

University of Birmingham

Making de Bruijn Graphs Eulerian
Bernardini, Giulia; Chen, Huiping; Loukides, Grigorios; Pissis, Solon P.; Stougie, Leen;
Sweering, Michelle
DOI:
10.4230/LIPIcs.CPM.2022.12

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Bernardini, G, Chen, H, Loukides, G, Pissis, SP, Stougie, L & Sweering, M 2022, Making de Bruijn Graphs
Eulerian. in H Bannai & J Holub (eds), 33rd Annual Symposium on Combinatorial Pattern Matching (CPM
2022)., 12, Leibniz International Proceedings in Informatics (LIPIcs), vol. 223, Schloss Dagstuhl, 33rd Annual
Symposium on Combinatorial Pattern Matching, CPM 2022, Prague, Czech Republic, 27/06/22.
https://doi.org/10.4230/LIPIcs.CPM.2022.12

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 02. May. 2024

https://doi.org/10.4230/LIPIcs.CPM.2022.12
https://doi.org/10.4230/LIPIcs.CPM.2022.12
https://birmingham.elsevierpure.com/en/publications/aa4f71ac-8c21-4bbd-8172-b39c7605766b

Making de Bruijn Graphs Eulerian
Giulia Bernardini #

University of Trieste, Italy
CWI, Amsterdam, The Netherlands

Huiping Chen #

King’s College London, UK

Grigorios Loukides #

King’s College London, UK

Solon P. Pissis #

CWI, Amsterdam, The Netherlands
Vrije Universiteit, Amsterdam, The Netherlands

Leen Stougie #

CWI, Amsterdam, The Netherlands
Vrije Universiteit, Amsterdam, The Netherlands

Michelle Sweering #

CWI, Amsterdam, The Netherlands

Abstract
A directed multigraph is called Eulerian if it has a circuit which uses each edge exactly once. Euler’s
theorem tells us that a weakly connected directed multigraph is Eulerian if and only if every node is
balanced. Given a collection S of strings over an alphabet Σ, the de Bruijn graph (dBG) of order
k of S is a directed multigraph GS,k(V, E), where V is the set of length-(k − 1) substrings of the
strings in S, and GS,k contains an edge (u, v) with multiplicity mu,v, if and only if the string u[0] · v

is equal to the string u · v[k − 2] and this string occurs exactly mu,v times in total in strings in
S. Let GΣ,k(VΣ,k, EΣ,k) be the complete dBG of Σk. The Eulerian Extension (EE) problem on
GS,k asks to extend GS,k with a set B of nodes from VΣ,k and a smallest multiset A of edges from
EΣ,k to make it Eulerian. Note that extending dBGs is algorithmically much more challenging than
extending general directed multigraphs because some edges in dBGs are by definition forbidden.
Extending dBGs lies at the heart of sequence assembly [Medvedev et al., WABI 2007], one of the
most important tasks in bioinformatics. The novelty of our work with respect to existing works is
that we allow not only to duplicate existing edges of GS,k but to also add novel edges and nodes, in
an effort to (i) connect multiple components and (ii) reduce the total EE cost. It is easy to show
that EE on GS,k is NP-hard via a reduction from shortest common superstring. We further show
that EE remains NP-hard, even when we are not allowed to add new nodes, via a highly non-trivial
reduction from 3-SAT. We thus investigate the following two problems underlying EE in dBGs:
1. When GS,k is not weakly connected, we are asked to connect its d > 1 components using a

minimum-weight spanning tree, whose edges are paths on the underlying GΣ,k and weights are
the corresponding path lengths. This way of connecting guarantees that no new unbalanced
node is added. We show that this problem can be solved in O(|V |k log d + |E|) time, which is
nearly optimal, since the size of GS,k is Θ(|V |k + |E|).

2. When GS,k is not balanced, we are asked to extend GS,k to HS,k(V ∪ B, E ∪ A) such that every
node of HS,k is balanced and the total number |A| of added edges is minimized. We show that
this problem can be solved in the optimal O(k|V | + |E| + |A|) time.

Let us stress that, although our main contributions are theoretical, the algorithms we design for the
above two problems are practical. We combine the two algorithms in one method that makes any
dBG Eulerian; and show experimentally that the cost of the obtained feasible solutions on real-world
dBGs is substantially smaller than the corresponding cost obtained by existing greedy approaches.

2012 ACM Subject Classification Theory of computation → Pattern matching

© Giulia Bernardini, Huiping Chen, Grigorios Loukides, Solon P. Pissis, Leen Stougie, and
Michelle Sweering;
licensed under Creative Commons License CC-BY 4.0

33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022).
Editors: Hideo Bannai and Jan Holub; Article No. 12; pp. 12:1–12:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:giulia.bernardini@units.it
https://orcid.org/0000-0001-6647-088X
mailto:huiping.chen@kcl.ac.uk
https://orcid.org/0000-0003-1782-667X
mailto:grigorios.loukides@kcl.ac.uk
https://orcid.org/0000-0003-0888-5061
mailto:solon.pissis@cwi.nl
https://orcid.org/0000-0002-1445-1932
mailto:leen.stougie@cwi.nl
mailto:michelle.sweering@cwi.nl
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Making de Bruijn Graphs Eulerian

Keywords and phrases string algorithms, graph algorithms, Eulerian graph, de Bruijn graph

Digital Object Identifier 10.4230/LIPIcs.CPM.2022.12

Supplementary Material Software (Source Code): https://bitbucket.org/eulerian-ext/cpm2022/
archived at swh:1:dir:d7c2ca6a257600d6d7176b876370c456496af5a2

Funding The work in this paper is supported in part by: the Netherlands Organisation for Scientific
Research (NWO) through project OCENW.GROOT.2019.015 “Optimization for and with Machine
Learning (OPTIMAL)” and Gravitation-grant NETWORKS-024.002.003; a CSC scholarship; the
Leverhulme Trust RPG-2019-399 project; and the PANGAIA and ALPACA projects that have
received funding from the European Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreements No 872539 and 956229, respectively.

1 Introduction

We start with some basic definitions and notation on strings from [6]. Let x = x[0] · · ·x[n−1]
be a string of length n = |x| over an integer alphabet Σ = [0, σ) of σ letters. By Σk we
denote the set of all strings of length k > 0. For any two positions i and j ≥ i of x, x[i . . j]
is the fragment of x starting at position i and ending at position j; it is represented in
O(1) space by i and j. The fragment x[i . . j] is an occurrence of the underlying substring
p = x[i] · · ·x[j]; we say that p occurs at position i in x. A prefix of x is a fragment of the
form x[0 . . j] and a suffix of x is a fragment of the form x[i . . n− 1]. By xy or x · y we denote
the concatenation of strings x and y: xy = x[0] · · ·x[|x| − 1]y[0] · · · y[|y| − 1]. Given strings x

and y, a suffix/prefix overlap of x and y is a suffix of x that is a prefix of y.
The order-k de Bruijn graph (dBG) of a collection S of strings is a directed multigraph

GS,k(V, E) such that V is the set of length-(k − 1) substrings of the strings in S and GS,k

contains an edge (u, v) with multiplicity mu,v, if and only if the string u[0] · v is equal to the
string u · v[k − 2] and this string occurs exactly mu,v times in total in strings in S. When S

is generated by a sequencing experiment from a genome, any Eulerian circuit of GS,k(V, E)
corresponds to a single genome reconstruction [24, 20]. It goes without saying that genome
assembly is one of the most important bioinformatics tasks [25, 29, 11, 22, 21, 26, 27, 18].

However, GS,k is almost surely not Eulerian in practice due to sequencing errors [21].
One could thus try to make it Eulerian by duplicating some of its existing edges [19]. In
this case, one would naturally like to minimize the total cost of this extension. Even worse,
GS,k would likely not be weakly connected, and thus edge duplication is not sufficient to
make GS,k Eulerian. In this paper, we introduce the problem of making any arbitrary GS,k

Eulerian by allowing not only to duplicate existing edges but to also add novel edges and
nodes. The motivation for this is twofold. First, such a process would connect multiple
components, which are often unconnected for the values of k used in practice. Second, as
this is a generalization of the edge duplication problem [19], it would only reduce the total
extension cost, even if the input graph is already weakly connected.

