

University of Birmingham

On Breaking Truss-Based Communities
Chen, Huiping; Conte, Alessio; Grossi, Roberto; Loukides, Grigorios; Pissis, Solon P.;
Sweering, Michelle
DOI:
10.1145/3447548.3467365

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Chen, H, Conte, A, Grossi, R, Loukides, G, Pissis, SP & Sweering, M 2021, On Breaking Truss-Based
Communities. in KDD '21: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining. Proceedings of the International Conference on Knowledge Discovery and Data Mining, Association for
Computing Machinery , pp. 117-126, 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
KDD 2021, Virtual, Online, Singapore, 14/08/21. https://doi.org/10.1145/3447548.3467365

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 13. May. 2024

https://doi.org/10.1145/3447548.3467365
https://doi.org/10.1145/3447548.3467365
https://birmingham.elsevierpure.com/en/publications/727d7d36-c8d2-4443-ac2b-201066676f59

On Breaking Truss-Based Communities
Huiping Chen

King’s College London, UK

huiping.chen@kcl.ac.uk

Alessio Conte

Università di Pisa, Italy

alessio.conte@unipi.it

Roberto Grossi

Università di Pisa, Italy

roberto.grossi@unipi.it

Grigorios Loukides

King’s College London, UK

grigorios.loukides@kcl.ac.uk

Solon P. Pissis

CWI, The Netherlands

Vrije Universiteit, The Netherlands

solon.pissis@cwi.nl

Michelle Sweering

CWI, The Netherlands

michelle.sweering@cwi.nl

Abstract

A 𝑘-truss is a graph such that each edge is contained in at least

𝑘 − 2 triangles. This notion has attracted much attention, because

it models meaningful cohesive subgraphs of a graph. We introduce

the problem of identifying a smallest edge subset of a given graph

whose removal makes the graph 𝑘-truss-free. We also introduce a

problem variant where the identified subset contains only edges

incident to a given set of nodes and ensures that these nodes are not

contained in any 𝑘-truss. These problems are directly applicable in

communication networks: the identified edges correspond to vital

network connections; or in social networks: the identified edges can

be hidden by users or sanitized from the output graph. We show that

these problems are NP-hard. We thus develop exact exponential-

time algorithms to solve them. To process large networks, we also

develop heuristics sped up by an efficient data structure for updating

the truss decomposition under edge deletions. We complement our

heuristics with a lower bound on the size of an optimal solution to

rigorously evaluate their effectiveness. Extensive experiments on

10 real-world graphs show that our heuristics are effective (close

to the optimal or to the lower bound) and also efficient (up to two

orders of magnitude faster than a natural baseline).

CCS Concepts

•Mathematics of computing→Graph algorithms; • Infor-

mation systems → Data mining.

Keywords

graph algorithm, k-truss, community detection

ACM Reference Format:

Huiping Chen, Alessio Conte, Roberto Grossi, Grigorios Loukides, Solon P.

Pissis, and Michelle Sweering. 2021. On Breaking Truss-Based Communities.

In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery

and Data Mining (KDD ’21), August 14–18, 2021, Virtual Event, Singapore.

ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3447548.3467365

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

KDD ’21, August 14–18, 2021, Virtual Event, Singapore

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8332-5/21/08.

https://doi.org/10.1145/3447548.3467365

1 Introduction

Graphs naturally model relationships between entities in a multi-

tude of domains such as social networks, communication networks,

or the web. A fundamental data analysis task in these domains is

community detection (i.e., the identification of cohesive or dense

subgraphs of a given graph), which employs different notions of

graph community; these include the notions of 𝑘-plex, 𝑛-clan, 𝑛-

club, 𝑘-core, 𝑘-ECC, and 𝑘-truss [10, 12]. These notions relax the

classic notion of clique [15] (i.e., the ideal situation, where all nodes

are pairwise connected), either to capture practical application

considerations [10] or to enable more efficient enumeration [6].

Regardless of the community notion, the community structure

is a key property of a graph. It is therefore essential to study how

such a structure can be maintained or broken [9, 16, 20, 24, 27].

Here we investigate the following general problem.

Community Breaking (CB) problem: Given an undirected graph

𝐺 (𝑉 , 𝐸), a set of nodes𝑈 ⊆ 𝑉 , and a notion of community, identify

a smallest subset 𝐸 ′ of 𝐸, so that no community in𝐺 ′ = 𝐺 (𝑉 , 𝐸 \𝐸 ′)
contains a node in 𝑈 .

The CB problem is motivated by the following real-world appli-

cations:

A1.Maintaining communities in social networks [27]. The edges

identified in the output of CB correspond to critical edges for main-

taining user engagement in communities.

A2. Assessing resilience to attacks or errors in communication

networks [16]. The edges identified in the output of CB correspond

to vital connections in the network.

A3. Enabling social network users to hide friendships, so that

they are not seen as belonging to communities that could lead

to their discrimination or unwanted targeted advertisement (e.g.,

through friend-based profile attribute inference attacks [3]). The

edges identified in the output of the CB problem correspond to

friendships users could opt to hide [9].

A4. Preventing the detection of confidential communities by

sanitizing a graph prior to its dissemination, in the spirit of saniti-

zation works on transaction [21] or sequential data [4]. The edges

identified in the output of the CB problem must be removed to hide

these communities in the sanitized graph.

Identifying a small edge subset is natural yet crucial. For example,

in A1 and A2, it allows less costly maintenance of user engagement

and network infrastructure improvements, respectively. In A3 and

A4, it allows less effort from users and more accurate analysis of

the sanitized graph, respectively.

This work is licensed under a Creative Commons Attribution International 4.0 License.

KDD ’21, August 14–18, 2021, Virtual Event, Singapore.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8332-5/21/08.
https://doi.org/10.1145/3447548.3467365

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

117

https://doi.org/10.1145/3447548.3467365
https://doi.org/10.1145/3447548.3467365
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3447548.3467365&domain=pdf&date_stamp=2021-08-14

0

1

2

3

4

5

6

7

(a) 4-truss

0

1

2

3

4

5

6

7

(b) Maximal 4-truss

0

1

2

3

4

5

6

7

(c) 4-truss-free graph

0

1

2

3

4

5

6

7

(d) 4-truss-free nodes

Figure 1: (a) The subgraph induced by the edges (0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3) is a 4-truss because every edge of the subgraph
is contained in at least 4− 2 = 2 triangles of the subgraph. (b) The subgraph induced by all edges except the (dashed) edge (0, 4)
is the maximal 4-truss of the graph. (c) The graph obtained after removing the set {(0, 1), (3, 4), (5, 6)} of (dashed) edges contains
no 4-truss. (d) The graph obtained after removing the set {(3, 6), (5, 7)} of (dashed) edges is a graph in which the (gray) nodes 5

and 6 are not contained in any 4-truss.

We focus on the community notion of 𝑘-truss [6]. A 𝑘-truss is

a subgraph of a graph such that each edge is contained in at least

𝑘−2 triangles of the subgraph (see Fig. 1a). Amaximal 𝑘-truss is the

largest 𝑘-truss of the graph (see Fig. 1b). The notion of 𝑘-truss has at-

tracted significant interest because 𝑘-trusses: (1) are less expensive

to enumerate than cliques, 𝑘-plexes, 𝑛-clans, and 𝑛-clubs, as well as

more cohesive than 𝑘-cores and 𝑘-ECCs [10]; and (2) they model

meaningful cohesive subgraphs in communication [27], social [13],

or collaboration [13] networks thanks to good structural properties

such as bounded diameter or strong decomposability [10].

Based on the CB problem, we define two combinatorial optimiza-

tion problems of practical importance.

MIN-𝑘-TBS (Minimum 𝑘-Truss Breaking Set) problem: Given

an undirected graph 𝐺 (𝑉 , 𝐸) and a parameter 𝑘 , find a smallest

subset 𝐸 ′ of 𝐸 such that 𝐺 (𝑉 , 𝐸 \ 𝐸 ′) contains no 𝑘-truss. MIN-𝑘-

TBS is obtained from the CB problem by considering communities

based on the notion of 𝑘-truss and 𝑈 = 𝑉 . MIN-𝑘-TBS addresses

applications A1 and A2 above.

Example 1.1. An optimal solution to MIN-𝑘-TBS with 𝑘 = 4 on

the graph of Fig. 1c is the set of (dashed) edges𝐸 ′ = {(0, 1), (3, 4), (5, 6)}.
This is because removing these edges leads to a graph with no 4-

truss and because removing any fewer edges leads to a graph that

contains a 4-truss.

MIN-𝑘-CBS (Minimum 𝑘-Communities Breaking Set) problem:

Given an undirected graph𝐺 (𝑉 , 𝐸), a parameter 𝑘 , and a set𝑈 ⊆ 𝑉 ,

find a smallest subset 𝐸 ′ of 𝐸 such that the edges in 𝐸 ′ are incident to
nodes in𝑈 and no 𝑘-truss in𝐺 (𝑉 , 𝐸 \𝐸 ′) contains a node in𝑈 . MIN-

𝑘-CBS is obtained from the CB problem by considering communities

based on the notion of 𝑘-truss, having 𝑈 as input, and further

limiting what edges can be removed. It addresses applications A3

and A4 above. In particular, the requirement for edges in 𝐸 ′ to be

incident to nodes in 𝑈 is necessary for A3, where users can only

hide their own edges. Waiving this requirement for A4 is trivial.

Example 1.2. An optimal solution to MIN-𝑘-CBS with 𝑘 = 4

and 𝑈 = {5, 6} on the graph of Fig. 1d is the set of edges 𝐸 ′ =
{(3, 6), (5, 7)}. This is because removing these two edges leads to a

graph in which neither node 5 nor node 6 belongs to a 4-truss, and

because removing any single edge does not prevent both of these

nodes from belonging to a 4-truss.

