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Approaches for high-throughput quantification of periplasmic 
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A B S T R A C T   

The Gram-negative periplasm is a convenient location for the accumulation of many recombinant proteins 
including biopharmaceutical products. It is the site of disulphide bond formation, required by some proteins 
(such as antibody fragments) for correct folding and function. It also permits simpler protein release and 
downstream processing than cytoplasmic accumulation. As such, targeting of recombinant proteins to the E. coli 
periplasm is a key strategy in biologic manufacture. However, expression and translocation of each recombinant 
protein requires optimisation including selection of the best signal peptide and growth and production condi-
tions. Traditional methods require separation and analysis of protein compositions of periplasmic and cyto-
plasmic fractions, a time- and labour-intensive method that is difficult to parallelise. Therefore, approaches for 
high throughput quantification of periplasmic protein accumulation offer advantages in rapid process 
development.   

Recombinant protein production in E. coli 

Recombinant protein production (RPP) involves the overexpression 
of a protein of interest, usually in an organism different to the native 
origin of the protein. The overriding goal is the eventual purification of a 
high quantity of biologically active protein product. RPP has developed 
into a multi-billion-pound industry, responsible for the large-scale pro-
duction of proteins used for research, diagnostics, and biotherapeutics 
[1]. Several different manufacturing hosts are available for RPP; align-
ing the properties of a recombinant protein with that of the production 
host is an essential step in designing a robust process. In the manufacture 
of biotherapeutics, which constitutes the largest revenue stream for RPP, 
mammalian hosts such as CHO cells are the most frequently used as they 
can perform the complex post-translational modifications for synthesis 
of active human proteins such as monoclonal antibodies [1]. However, 
the complexity, slow growth, and medium requirements of CHO cells 

means that such processes are expensive. 
If the recombinant protein of interest requires minimal post trans-

lational modifications, it is often manufactured in Escherichia coli, a host 
second only to CHO cells for the manufacture of biotherapeutics [1] and 
a common host for manufacture of proteins for diagnostic and research 
purposes [2]. Biotherapeutics synthesised in E. coli include insulin, 
colony stimulating factors, hormones, cytokines, growth factors and 
antibody fragments [1]. E. coli is advantageous as it has simple nutri-
tional requirements, fast growth kinetics, can be grown to high cell 
densities and thus a high potential titre of recombinant protein, and has 
a long history of safe use and process developmental experience. 

While E. coli is does not possess the necessary pathways for many 
complex post-translational modifications such as N-linked glycosyla-
tion, disulphide bond formation is possible, mediated by the endogenous 
Dsb disulphide bond formation system [3] (we direct readers to [4] for 
an explanation of the function of the Dsb system). It is therefore possible 
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to synthesise proteins like antibody fragments such as Fab and single 
chain variable fragments (scFvs) where lack of glycosylation does not 
impair in vivo function [5]. The biopharmaceutical antibody-based 
products made in E. coli at the time of writing are [1]: Lucentis® (IgG 
fragment, Novartis / Genentech, FDA approval 2006); Cimzia® (Fab’ 
fragment, UCB Pharma, 2008); Cablivi® (VHH nanobody, Ablynx / 
Genzyme, 2019); Susvimo™ (IgG1κ antibody fragment, Genentech, 
2021); and Byooviz™ (Biosimilar to Lucentis, Samsung Bioepis NL / 
Biogen, 2021). The recent spate of FDA approvals potentially demon-
strates the resurgence of E. coli as a host for antibody fragment 
production. 

In E. coli, the Dsb system is localised to the periplasm [3], and so 
targeting of recombinant proteins to this extra-cytoplasmic compart-
ment is desirable. Accumulation of recombinant protein in the peri-
plasmic space has several additional advantages compared with 
cytoplasmic expression. Increased product solubility and simpler puri-
fication is possible, as the periplasm is less protein-dense than the 
cytoplasm [6]. Product stability may improve due to lower protease 
activity in the periplasm [7]. Several cis-trans peptidyl-prolyl isomer-
ases (PPIases) are present in the periplasm [8], which can improve 
biological activity of a product. Finally, removal of the N-terminal 
methionine can be essential for activity or prevent immunogenicity of 
eukaryotic proteins. Cleavage of a signal peptide during export to the 
periplasm subverts this problem [9], although it should be noted that 
N-terminal methionine removal can also occur cytoplasmically via the 
enzyme methionine aminopeptidase (MAP) [10]. 