Let us now more formally lay the foundations of our work by first considering a general
directed multigraph G(V, E). A directed multigraph is called Eulerian if it has a circuit
which uses each edge exactly once. Euler’s theorem tells us that a weakly connected directed
multigraph is Eulerian if and only if every node is balanced: for any node v ∈ V the in- and
out-degree of v are equal. The Eulerian Extension (EE) problem on G(V, E) asks for an
Eulerian extension minimizing the total cost of the multiset A of added edges according to
some cost function. A smallest multiset A over V × V such that H(V, E ∪A) is Eulerian can
be computed in the optimal O(|V |+ |E|) time [5, 9]. We prove that the EE problem becomes
significantly more challenging when a subset F of V × V is forbidden (i.e., not feasible):

https://doi.org/10.4230/LIPIcs.CPM.2022.12
https://bitbucket.org/eulerian-ext/cpm2022/
https://archive.softwareheritage.org/swh:1:dir:d7c2ca6a257600d6d7176b876370c456496af5a2;origin=https://bitbucket.org/eulerian-ext/cpm2022/;visit=swh:1:snp:2e825771f7a787fb8b347f3205119f38732b947e;anchor=swh:1:rev:d7eb1ac39fc78b1266f9ffddf7707c0d474c44c8

G. Bernardini, H. Chen, G. Loukides, S. P. Pissis, L. Stougie, and M. Sweering 12:3

u

v

w

x

(a) H(V ′, E′).

(u, 0)

(u, 1) (v, 0) (v, 1)

(w, 0)(w, 1)

(x, 0)

(x, 1)

(b) G(V ′ × {0, 1}, {((v, 0), (v, 1))|v ∈ V ′}).

Figure 1 (a) An instance of the directed Hamiltonian circuit with a solution in red and (b) the
instance of Problem 1 to which it reduces. An Eulerian circuit in graph (b), with required bold
edges and non-forbidden dashed edges, corresponds to finding a directed Hamiltonian circuit in
graph (a). The corresponding solution is in red in graph (b).

▶ Problem 1. Given a directed multigraph G(V, E) and a set F ⊂ V × V , with F ∩E = ∅,
find a multiset A of edges over (V × V) \ F such that H(V, E ∪ A) is Eulerian and |A| is
minimized; or report FAIL if not possible.

It should be clear that Problem 1 is equivalent to the EE problem when F = ∅. Note
that Problem 1 is directly applicable on arbitrary dBGs, where the set F of forbidden edges
is directly implied by the dBG definition: (u, v) ∈ F if and only if u[0] · v ≠ u · v[k − 2]. We
observe that adding nodes may shorten the length of the Eulerian circuit with respect to
Problem 1. This observation leads naturally to the following generalization of Problem 1:

▶ Problem 2. Given a directed multigraph G(V, E), a set V ⊇ V , and a set F ⊂ V ×V, with
F ∩E = ∅, find a multiset A of edges over (V × V) \ F and a set of nodes B ⊆ V such that
H(V ∪ B, E ∪ A) is Eulerian and |A| is minimized; or report FAIL if not possible.

We will now prove that both Problems 1 and 2 are NP-hard by reducing from the directed
Hamiltonian circuit [13] problem: Given a directed graph, decide whether there exists a
directed circuit that visits every node of the graph exactly once.

▶ Theorem 1. Both Problems 1 and 2 are NP-hard.

Proof. We will first prove that Problem 1 is NP-hard. Consider an instance H(V ′, E′) of
the directed Hamiltonian circuit problem (inspect Figure 1a). We replace each node v ∈ V ′

by two nodes (v, 0), (v, 1) and an edge ((v, 0), (v, 1)) with all the incoming edges incident to
the tail (v, 0) and all the outgoing edges incident to the head (v, 1) (inspect Figure 1b).

Note that any sequence of adjacent edges on this modified graph alternates between new
edges (corresponding to nodes in H, the bold edges in Figure 1b) and old edges (corresponding
to the edges in H connecting those nodes, dashed in Figure 1b). Finding a Hamiltonian
circuit in H is equivalent to finding a circuit passing through all new edges in the modified
graph exactly once. It follows that solving the directed Hamiltonian circuit problem on H is
equivalent to deciding whether the following instance of Problem 1 has a solution of size |V ′|
(smaller solutions are not possible, larger solutions imply that H is not Hamiltonian):

G(V, E) = G (V ′ × {0, 1}, {((v, 0), (v, 1)) | v ∈ V ′})
F = (V × V) \ (E ∪ {((u, 1), (v, 0))|(u, v) ∈ E′}) .

Since the directed Hamiltonian circuit problem is NP-complete [13], it is NP-hard to decide
whether a solution to Problem 1 has size at most |V |/2. Thus solving Problem 1 is NP-hard.

Note that Problem 2 is equivalent to the EE problem when F = ∅ and V = V , and that
Problem 2 is at least as hard as Problem 1: every instance of Problem 1 can be reduced to
some instance of Problem 2 with V = V . Therefore Problem 2 is NP-hard as well. ◀

CPM 2022

12:4 Making de Bruijn Graphs Eulerian

Related Work. Both Problems 1 and 2 on general graphs are closely-related to the Directed
Rural Postman problem (DRP) [23]: Given a directed (multi-)graph G(V ′, E′) and a (multi-)
set R ⊆ E′ of required edges, we are asked to compute a minimum-cost circuit in G including
all edges in R. It is easy to see that any instance of Problem 2 reduces to an instance of
DRP with V ′ = V, E′ = (V × V) \ F and R = E; a similar reduction works for Problem 1.

Problems 1 and 2 on arbitrary dBGs are different versions of the classic Shortest Common
Superstring (SCS) problem [12]. In particular, Problem 2 is closely-related to the Multi-SCS
problem [5]: Given a set S of strings and a multiplicity f(si) of each si ∈ S, Multi-SCS asks
for a shortest string containing at least f(si) occurrences of each si ∈ S. When all strings in
S are of length k, Multi-SCS is essentially Problem 2 on dBGs of order k.1 Crochemore et
al. showed that Multi-SCS can be solved in linear time when all input strings in S are of
length 2. Cazaux and Rivals [4] presented a 1

2 -approximation algorithm for Multi-SCS that
maximizes the compression offered by the output string; and a 4-approximation algorithm for
Multi-SCS that minimizes the length of the output string. In the Multi-SCCS problem [4],
given a set S of strings and a multiplicity f(si) of each si ∈ S, we are asked to construct a
multiset C of cyclic strings of minimum total length such that every string in S occurs f(si)
times in the strings of C. Cazaux and Rivals [4] showed a linear-time implementation of a
greedy algorithm that solves Multi-SCCS exactly (see also [3] for the SCCS problem).

Contributions. Let us now summarize our main contributions on arbitrary dBGs:
1. The reduction leading to Theorem 1 does not apply to the case in which the input to

Problems 1 or 2 is an arbitrary dBG GS,k, as not all edges implied by the reduction
may be feasible in GS,k. In Section 3 we prove that both problems are NP-hard even
on arbitrary dBGs. It is easy to show that Problem 2 is NP-hard via a reduction from
SCS. For Problem 1, we make a highly non-trivial reduction from 3-SAT; this is the most
involved part of the paper. Since our ultimate goal is to make dBGs Eulerian, we next
investigate the following two problems underlying EE in dBGs: connect and balance.

2. In Section 4, we show an exact greedy algorithm to make any GS,k, consisting of d > 1
weakly connected components, weakly connected, by extending GS,k with a minimum-
weight spanning tree, whose edges are paths on the underlying GΣ,k and weights are the
corresponding path lengths. While there are many optimization criteria for connecting
GS,k, this way guarantees that no new unbalanced node is added. Our algorithm runs in
O(|V |k log d + |E|) time, which is nearly optimal, since the size of GS,k is Θ(|V |k + |E|).
To achieve this time complexity, we simulate Kruskal’s classic algorithm for computing
minimum spanning trees [17] using an efficient method to compute shortest paths on
the implicit GΣ,k. This method employs an augmented and modified version of the Aho-
Corasick machine [1], which we dynamically update every time we unite two components.