These problems are intuitively challenging: there are up to 2
|𝐸 |

edge subsets that one may consider; and 𝑘-trusses have a hierarchi-

cal structure (i.e., a (𝑘 + 𝑖) truss, for any 𝑘 and 𝑖 , is also a 𝑘-truss

and contains up to

(𝑘+𝑖
𝑘

)
smaller 𝑘-trusses).

Our Contributions and Paper Organization.

1.We define the MIN-𝑘-TBS and MIN-𝑘-CBS problems and show

that they are both NP-hard. See Section 3.

2.We show a data structure for maintaining the truss decompo-

sition of a graph (i.e., the maximal 𝑘-truss for each 𝑘) under edge

deletions with theoretical guarantees. This is the backbone of our

heuristics. We also provide the necessary set of tools for designing

our algorithms. See Section 3.

3. We develop exact algorithms for both MIN-𝑘-TBS and MIN-𝑘-

CBS. These algorithms are useful for evaluating our heuristics on

small-scale graphs. See Section 4.

4.We develop three heuristics for MIN-𝑘-TBS; namely,MBHS,

MBHC, and SNH. The heuristics are based on different theoretical

insights and can be trivially adapted to solve MIN-𝑘-CBS. They

always return a feasible solution. See Section 5.

5. We show a non-trivial lower bound on the size of an opti-

mal solution to MIN-𝑘-TBS and develop an efficient algorithm to

compute it. The lower bound is useful for rigorously evaluating

our heuristics on large-scale graphs and also for quickly assessing

the quality of any solution on a graph of interest before executing

any heuristic. This is because an optimal solution always lies in

between the lower bound and the solutions produced by heuristics.

See Section 6.

6. We perform an extensive experimental evaluation using 10

real-world datasets with up to millions of edges, as well as using

1,000 small-scale synthetic datasets. The evaluation shows that

our heuristics produce near-optimal solutions and outperform two

natural baselines. See Section 8.

The rest of the paper is structured as follows. In Section 2, we

highlight the applicability of our algorithms via analyzing a real

social network. We discuss related work in Section 7.

2 Analyzing Real Social Networks

We used a dataset [23] that contains friendship and location

information from 114,324 Twitter users who recorded their check-

ins in 3,820,891 Foursquare venues. We refer to this dataset as FL

(for Friendship-Location). FL can be viewed as a node-labeled graph

with 114,324 nodes and 607,327 edges. Each node corresponds to a

user, each node label contains the check-ins of the user, and each

edge corresponds to a friendship between two users.

FL contains check-ins to venues that may indicate users’ sexual

orientation, religious beliefs, or gambling habits. Moreover, the

𝑘-trusses in FL contain a large number of users who checked-in

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

118

to such venues, or are friends with users who checked in to such

venues. For example, an 18-truss contained: (1) 115/280 = 41.1%

of users who checked-in to gay bars; and (2) 7786/11732 = 66.4%

of pairs of friends, at least one of whom checked-in to gay bars.
Similarly, a 24-truss contained: (1) 57/131 = 43.5% of users who

checked-in to casinos or strip clubs; and (2) 2973/4385 = 67.8%

of pairs of friends, at least one of whom checked-in to a casino or

strip club.
Some users may not want to be seen as belonging to such 𝑘-

trusses to avoid being discriminated based on the homophily the-

ory: friends are more likely to share attributes [3]. These users can

achieve this goal by employing our algorithms for MIN-𝑘-CBS to

hide a small number of their friendships (e.g., by setting them to “pri-

vate”), so that they are not seen as belonging to these 𝑘-trusses [9].

In fact, when applied with 𝑘 = 18 and 𝑈 containing 65 randomly

selected nodes among those in the aforementioned 18-truss, our

algorithms ensured that the 18-truss contains no nodes in𝑈 . Thus,

the users corresponding to nodes in 𝑈 are not seen as belonging

to that truss. Specifically, MBHS, MBHC, and SNH achieved this

by removing only 0.057%, 0.112%, and 0.056% of the edges of the

graph, in 1.6, 1.7, and 13.7 seconds, respectively. Similarly, when

applied with 𝑘 = 24 and 𝑈 containing 13 randomly selected nodes

among those in the aforementioned 24-truss,MBHS,MBHC, and

SNH ensured that no 24-truss containing nodes in 𝑈 exists by re-

moving only 0.012%, 0.016%, and 0.008% of the edges of the graph,

in 0.5, 0.6, and 1.2 seconds, respectively. The results highlight the

applicability of our methods in realistic settings.

3 Preliminaries and Techniques

We fix an undirected graph 𝐺 (𝑉 , 𝐸), with no multiple edges or

self-loops. By 𝑁𝐺 (𝑢) we denote the set of neighbors of a node

𝑢 ∈ 𝑉 and by |𝑁𝐺 (𝑢) | its degree. A subgraph of 𝐺 is defined by a

set 𝑆 ⊆ 𝐸; we use 𝑆 to represent the set of edges or the subgraph

of 𝐺 induced by 𝑆 . A triangle in 𝐺 is a subgraph of three edges

{𝑒, 𝑓 , 𝑔} connecting three distinct nodes in 𝑉 .

Given a subgraph 𝑆 of 𝐺 , the support of an edge 𝑒 in 𝑆 is the

number of triangles of 𝑆 that contain 𝑒 and is denoted by sup𝑆 (𝑒).
For an integer 𝑘 ≥ 3, a 𝑘-truss of 𝐺 is a subgraph 𝑆 of 𝐺 such that

every edge 𝑒 in 𝑆 has sup𝑆 (𝑒) ≥ 𝑘 − 2. The largest such subgraph

(not necessarily connected) is called the maximal 𝑘-truss of 𝐺 . A

minimal 𝑘-truss of 𝐺 is a subgraph 𝑆 of 𝐺 such that 𝑆 is a 𝑘-truss,

but no proper subset 𝑆 ′ ⊂ 𝑆 is a 𝑘-truss. The trussness of𝐺 , denoted

by 𝑡 (𝐺), is the largest 𝑘 such that there exists a 𝑘-truss in 𝐺 , and

the maximal 𝑘-truss with 𝑘 = 𝑡 (𝐺) is called the max-truss of 𝐺 .

Given an edge 𝑒 , its edge trussnness 𝑡 (𝑒) is the largest 𝑘 for which

𝑒 belongs to a 𝑘-truss. The truss decomposition of 𝐺 associates to

each 𝑒 its trussnness 𝑡 (𝑒); equivalently, it is the set comprised of

the maximal 𝑘-truss of𝐺 , for each 𝑘 . It can be computed in𝑂 (|𝐸 |
3

2)
time, e.g., using the algorithm of [7].

The number of triangles of 𝐺 is denoted by T𝐺 . All triangles of
𝐺 can be computed in 𝑂 (|𝐸 |

3

2) time [1]. The trussness of a triangle

is the minimum among the trussness of its edges.

A 𝑘-Truss Breaking Set (𝑘-TBS) of 𝐺 is a set 𝐸 ′ ⊆ 𝐸 such that

the graph 𝐺 (𝑉 , 𝐸 \ 𝐸 ′) contains no 𝑘-truss. MIN-𝑘-TBS, the core

problem we introduce, is to find a smallest 𝑘-TBS:

Problem3.1 (Minimal𝑘-Truss Breaking Set (MIN-𝑘-TBS)). Given a

graph𝐺 (𝑉 , 𝐸) and an integer 𝑘 ≥ 3, find a smallest 𝑘-truss breaking

set of 𝐺 .

Problem 3.2 (Minimal 𝑘-Communities Breaking Set (MIN-𝑘-

CBS)). Given a graph 𝐺 (𝑉 , 𝐸), an integer 𝑘 ≥ 3, and a set𝑈 ⊆ 𝑉 ,
find a smallest set 𝐸 ′ ⊆ 𝐸 comprised of edges incident to nodes in

𝑈 , so that no 𝑘-truss in the graph 𝐺 (𝑉 , 𝐸 \ 𝐸 ′) contains a node in
𝑈 .

We show the following theorem; the proof is in Appendix A.

Theorem 3.1. For every 𝑘 ≥ 3, MIN-𝑘-TBS is NP-hard.

Note that MIN-𝑘-TBS is the special case of MIN-𝑘-CBS with

𝑈 = 𝑉 , i.e., no user wants to belong to any 𝑘-truss. Thus, the

following corollary holds.

Corollary 3.2. For every 𝑘 ≥ 3, MIN-𝑘-CBS is NP-hard.

3.1 Combinatorial Properties

We show some combinatorial properties of 𝑘-trusses, employed

by our algorithms (see Appendix A for the proofs).

Lemma 3.3. All nodes in a 𝑘-truss have degree at least 𝑘 − 1.

Corollary 3.4. A 𝑘-truss with 𝑣 nodes satisfies 𝑣 ≥ 𝑘 and has at

least 𝑣 · (𝑘 − 1)/2 edges.

Lemma 3.5. If a 𝑘-truss 𝑆 contains no 𝑘-truss after removing any

of its edges, then 𝑆 is a minimal 𝑘-truss.

Lemma 3.6. Let 𝑆 be a 𝑘-truss but not a (𝑘 + 1)-truss. Then there

exists an edge 𝑒 in 𝑆 such that 𝑆 \ 𝑒 is not a 𝑘-truss.