Synthesis of heterologous protein in the E. coli periplasm is not al-
ways straightforward, particularly if the recombinant protein is very 
large or has multiple domains. Indeed, great efforts are being taken to 
increase periplasmic yields of recombinant proteins, as recently 
reviewed by [11]. Overexpression of any protein, irrespective of the 
sub-cellular compartment it is directed to, can promote undesirable 
cellular responses. Partitioning of resources (metabolites and energy) 
can cause conflict between biomass and protein generation, commonly 
referred to as metabolic burden. Expression vectors are often designed to 
ensure maximum accumulation of a recombinant protein, by way of 
strong promoters and high copy number, which can exacerbate meta-
bolic burden. Misfolding of recombinant proteins can trigger heat shock 
responses and lead to inclusion body formation [12]. Whereas trans-
lation and folding appear to be the limiting steps for expression of 
cytoplasmic proteins, saturation of the translocation machinery is 
believed to be the major bottle neck when localising a recombinant 
protein to the periplasm [13,14]. 

Translocation of proteins to the periplasm – Sec and Tat 

Proteins targeted to the periplasm in E. coli are translocated across 
the inner membrane by one of two pathways; Sec [15] or Tat [16] 
(Fig. 1). Sec-mediated export can be further split into SecA-dependent 
post-translational, or SRP-dependent co-translational branches, 
differing by whether export is coupled to translation. The Sec apparatus 
translocates polypeptide chains in an unfolded state, such that protein 
folding occurs in the periplasm, whereas Tat translocates proteins that 
have folded in the cytoplasm. In each case, an N-terminal signal peptide 
directs the polypeptide chain to the correct translocation apparatus. 

The ubiquitous Sec machinery (Fig. 1A&B) is responsible for export 
of approximately 98% of E.coli proteins to the cell envelope [17]. Central 
to the Sec system is a heterotrimeric complex of integral membrane 
proteins: SecY [18]; SecE [19]; and SecG [20]. The hourglass shaped 
SecY forms the protein conducting channel, and its clamshell confor-
mation forms a lateral gate opening into the bilayer, for insertion of 
proteins directly into the membrane [21]. SecE is also essential and 
stabilises SecY, preventing degradation by the protease FtsH [22]. SecG 
is nonessential but may improve ATP mediated translocon activity under 
certain conditions [20]. Two mechanisms direct polypeptides to 
SecYEG, each mediated by distinct targeting factors. The 
post-translational branch (Fig. 1A), driven by the ATPase SecA [23], 
translocates fully translated polypetide chains. The co-translational 
route (Fig. 1B), driven by SRP [24] begins translocation whilst the 
polypeptide chain is still being translated and is emerging from the 
ribosome. Generally, soluble periplasmic proteins and outer membrane 
proteins are exported by the post-translational branch; while inner 
membrane proteins, or those that fold quickly are exported 
co-translationally [15]. Both routes through Sec initiate interaction with 
the polypeptide during translation [25,26]. Early interaction of signal 
peptides with the Sec translocon presumably prevents folding of mature 
regions, or hydrophobic stretches aggregating in post-translational 
substrates. Similarly, for co-translational substrates, protein synthesis 
must be coupled to export to ensure translocation proceeds correctly. 

The Tat pathway (Fig. 1C) is the alternative route by which proteins 
can be transported across the inner membrane, and unlike Sec, folded 
proteins are translocated by Tat [16]. Many Tat-dependent proteins are 
involved in redox reactions, necessitating folding around 
cytoplasmically-generated cofactors such as iron-sulphur clusters or 
molybdopterin guanine dinucleotide for activity [27,28]. Presently, is 
estimated that there are just 27 Tat-dependent substrates in E. coli [29]. 
While native substrates fold in the cytoplasm, Tat has some capacity for 