3. Balancing any GS,k with the smallest number of newly added edges can be reduced
to Multi-SCCS. By employing the linear-time algorithm of Cazaux and Rivals [4] for
Multi-SCCS, we obtain an O(k|E|)-time algorithm for balancing. In Section 5, we show
an exact greedy algorithm for this problem that runs in the optimal O(k|V |+ |E|+ |A|)
time, where |A| is the total number of added edges. To achieve this time complexity,
similar to Section 4, we simulate Cazaux and Rivals algorithm using another augmented
and modified version of the Aho-Corasick machine.

1 We say “essentially” because Multi-SCS asks for a shortest linear string, whereas Problem 2 asks for an
Eulerian circuit, which on a dBG corresponds to a shortest cyclic string.

G. Bernardini, H. Chen, G. Loukides, S. P. Pissis, L. Stougie, and M. Sweering 12:5

4. Although our main contributions here are theoretical, the algorithms we design are
practical. In Section 6, we combine the algorithms of Sections 4 and 5 in one method
that makes any GS,k Eulerian; and show experimentally that the cost of the feasible
solutions obtained by this method on real-world dBGs constructed over sequencing data
is substantially smaller than the cost of solutions obtained by existing string-based greedy
approaches. This justifies the need for an approach specifically designed to extend dBGs.

2 Preliminaries

We fix an integer k > 1 and an integer alphabet Σ. Given a collection S of strings over Σ,
we denote by GS,k(V, E) the de Bruijn graph (dBG) of order k of S (defined in Section 1).
The cardinality of E (i.e., the sum of edge multiplicities) is |E| = ||S|| − (k − 1)|S|, where
||S|| is the total length of the strings in S. Let d−(u) and d+(u) be, respectively, the in-
and out-degree of node u of GS,k. An undirected graph is said to be connected if for every
pair u and v of nodes in the graph there exists a path from u to v. A directed graph is
called weakly connected if by replacing all of its directed edges with undirected edges we
obtain a connected (undirected) graph. A spanning tree of a weakly connected graph is
a weakly connected subgraph which covers all the nodes of the graph with the minimum
possible number of edges. A weakly connected graph GS,k is called Eulerian if every node u

in GS,k is balanced, i.e., d+(u) = d−(u). The dBG of order k of Σk is called the complete de
Bruijn graph of order k over Σ; we denote it by GΣ,k(VΣ,k, EΣ,k), where VΣ,k = Σk−1 and
EΣ,k = {(s[0 . . k − 2], s[1 . . k − 1]) | s ∈ Σk}.

Throughout, we assume that we are given the graph GS,k of an arbitrary string collection
S, which we denote by G(V, E).

3 Eulerian Extension of de Bruijn Graphs is NP-hard

In this section, we investigate the hardness of Problems 1 and 2 on arbitrary dBGs.

Eulerian Extension of de Bruijn Graphs (Extend-DBG)
Input: A de Bruijn graph G(V, E) of order k over alphabet Σ.
Output: An Eulerian graph H(V ∪B, E∪A) with B ⊆ VΣ,k, A over EΣ,k and minimized
|A|.

Extend-DBG can be solved in linear time when k = 2 [5]. When k > 2, Extend-DBG
can be shown to be NP-hard via a simple reduction from the Length-k Shortest Common
Superstring problem (k-SCS), a special case of the SCS problem in which all input strings
are of length k. k-SCS is NP-hard, for any k > 2 [12]. Any instance of k-SCS on some
alphabet Σ can be reduced to an instance of Extend-DBG on a dBG of order k over
Σ ∪ {#}, with # /∈ Σ. The nodes of such dBG are the length-(k − 1) prefixes and suffixes of
each input string of k-SCS plus a special node #k−1. All the edges naturally correspond to
the input strings of k-SCS, except for a special edge encoding #k. An Eulerian circuit of
a minimum-size Eulerian extension of such graph then corresponds to a shortest common
cyclic superstring s̃, which can be trivially transformed into a solution s to k-SCS (a shortest
common linear superstring) by removing substring #k, so that the first letter of s is the first
letter of s̃ after the last #, and the last letter of s is the last letter of s̃ before the first #.

Since a common superstring always exists (any concatenation of the strings is a cyclic
superstring), the reduction implicitly assumes that it is always possible to connect a dBG to
make it Eulerian. While this is true for Extend-DBG, as a path of length at most k − 1

CPM 2022

12:6 Making de Bruijn Graphs Eulerian

exists between any two nodes if new nodes can be added to the graph, the assumption is
wrong if we are only allowed to connect pairs of nodes of the input graph. If we tried to
solve k-SCS via Extend-DBG with this restriction, we would only consider suffix/prefix
overlaps of length (k − 1) (corresponding to two consecutive edges of the dBG given by the
reduction) or (k− 2) (corresponding to edges added between two existing nodes when solving
Extend-DBG), which is clearly wrong. It is therefore interesting to see if Extend-DBG
remains NP-hard even with this restriction.

We start by formally defining this restricted version of the EE problem on dBGs.

Restricted Eulerian Extension of de Bruijn Graphs (R-Extend-DBG)
Input: A de Bruijn graph G(V, E) of order k over alphabet Σ.
Output: An Eulerian graph H(V, E ∪ A) with A over (V × V) ∩ EΣ,k and minimized
|A|; or report FAIL if not possible.

R-Extend-DBG can also be solved in linear time when k = 2 [5]. However, proving that
R-Extend-DBG is NP-hard for k > 2 turns out to be significantly more challenging. We
prove this via a reduction from 3-SAT, a well-known NP-hard problem [15]. Let {x1, . . . , xℓ}
be a set of variables. A literal is a variable xi or a negated variable ¬xi. A clause is a
disjunction of literals. A formula F = C1 ∧ C2 ∧ · · · ∧ Cn is in conjunctive normal form
(CNF), if it is a conjunction of n clauses. The k-SAT problem is deciding whether a formula
F in CNF form with every clause in F consisting of at most k literals is satisfiable.

▶ Theorem 2. R-Extend-DBG is NP-hard if G(V, E) is of order k = 3.

Proof. Consider a 3-SAT instance with a set {x1, . . . xℓ} of ℓ variables and a formula
F = C1 ∧C2 ∧ · · · ∧Cn of n clauses, where each clause contains three literals. We construct a
dBG with k = 3 for which solving R-Extend-DBG problem tells us whether F is satisfiable
or not. The dBG is constructed over the alphabet:

Σ = {xi,¬xi, yi, zi}i∈[1,ℓ] ∪ {aj , bj}j∈[1,n] ∪ {xij ,¬xij}j∈[1,n]
i∈[1,ℓ] ∪ {c1, c2},

where the letters within each set are pairwise distinct and all sets are pairwise disjoint. The
dBG will consist of the union of some gadget subgraphs, as described next. For each variable
xi, we define a variable-gadget Gv(xi)(V i

v , Ei
v), conceptually corresponding to xi ∨ ¬xi, with

five nodes and four edges:

V i
v = {zixi, xiyi, yizi, zi¬xi,¬xiyi}, Ei

v = {xiyizi, yizixi,¬xiyizi, yizi¬xi}.

For every clause Cj = lj
1 ∨ lj

2 ∨ lj
3, with lj

1, lj
2, lj

3 ∈ {xi,¬xi}i∈[1,ℓ], we define a corresponding
clause-gadget Gc(Cj)(V j

c , Ej
c), with seven nodes and six edges:

V j
c = {ajbj , bj lj

1j , lj
1jaj , bj lj

2j , lj
2jaj , bj lj

3j , lj
3jaj},

Ej
c = {ajbj lj

1j , ajbj lj
2j , ajbj lj

3j , lj
1jajbj , lj

2jajbj , lj
3jajbj}.