Let us remark that although 𝑆 \ 𝑒 is not a 𝑘-truss, it may still

contain a smaller 𝑘-truss. Finally, we recall from [7] a useful prop-

erty that lets us bound the trussness of a graph by the number of

triangles and edges it contains.

Theorem 3.7 ([7]). Given a graph𝐺 with𝑚 edges andT𝐺 triangles,

its trussness 𝑡 (𝐺) is at least T𝐺𝑚 + 2.

3.2 Triangles Update

Triangles Update is a simple data structure to maintain the

triangles of 𝐺 under edge deletions. We construct a perfect hash

table 𝐻 in which the set of keys is the set of edges in 𝐺 that are

contained in at least one triangle. The value𝐻 [𝑒] for key (edge) 𝑒 is
the linked list of triangles {𝑒, 𝑓 , 𝑔} containing 𝑒 , for all 𝑓 , 𝑔. Triangle
{𝑒, 𝑓 , 𝑔} exists also in 𝐻 [𝑓] and 𝐻 [𝑔]. Element {𝑒, 𝑓 , 𝑔} in 𝐻 [𝑒]
has two pointers to the elements in 𝐻 [𝑓] and 𝐻 [𝑔] representing
{𝑒, 𝑓 , 𝑔}. The size of this data structure is in𝑂 (T𝐺). Constructing it
takes𝑂 (|𝐸 |

3

2) time; the time to compute all triangles. Upon deleting

edge 𝑒 , we can:

1. Find the list of triangles {𝑒, 𝑓 , 𝑔}, for all 𝑓 , 𝑔, in time linear in

the size of this list. This is precisely 𝐻 [𝑒].
2. Remove elements {𝑒, 𝑓 , 𝑔}, for all 𝑓 , 𝑔, from 𝐻 [𝑒], 𝐻 [𝑓], and

𝐻 [𝑔] in time linear in the size of the elements we remove. We do

this by traversing 𝐻 [𝑒] and updating the pointers.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

119

3.3 Truss Decomposition Update

A practical algorithm for updating the truss decomposition of a

graph under edge insertions was proposed in [13]. The authors men-

tion that a similar algorithm for deletion could be derived, however,

no theoretical guarantee is given for either. Here we present a new

data structure under edge deletions with theoretical guarantees.

In particular, our data structure maintains the trussness 𝑡 (𝑒) of all
edges 𝑒 ∈ 𝐸 under edge deletions. To update 𝑡 (𝑒), it also maintains

the number of triangles of different trussness that 𝑒 belongs to.

Indeed, if 𝑒 belongs to at least 𝑘 − 2 triangles of trussness at least 𝑘 ,
then 𝑒 belongs to a 𝑘-truss. We also analyze the construction time,

the size, and the update time for our data structure.

The deletion of 𝑒 breaks all triangles hinging on 𝑒 , and we set

𝑡 (𝑒) to zero. In addition, when the trussness of an edge decreases,

the trussness of any edge that shares a triangle with that edge

may decrease too. Hence, the effect of deleting a single edge can

propagate through the graph.

Based on these observations, we design Truss Update, a data
structure for efficiently maintaining the truss decomposition under

edge deletions. Our data structure requires:

1. The trussness 𝑡 (𝐺) of the input graph.
2. An array 𝑇cur of size |𝐸 | containing the trussness 𝑡cur (𝑒) of

each edge 𝑒 of the current graph.

3. The set TRI(𝑒) of all triangles containing 𝑒 , for each edge 𝑒 of

the current graph, implemented by Triangles Update.
4. A 2d array 𝑇 of size |𝐸 | × 𝑡 (𝐺), whose element 𝑇 [𝑒] [𝑖] corre-

sponds to the number of triangles of trussness 𝑖 in TRI(𝑒), for every
edge 𝑒 in the current graph and every 𝑖 ∈ [3, 𝑡 (𝐺)].

5. A stack 𝐿 of edges whose trussness is to be updated.

When 𝑒 is deleted, we assign 𝑇 [𝑒] [𝑖] to 0, for each 𝑖 ∈ [3, 𝑡 (𝐺)].
This is because 𝑒 is no longer contained in any triangles. We also

push 𝑒 to 𝐿 for its trussness to be updated and propagated. Then,

while 𝐿 is nonempty, we repeatedly pop an edge 𝑓 from 𝐿 and

perform the following update operations:

O1: Update the trussness 𝑡cur (𝑓) of edge 𝑓 , if 𝑓 is in fewer than

𝑡cur (𝑓) − 2 triangles of trussness 𝑡cur (𝑓).
O2: For each triangle {𝑓 , 𝑔, ℎ} ∈ TRI(𝑓) whose trussness changes,

update its entries in 𝑇 and push 𝑔 and ℎ into 𝐿.

Complexity Analysis. The data structure occupies 𝑂 (|𝐸 | · 𝑡 (𝐺) +
T𝐺) space. Constructing it takes𝑂 (|𝐸 |

3

2 + |𝐸 | ·𝑡 (𝐺)) = 𝑂 (|𝐸 |
3

2) time.

For the updates, observe that deleting an edge can only decrease

the trussness of any other edge by at most 1. Say we delete edge

𝑒 that had trussness 𝑥 . Operation O1 is implemented in 𝑂 (𝑥) time

for the deleted edge 𝑒 , and 𝑂 (1) time for all subsequent edges

(as their trussness can only decrease by 1). Operation O2 takes

𝑂 (sup𝐺 (𝑓)) time for each edge 𝑓 whose trussness decreases, thanks

to Triangles Update. As we only consider each edge once on

each deletion (and thus each triangle at most three times), the

worst-case time for a single deletion is 𝑂 (T𝐺). The advantage is
the amortized time complexity of updating. We only add edges

to 𝐿 whose trussness is decreased. When we delete all edges, we

decrease their trussness by at most 𝑡 (𝐺) and hence update the

trussness of each triangle at most 3𝑡 (𝐺) times. Therefore deleting

all edges takes only 𝑂 (𝑡 (𝐺) · T𝐺) time. Thus, the cost of updating

our data structure is significantly lower than recomputing the truss

decomposition of the graph after every deletion in𝑂 (|𝐸 |
3

2) time per

each deletion.

4 Exact Algorithm

An exact algorithm for MIN-𝑘-TBS can be designed based on the

following fact: a graph has a 𝑘-truss if and only if it has a minimal

𝑘-truss. As a minimal 𝑘-truss is broken by removing any of its edges

(see Lemma 3.5), we observe that an edge subset of 𝐺 is a feasible

solution to MIN-𝑘-TBS if and only if it intersects all minimal 𝑘-

trusses of 𝐺 ; and it is an optimal solution when it is one of the

smallest among such subsets.

The above observation draws a connection between MIN-𝑘-TBS

and the hypergraph transversal problem [17], which seeks to find a

minimum transversal of a hypergraph (i.e., a smallest set of nodes of

a hypergraph that intersects all its hyperedges). Specifically, let 𝐻

be the hypergraph whose nodes are in one-to-one correspondence

to the edges of the graph𝐺 ; the hyperedges of𝐻 are all and only the

minimal 𝑘-trusses of 𝐺 . Clearly, an optimal solution to MIN-𝑘-TBS

is a minimum transversal of 𝐻 .

A minimum hypergraph transversal can be found by the algo-

rithm in [17]. However, before finding such a transversal, one needs

to construct 𝐻 , which in turn requires listing all minimal 𝑘-trusses

of 𝐺 . For this task, we devised the MTL (Minimal 𝑘-Truss Listing)

algorithm, presented below.

Thus, our exact algorithm for MIN-𝑘-TBS first executes MTL

on 𝐺 to construct 𝐻 , and then finds a minimum transversal of 𝐻 ,

which is an optimal solution to MIN-𝑘-TBS.

MTL Algorithm. Listing all minimal 𝑘-trusses of𝐺 is significantly

harder than computing the truss decomposition of𝐺 , since minimal

𝑘-trusses can be exponential in number. For example, every 𝑘-clique

is also a minimal 𝑘-truss.

To address this task, we therefore base our MTL algorithm on the

classic binary partition method and equip it with pruning criteria

to prevent unnecessary recursive branches and save computation

time. The completeness of our algorithm easily follows from the

fact that the binary partition method fully explores the space of

possible solutions.

As can be seen in Algorithm 1 below, MTL uses a function

List-min that is applied recursively to extend a partial solution

sol and backtracks when no extension is possible. The set x keeps

tracks of the elements that were tried already and should not be

added to sol to prevent duplication.

List-min halts whenever sol contains a 𝑘-truss (Line 4), as sol

surely does not need further extension to be a minimal 𝑘-truss, and

it outputs sol only if sol is a minimal 𝑘-truss (Line 5). Thanks to

Corollary 3.4, we can also avoid the check in Line 4 entirely when

the number of edges in sol is too small to possibly create a 𝑘-truss.

The check in Line 5 is performed by computing the trussness of sol,

after the removal of each single edge; a task made more efficient

by Truss Update.
List-min also employs the following pruning conditions:

First, sol is extended with edges connected to it, so that it re-

mains connected. Indeed, a minimal 𝑘-truss is necessarily con-

nected; otherwise its connected components would be smaller 𝑘-

trusses. Furthermore, the edges that are used to extend sol are

incident to nodes of minimum degree available (Line 8). This does

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

120

Algorithm 1: MTL

Input :A graph𝐺 = (𝑉 , 𝐸) and an integer 𝑘 ≥ 3.

Output :All minimal 𝑘-trusses of𝐺 .