Fig. 1. Summary of Sec- and Tat-dependent translocation pathways. The SecYEG translocon is responsible for translocation of unfolded polypeptide chains via 
the SecA-dependent post-translational (a) and SRP-co-translational (b) pathways. Proteins that have folded in the cytoplasm are translocated through the Tat 
pathway (c). In each case, the signal peptidase (SPase) cleaves the signal peptide at the N terminal of the translocated protein (SP, shown in blue). Created with 
BioRender.com. 
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export of unfolded preproteins, provided they are of limited hydro-
phobicity and less than approximately 100 amino acids in length 
[29–31]. Three inner membrane proteins (TatABC) are central to Tat 
mediated export; TatB and TatC form complexes with one another and 
are believed to be the docking sites for signal peptides to start trans-
location [29,32]. TatC is very large, with six transmembrane domains, 
while TatB has a single transmembrane and a large cytoplasmic domain 
[33]. Binding of targets to TatBC induces the proton motive force (PMF) 
dependent association of TatA to TatBC [34]. Upon binding TatBC, the 
usually tetrameric TatA has a propensity to form higher order oligomers 
[35], and likely forms the pore through which substrates pass [36]. 
Unlike Sec, Tat export is ATP-independent and the PMF is used to drive 
substrates across the inner membrane [37]. 

Signal peptides mediate translocation 

The route across the inner membrane is determined by properties of 
cleavable N-terminal signal peptides which initiate translocation 
through interactions with various export factors in the early stages of 
translation, as with Sec, or after folding, in the case of Tat. Signal pep-
tides contain three common elements; the n-, h- and c-regions, each of 
which have a specific function, reviewed by [38]. The n-region typically 
has a net positive charge, the h-region is hydrophobic and has an 
α-helical conformation, and the c-region has a β-sheet confirmation and 
contains the SPaseI cleavage sites [39,40]. In addition to serving a tar-
geting function, Sec-dependent signal peptides delay folding, often via 
non-optimal codons to induce a translational pause [41]. Both Sec 
branches have preference for more hydrophobic signal peptides [42]. 
Extreme hydrophobicity increases affinity to SRP, diverting proteins to 
the co-translational branch of Sec [43]. Conversely, glycine residues in 
the h-region interrupt the helical signal peptide conformation favoured 
by SRP, targeting the protein to the post-translational pathway [44]. 
Pathway switching has been demonstrated by increasing the hydro-
phobicity of the normally SecA-dependent Maltose Binding Protein 
(MBP) signal peptide and switching it to SRP-dependence [43]. 

Tat-dependent signal peptides work slightly differently, the targeting 
components of the system, TatB and TatC, are inner membrane localised, 
while the preprotein will have attained tertiary conformation prior to 
translocation [16]. Tat-dependent signal peptides contain an h-region 
that is, on average, less hydrophobic than in Sec-dependent signal 
peptides, and have a longer n-region [40]. Between the n and h regions is 
a unique Ser/Thr-Arg-Arg-X-Phe-Leu-Lys consensus motif, the two 
sequential arginine residues being responsible for the name of the 
pathway, twin arginine translocation [45]. The importance of the Lys 
residue at the C-terminus of the motif is ambiguous [46], and this res-
idue is missing from some descriptions of the consensus motif [47]. 

Considerable effort has been directed toward correlation of signal 
peptide sequence and functionality in terms of export of recombinant 
proteins [40]. Rational design of a signal peptide to improve secretion 
has been attempted, for example insertion of a basic residue at the 
second position from the N-terminus [48], increasing the hydropho-
bicity of the h-region [49] or improving the efficiency of SPaseI cleavage 
[39]. However, signal peptide function with different recombinant 
proteins is wildly unpredictable [50,51]. There is no guarantee a signal 
peptide that permits effective production and translocation of one re-
combinant protein will do so for others. 

While essential for translocation, signal peptide selection also inad-
vertently influences translation initiation [52], a rate limiting step 
during protein synthesis. The translation initiation region extends from 
the 5’ untranslated region upstream of the Shine-Dalgarno sequence to 
around the first five codons on the mRNA [53]. Translation begins with 
the 30 S ribosomal subunit binding fMet-tRNA, supported by initiation 
factors and subsequent complex with the initiation region on the mRNA 
[54]. Fusing a signal peptide to the N-terminus of a recombinant protein 
modifies this initiation region around which the ribosome assembles for 
translation. This may be non-optimal and affect interaction with the 

ribosome, or alter mRNA secondary structure [55,56]. 