In this definition, lj
tj for each t ∈ {1, 2, 3} are just placeholders, such that lj

tj = xij if lj
t = xi

and lj
tj = ¬xij if lj

t = ¬xi: for example, in Figure 2, l1
11 = x11, l1

21 = x21, and l1
31 = ¬x31

because C1 = (x1 ∨ x2 ∨ ¬x3).
Finally, the main component-gadget Gm(Vm, Em) is daisy-shaped: it has a central node

and 2ℓ petals, one for each variable xi and negated variable ¬xi, each consisting of a simple
cycle of length n + 3 beginning and ending at the central node. In the following definition
we use lj for each j ∈ [1, n] again as placeholders, to be replaced with xij in the petal of xi,
and with ¬xij in the petal of ¬xi, for all i ∈ [1, ℓ]:

G. Bernardini, H. Chen, G. Loukides, S. P. Pissis, L. Stougie, and M. Sweering 12:7

Figure 2 An instance of R-Extend-DBG that is equivalent to the 3-SAT problem (x1 ∨ x2 ∨
¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3). The first half of the Gm component is shown on the left. The edges of
the gadgets are shown in black. Other feasible edges within components are shown in blue, while
feasible edges between components are shown in green.

Vm = {c1c2} ∪
{

c2l, ll1, l1l2, . . . , ln−1ln, lnc1 | l ∈ {xi,¬xi}i∈[1,ℓ]
}

Em =
{

c1c2l, c2ll1, ll1l2, l1l2l3, . . . , ln−1lnc1, lnc1c2 | l ∈ {xi,¬xi}i∈[1,ℓ]
}

.

Note that each of these gadgets is connected and they are all mutually disjoint. An example
is shown in Figure 2. To balance the nodes, we need to add at least 2 edges for each variable-
gadget and at least 3 edges for each clause-gadget. For example, adding the blue edges in
Figure 2 would balance the graph. However, to additionally make the graph connected, we
would need to add other additional edges.

We want to minimize the number of added edges to make the graph balanced and
connected. That is equivalent to minimizing the number of nodes visited with multiplicity.
We will prove that we need at least 3ℓ(n + 3) + 6ℓ + 9n edges and that this is sufficient if
and only if the formula F is satisfiable. Consider the cut separating all gadgets Gv from
the other components. A gadget Gv(xi) can only be reached from nodes c2xi and c2¬xi of
Gm (see the green edges in Figure 2). Therefore, there must be at least ℓ additional edges
leaving nodes of the form c2l of Gm, one for each Gv(xi), with l ∈ {xi,¬xi}. Such nodes
are then visited at least 3ℓ times in total, as all the 2ℓ of them must be visited at least once
by following the solid edges of Gm, and ℓ of them (one for each Gv(xi)) must be visited at
least once more. Since the graph must be balanced, the number of edges traversing the cut
reaching the Gv gadgets equals the number of edges leaving them. Thus, the nodes of Gm of
the form llj , which are the only ones reachable from the Gv gadgets, are also visited at least
3ℓ times. Moreover, in order for Gm to remain balanced, the nodes of the form lj−1lj and
lj lj+1 (with l0 = l, ln+1 = c1) on the petals on which nodes of the form c2l or llj are visited
twice must be visited at least twice too. It follows that there are at least 3ℓ(n + 3) visits of
the nodes in Gm (each of the n + 3 nodes on each of the 2ℓ petals are visited at least once;
and the nodes of at least ℓ petals must be visited twice), while the number of visits in the
Gv components is at least 6ℓ and the number of visits in the Gc components is at least 9n

(in order for them to be balanced), yielding the desired lower bound.

CPM 2022

12:8 Making de Bruijn Graphs Eulerian

For this bound to be tight, there cannot be any extra visits to nodes in Gv and Gc gadgets.
Hence, for the graph to be balanced, we need the number of visits to c2l, ll1, l1l2, . . . , lnc1 to
be equal for each fixed literal l. It follows that, in order to remain within 3ℓ(n + 3) visits to
nodes of Gm, for exactly one of the literals xi and ¬xi these nodes are visited twice, while
for the other literal these nodes are visited only once. Note that we can only connect to
Gc(Cj) if for one of its literals l node lj−1lj of Gm is visited twice. Therefore we can only
connect the graph with the lower bound number of nodes if F is satisfiable.

We will now show that if F is satisfiable then this number is enough. We balance each
Gv gadget with 2 edges and each Gc with 3 edges (blue edges in Figure 2). We also add
the length-(n + 3) cycles in Gm corresponding to the ℓ true literals. We will show that we
can connect each of the Gv and each of the Gc gadgets to Gm. That we can do so without
increasing the number of edges results from the following claim.

▷ Claim. Let X and Y be two distinct balanced connected components with non-required
(i.e., appearing with a higher multiplicity than in the original graph) edges azb and czd in X

and Y , respectively. Then there exists a connected balanced graph on the nodes of X and Y

with the same number of edges.

Proof. Since azb and czd are non-required, we can remove them. Note that both X and Y

are still connected: since az and zb (resp. cz and zd) are the only unbalanced nodes in X

(resp. Y), they must lie in the same component. Now add azd and czb. These edges are
feasible because all endpoints are already present in the graph. This rebalances the graph
and connects the two components. ◁

Since either xi or ¬xi is true, one of them is the mid symbol of a non-required edge in
Gm, thus we can link all Gv gadgets to Gm using the interchange of edges described in the
proof of the claim (in Figure 2, we trade the blue edge in Gv(xi) and one copy of (c2xi, xixi1)
for the green edges, or do it for ¬x1). Moreover, since we assumed that F is satisfiable, at
least one literal l of each Cj is true. The edges in Gc(Cj) and Gm with l in the middle are
non-required, thus we can link all Gc gadgets to Gm, making the graph connected. ◀

4 Connecting de Bruijn Graphs with Paths in Near-Optimal Time

We present an exact O(|V |k log d + |E|)-time algorithm for connecting any dBG G(V, E) of
order k by arranging its d > 1 weakly connected components in a tree. The tree nodes are
the components themselves and the tree edges are paths of minimum total length between
such components. Since our ultimate goal is to both connect and balance G, by connecting
G in this way, we make sure that the new nodes we add are already balanced.2 To formally
define the connecting problem we consider, we first need the following definition.

▶ Definition 3 (Condensed Graph). Given a dBG G(V, E) of order k over an alphabet Σ
with a set C of weakly connected components, its condensed graph Ĝ(V̂ , Ê) is a weighted
directed multigraph whose nodes V̂ are in a bijection with C. The edges have integer weights in
[1, k− 1]: there is an edge (i, j) ∈ Ê for each pair of nodes ui ∈ Ci, uj ∈ Cj , with Ci, Cj ∈ C,
and its weight is the length of a shortest path from ui to uj in the complete dBG GΣ,k.

We now formally define the problem we consider in this section.

2 Note that the graph resulting from this algorithm would, in general, not be balanced.

G. Bernardini, H. Chen, G. Loukides, S. P. Pissis, L. Stougie, and M. Sweering 12:9

Algorithm 1 Connecting a de Bruijn Graph with Paths.

1: Find the d connected components of G, construct, and preprocess the AC machine of
the nodes of G

2: for i ∈ [1, d− 1] do
3: Select a backward edge (s, u) encoding a longest suffix/prefix overlap
4: (sα, sβ)← components(s, u)
5: Add to P the path from sα to sβ , which connects components α and β

6: Update the labels of the states and the backward edges
7: Prune the backward edges connecting two single-color states of the same color

Connecting de Bruijn Graphs with Paths (Connect-DBG)
Input: A de Bruijn graph G(V, E) of order k over alphabet Σ = [0, σ), σ ≤ (k − 1)|V |.
Output: A minimum-weight spanning tree T of the condensed graph Ĝ of G.

A solution T to Connect-DBG naturally corresponds to a set P of paths on GΣ,k that
make G weakly connected: an edge (i, j) of T corresponds to a shortest path from some
node ui ∈ Ci to some node uj ∈ Cj , and in turn, by the definition of dBG, such path is
determined by the longest suffix/prefix overlap of ui and uj . Our algorithm essentially mimics
the Kruskal algorithm [17] on the condensed graph Ĝ. However let us stress that we do
not construct Ĝ explicitly, as it would take Θ(k|V |2) time, and moreover using the Kruskal
algorithm as-is would require O(|V |2 log |V |) time (because Ĝ has Θ(|V |2) edges). We rather
exploit the properties of dBGs and compute T by searching for longest suffix/prefix overlaps
of the nodes of G. Our algorithm greedily selects, at each iteration, a longest suffix/prefix
overlap (encoding a shortest path) of any two nodes that belong to different components. To
do so, we define an augmented and modified version of the Aho-Corasick (AC) machine [1] of
all the nodes of G, which we dynamically update every time we unite two components. The
AC machine generalizes the Knuth-Morris-Pratt [16] algorithm for a set of strings. Informally,
it is a finite-state machine that resembles a trie with additional backward edges (also called
failure transitions) between the various states. There is exactly one failure transition f(u) = v

from each state u. Suffix/prefix overlaps can then be found using the following lemma.