1 List-min (𝐺 , ∅, ∅, 𝑘)
2 Function List-min(𝐺, sol, x, 𝑘)
3 if Prune (G,sol,x,k) then return

4 if sol contains a 𝑘-truss then /* using Corollary 3.4 */
5 if sol is a minimal 𝑘-truss then output sol

6 return

7 else

8 𝑣 ← node of minimum degree in𝐺 \ x, among those incident to

sol and with at least one edge in 𝐸 \ (sol ∪ x)
9 foreach edge 𝑒 = {𝑣, 𝑤 } in 𝐸 \ (sol ∪ x) do
10 List-min (𝐺 , sol ∪ {𝑒 }, x, 𝑘)
11 x← x ∪ {𝑒 }

12 Function Prune(𝐺, sol, x, 𝑘)
13 foreach 𝑣 incident to sol do

14 if |𝑁𝐺\x (𝑣) | < 𝑘 − 1 then return true

15 foreach 𝑒 ∈ sol do
16 if |TRI𝐺\x (𝑒) | < 𝑘 − 2 then return true

17 if 𝑡𝐺\x (𝑒) < 𝑘 then return true

18 return false

not affect the correctness of the binary partition method; it is a

heuristic choice that increases the effectiveness of the Prune func-

tion described below, by generating graphs with nodes of small

degree whenever these edges are added to the excluded set x.

Second, List-min uses the Prune function to detect recursive

branches that surely cannot extend sol to a 𝑘-truss. Prune checks

three properties, ordered from the most efficiently computable to

the most powerful in terms of pruning power:

1. There is any node 𝑣 incident to sol with degree < 𝑘 − 1 in
𝐺 \ x (as 𝑣 cannot gain enough neighbors to be in a 𝑘-truss).

2. There is an edge 𝑒 ∈ sol contained in less than 𝑘 − 2 triangles
in 𝐺 \ x, for any edge in sol.

3. There is an edge 𝑒 ∈ sol with trussness less than 𝑘 in 𝐺 \ x,
for any edge in sol.

If any of these properties holds in𝐺 \ x, sol cannot be extended
to a 𝑘-truss, since elements of x cannot be added to sol. In this

case, Prune returns true; otherwise, it returns false. Furthermore,

Prune can utilize Truss Update for finding the edge trussness in
the current subgraph (Line 17), without explicitly computing the

truss decomposition of the subgraph.

Modifications for MIN-𝑘-CBS. The following trivial modifications

are needed to exactly solve MIN-𝑘-CBS: (1) Algorithm 1 is modified

to produce only minimal 𝑘-trusses containing nodes in𝑈 . (2) The

hypergraph𝐻 is constructed using the minimal 𝑘-trusses output by

the modified Algorithm 1. (3) The algorithm in [17] is modified to

output a minimum hypergraph transversal containing only edges

incident to nodes in 𝑈 . This is precisely an optimal solution to

MIN-𝑘-CBS.

5 Heuristic Algorithms

We describe three heuristic algorithms, which are based on the

theoretical insights presented in Section 3.

5.1 Max-Truss Breaking Heuristics

Any 𝑘 ′-truss with 𝑘 ′ > 𝑘 is also a 𝑘-truss, by definition. Thus,

we need to remove edges that break every 𝑘 ′-truss for all 𝑘 ′ > 𝑘

Algorithm 2: MBHS

Input :A graph𝐺 = (𝑉 , 𝐸) and an integer 𝑘 ≥ 3

Output :A feasible solution 𝐸′ to MIN-𝑘-TBS

1 𝐺′ ← 𝐺 and �̃� ← 𝐸

2 while 𝑡 (𝐺′) ≥ 𝑘 do

3 Let𝑇 be the max-truss of𝐺′

4 Select an arbitrary edge 𝑒′ in𝑇 with support 𝑡 (𝐺′) − 2 in𝑇
5 Compute the set TRI(𝑇, 𝑒′) of triangles in𝑇 containing 𝑒′

6 Select an edge 𝑒 such that {𝑒, 𝑓 , 𝑔 } ∈ TRI(𝑇, 𝑒′) and 𝑒 has maximum

support in𝑇

7 �̃� ← �̃� \ {𝑒 } and𝐺′ ← 𝐺 (𝑉 , �̃�)
8 return 𝐸′ ← 𝐸 \ �̃�

as well, to obtain a solution to MIN-𝑘-TBS. On the other hand, if

a 𝑘-truss is not a 𝑘 ′-truss for any 𝑘 ′ > 𝑘 , then we can remove a

single edge to break it, as implied by Lemma 3.6.

The max-truss 𝑇 of 𝐺 satisfies the condition of Lemma 3.6 with

𝑘 = 𝑡 (𝐺). Thus, there exists a single edge 𝑒 whose removal breaks𝑇 .

The process can be repeated until the trussness 𝑡 (𝐺 ′) of the residual
graph𝐺 ′ falls below 𝑘 , at which point we obtain a feasible solution

to MIN-𝑘-TBS. Our Max-Truss Breaking Heuristics are based on

this idea. Specifically, Lemma 3.6 confirms the existence of an edge

𝑒 among the edges that form triangles with an edge 𝑒 ′ with support

𝑡 (𝐺 ′) − 2 in the max-truss (see the proof of Lemma 3.6). However,

Lemma 3.6 does not specify how such 𝑒 may be selected. We thus

explore two strategies to select an edge 𝑒 for the current graph 𝐺 ′:

1. We select as 𝑒 the edge with maximum support in the max-

truss 𝑇 of 𝐺 ′, breaking ties arbitrarily. This way to select 𝑒 intu-

itively preserves the graph size (i.e., reduces the total number of

deleted edges), because the removal of 𝑒 breaks a large number of

triangles which no longer appear in the max-truss of 𝐺 ′ in subse-

quent iterations. We refer to this heuristic asMBHS, where S stands

for size preservation. Algorithm 2 implements this idea.

2. We denote by TRI≥𝑘 (𝐺 ′, 𝑒) (respectively, TRI<𝑘 (𝐺 ′, 𝑒)) the
set of all triangles in 𝐺 ′ of trussness at least 𝑘 (respectively, below

𝑘) containing edge 𝑒 . We select as 𝑒 an edge from 𝑇 with largest

ratio
|TRI≥𝑘 (𝐺′,𝑒) |
|TRI<𝑘 (𝐺′,𝑒) | , breaking ties arbitrarily. This strategy deletes

edges that, on one hand, are in many triangles which inevitably

have to be broken, and on the other, are in few triangles which do

not. The former triangles are those with trussness at least 𝑘 , as their

existence would imply a 𝑘-truss. The latter triangles are those with

trussness below 𝑘 . Note that, by preserving the latter triangles, this

strategy helps maintaining the global clustering coefficient of the

graph
1
. We refer to the heuristic employing this strategy asMBHC,

where C stands for cluster coefficient preservation. The MBHC

pseudocode is the same as that of MBHS (Algorithm 2) except for

Line 6 which is replaced by:

Select an edge 𝑒 : {𝑒, 𝑓 , 𝑔 } ∈ TRI(𝑇, 𝑒′) and 𝑒 has maximum

|TRI≥𝑘 (𝐺′,𝑒) |
|TRI<𝑘 (𝐺′,𝑒) |

.

As there may be many edges 𝑒 ′ with support 𝑡 (𝐺 ′) − 2 in the

max-truss (Line 4), a variation of MBHS orMBHC can select as 𝑒 an

edge that forms a triangle with any of those edges 𝑒 ′, in addition

to satisfying the criteria of strategy 1 or 2.

Complexity Analysis. In each iteration,MBHS computes the truss-

ness 𝑡 (𝐺 ′) of𝐺 ′, the max-truss𝑇 of𝐺 ′, and the support of each edge

1
The global clustering coefficient quantifies the tendency of the nodes of a graph𝐺 to

cluster together [18] and is defined as 3 times the ratio between number of triangles

in𝐺 and number of all triplets (triangles and wedges) in𝐺 .

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

121

𝑒 in𝑇 . These computations take𝑂 (|𝐸 |
3

2) time. All triangles in𝑇 con-

taining edge 𝑒 ′ = (𝑢, 𝑣) are computed in time 𝑂 (|𝑉 |) = 𝑂 (|𝐸 |). Se-
lecting an edge 𝑒 (Line 6) is then performed by traversing TRI(𝑇, 𝑒 ′)
in 𝑂 (|𝐸 |) time. Since MBHS performs 𝑟 ≤ |𝐸 | iterations, where 𝑟
is the total number of removed edges, the total time is 𝑂 (|𝐸 |

3

2 𝑟)
in the worst case. The only difference in MBHC is in the compu-

tation of Line 6 that computes the ratio
|TRI≥𝑘 (𝐺′,𝑒) |
|TRI<𝑘 (𝐺′,𝑒) | , for each 𝑒

that forms a triangle in TRI(𝑇, 𝑒 ′). This computation takes time

𝑂 (|𝐸 |
3

2) per iteration of the while loop. Thus, MBHC also takes

𝑂 (|𝐸 |
3

2 𝑟) time in the worst case. Plugging in the Truss Update
and Triangles Update data structures speeds up the computation

and yields the improved worst-case time of𝑂 (|𝐸 |
3

2 + |𝐸 |𝑟 + 𝑡 (𝐺)T𝐺)
for both heuristics (see Appendix B).

Modifications for MIN-𝑘-CBS.We modify Line 6 in Algorithm 2

to consider only edges incident to nodes in𝑈 , as required by MIN-

𝑘-CBS. If no such edge can be selected, we remove an edge that

is incident to a node in 𝑈 and has a maximum support in the

maximal 𝑘-truss for MBHS (or maximum ratio
|TRI≥𝑘 (𝐺′,𝑒) |
|TRI<𝑘 (𝐺′,𝑒) | for

MBHC), among all edges that are incident to nodes in𝑈 , breaking

ties arbitrarily. This guarantees that no node in 𝑈 belongs to a

𝑘-truss in 𝐺 (𝑉 , 𝐸 \ 𝐸 ′).