The requirement for screening approaches for periplasmic production 

Localising a given protein to the E. coli periplasm has no general-
isable strategy – what works for one protein may be ineffective for 
another. Multiple factors can determine accumulation of a recombinant 
protein in the periplasm. Physical parameters such as temperature can 
be used to slow down expression, while growth media is optimised to 
provide a metabolic surplus. Design of the expression construct is also 
essential. Like all expression systems, the choice of promoter must be 
considered. Stronger promoters drive greater gene expression, but at the 
expense of increased stress placed upon the host. Inducible transcrip-
tional control is required to precisely control the point at which RPP 
begins, allowing coupling or de-coupling to biomass accumulation. 
Systems are available which can precisely tune expression levels using 
titratable promoters, for example the rhamnose-induced PrhaBAD [57, 
58], or incorporate riboswitches for additional control over translation 
rates [59]. Tuning this way can allow for better balance between the 
rates of transcription, translation and translocation, minimising bottle-
necks (for example accumulation of polypeptide chain in the cytoplasm 
prior to translocation, which can lead to misfolding [58]. 

The number of factors influencing export and the inherent unpre-
dictability in how a given protein will accumulate in the periplasm ne-
cessitates systematic screening. Typically, accumulation of a 
recombinant protein in the periplasm is measured by harvesting cells, 
separating them into periplasmic and spheroplast fractions (for example 
using osmotic shock) followed by analysis of protein content of fractions 
using SDS-PAGE, ELISA or Western blotting. Disulphide bonding can be 
analysed by comparison of reducing- and non-reducing SDS-PAGE (for 
example [58]). These are slow and laborious workflows which severely 
hamper the throughput of the optimisation process. Methods which 
allow for the high throughput assaying and quantification of recombi-
nant protein accumulated in the periplasm are therefore desirable for 
strain and process development [60]. Ideally, such a screen would 
permit simple, rapid and parallelisable measurement for example by 
spectroscopic, fluorimetric or luminescence measurements. In this re-
view we will summarise some of the more recent methods for the rapid 
quantification of periplasmic accumulation of recombinant proteins in 
E. coli. 

Fig. 2 summarises these approaches, which rely upon fusion of a tag 
to the recombinant protein of interest. This tag might be directly 
detectable (for example by fluorescence), have a measurable enzymatic 
activity, or rely upon interaction (either covalent or noncovalent) with a 
fluorescent partner for detection. 

Fluorescent proteins 

A wide assortment of autofluorescent proteins are available, with 
many examples of their use as reporters on processes including gene 

Fig. 2. Summary of periplasmic screening methods. Different methods for rapid 
detection of periplasmic protein concentrations as described in the text. Created 
with BioRender.com. 
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expression [61], protein folding [62], accumulation [63] and purifica-
tion [64]. For a more thorough review of general applicability to RPP, 
readers are directed to [65]. The original and most frequently used is 
green fluorescent protein (GFP), a 26.9 kDa derivative of the AvGFP 
isolated from the jellyfish Aequorea victoria [66]. It has a distinctive 
β-barrel conformation with the tripeptide fluorophore Ser-65 – Tyr-66 – 
Gly-67 localised at the centre [67,68]. GFP fluorescence requires no ATP 

or cofactor, although oxygen is needed for fluorophore formation and 
fluorescence [69]. Wild type GFP has an excitation maximum of 395 nm, 
with maximum emission at 509 nm, permitting measurement using a 
fluorimeter, plate reader, or flow cytometer. Many derivatives of GFP 
have been created, thoroughly reviewed by [70]. Examples include 
altering the absorption maximum to a single peak (typically blue-shifted 
to around 488 nm), while maintaining the same emission wavelength 