▶ Lemma 4 (Aho-Corasick lemma [1]). Let u and v be two strings representing two distinct
states of the AC machine, and identify the states with such strings. Then, f(u) = v if and
only if v is the longest proper suffix of u that is also a prefix of some string in the machine.

We first assign each connected component of G a distinct color, and modify the AC
machine of the nodes of G so that we maintain the three following invariants, in any iteration
i of the algorithm:
I1. Each state has up to d− i colors. Each terminal state is colored by its current connected

component; each non-terminal state has the union of colors of the descending subtree.
I2. There are no backward edges connecting two single-color states of the same color.
I3. There are up to k − 1 backward edges outgoing from each terminal state s, each labeled

by the color of s. There are no backward edges connecting non-terminal states.
Intuitively, we prune each backward edge connecting two single-color states colored α, because
in this case all the nodes of G with the corresponding suffix/prefix overlap are in the same
component α, and thus this edge cannot be used to unite unconnected components of G.

Algorithm 1 consists of four main phases: (i) preprocessing (Line 1); (ii) greedily selecting
backward edges (Line 3); (iii) recoloring (Line 6); and (iv) pruning (Line 7).

CPM 2022

12:10 Making de Bruijn Graphs Eulerian

(i) Preprocessing. We first identify the connected components of G, build the AC machine
of its nodes and color its states according to invariant I1. We maintain the colors of a state u

using a list LCu and a dynamic hashtable HCu. A key c of HCu is a color of u, and its value
is a pair of pointers: one to the position of c in LCu, the second to any terminal state colored
c below u. We also keep a counter colors-cnt(u) of the number of distinct colors of u.

From each terminal state s, we then follow the unique path of backward edges to the
root and, for each state u on this path, we add a backward edge (s, u) of the same color as s,
according to invariant I3. We maintain the backward edges outgoing from s with a list LBs

of their heads and a dynamic hashtable HBs. A key u of HBs is a state in LBs (the head of
an outgoing backward edge); its value is a pointer to the position of u in LBs.

We keep the backward edges incoming to u with a list LEu of their tails, and we maintain
their colors with a dynamic hashtable HEu. A key c of HEu is the color of one such edges; its
value is the list HEu[c] of the positions in LEu of the edges colored c. To add an incoming
backward edge (s, u) of color α to u, we first append s to LEu; we then look up the value of
α in HEu. If we find it, we append to HEu[α] the position of s in LEu; otherwise, we create
key α and initialize HEu[α] with the position of s in LEu. Finally, we prune all the backward
edges connecting two non-terminal states and, for each non-terminal state u colored c with
colors-cnt(u) = 1, we query HEu and prune from the machine all the backward edges
(s, u) represented in the list HEu[c] (using HBs). For each color c, we also maintain a global
counter global-cnt(c) of the total number of states and backward edges colored c.

(ii) Selecting backward edges. We select the backward edges in an order given by a reverse
BFS, starting from the deepest states and proceeding level by level towards the root. At each
visited state u of string depth (level) ℓ, we search for incoming backward edges, encoding
a suffix/prefix overlap of length ℓ (Lemma 4), in the list LEu. We select an edge of LEu

at each subsequent iteration, and only when LEu is empty we move on to the next state.
Note that the same backward edge (s, u) can be selected in multiple iterations, as it can be
used to unite the component α of s with all the components coloring u, thus it will only be
pruned when all such components are united with α.

To unite two components using a suffix/prefix overlap implied by a backward edge (s, u),
we select two appropriate nodes of G by components(s, u), which takes as input a terminal
state s of color α and a non-terminal state u, and outputs sα = s and a terminal state sβ

descending from u of some color β ̸= α; or returns FAIL if no such sβ exists (i.e., only when
s and u both have the same single color α). We also add the path from sα to sβ into P.

(iii) Updating the colors. When we unite two components α and β, we change all labels α

into β if global-cnt(α) ≤ global-cnt(β); and change β into α otherwise. At each iteration
one color is removed from the machine, and thus after iteration i there are d− i distinct colors
(I1). We update the colors of the states starting from the terminals and proceeding towards
the root. To change color α to β in a non-terminal state u, we look up α in the hashtable
HCu, delete it from the list LCu by following the first pointer of HCu[α] and remove the entry
of α from HCu. We then look up β in HCu: if it is not there, we insert key β in HCu with
second pointer equal to the second pointer of HCu[α] and append β to LCu. We also update
the counter colors-cnt(u) of the number of colors of u and the counter global-cnt(β) of
the total number of states and edges colored β accordingly: if β was already in HCu, we
decrease colors-cnt(u) by one (because of deleting α) and leave global-cnt(β) unchanged;
otherwise we leave colors-cnt(u) unchanged and increase global-cnt(β) by one.

G. Bernardini, H. Chen, G. Loukides, S. P. Pissis, L. Stougie, and M. Sweering 12:11

When we change the color α of a terminal state s into β, we must also change to β the
color of the backward edges from s. To do so, for each edge (s, u) we look up α in HEu.
If we do not find it, then the color of all the edges with head u has already been updated.
Otherwise, we access the list pointed by HEu[α] (which contains s and possibly other terminal
states colored α). We insert β in HEu and copy HEu[α] in HEu[β], if β was not already
there; or we append HEu[α] to the list HEu[β], if HEu[β] already existed. In both cases, we
set global-cnt(β) to global-cnt(β) + len(HEv[α]) and remove the entry of α from HEu.

(iv) Pruning. If, after updating the colors in the machine, the only remaining color of a
non-terminal state u is β (i.e., colors-cnt(u) = 1), we query HEu with key β. If we find
β, we prune all edges (s, u) with s in the list pointed by HEu[β], and also delete the entry
for β from HEu. To prune an edge (s, u), we look up u in HBs, delete u from LBs following
the pointer HBs[u] and finally delete the entry of u from HBs. This ensures invariant I2,
because the backward edges in HEu[β] are all and only those of color β with head u.

▶ Theorem 5. Connect-DBG can be solved in O(|V |k log d+ |E|) time using O(k|V |+ |E|)
working space.

Proof. For the correctness of Algorithm 1 we first show that, at any iteration, the backward
edges in our machine represent all suffix/prefix overlaps of nodes in two currently distinct
components of G. By Lemma 4, for each state u on the path of backward edges from a
terminal state s to the root in the AC machine of V , the partial path ending at u encodes a
suffix/prefix overlap between s and any terminal state below u; and each possible suffix/prefix
overlap between s and any other node in V corresponds to one such partial path. During
preprocessing, we replace each such partial path with a single backward edge (s, u); and by
invariants I1-I3, we only keep the backward edges (s, u) encoding an overlap between s and
some node of V in a different component (some other nodes in the same component may
have the same overlap, but function components makes the algorithm ignore them).

The correctness of Algorithm 1 then directly follows from the above and from the
correctness of the Kruskal algorithm [17] for computing a minimum-weight spanning tree.

For the complexity analysis, we bound the time for each of the four main phases as
follows: (i) preprocessing by O(k|V |+ |E|); (ii) selecting backward edges by O(k|V |); (iii)
recoloring by O(|V |k log d); and (iv) pruning by O(k|V |). The working space is bounded by
O(k|V |+ |E|), the size of G.

(i) Preprocessing. Computing the connected components of G and giving each one a color
c ∈ [1, d] requires O(|V |+ |E|) time, with |E| the number of distinct edges of G [14]. Building
the AC machine of V takes O(k|V |) time because each string is of length k − 1 [1, 8]. To
implement HE, HC and HB we use perfect hashing, supporting insertions and deletions of
key-value pairs, and to retrieve any entry with a given key. The running time per operation
is O(1) with high probability [7, Theorem 1.1]. Colors are assigned to the states of the AC
machine in O(k|V |) time, starting from the terminal states and proceeding up to the root.