5.2 “Save the Neighbors” Heuristic

A straightforward way to construct a feasible solution to MIN-

𝑘-TBS is to iteratively remove an edge from the max-truss of the

graph 𝐺 , until 𝐺 has trussness below 𝑘 . However, this heuristic

may delete an unnecessarily large number of edges hinging on the

same triangles, when these triangles have large trussness (i.e., their

edges have trussness much larger than 𝑘).

The main idea of our Save the Neighbors Heuristic (SNH) is to

reduce the number of deleted edges by limiting the unnecessary

subsequent deletion of neighboring edges of an edge 𝑒 that is se-

lected for deletion. Let 𝑀 be the maximal 𝑘-truss of the current

graph 𝐺 ′, and consider a candidate triangle {𝑒, 𝑓 , 𝑔} hinging on

𝑒 inside 𝑀 . While we want a large number of triangles of 𝑀 to

contain 𝑒 , that is a large set TRI≥𝑘 (𝑀, 𝑒), at the same time we want

to limit the propagation to the triangles in 𝑀 that also contain 𝑓

and 𝑔, that is we want small sets TRI≥𝑘 (𝑀, 𝑓) and TRI≥𝑘 (𝑀,𝑔).
For this, we employ the utility function Γ𝑘 (𝑀, 𝑒, 𝑓 , 𝑔), defined as

follows:(
|TRI≥𝑘 (𝑀,𝑒) |

max(|TRI≥𝑘 (𝑀, 𝑓) | − 𝑘 + 2, 1) +
|TRI≥𝑘 (𝑀,𝑒) |

max(|TRI≥𝑘 (𝑀,𝑔) | − 𝑘 + 2, 1)

)
.

This idea aims at breaking the necessary amount of triangles in 𝑀

by removing few of its edges. Note that𝑀 is the maximal 𝑘-truss

of 𝐺 ′ (not the max-truss as in the Max-Truss Breaking Heuristics).

Algorithm 3 describes SNH.

Complexity Analysis. In each iteration, SNH computes the truss-

ness 𝑡 (𝐺 ′) of 𝐺 ′ and𝑀 (the maximal 𝑘-truss of 𝐺 ′). These compu-

tations take 𝑂 (|𝐸 |
3

2) time. Computing all triangles (of trussness at

least 𝑘) in𝑀 takes𝑂 (|𝐸 |
3

2) time. Based on these and the utility func-

tion Γ𝑘 (𝑀, 𝑒, 𝑓 , 𝑔), SNH then evaluates the formula in Line 6. The

evaluation of the formula over all edges in𝑀 takes𝑂 (|𝐸 | +T𝐺) time

because each triangle contains 3 = 𝑂 (1) edges (thus it is evaluated
three times in the sum of Line 6) and there are T𝐺 triangles. Since

SNH performs 𝑟 ≤ |𝐸 | iterations, where 𝑟 is the total number of

Algorithm 3: SNH

Input :A graph𝐺 = (𝑉 , 𝐸) and an integer 𝑘 ≥ 3

Output :A feasible solution 𝐸′ to MIN-𝑘-TBS

1 𝐺′ ← 𝐺 and �̃� ← 𝐸

2 while 𝑡 (𝐺′) ≥ 𝑘 do

3 max← −∞
4 Let𝑀 be the maximal 𝑘-truss of𝐺′

5 for each 𝑒 ∈ 𝑀 do

6 score← ∑
{𝑒,𝑓 ,𝑔}∈TRI≥𝑘 (𝑀,𝑒) Γ𝑘 (𝑀,𝑒, 𝑓 , 𝑔)

7 if score > max then

8 max← score; selected← 𝑒

9 �̃� ← �̃� \ {selected} and𝐺′ ← 𝐺 (𝑉 , �̃�)
10 return 𝐸′ ← 𝐸 \ �̃�

removed edges, and T𝐺 = 𝑂 (|𝐸 |
3

2), SNH takes𝑂 (|𝐸 |
3

2 𝑟) time in the

worst case. Plugging in the Truss Update and Triangles Update
data structures constructed on 𝑀 speeds up the computation and

yields the worst-case time of𝑂 (|𝐸 |
3

2 + |𝐸 |𝑟 + 𝑡 (𝐺)T𝐺 + T𝐺 · 𝑟). This
bound is larger than the improved bound of MBHS and MBHC by

an additive term T𝐺 · 𝑟 , because SNH considers up to T𝐺 triangles

in each of the 𝑟 iterations it performs.

Modifications for MIN-𝑘-CBS. The only modification is that the

selected edge 𝑒 must also be incident to a node in 𝑈 .

6 Lower Bound on the Size of OPT

Let OPT be an optimal solution to MIN-𝑘-TBS. Due to the expo-

nential time complexity of our exact algorithm (Section 4), comput-

ing OPT is a heavy task even for small graphs with few hundreds

of nodes. We design an algorithm for computing a lower bound on

|OPT|, the size of OPT.
Our main idea is to use cliques as a “proxy” for trusses. Since

a 𝑘-clique is a 𝑘-truss, we must at the very least make the input

graph 𝐺 free from 𝑘-cliques to solve MIN-𝑘-TBS.

A first idea is to apply Turan’s theorem [5]: a graph with 𝑛 nodes

and no clique of size 𝑘 or more cannot have more than
𝑘−2
𝑘−1

𝑛2

2

edges, thus it must be “missing” at least

(𝑛
2

)
− 𝑘−2

𝑘−1
𝑛2

2
edges. Turan’s

theorem is unlikely to be useful if applied directly to 𝐺 , but it will

always give us a positive lower bound of edges to remove, if applied

to a clique of size at least 𝑘 .

We thus devise an algorithm, called LB (for Lower Bound), which

works in three phases:

1. Computes an edge clique partition of 𝐺 , defined below, to

obtain a collection of edge-wise disjoint cliques.

2. Applies the best available lower bound on each clique.

3. Outputs a lower bound on |OPT|, by summing the bounds of

the cliques. This is possible because the cliques are all edge-wise

disjoint.

Although LB does not provide a tight lower bound, it provides

a bound that is close to |OPT| (see Section 8) and hence serves

as a good reference point for evaluating the effectiveness of our

heuristics. Below we detail the phases of LB.

Computing an Edge Clique Partition. An edge clique partition

(ECP hereafter) of a graph 𝐺 is a collection of cliques of 𝐺 such

that any two cliques do not share edges (they may share a single

node), and each edge of 𝐺 is contained in one of the cliques. A

trivial ECP is given by the set of edges of𝐺 , but to get a good lower

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

122

bound, we want an ECP with few large cliques rather than many

small ones. While minimizing the number of cliques is famously

NP-complete [15], the authors of [8] recently introduced a fast and

flexible framework for the related edge clique cover problem (where

cliques are allowed to overlap): one algorithm from this framework,

called “pivoting” (see Table 2 in [8]), is aimed precisely at finding

covers with large cliques. We take this algorithm, and adapt it to

our needs by simply deleting each clique from 𝐺 , as soon as it is

found. Since the deleted edges in this clique cannot be placed in

other cliques by the algorithm, we obtain an ECP.

Lower Bounding the Number of Edges to Remove from Each Clique.

Turan’s theorem, as mentioned above, immediately provides a lower

bound. This is, however, far from tight, as graphs without large

cliques may still have high trussness (e.g., a complete 3-partite

graph has no 4-cliques but can have trussness up to 𝑛/3 + 2). To
get a finer bound, we can employ Theorem 3.7, which implies a

graph with𝑚 edges and𝑇 triangles has trussness at least
𝑇
𝑚 + 2. We

combine this with known lower bounds on triangles from [11, 19]

and [5, Corollary 6.1.8], for a graph with 𝑛 nodes and 𝑚 edges,

which are synthesized below:

1. If𝑚 ≤ 𝑛2/4, 𝑇 ≥ 0 [5].

2. If 𝑛2/4 ≤ 𝑚 ≤ 𝑛2/3, 𝑇 ≥ 9𝑚𝑛−2𝑛2−2(𝑛3−3𝑚)3/2
27

[11].

3. If 𝑛2/4 ≤ 𝑚 ≤ ⌊𝑛2/4⌋ + ⌊𝑛/2⌋, 𝑇 ≥ (𝑚 − ⌊𝑛2/4⌋) ⌊𝑛2/2⌋ [19].
4. If𝑚 ≥ 𝑛2/3, a lower bound for 𝑇 is obtained by building the

piece-wise linear function interpolating the points given by integer

𝑦 = 2, 3, . . . in𝑚 = (𝑦−1)𝑛2/2𝑦,𝑇 = (4𝑚−𝑛2)𝑚/3𝑛, and computing

the interpolated value of 𝑇 corresponding to the specific required

𝑚 [5].

Given a graph with 𝑛 nodes and 𝑚 edges, we use the above

formulas to get a lower bound on the number𝑇 of triangles (if more

than one applies, we take the largest). Then, Theorem 3.7 implies

the trussness of this graph is at least
𝑇
𝑚 + 2: We find the highest

number𝑚max of edges (and the relative 𝑇) for which 𝑇
𝑚max

+ 2 < 𝑘 ;

this means that a graph of 𝑛 and trussness < 𝑘 must have no more

than𝑚max edges. If we have a clique with 𝑛 nodes and

(𝑛
2

)
edges,

this means we must remove at least

(𝑛
2

)
−𝑚max edges from it.