Fig. 3. Fluorescence based periplasmic screening methods. Fluorescence-based reporters permit access to powerful cytometric techniques for rapid screening. 
Fluorescent proteins are often utilised, although most GFP derivatives misfold upon export to the periplasm due the Dsb system (a), sfGFP folds rapidly circumventing 
this. Alternatives include ligand-based systems. Short peptides like the tetracysteine tag (b) exploit binding between arsenical compounds and paired thiol groups of 
cysteine residues. Halo tags (c) utilise a modified dehalogenase which covalently traps a fluorescently labelled ligand within its active site. Created with Bio-
Render.com. 
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[71]; those improving folding at 37 ̊C as with the cycle 3 mutations [72]; 
increasing brightness such as enhanced GFP (EGFP) [73]; or monomeric 
variants which do not oligomerise to form quaternary structures [74]. 
Other alterations shift the absorption and emission wavelengths, to 
produce blue, cyan and yellow fluorescence emission [68,75]. 

Fusion of GFP to the C-terminus of a cytoplasmically-targeted re-
combinant protein permits quantification of accumulation and also 
determination of folding state, as correctly-folded RP tends to correlate 
with correctly-folded GFP and thus higher fluorescence [76,77]. Fluo-
rescence can be measured by fluorimetry, microscopy, or flow cytom-
etry; the latter technique offers the added potential of identifying 
subpopulations [77]. However, GFP is not a straightforward reporter for 
periplasmic protein production as most GFP derivatives cannot correctly 
fold and fluoresce in the oxidising periplasm (Fig. 3A) [78]. GFP has two 
cysteine residues, C48 and C70, residing on the interior of the β-barrel 
[79]. If the protein is exported to the periplasm in an unfolded confor-
mation, as required by the Sec export pathway, these residues are 
exposed to the oxidative Dsb system. Aberrant disulphide bonding, 
either between GFP molecules or with an independent partner, is the-
orised to prevent correct folding of the β-barrel essential for fluorescence 
[80]. 

It was predicted that a GFP variant which folds quickly could reach a 
mature state in the periplasm prior to being confined to non- 
fluorescence. One such variant, superfolder GFP (sfGFP) was isolated 
in a screen for more robust folding [81]. sfGFP can fold correctly and 
fluoresce even when fused to a misfolded partner, while folding kinetics 
are greatly improved. However, when sfGFP was fused to the DsbA 
signal peptide (DsbASP) or Maltose Binding Protein signal peptide 
(MBPSP), thought to be exported via co-translational and 
post-translational pathways respectively, most fluorescent protein 
accumulated in the cytoplasm, with a little non-fluorescent product in 
the periplasm [82]. It was subsequently shown that sfGFP can indeed 
fluoresce in the periplasm; when using a full length MBP::sfGFP fusion 
with its own signal peptide [83] or fused to a mutant co-translational 
MBPSP*1 signal peptide [84]. There were two explanations offered for 
this discrepancy: first, expression strength, as sfGFP fluorescence in the 
periplasm was achieved using chromosomally-encoded sfGFP (single 
copy) whereas the high copy number plasmid used by [82] resulted in a 
lack of periplasmic fluorescence. 

Second, authors suggested during post-translational export, fusion to 
just the MBP signal peptide may block SecYEG. Shorter fusions reduce 
the time between Sec recognition at the ribosome [25,26] and engaging 
the Sec translocon at the membrane. This compounded by faster folding 
kinetics of sfGFP, was proposed to lead to blockage. Therefore, fusions to 
full length proteins are more likely to be exported efficiently using the 
post-translational branch of Sec. In support of this, it was shown a 
DsbASP::sfGFP fusion, thought at the time to be exported 
co-translationally, was much more fluorescent in the periplasm than 
MBPSP::sfGFP [83]. Furthermore, the MBPSP*1 signal peptide with three 
point mutations, thought to switch export to the co-translational 
pathway [43], produced fluorescently active sfGFP in the periplasm 
[84]. Therefore, either co-translational export or fusions to longer pro-
teins appears critical for accumulation of active sfGFP in the periplasm. 
A recent study [85] has used a comparable approach with the mTur-
quiose2 protein as a FRET donor, introducing superfolder mutations to 
enhance folding to generate sfTq2; periplasmic fluorescence was ach-
ieved using the DsbASP. 