For each of the |V | terminal states, we follow a path of backward edges of length up
to k − 1 (as the string depth of the machine is k − 1 and backward edges connect states
with strictly decreasing string depth) and add up to k − 2 backward edges in O(1) time per
edge (s, u) by using the hashtables HEu, HCu and HBs. This takes O(k|V |) time in total.
Finally, the initial pruning of backward edges requires O(k|V |) total time, as we visit each
non-terminal state u, look up at most one key in HEu, and possibly delete the edges (s, u)
represented by the list stored at HEu by using the hashtable HBs.

CPM 2022

12:12 Making de Bruijn Graphs Eulerian

(ii) Selecting backward edges. Each step of the reverse BFS takes O(1) time, and we abort
it when we have selected d− 1 backward edges. A state can be visited multiple times only if
there are still incoming backward edges that can be selected, and in this case we select one
of them at each visit. Since d ≤ |V |, the whole visit requires O(k|V |+ d) = O(k|V |) time in
total. Moreover, for each selected edge (s, u), we compute components(s, u) in O(1) time by
visiting up to two elements in the color list of u LCu.3

(iii) Updating the colors. Changing color α to β in a non-terminal state u takes O(1) time
by using HCu. Changing from α to β the color of all the backward edges (s, u) outgoing
from a terminal state s requires accessing the list at HEu[α] and appending the whole list
HEu[α] to the (possibly empty) list HEu[β]. This procedure amortizes to O(1) time for each
recolored backward edge.

We next show that the algorithm does O(|V |k log d) recolorings of states and edges
over all iterations via an auxiliary data structure: a rooted binary tree with the d colors
(components) as leaves. Each leaf c is weighted with global-cnt(c), which is the total
number of occurrences of color c the machine. Internal nodes in the tree represent the
component unions done by the algorithm, each weighted with the number of states and
backward edges that are recolored in the corresponding step, i.e., the lightest weight of its
two children. We remark that this tree is not part of the algorithm, but rather it is just a
conceptual aid to count the number of color updates in the worst case. The total number of
recolorings done by Algorithm 1 is given by the sum of all the weights on the internal nodes.
Let f(w, d) be the maximum such sum on a tree with d leaves with a total weight of w. We
will prove the following claim by induction on d.

▷ Claim. f(w, d) ≤ w log2(d).

Proof.
Induction basis: If d = 1, then the tree consists of the root and one leaf, so f(w, d) = 0 =

w log2(d).
Induction hypothesis: For all d′ < d, we have f(w, d′) ≤ w log2(d′).
Induction step: Consider a situation with d colors. The root of the tree corresponds to the

final recoloring, when the last two components are merged. The two subtrees starting
from its children have weight w1 and w2 and d1 and d2 leaves, respectively. Without loss
of generality w1 ≤ w2. We now bound f(w, d):

f(w, d) ≤ f(w1, d1) + f(w2, d2) + min(w1, w2) ≤ w1 log2(d1) + w2 log2(d2) + w1

≤ w1 log2(min(d1, d2)) + w2 log2(max(d1, d2)) + w1

= w1 log2(2 min(d1, d2)) + w2 log2(max(d1, d2))
≤ (w1 + w2) log2(d1 + d2) = w log2(d). ◁

We conclude that f(w, d) ≤ w log2(d) for all d ∈ N. Observe that w = O(k|V |), because
the color of each of the |V | terminal states propagates to at most k − 2 non-terminal states
(the depth of the machine is k − 1), and there are up to k − 2 backward edges from each
terminal state; and therefore w log2(d) = O(|V |k log d).

(iv) Pruning. Pruning a backward edge (s, u) requires O(1) time using the hashtables HEu

and HBs. Since there are up to k|V | backward edges, deletions take O(k|V |) time overall. ◀

3 To compute components(s, u) with s colored α in O(1) time, we maintain a pointer in the header of
the color list of each state. We either select the color β of the header of LCu or, if it is equal to α, we
advance the pointer, which guarantees finding β ≠ α, as the lists do not contain duplicates. In both
cases we follow the pointer at HCu[β] to find sβ in O(1) time.

G. Bernardini, H. Chen, G. Loukides, S. P. Pissis, L. Stougie, and M. Sweering 12:13

5 Balancing de Bruijn Graphs in Optimal Time

We present an exact O(k|V |+ |E|+ |A|)-time algorithm for balancing any dBG G(V, E) of
order k so that the number |A| of newly added edges is minimized. As a consequence of
the Euler’s theorem, when the input graph G is weakly connected, our algorithm makes it
Eulerian with the smallest possible cost. Let us first formally define the problem.

Balancing de Bruijn Graphs (Balance-DBG)
Input: A de Bruijn graph G(V, E) of order k over alphabet Σ = [0, σ), σ ≤ (k − 1)|V |.
Output: A balanced graph H = (V ∪ B, E ∪ A) with B ⊆ VΣ,k, A over EΣ,k and
minimized |A|.

It is easy to see that Balance-DBG can be reduced to the Multi-SCCS problem (defined
in Section 1). In particular, Balance-DBG reduces to an instance of Multi-SCCS with
S = E. A greedy algorithm, which keeps merging the suffix and prefix with the longest
overlap until we are left with only cyclic strings, is known to solve Multi-SCCS exactly [4].
Cazaux and Rivals showed a linear-time implementation of this algorithm [4, Theorem 10],
which implies an O(k|E|)-time algorithm for Balance-DBG. In a dBG, this algorithm
corresponds to finding a minimum-weight matching between the heads and the tails of the
edges, where the weight is given by the length of a shortest directed path from the head
to the tail. The greedy algorithm constructs a matching by repeatedly adding a feasible
edge of minimum weight. Although such greedy algorithm is not exact on general weighted
bipartite graphs [10], it turns out to be optimal in the special case of dBGs following from
the optimality of the greedy algorithm for Multi-SCCS [4]. In balanced nodes, all heads
and tails can be matched for a cost of zero. The greedy algorithm will match those first, so
it thus suffices to only match up the excess heads and tails at unbalanced nodes. In what
follows, we describe a different implementation of the greedy strategy which gives optimal
time complexity for the special instances arising from Balance-DBG. Similar to Section 4,
we employ an augmented and modified version of the AC machine.

Let Z+ ⊂ V be the nodes with higher out-degree d+ than in-degree d−, and Z− ⊂ V the
nodes with d− > d+. We construct the AC machine of Z+ ∪Z− and preprocess it as follows.
We label by − each terminal state s ∈ Z− and initialize a counter ms = d−

s − d+
s ; we also

label by + each state encoding a prefix of s ∈ Z+ and initialize a counter ms = d+
s − d−

s for
s. In addition, for every non-terminal state u, we compute a set D(u) of all its descendant
terminal states s ∈ Z+. From each terminal state s labelled −, we follow the unique path of
backward edges to the root: for each non-terminal state u labelled + on this path, we add a
backward edge (s, u). We finally prune all backward edges that do not link a − state with a
+ state: we maintain the backward edges of the machine similar to Section 4. Our algorithm
first sets A = ∅ and B = ∅ and then iteratively adds edges to A and nodes to B as follows.

We traverse the machine in reverse BFS order starting at the terminal states (this traversal
was proposed by Ukkonen in [28]). When we encounter the head of a backward edge at a
state u, we find the terminal state s− ∈ Z− at the tail of the edge and any terminal state
s+ ∈ D(u) ⊆ Z+. Let s be the shortest string with prefix s+ and suffix s− (as an application
of Lemma 4). We add min{ms+ , ms−} copies of s[i . . i + k − 1], for all i ∈ [0, |s| − k], to A;
we add s[i . . i + k − 2] to B if it is not in V ∪ B; and we decrease both ms+ and ms− by
min{ms+ , ms−}. When ms− = 0, we delete all backward edges starting from the terminal
state s− and update the edge lists of their heads accordingly. When ms+ = 0, we delete s+

from the D sets of its ancestors. If any D(u) becomes empty, we delete all incoming edges at
state u. The algorithm terminates when there are no more backward edges in the machine.

CPM 2022

12:14 Making de Bruijn Graphs Eulerian

▶ Theorem 6. Balance-DBG can be solved in the optimal O(k|V |+ |E|+ |A|) time using
O(k|V |+ |E|) working space.