Given a clique of size at least 𝑘 from the ECP, we use as lower

bound the maximum of the lower bound computed by Turan’s

theorem and that computed by Theorem 3.7.

Computing the Lower Bound on |OPT|. As the cliques are all edge-
wise disjoint, we sum the bounds obtained in the previous phase,

and output the sum as a lower bound on |OPT|.
Complexity Analysis. The time complexity of LB is dominated

by the time of the “pivoting” algorithm in [8]. A straightforward

analysis of the latter algorithm yields an 𝑂 (𝑞Δ2 |𝐸 |) time bound,

where𝑞, Δ and |𝐸 | is the size of the largest clique, the highest degree,
and the number of edges in 𝐺 , respectively.

7 Related Work

The notion of𝑘-truss [6] has been the focus ofmanyworkswhich

aim at detecting a maximal 𝑘-truss for each 𝑘 (e.g., [7]), or a 𝑘-truss

containing certain nodes and/or attributes (e.g., [13, 14]). There is

also a considerable amount of work on extending the notion of 𝑘-

truss to capture application-specific requirements (e.g., [9, 14, 22]).

Several recent works studied how to modify the community

structure of a graph based on the concept of 𝑘-core [16, 24–26] or

𝑘-truss [24, 27]. All these works consider fixed-budget problems,

where the goal is to modify the maximal 𝑘-core or 𝑘-truss of a

graph by adding or deleting a fixed number of edges or nodes,

according to some criterion relevant to the maximal 𝑘-core or 𝑘-

truss of the input graph. Importantly and unlike these works, we

consider problems that are not specific to the maximal 𝑘-truss but

rather consider all 𝑘-trusses (or all those containing pre-specified

nodes). This task is inherently more difficult due to the hierarchical

structure of 𝑘-trusses. Furthermore, we consider problems seeking

to find a global-optimum solution and not a fixed-budget solution.

8 Experimental Evaluation

We experimentally evaluate our heuristics, by comparing them

to our exact algorithm and the lower bound, as well as to two

natural baselines, in terms of effectiveness and efficiency. We focus

on the MIN-𝑘-TBS problem. (Recall that in Section 2, we showed

results for MIN-𝑘-CBS using a real dataset.)

Experimental Datasets and Setup. We used 10 real-world datasets

(see Table 1 for their characteristics). The first 5 datasets are avail-

able fromhttp://networkrepository.com; FL fromhttps://sites.google.

com/site/yangdingqi/home/foursquare-dataset; and all other datasets

fromhttps://snap.stanford.edu/.We also used 1,000 synthetic datasets

with 30 nodes and 84 edges each, generated using the Albert-

Barabasi model.

Dataset Domain # Edges # Nodes 𝑡 (𝐺) Max degree Avg degree

TRIBES Social 58 16 5 10 7

KARATE Social 78 34 5 17 4

DOLPHINS Social 159 62 5 12 5

NETSCIENCE Collab. 914 379 9 34 4

JAZZ Collab. 2,724 198 30 100 27

WIKI Web 100,761 8,298 23 1,065 24

EPINIONS Social 405,739 75,888 33 3,044 10

FL Social 607,327 114,324 30 1,755 10

DBLP Collab. 1,871,070 511,163 115 576 11

AMAZON E-comm. 2,439,436 410,236 11 2,760 7

Table 1: Characteristics of real datasets.

We compared our heuristics to two natural baselines:

ATk (for All Trussness ≥ 𝑘): It removes all edges of trussness

at least 𝑘 . Clearly, ATk finds a feasible solution, since it suffices to

remove all edges identified by ATk to solve MIN-𝑘-TBS, but it does

not consider the impact of an edge deletion on the trussness of other

edges. Thus, we compared against ATk to show how many edges

are “saved” by our heuristics. ATk is very fast. It takes𝑂 (|𝐸 |
3

2) time,

as it only computes the trussness decomposition of 𝐺 once.

GTk (for Greedy Trussness ≥ 𝑘): GTk is the baseline that moti-

vated SNH (see Section 5.2). That is, GTk iteratively removes the

edge with the highest trussness, breaking ties arbitrarily, until there

is no 𝑘-truss in the graph. GTk requires 𝑂 (|𝐸 |
3

2 𝑟) time to delete 𝑟

edges, since it computes the truss decomposition after every iter-

ation. Thus, it is expected to be much slower than ATk. However,

GTk identifies substantially fewer edges to remove than ATk, be-

cause it considers the impact of removing an edge to the trussness

of other edges. We compared against GTk to show the effectiveness

of our heuristics and the efficiency impact of our data structures.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

123

http://networkrepository.com
https://sites.google.com/site/yangdingqi/home/foursquare-dataset
https://sites.google.com/site/yangdingqi/home/foursquare-dataset
https://snap.stanford.edu/

3 4 5
k

0.0

0.1

0.2

0.3

0.4

Ra
tio

 o
f d

el
et

ed
 e

dg
es

MBHs

MBHc

SNH
OPT
LB

(a) TRIBES

3 4 5
k

0.0
0.05

0.15

0.25

Ra
tio

 o
f d

el
et

ed
 e

dg
es

MBHs

MBHc

SNH
OPT
LB

(b) KARATE

3 4 5
k

0.0
0.05

0.15

0.25

Ra
tio

 o
f d

el
et

ed
 e

dg
es

MBHs

MBHc

SNH
OPT
LB

(c) DOLPHINS

987
k

0.0

0.005

0.01

0.015

Ra
tio

 o
f d

el
et

ed
 e

dg
es

MBHs

MBHc

SNH
OPT
LB

(d) NETSCIENCE

Figure 2: Ratio of deleted edges, for varying𝑘 , on small graphs. Note that SNH essentially coincideswithOPT (optimal solution)

and that SNH is close to our LB (lower bound). Further note that LB is not far from OPT.

MBHS MBHC SNH

min 1 1 1

mean 1.07 1.064 1.043

median 1.062 1.059 1.055

max 1.267 1.278 1.25

st. dev. 0.054 0.052 0.044

(a) 𝑘 = 3

MBHS MBHC SNH

min 1 1 1

mean 1.15 1.251 1.018

median 1 1 1

max 2 3 1.5

st. dev. 0.265 0.361 0.085

(b) 𝑘 = 4

Table 2: Statistics for the ratio between the number of re-

moved edges by a heuristic and by the exact algorithm (i.e.,

in an optimal solution) on 1,000 synthetic graphs.

We also compared our heuristics to the exact algorithm denoted

by OPT (see Section 4) and the lower bound algorithm denoted by

LB (see Section 6) to rigorously assess the effectiveness/efficiency

trade-offs offered by our heuristics.

To measure effectiveness, we used: (1) the ratio of deleted edges

|𝐸′ |
|𝐸 | ; and (2) the relative error RE =

𝐶𝐺−𝐶𝐺′
𝐶𝐺

, where𝐶𝐺 (respectively,

𝐶𝐺′) is the global clustering co-efficient of𝐺 (respectively,𝐺 ′) [18].
We implemented all evaluated methods and executed them on

an Intel Xeon @ 2.60GHz with 128GB RAM. We omit the results of

the variations of MBH discussed in Section 5.1 as they performed

similarly to MBHS and MBHC but were much slower. We also omit

the versions of our heuristics that do not employ Truss Update,
as they were more than one order of magnitude slower. In our

implementations, we used the algorithm of [7] to compute the

truss decomposition. Our code is available at https://bitbucket.org/

breakingtruss/kdd2021.

Effectiveness on Small Graphs. We show that our heuristics find

near-optimal solutions (close to OPT), and also that the lower bound

computed by our LB algorithm is not far from OPT. This can be

seen in Fig. 2 and Table 2, which show statistics for the number

of deleted edges, for real and synthetic graphs, respectively. On

synthetic graphs, our heuristics removed at most 7% more edges

than the optimal on average (see Table 2a). On real graphs, the

results are similar. SNH is the best-performing heuristic, which

shows the effectiveness of its strategy for avoiding unnecessary

edge deletion.MBHS andMBHC also performed very well, with the

former being able to delete fewer edges, as it considers solely the

support of edges in the max-truss. As expected by its design that

considers triangles of all trussness values,MBHC outperformed the

other heuristics in terms of RE (see Appendix C).

Effectiveness on Large Graphs.We show that our heuristics are

fairly close to the lower bound, which implies that they are even

closer to the optimal solution. Also, our heuristics substantially out-

perform both baselines, particularly for small 𝑘 values (see Fig. 3).

Again, SNH outperformed MBHS and MBHC, with MBHS being

30252015103
k

0.0

0.2

0.4

0.6

0.8

Ra
tio

 o
f d

el
et

ed
 e

dg
es

ATk
GTk
MBHs

MBHc

SNH
LB

(a) JAZZ

232015103
k

0.0

0.2

0.4

0.6

Ra
tio

 o
f d

el
et

ed
 e

dg
es

ATk
GTk
MBHs

MBHc

SNH
LB

(b) WIKI

33252015103
k

0.0

0.1

0.2

0.3

0.4

0.5
Ra

tio
 o

f d
el

et
ed

 e
dg

es
ATk
GTk
MBHs

MBHc

SNH
LB

(c) EPINIONS

30252015103
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ra
tio

 o
f d

el
et

ed
 e

dg
es

ATk
GTk
MBHs

MBHc

SNH
LB

(d) FL

115100755025
k

0.00

0.01

0.02

0.03

Ra
tio

 o
f d

el
et

ed
 e

dg
es

ATk
GTk
MBHs

MBHc

SNH
LB

(e) DBLP

7 8 9 10 11
k

0.00

0.05

0.10

0.15

0.20

Ra
tio

 o
f d

el
et

ed
 e

dg
es

ATk
MBHs

MBHc

SNH
LB

(f) AMAZON

Figure 3: Ratio of deleted edges, for varying 𝑘 , on large

graphs. SNH is close to our LB (lower bound). Thus, SNH

is even closer to OPT (optimal solution), which is not com-

putable on large graphs. GTk results are omitted fromFig. 3f,

as it did not terminate in 24 hours.

slightly better thanMBHC as before. As expected, our exact algo-

rithm, which has an exponential time complexity, did not terminate

in 24 hours in these experiments, and so its results are omitted.