It should be noted that more recent work that used selective ribo-
some profiling to determine the binding partners of SRP within the 
E. coli proteome [86] found that DsbASP does not associate with SRP. The 
initial study that designated DsbASP as directing co-translational trans-
location [87] pointed out that direct DsbASP-SRP interaction had not 
been demonstrated, and discussed the technical difficulty of proving 
conclusively whether a signal peptide directed co- or post-translational 
translocation. Signal peptides could direct proteins via both pathways, 
and studies with knockouts in ffh (encoding the protein component of 

SRP) can generate ambiguous data. These findings demonstrate that 
distinction between co- and post-translational pathways is still not fully 
understood, and that data should be interpreted carefully. While most 
GFP variants are poorly fluorescent in the periplasm, other fluorescent 
proteins have been shown to reach an active conformation. DsRed iso-
lated from Discosoma [88] is devoid of cysteine residues. A monomeric 
derivative mRFP1 has been shown to fluoresce in the periplasm when 
fused to the extra-cytoplasmic C-terminus of the inner membrane pro-
tease YaeL [89]. However, mRFP1 matures much more slowly and is less 
fluorescent than GFP [90]. More recent DsRed derivatives are far 
brighter and mature more quickly; the widely used mCherry has been 
shown to fluoresce in the periplasm, regardless of which Sec pathway is 
chosen [83]. 

Other attempts have been made to specifically modify GFP variants 
to mature in oxidising environments. Site directed mutagenesis was used 
to change the C48 and C70 residues within the EGFP variant sGFP2, 
which already has improved folding and fluorescence in bacteria [91]. 
Mutagenesis of the two cysteine residues (C48S and C70M) created the 
cysteine free variant cfSGFP2 [92], which displayed remarkably similar 
photochemical properties to sGFP2 with only a slight shift in the exci-
tation maximum from 497 to 493 nm. It was shown cfSGFP2 had 
increased fluorescence when exported to the Golgi apparatus (also an 
oxidative environment) in monkey-derived COS7 cells [92]. It is highly 
possible that cfSGFP2 would also fluoresce in the bacterial periplasm. 
More recently, a sfGFP derivative with C48S, C70S and a monomerising 
mutation, moxGFP, was shown to fluoresce in the periplasm [93]. 
Cysteine residues have also been removed from the sfTq2 protein, 
leading to enhanced periplasmic fluorescence and lower toxicity [85]. 

GFP derivatives that are non-fluorescent when exported through Sec 
can be rerouted through the Tat export pathway to ensure activity: for 
example, GFPmut3* was successfully translocated by fusion to the Tat- 
dependent TorASP [94]. As the Tat pathway permits export of cyto-
plasmically folded substrates, GFPmut3* can reach an active confor-
mation prior to export. Similarly, YFP, a red-shifted GFP derivate [68], is 
poorly fluorescent in the periplasm when exported via Sec, but active 
when exported via Tat [89]. Once folded, GFP is very stable and the 
location of the cysteines on the β-barrel interior means they cannot be 
accessed. 

There are several additional points to consider when designing a 
recombinant protein-fluorescent protein fusion. The fluorescent protein 
must not sterically interfere with the recombinant protein, so to ensure 
correct folding of each. A flexible linker composed of small polar amino 
acids like glycine, serine or threonine is generally inserted between 
fusion partners, thoroughly reviewed by [95]. If functional studies of the 
recombinant protein are desired following synthesis, a protease site such 
as for TEV protease can be inserted up- or downstream of the linker, for 
cleavage in vitro [96]. Many fluorescent proteins are known to exhibit 
quaternary structure, particularly at high concentrations, which may 
interfere with fusion partner folding. Such oligomerisation should be 
avoided by using monomeric derivatives (in the case of GFP derivatives, 
those with the A206K mutation [74]). 

In addition, some optimisation is required; while fluorescence is 
generally indicative of correct folding of both fusion partners, it does not 
immediately confirm localisation to the correct compartment. Fusions 
targeted for export may become trapped in the cytoplasm and still fold 
correctly. This is particularly important in RPP as overexpression can 
quickly saturate translocation machinery, leading to a secretion- 
deficient state [13,14]. A simple way around this is use of fluores-
cence microscopy to identify fluorescent halos around the periphery of 
the E. coli cells [94]. This could be automated by using image analysis or 
imaging flow cytometry. 