Proof. The correctness of the algorithm follows from the observation that in order to solve
Balance-DBG via Multi-SCCS it suffices to consider the nodes in Z+ ∪ Z−, and from the
fact that a greedy strategy solves Multi-SCCS exactly [4, Theorem 10] (see the discussion
above). We thus conclude that the presented algorithm is correct.

Constructing Z+ and Z− and computing the initial values of m counters takes O(|E|)
time via a traversal of G. Constructing, traversing and updating the AC machine takes
O(k|V |) time because |Z+ ∪ Z−| ≤ |V | and each node in V is a string of length k − 1. Note
that any edge added in A and any node added in B can be represented in O(1) time and O(1)
space using two nodes in V . Thus, the total time required to output graph H = (V ∪B, E∪A)
is O(k|V |+ |E|+ |A|). The working space is bounded by O(k|V |+ |E|), the size of G. ◀

6 Experiments

Methods and Setup. We designed a method for Extend-DBG based on our theoretical
findings. The method first connects the input dBG based on our exact algorithm underlying
Theorem 5 and then balances it by our exact algorithm underlying Theorem 6. We remark
that both these algorithms are exact but their combination is generally not, which is consistent
with Extend-DBG being NP-hard. To further help balancing, our method connects the
graph using only unbalanced nodes. Our method is called CAB (for connect and balance).

We compared CAB to the 1
2 -approximation algorithm for Multi-SCS that maximizes the

compression offered by the output string [4]. We refer to this algorithm as MGR (for Multi-
SCS Greedy). To specifically examine the impact of our connect framework on extension
cost, we also designed a “hybrid” method, referred to as SAB (for SCS and balance). SAB
first connects the graph based on the greedy algorithm [2] for SCS and then balances it by
the algorithm of Theorem 6, as CAB does. The intuition is that any (shortest) common
superstring s of set V corresponds to a connected extended dBG. To connect G, we consider
all the potential additional edges implied by s and greedily add to G a smallest subset of them
that makes G connected. The pseudocode of SAB is provided in Algorithm 2 of Appendix A.

We implemented the above methods in C++ and ran them on a single core of an AMD
Opteron 6386 SE 2.8GHz CPU with 252GB RAM running GNU/Linux. Our source code
is available at https://bitbucket.org/eulerian-ext/cpm2022/. We used two whole-
genome shotgun benchmark datasets that are available from http://gage.cbcb.umd.edu/
data/index.html: (i) Rhodobacter sphaeroides (RHO); and (ii) Staphylococcus aureus (STA).
The number of reads in RHO and STA is 2, 050, 868 (Library 1) and 1, 294, 104 (Library 1),
respectively. In both datasets, the average read length is 101bp and the insert length is 180bp.
Tables 1a and 1b in Appendix A show the characteristics of the two datasets. Although MGR
works in polynomial time [4], no efficient (e.g., linear-time or near-linear-time) implementation
of MGR is known. This is in contrast to SAB, which uses a linear-time implementation of the
greedy algorithm for SCS [2] to connect the graph. Since our implementation of MGR works
in quadratic time in the input size, we used randomly selected samples for each dataset and
every k in the comparison against MGR. The samples were constructed by selecting 650 reads
from each dataset uniformly at random and had roughly 40K to 55K nodes and 60K edges.

https://bitbucket.org/eulerian-ext/cpm2022/
http://gage.cbcb.umd.edu/data/index.html
http://gage.cbcb.umd.edu/data/index.html

G. Bernardini, H. Chen, G. Loukides, S. P. Pissis, L. Stougie, and M. Sweering 12:15

9 10 11 12 13 14 15
k

0

1000

2000

3000

4000

5000

6000

7000
Av

g
EE

 C
os

t
CAB
SAB
MGR

(a) RHO samples.

10 15 20 25 30
k

0

107

2 107

3 107

4 107

EE
 C

os
t

0K

1K

149K

361K

557K
CAB
SAB

(b) RHO.

Figure 3 (a) Average Eulerian Extension (EE) cost vs. k over five random samples of RHO. (b)
EE cost vs. k on the whole RHO dataset. The difference between the EE costs of SAB and CAB is
shown on the top of each pair of bars (K stands for thousands).

10%20% 40% 80% 100%
Percentage of reads

100

200

300

400

500

600

700

800

Ru
nt

im
e

(s
)

RHO
Linear RHO
STA
Linear STA

(a) Runtime of CAB.

10% 20% 40% 80% 100%
Percentage of reads

10

20

30

40

50

60

70

80
Pe

ak
 m

em
or

y
co

ns
um

pt
io

n
(G

B) RHO
Linear RHO
STA
Linear STA

(b) Memory of CAB.

Figure 4 Runtime and peak memory consumption vs. reads of CAB on RHO and STA for k = 30.
The solid lines are the results for CAB; the dashed lines are the results that would be produced by a
linear scaling of the algorithm.

Eulerian Extension (EE) Cost. Figure 3a shows the average EE cost of all methods on five
random samples of the RHO dataset, for varying k. Our CAB method outperformed both
MGR and SAB in all tested cases. MGR performed poorly for small k values, as the edge
multiplicities are larger and the extension cost is heavily determined by balancing, whereas
SAB performed poorly for larger k values, as the edge multiplicities are smaller and the EE
cost is heavily determined by connecting. Our results are very promising because MGR was
also orders of magnitude slower than CAB (as expected).

Figure 3b shows the EE cost on the whole RHO dataset, for varying k. We show the
result only for the SAB and CAB methods, since MGR could not terminate in reasonable
time. Note that there is no difference between the two methods for k = 10, as in this case
the input graph is connected and thus both SAB and CAB balance it in the same optimal
way. However, for k > 10, CAB outperforms SAB consistently, and the difference generally
increases with k. This shows that, unlike SAB, our method is able to connect the graph with
a small cost, even when the graph has a large number of components.

Analogous results to those of Figure 3 for the STA dataset are in Figure 5 of Appendix A.

CPM 2022

12:16 Making de Bruijn Graphs Eulerian

Runtime and Peak Memory Consumption. Figures 4a and 4b show that the runtime
and peak memory consumption of CAB scale (even better than) linearly with the input size,
which confirms our complexity analysis (see Theorems 5 and 6). The results for SAB are
omitted to avoid cluttering the figures; SAB was several times slower but consumed slightly
less memory, mainly due to the space-efficient SCS algorithm [2] it employs.

References
1 Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to bibliographic

search. Commun. ACM, 18(6):333–340, 1975. doi:10.1145/360825.360855.
2 Jarno Alanko and Tuukka Norri. Greedy shortest common superstring approximation in

compact space. In 24th SPIRE, volume 10508 of Lecture Notes in Computer Science, pages
1–13. Springer, 2017. doi:10.1007/978-3-319-67428-5_1.

3 Bastien Cazaux and Eric Rivals. A linear time algorithm for shortest cyclic cover of strings. J.
Discrete Algorithms, 37:56–67, 2016. doi:10.1016/j.jda.2016.05.001.

4 Bastien Cazaux and Eric Rivals. Superstrings with multiplicities. In 29th CPM, volume
105 of LIPIcs, pages 21:1–21:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.CPM.2018.21.

5 Maxime Crochemore, Marek Cygan, Costas S. Iliopoulos, Marcin Kubica, Jakub Radoszewski,
Wojciech Rytter, and Tomasz Walen. Algorithms for three versions of the shortest common
superstring problem. In 21st CPM, pages 299–309, 2010. doi:10.1007/978-3-642-13509-5_
27.

6 Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on strings. Cam-
bridge University Press, 2007.

7 Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. A new universal class of hash
functions and dynamic hashing in real time. In 17th ICALP, pages 6–19, 1990. doi:10.1007/
BFb0032018.

8 Shiri Dori and Gad M. Landau. Construction of Aho Corasick automaton in linear time for
integer alphabets. Inf. Process. Lett., 98(2):66–72, 2006. doi:10.1016/j.ipl.2005.11.019.

9 Frederic Dorn, Hannes Moser, Rolf Niedermeier, and Mathias Weller. Efficient algorithms
for Eulerian extension and Rural Postman. SIAM J. Discret. Math., 27(1):75–94, 2013.
doi:10.1137/110834810.