We also show that MBHC preserves the global clustering co-

efficient better than the other heuristics and baselines in Table 3.

These results suggest that, when performed carefully, edge deletion

does not substantially affect the clustering structure of the graph.

This is useful when one wants the output graph to be published for

analysis (e.g., in A4 in Introduction).

Efficiency. We show that our heuristics are one to two orders

of magnitude faster than GTk (Fig. 4), despite outperforming it in

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

124

https://bitbucket.org/breakingtruss/kdd2021
https://bitbucket.org/breakingtruss/kdd2021

𝑘 ATk GTk MBHS MBHC SNH

30 8.87 0.10 0.08 0.09 0.22

25 8.87 1.17 1.57 0.8 1.73

20 8.87 4.14 4.14 2.43 4.56

15 27 8.55 8.12 6.19 9.95

10 40.01 24.02 24.67 23.37 28.25

5 73.44 59.74 64.12 63.71 66.33

(a) JAZZ

𝑘 ATk GTk MBHS MBHC SNH

23 7.6 0.044 0.034 0.002 0.003

20 7.6 1.47 1.37 0.66 0.83

15 28.65 10.93 11.83 7.44 10.7

10 55.22 29.38 32.142 23.66 32.4

5 81.11 65.98 70.22 64.88 70.68

(b) WIKI

𝑘 ATk GTk MBHS MBHC SNH

33 6.517 0.040 0.006 0.003 0.008

25 9.07 3.08 2.61 1.99 3.20

20 23.78 7.90 7.19 6.06 8.31

15 35.90 17.28 17.00 14.67 17.90

10 49.74 34.07 34.33 30.79 35.09

5 81.85 68.57 68.96 64.02 67.95

(c) EPINIONS

𝑘 ATk GTk MBHS MBHC SNH

30 6.922 0.025 0.011 0.006 0.02

25 16.37 1.81 1.41 1.19 1.87

20 16.37 6.04 5.29 4.53 6.26

15 20.36 11.90 11.38 10.12 11.83

10 36.94 21.62 21.35 19.57 21.78

5 71.37 54.80 54.80 51.72 54.45

(d) FL

𝑘 ATk GTk MBHS MBHC SNH

115 4.65 0.0024 0.0023 0.0022 0.0023

100 7.82 0.48 0.17 0.16 0.31

75 9.18 2.6 1.36 1.35 2.35

50 10.97 5.61 3.84 4.03 5.37

25 20.53 11.89 10 10.3 12.11

(e) DBLP

𝑘 ATk MBHS MBHC SNH

11 2.3 0.13 0.08 0.1

10 9.94 0.83 0.52 0.83

9 21.23 2.75 1.81 2.87

8 34.38 6.83 4.74 7.12

7 47 13.7 10.23 13.81

(f) AMAZON

Table 3: RE% in terms of global clustering coefficient, for

varying 𝑘 on large graphs. The best-performing method is

in bold. As expected by its design,MBHC is the clear winner.

The results for 𝑘 = 3 are omitted, as RE = 100% for all meth-

ods by definition; GTk results are omitted from Table 3f, as

it did not terminate in 24 hours.

terms of quality (Fig. 3). For example, we were unable to run GTk on

AMAZONwithin 24 hours. The reason is that our heuristics employ

Truss Update and Triangles Update, instead of the expensive

truss decomposition procedure employed by GTk.MBHS is faster

than MBHC, since MBHC also considers triangles with trussness

below 𝑘 , as well as than SNH, since the Γ𝑘 function considers all

triangles (of trussness at least𝑘) in themaximal𝑘-truss. As expected,

ATk is the fastest method, because it does not need to recompute

the trussness of edges after edge removal; recall that it is by far the

worst in terms of effectiveness (Fig. 3). Of note, LB took less than

10 seconds in any case, thus providing a quick assessment tool for

the user, as noted in Introduction.

Acknowledgments H. Chen was supported by CSC scholarship.

M. Sweering was supported by the Netherlands Organisation for

Scientific Research (NWO) through Gravitation-grant NETWORKS-

024.002.003. A. Conte and R. Grossi were partially supported by

MIUR, Grant 20174LF3T8 AHeAD.

References

[1] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles.

Algorithmica, 17(3):209–223, 1997.

[2] N. R. Aravind, R. B. Sandeep, and N. Sivadasan. Dichotomy results on the hardness

of H-free edge modification problems. SIAM Journal on Discrete Mathematics,

31(1):542–561, 2017.

[3] G. Beigi and H. Liu. A survey on privacy in social media: Identification, mitigation,

and applications. ACM/IMS Trans. Data Sci., 1(1), 2020.

[4] G. Bernardini, H. Chen, A. Conte, R. Grossi, G. Loukides, N. Pisanti, S. P. Pissis,

G. Rosone, and M. Sweering. Combinatorial algorithms for string sanitization.

ACM Trans. Knowl. Discov. Data, 15(1), 2020.

[5] B. Bollobás. Extremal graph theory. Courier Corporation, 2004.

[6] J. Cohen. Trusses: Cohesive subgraphs for social network analysis. Nat. Secur.

Agency Tech. Rep., 16:3–29, 2008.

JAZZ EPINIONS FL DBLP10−2

10−1

100

101

102

103

104

105

Ru
nt

im
e

(s
) (

lo
gs

ca
le

)

ATk
GTk
MBHs

MBHc

SNH

(a) All datasets with a 25-truss

23
 900

20
 4K

15
 25K

10
 50K

3
 92K

k
 size of maximal k-truss

100

102

104

Ru
nt

im
e

(s
) (

lo
gs

ca
le

) ATk
GTk
MBHs

MBHc

SNH

(b) WIKI

11
 25K

10
 100K

9
 240K

8
 460K

7
 730K

k
 size of maximal k-truss

100

101

102

103

104

Ru
nt

im
e

(s
) (

lo
gs

ca
le

) ATk
MBHs

MBHc

SNH

(c) AMAZON

Figure 4: (a) Runtime when 𝑘 = 25, for all datasets with a 25-

truss. (b,c) Runtime for varying 𝑘 . GTk results are omitted

from Fig. 4c, as it did not terminate in 24 hours.

[7] A. Conte, D. De Sensi, R. Grossi, A. Marino, and L. Versari. Truly scalable k-

truss and max-truss algorithms for community detection in graphs. IEEE Access,

8:139096–139109, 2020.

[8] A. Conte, R. Grossi, and A. Marino. Large-scale clique cover of real-world

networks. Information and Computation, 270:104464, 2020.

[9] S. Ebadian and X. Huang. Fast algorithm for k-truss discovery on public-private

graphs. In IJCAI, pages 2258–2264, 2019.

[10] Y. Fang, X. Huang, L. Qin, Y. Zhang, W. Zhang, R. Cheng, and X. Lin. A survey

of community search over big graphs. VLDB J., 29(1):353–392, 2020.

[11] D. C. Fisher. Lower bounds on the number of triangles in a graph. Journal of

graph theory, 13(4):505–512, 1989.

[12] S. Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174,

2010.

[13] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu. Querying k-truss community

in large and dynamic graphs. In SIGMOD, page 1311–1322, 2014.

[14] X. Huang and L. V. S. Lakshmanan. Attribute-driven community search. Proc.

VLDB Endow., 10(9):949–960, 2017.

[15] R. M. Karp. Reducibility among combinatorial problems. In Complexity of

computer computations, pages 85–103. Springer, 1972.

[16] R. Laishram, A. E. Sariyüce, T. Eliassi-Rad, A. Pinar, and S. Soundarajan. Mea-

suring and improving the core resilience of networks. InWWW, page 609–618,

2018.

[17] K. Murakami and T. Uno. Efficient algorithms for dualizing large-scale hyper-

graphs. Discrete Applied Mathematics, 170:83 – 94, 2014.

[18] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary

degree distributions and their applications. Physical review E, 64(2):026118, 2001.

[19] V. S. Nikiforov and N. G. Khadzhiivanov. Solution of the problem of p. erdos on

the number of triangles in graphs with n vertices and [n2/4]+ l edges. CR Acad.

Bulgare Sci, 34(969-970):2, 1981.

[20] F. Rousseau, J. Casas-Roma, and M. Vazirgiannis. Community-preserving

anonymization of graphs. Knowl. Inf. Syst., 54(2):315–343, 2018.

[21] Y. Saygin, V. S. Verykios, and C. Clifton. Using unknowns to prevent discovery

of association rules. SIGMOD Rec., 30(4):45–54, 2001.

[22] C.Wang and J. Zhu. Forbidden nodes aware community search. AAAI, 33(01):758–

765, 2019.

[23] D. Yang, B. Qu, J. Yang, and P. Cudre-Mauroux. Revisiting user mobility and

social relationships in lbsns: A hypergraph embedding approach. InWWW, page

2147–2157, 2019.

[24] F. Zhang, C. Li, Y. Zhang, L. Qin, and W. Zhang. Finding critical users in social

communities: The collapsed core and truss problems. IEEE Transactions on

Knowledge and Data Engineering, 32(1):78–91, 2020.