Self-labelling tags: PECS and FlAsH tags 

Periplasmic expression with cytometric screening (PECS) [97] is a 
fluorescence-based method for screening protein libraries for binding 
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affinity, which can be modified for use in monitoring periplasmic pro-
tein expression. PECS was initially developed as an alternative to protein 
surface display technologies in which libraries of genes of interest are 
fused to peptides directing them to the surface of the host organism 
(most frequently phage, bacteria or yeast [98]. Surface presented pro-
teins are subsequently screened for their ligand binding properties. 
Surface display presents several disadvantages: fusion to a surface 
directed polypeptide may inhibit protein function; surface display might 
negatively impact the physiology of the host; or the proteins may be 
unsuited to surface presentation. In PECS, proteins of interest are peri-
plasmically expressed via fusion to N-terminal signal peptides, so 
interference is minimal compared to larger surface display-mediating 
polypeptides. Bacteria are then subjected to outer membrane per-
meabilisation via incubation in high-osmolarity buffer, treated with a 
fluorescently-labelled ligand of the protein of interest and washed to 
remove unbound conjugate. Fluorescence is thus coupled to 
protein-ligand interaction and clones presenting desirable binding iso-
lated via fluorescence-activated cell sorting (FACS). This method has 
been used to isolate scFvs with high affinity to digoxigenin [97]. 

While originally intended for screening combinatorial libraries, 
PECS has been re-purposed for use in expression studies, where the 
desired trait is not enhanced protein-ligand interaction, but rather 
periplasmic localisation of a protein [99]. In this case, PECS was used to 
optimise expression of full length aglycosylated IgG in E. coli, to improve 
yield in shake flasks, a process scale which is vital during initial 
screening of antibody variants following combinatorial library 
screening. Factors mediating high periplasmic accumulation of the IgG 
such as promoter, signal peptides for heavy and light chains, translation 
initiation region (TIR) and co-expression of chaperones were assessed. 
Following PECS-assisted optimisation, active IgG could be synthesised in 
the periplasm at levels 6-fold greater compared with WT E. coli. 

PECS is a ligand binding-based method, so relies upon production of 
a protein which binds to a known ligand which can be fluorescently 
labelled; hence its use with antibodies and their fragments. For many 
recombinant proteins, binding partners may be undefined or unknown, 
or their interaction may be too weak or nonspecific. In these cases, 
alternative cytometric methods substituting the fluorescently- 
conjugated antigen for a peptide tag can be used. Fluorescein arsenical 
hairpin binder-ethanedithiol (FlAsH-EDT2) is a tag which selectively 
binds the tetracysteine motif Cys-Cys-X-X-Cys-Cys, upon which it fluo-
resces (Fig. 3B) [100]. The protein of interest is directed to the periplasm 
via an N-terminal signal peptide, with the tetracysteine motif fused to 
the C-terminus. Similar to the PECS protocol, the OM is permeabilised by 
incubation of cells in salt-containing buffer followed by addition of 
FlAsH- EDT2 and washing away any unbound tag. Higher accumulation 
of the recombinant protein to the periplasm produces greater fluores-
cence (λex = 508 nm, λem = 528 nm) using FACS. An alternative to 
FlAsH is a red biarsenical dye, ReAsH, (λex = 592 nm, λem = 606 nm) 
[101]. 

PECS-FlAsH screening, combined with Tn5 transposon insertion 
mutagenesis has been utilised to identify clones with improved SRP- 
mediated export of a model DsbASP-MBP model fusion [102]. Six 
SRP-enhanced mutants were isolated by fluorescence intensity and 
increased accumulation confirmed by SDS-PAGE. Interestingly, each 
had disruption at the same locus – the 16 S ribosomal RNA gene, rrsE. 
Export of MBP using its native signal peptide did not result in additional 
periplasmic accumulation, indicating the rrsE knockout is specific to the 
SRP pathway. Disruption of the rrsE gene in hosts overexpressing 
endogenous SRP-dependent proteins DsbA, TolB and TorT also led to 
increased periplasmic accumulation compared to the parental MG1655 
strain. The rrsE knockout was also shown to increase periplasmic accu-
mulation of mammalian proteins M18 scFv (3.1-fold increase), full 
length IgG (2.7-fold increase) and NTR1 G protein-coupled receptor 
(2.6-fold increase). While the exact mechanism by which rrsE knockout 
improves SRP-dependent export is unclear, its discovery further high-
lights the benefit of PECS-FlAsH in not only screening known factors 