10 Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching. J.
ACM, 61(1):1:1–1:23, 2014. doi:10.1145/2529989.

11 Sara El-Metwally, Taher Hamza, Magdi Zakaria, and Mohamed Helmy. Next-generation
sequence assembly: Four stages of data processing and computational challenges. PLoS
Comput. Biol., 9(12), 2013. doi:10.1371/journal.pcbi.1003345.

12 John Gallant, David Maier, and James A. Storer. On finding minimal length superstrings. J.
Comput. Syst. Sci., 20(1):50–58, 1980. doi:10.1016/0022-0000(80)90004-5.

13 Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., USA, 1990.

14 John E. Hopcroft and Robert Endre Tarjan. Efficient algorithms for graph manipulation [H]
(algorithm 447). Commun. ACM, 16(6):372–378, 1973. doi:10.1145/362248.362272.

15 Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a symposium
on the Complexity of Computer Computation, The IBM Research Symposia Series, pages
85–103. Plenum Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_9.

16 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6(2):323–350, 1977. doi:10.1137/0206024.

17 Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7(1):48–50, 1956. doi:10.1090/
S0002-9939-1956-0078686-7.

https://doi.org/10.1145/360825.360855
https://doi.org/10.1007/978-3-319-67428-5_1
https://doi.org/10.1016/j.jda.2016.05.001
https://doi.org/10.4230/LIPIcs.CPM.2018.21
https://doi.org/10.1007/978-3-642-13509-5_27
https://doi.org/10.1007/978-3-642-13509-5_27
https://doi.org/10.1007/BFb0032018
https://doi.org/10.1007/BFb0032018
https://doi.org/10.1016/j.ipl.2005.11.019
https://doi.org/10.1137/110834810
https://doi.org/10.1145/2529989
https://doi.org/10.1371/journal.pcbi.1003345
https://doi.org/10.1016/0022-0000(80)90004-5
https://doi.org/10.1145/362248.362272
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1137/0206024
https://doi.org/10.1090/S0002-9939-1956-0078686-7
https://doi.org/10.1090/S0002-9939-1956-0078686-7

G. Bernardini, H. Chen, G. Loukides, S. P. Pissis, L. Stougie, and M. Sweering 12:17

18 Paul Medvedev. Modeling biological problems in computer science: a case study in genome
assembly. Briefings Bioinform., 20(4):1376–1383, 2019. doi:10.1093/bib/bby003.

19 Paul Medvedev, Konstantinos Georgiou, Gene Myers, and Michael Brudno. Computability
of models for sequence assembly. In 7th WABI, volume 4645 of Lecture Notes in Computer
Science, pages 289–301. Springer, 2007. doi:10.1007/978-3-540-74126-8_27.

20 Paul Medvedev and Mihai Pop. What do Eulerian and Hamiltonian cycles have to do with
genome assembly? PLOS Computational Biology, 17(5):1–5, May 2021. doi:10.1371/journal.
pcbi.1008928.

21 Jason R. Miller, Sergey Koren, and Granger Sutton. Assembly algorithms for next-generation
sequencing data. Genomics, 95(6):315–327, 2010. doi:10.1016/j.ygeno.2010.03.001.

22 Niranjan Nagarajan and Mihai Pop. Sequence assembly demystified. Nature Reviews Genetics,
14:157–167, 2013.

23 Clifford S. Orloff. A fundamental problem in vehicle routing. Networks, 4(1):35–64, 1974.
doi:10.1002/net.3230040105.

24 Pavel A. Pevzner, Haixu Tang, and Michael S. Waterman. An Eulerian path approach to
DNA fragment assembly. Proc Natl Acad Sci, 98(17):9748–9753, 2001. doi:10.1073/pnas.
171285098.

25 Michael C. Schatz, Arthur L. Delcher, and Steven L. Salzberg. Assembly of large genomes
using second-generation sequencing. Genome Res., 20(9):1165–1173, 2010. doi:10.1101/gr.
101360.109.

26 Jared T. Simpson and Mihai Pop. The theory and practice of genome sequence assembly.
Annu Rev Genomics Hum Genet, 16:153–172, 2015.

27 Jang-il Sohn and Jin-Wu Nam. The present and future of de novo whole-genome assembly.
Briefings Bioinform., 19(1):23–40, 2018. doi:10.1093/bib/bbw096.

28 Esko Ukkonen. A linear-time algorithm for finding approximate shortest common superstrings.
Algorithmica, 5(3):313–323, 1990. doi:10.1007/BF01840391.

29 Bilal Wajid and Erchin Serpedin. Review of general algorithmic features for genome assemblers
for next generation sequencers. Genomics, Proteomics & Bioinformatics, 10(2):58–73, 2012.
doi:doi.org/10.1016/j.gpb.2012.05.006.

A Omitted Details from Section 6

Algorithm 2 SAB.

1: Compute the connected components of G(V, E)
2: s← SCS(V) ▷ A (shortest) common superstring of V using the algorithm of [2]
3: Let Q1 = u1, . . . , u|V | be the sequence of all nodes in V as they occur in s

4: Let Q2 = (u1, u2), . . . , (u|V |−1, u|V |) be the sequence of edges as they occur in Q1
5: Sort Q2 in decreasing order w.r.t. the length of the longest suffix/prefix overlap of (ui, uj)
6: i← 0
7: while G′(V, E) is not weakly connected do ▷ Connects the graph
8: (u, v)← Q2[i] ▷ Gets the ith longest suffix/prefix overlap
9: if the components where u and v lie are not currently connected then

10: Let q be the shortest string with u as prefix and v as suffix
11: Extend E with all edges (q[p . . p + k − 2], q[p + 1 . . p + k − 1]) occurring in q

12: Extend V with all new nodes q[p . . p + k − 1] /∈ V occurring in q

13: i← i + 1
14: Algorithm of Theorem 6 on graph G′(V, E) to find multiset A ▷ Balances the graph

CPM 2022

https://doi.org/10.1093/bib/bby003
https://doi.org/10.1007/978-3-540-74126-8_27
https://doi.org/10.1371/journal.pcbi.1008928
https://doi.org/10.1371/journal.pcbi.1008928
https://doi.org/10.1016/j.ygeno.2010.03.001
https://doi.org/10.1002/net.3230040105
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1101/gr.101360.109
https://doi.org/10.1101/gr.101360.109
https://doi.org/10.1093/bib/bbw096
https://doi.org/10.1007/BF01840391
https://doi.org/doi.org/10.1016/j.gpb.2012.05.006

12:18 Making de Bruijn Graphs Eulerian

Table 1 Datasets characteristics.

(a) Rhodobacter sphaeroides (RHO).

k # nodes # edges # distinct edges # components

10 1,013,904 185,506,278 3,338,995 1
15 37,858,157 175,579,617 46,337,190 528
20 61,265,275 165,433,984 62,546,892 44,386
25 64,861,977 155,232,772 65,087,335 131,266
30 65,383,451 145,014,018 65,356,249 199,627

(b) Staphylococcus aureus (STA).

k # nodes # edges # distinct edges # components

10 1,047,172 117,107,289 3,974,601 1
15 40,262,854 110,650,401 42,924,890 1,637
20 45,318,307 104,188,673 45,512,480 152,945
25 45,833,210 97,727,029 45,825,958 211,943
30 45,498,694 91,266,009 45,354,736 259,333

9 10 11 12 13 14 15
k

0

1000

2000

3000

4000

5000

6000

7000

Av
g

EE
 C

os
t

CAB
SAB
MGR

(a) STA samples.

10 15 20 25 30
k

0

0.5 107

107

1.5 107

2 107

2.5 107

EE
 C

os
t

0K

7K

355K

4016K
111KCAB

SAB

(b) STA.

Figure 5 (a) Average Eulerian Extension (EE) cost vs. k over five random samples of STA. (b)
EE cost vs. k on the whole STA dataset. The difference between the EE costs of SAB and CAB is
shown on the top of each pair of bars (K stands for thousands).

	1 Introduction
	2 Preliminaries
	3 Eulerian Extension of de Bruijn Graphs is NP-hard
	4 Connecting de Bruijn Graphs with Paths in Near-Optimal Time
	5 Balancing de Bruijn Graphs in Optimal Time
	6 Experiments
	A Omitted Details from Section 6