[25] Z. Zhou, F. Zhang, X. Lin, W. Zhang, and C. Chen. K-core maximization: An edge

addition approach. In IJCAI, pages 4867–4873, 7 2019.

[26] W. Zhu, C. Chen, X. Wang, and X. Lin. K-core minimization: An edge manipula-

tion approach. In CIKM, page 1667–1670, 2018.

[27] W. Zhu, M. Zhang, C. Chen, X. Wang, F. Zhang, and X. Lin. Pivotal relationship

identification: The k-truss minimization problem. In IJCAI, pages 4874–4880,

2019.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

125

A Omitted Proofs

Proof of Theorem 3.1. It is NP-hard to find a smallest set of edges

to delete to make 𝐺 triangle-free, which is exactly the MIN-3-TBS

problem. Assuming the Exponential Time Hypothesis (ETH), we

cannot even solve this problem in 2
𝑜 (|𝐸′ |) · 𝑛𝑂 (1) time [2], where

𝑛 = |𝑉 |.
We will now prove that MIN-𝑘-TBS is also NP-hard for 𝑘 > 3

using a reduction from MIN-3-TBS.

Recall that 𝐺 = (𝑉 , 𝐸) is the graph for which we want to solve

MIN-3-TBS. Let 𝑇 be the set of triangles in 𝐺 . We consider a new

graph 𝐺𝑘 = (𝑉𝑘 , 𝐸𝑘), which is constructed as follows. For each

triangle 𝑡 ∈ 𝑇 , let 𝑆𝑡 := 𝑡 ∪ [𝑘 − 3] × {𝑡} denote the nodes of 𝑡 and
𝑘 − 3 new nodes. The new graph consists of the union of the cliques(𝑆𝑡
2

)
over all triangles 𝑡 ∈ 𝑇 . Formally,

𝐺𝑘 :=

(
𝑉 ∪ [𝑘 − 3] ×𝑇,

⋃
𝑡 ∈𝑇
{{𝑢, 𝑣} | 𝑢, 𝑣 ∈ 𝑆𝑡 , 𝑢 ≠ 𝑣}

)
.

We will now show that solving MIN-3-TBS for 𝐺 is equivalent to

solving MIN-𝑘-TBS for 𝐺𝑘 .

Suppose 𝐺 ′ = (𝑉 , 𝐸 \ 𝐸 ′) does not contain any triangles. Then

for each triangle 𝑡 ∈ 𝑇 , there must be an edge {𝑡1, 𝑡2} ⊆ 𝑡 ∩𝐸 ′. Note
that for all 𝑖 ∈ [𝑘 −3] × {𝑡} the edges (𝑖, 𝑡1) and (𝑖, 𝑡2) are contained
in at most 𝑘 − 3 triangles in (𝑉𝑘 , 𝐸𝑘 \ 𝐸 ′). Therefore their trussness
is below 𝑘 . Therefore no edge 𝑒 ∈

(𝑆𝑡
2

)
\
(𝑡
2

)
can be in 𝑘 − 2 triangles

of trussness 𝑘 . It follows that the 𝑘-trusses in (𝑉𝑘 , 𝐸𝑘 \ 𝐸 ′) are the
𝑘-trusses in (𝑉𝑘 , 𝐸 \ 𝐸 ′). However 𝐺 ′ and hence (𝑉𝑘 , 𝐸 \ 𝐸 ′) are
triangle-free. Therefore (𝑉𝑘 , 𝐸𝑘 \𝐸 ′) does not contain any 𝑘-trusses.

Suppose 𝐺 ′
𝑘
= (𝑉𝑘 , 𝐸𝑘 \ 𝐸 ′) does not contain any 𝑘-trusses. Let

𝑓 : 𝐸𝑘 → 𝐸 be any function such that

• 𝑓 (𝑒) = 𝑒 for all 𝑒 ∈ 𝐸, and
• 𝑓 (𝑒) ⊆ 𝑡 for all 𝑡 ∈ 𝑇 and 𝑒 ∈

(𝑆𝑡
2

)
\
(𝑡
2

)
.

For each 𝑡 ∈ 𝑇 , the induced subgraph𝐺 ′
𝑘
[𝑆𝑡] is not a 𝑘-truss. Hence

it is not a 𝑘-clique and there must be an edge 𝑒𝑡 ∈ 𝐸 ′ ∩
(𝑆𝑡
2

)
. Since

𝑓 (𝑒𝑡) ⊆ 𝑡 , the triangle 𝑡 does not appear in (𝑉 , 𝐸 \ 𝑓 (𝐸 ′)). Therefore
(𝑉 , 𝐸 \ 𝑓 (𝐸 ′)) is triangle-free.

It follows that solving MIN-3-TBS for 𝐺 is equivalent to solving

MIN-𝑘-TBS for 𝐺𝑘 . Therefore, the problem MIN-𝑘-TBS is NP-hard.

Proof of Lemma 3.3. An edge 𝑒 of the 𝑘-truss has, by definition,

support at least 𝑘 − 2 in the 𝑘-truss. Thus, 𝑒 is adjacent to at least

𝑘 − 2 other edges of the 𝑘-truss on each of its endpoints, and each

endpoint is incident to at least 𝑘 − 2 edges plus 𝑒 itself.
Proof of Corollary 3.4. By Lemma 3.3 each node in the 𝑘-truss

has degree at least 𝑘 − 1. As each edge 𝑒 has support at least 𝑘 − 2
in the 𝑘-truss, by definition, the 𝑘-truss contains at least 𝑘 nodes

(2 incident to 𝑒 , and 𝑘 − 2 as the third node of each triangle). The

claim is completed by the so-called “hand-shaking lemma”: a graph

has as many edges as the sum of degrees of its nodes divided by 2.

Proof of Lemma 3.5. Every subgraph of 𝑆 is contained in at least

one graph obtained by removing an edge of 𝑆 . If no such graph

contains a 𝑘-truss, then no subgraph of 𝑆 contains a 𝑘-truss, which

implies that 𝑆 is a minimal 𝑘-truss.

Proof of Lemma 3.6. Let 𝑒 ′ be an edge of minimum support in 𝑆 ,

which must be exactly 𝑘 − 2 (or 𝑆 would be a (𝑘 + 1)-truss); and let

𝑒 be one of the edges forming a triangle in 𝑆 with 𝑒 ′. The support
of 𝑒 ′ in 𝑆 \ 𝑒 is 𝑘 − 3 and the claim follows.

Proof of Theorem 3.7. The proof of Theorem 1 in [7] shows that

𝑡𝐺 ≥ 𝑇𝑆
𝑚𝑆
+ 2 for any subgraph 𝑆 of 𝐺 with 𝑇𝑆 triangles and 𝑚𝑆

edges. The claim holds as 𝐺 is a subgraph of itself.

B Improvements to MBHS and MBHC

We plug in the Truss Update and Triangles Update data struc-

tures, which both can be constructed in 𝑂 (|𝐸 |3/2) time, into MBHS

and MBHC. Since Truss Update provides the trussness of each

edge in𝑂 (1) time, Lines 3 and 4 take𝑂 (|𝐸 |) time. Since Triangles
Update provides𝑂 (1)-time access to the list of triangles containing

an edge 𝑒 ′, Lines 5 and 6 take 𝑂 (sup𝑇 (𝑒 ′)) time. The update of 𝐺 ′

is handled by the maintenance of Truss Update and Triangles
Update, which amortizes to 𝑂 (𝑡 (𝐺)T𝐺 + T𝐺) = 𝑂 (𝑡 (𝐺)T𝐺) time

across all edge deletions. This gives the improved time bound of

𝑂 (|𝐸 |3/2 + |𝐸 |𝑟 + 𝑡 (𝐺)T𝐺). ForMBHC, the only difference is that we

consider all triangles in𝐺 ′ in Line 6. Since we delete a triangle after

considering it, the cost amortizes to 𝑂 (T𝐺). This gives the same

improved time bound of 𝑂 (|𝐸 |3/2 + |𝐸 |𝑟 + 𝑡 (𝐺)T𝐺).

C Additional Experimental Results

𝑘 MBHS MBHC SNH

5 12.061 6.811 8.418

4 30.541 35.327 33.276

(a) TRIBES

𝑘 MBHS MBHC SNH

5 6.878 6.878 6.407

4 25.216 21.597 36.861

(b) KARATE

𝑘 MBHS MBHC SNH

5 4.364 4.159 5.767

4 28.759 25.167 28.669

(c) DOLPHINS

𝑘 MBHS MBHC SNH

9 0.716 0.138 0.138

8 1.873 1.156 2.626

7 3.945 3.148 4.65

(d) NETSCIENCE

Table 4: RE% in terms of global clustering coefficient, for

varying 𝑘 on small graphs. The best-performing method is

in bold.MBHC is the clear winner. Results for 𝑘 = 3 are omit-

ted, as 𝑅𝐸 = 100% for all methods by definition.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

126

	Abstract
	1 Introduction
	2 Analyzing Real Social Networks
	3 Preliminaries and Techniques
	3.1 Combinatorial Properties
	3.2 Triangles Update
	3.3 Truss Decomposition Update

	4 Exact Algorithm
	5 Heuristic Algorithms
	5.1 Max-Truss Breaking Heuristics
	5.2 ``Save the Neighbors'' Heuristic

	6 Lower Bound on the Size of OPT
	7 Related Work
	8 Experimental Evaluation
	References
	A Omitted Proofs
	B Improvements to MBHS and MBHC
	C Additional Experimental Results

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 46.10, 68.71 Width 256.46 Height 98.06 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 46.096 68.7112 256.4616 98.0589

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 10
 0
 1

 1

 HistoryList_V1
 qi2base

