021 0.021 0.022 0.021
Rainy Day − 0.025***

0.004
Rainy Day x More urban 0.031***

0.004
Windy Day − 0.004

0.004
Windy Day x More urban 0.005

0.004
Heavy Rain − 0.016

0.01
Heavy Rain x More urban 0.021*

0.011
Storm 0.004

0.017
Storm x More urban − 0.037**

0.019
Freezing Day − 0.049***

0.005
Freezing Day x More urban 0.015**

0.006
Snowfall − 0.089***

0.01
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* p < 0.1; **p < 0.05; ***p < 0.01

Table 6   (continued)

Dependent variable: download test speed (log)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Snowfall x More urban 0.037***

0.011
Hot Day 0.025

0.03
Hot Day x More urban − 0.019

0.032
Constant 7.237*** 7.239*** 7.231*** 7.239*** 7.250*** 7.230*** 7.232***

0.112 0.112 0.112 0.112 0.112 0.122 0.112
Observations 2,551,210 2,552,299 2,551,210 2,553,455 2,555,551 2,272,718 2,555,551
Log Likelihood − 3,628,016 − 3,629,246 − 3,628,045 − 3,630,934 − 3,633,857 − 3,229,732 − 3,634,008
Akaike Inf. Crit 7,256,072 7,258,531 7,256,130 7,261,909 7,267,755 6,459,505 7,268,057
Bayesian Inf. Crit 7,256,327 7,258,786 7,256,385 7,262,164 7,268,010 6,459,757 7,268,312
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