affecting periplasmic localisation, but also identifying new ones. 
PECS-FlAsH presents other advantages over fluorescent reporter 

techniques such as GFP fusions. Tetracysteine motifs are just six amino 
acid residues in length, while more intensely fluorescent optimised 
variants are up to 12 [103]. These tags are therefore likely to have fewer 
effects on the translation, translocation and folding of a recombinant 
protein than GFP. Furthermore, unlike GFP variants which preferen-
tially translocate through the SRP pathway, the FlAsH tag is compatible 
with both co- and post-translational pathways, permitting screening of 
both routes. It should also be noted that FlAsH tags have been used to 
quantify and optimise extracellular protein production, for example via 
the native YebF pathway and heterologous type III secretion system 
[104]. 

Self-labelling tags: HaloTags 

The HaloTag (HT7) is another variant of self-labelling tag, and like 
the tetracysteine motif, has a number of advantages over fluorescent 
proteins for monitoring periplasmic accumulation (Fig. 3C) [105]. The 
HaloTag is derived from the haloalkane dehalogenase (DhaA) enzyme of 
Rhodococcus rhodochorus which catalyses the removal of halogen atoms 
from haloalkanes via cleavage of the halogen-carbon bond. The HaloTag 
was designed to improve upon the capabilities of other non-fluorescent 
fusion tags, namely a tag-ligand interaction whose binding kinetics are 
rapid, selective and irreversible [106]. DhaA is just 34 kDa in size and 
monomeric, so is a less intrusive fusion than some other fusion proteins. 
It also has a broad substrate specificity, increasing the number of po-
tential ligands [107,108]. Further, the authors indicate the haloalkane 
substrates are chemically simple and membrane permeable. 

During the reaction catalysed by the wild type DhaA enzyme, a re-
action intermediate is formed whereby the dehalogenated alkane is 
covalently linked to DhaA. The alkane is liberated, and the enzyme re-
generated via a mechanism involving residue H272. Mutation of H272 
to phenylalanine results in a DhaA enzyme that can cleave the carbon- 
halogen bond but the resultant alkane is covalently trapped in the 
active site. Use of a fluorescently-labelled haloalkane results in covalent 
fluorescent labelling of the mutant DhaA enzyme [105,106]. Initial 
studies used the HaloTag with TMR (carboxytetramethylrhodamine) 
and FAM (carboxyfluorescein) fluorophores linked to chloroalkane 
linkers to image mammalian cells [105]. The initial HaloTag was opti-
mised through mutagenesis to generate HT7 [106]. 

HT7 has been utilised to visualise proteins in the E. coli periplasm via 
a C-terminal fusion with DsbA [109]. Cells expressing the fusion can be 
inoculated onto solid growth media containing 5 nM of the TMR labelled 
haloalkane ligand and incubated at 30 ◦C. Fluorescence can then be 
detected (λ = 532 nm, λem = 580 nm). Cells could also be labelled in 
liquid culture. In both instances, cells expressing the DsbA::HT7 fusions 
were fluorescent, in addition to a DsbASP::HT7 fusion. Importantly, cells 
not expressing the HT7 tag were not fluorescent. When mixing 
HT7 + and HT7- strains in culture and plating, individual HT7 + colo-
nies could be easily identified by their fluorescence. As cysteine residues 
in GFP are believed to result in misfolding, a strain expressing a HT7 tag 
with the two cysteines at positions 61 and 262 substituted for serine 
were tested. This variant had 3-fold less fluorescence than the original 
HT7. However, when fused to the cytoplasmic protease ClpP, there 
appeared to be similar levels of fluorescence, so it does not appear that 
HT7 tags suffer from misfolding when directed to the periplasm. Two 
areas still to consider would be firstly, whether the tag can be directed to 
the periplasm via the post-translational pathway, or if it folds too 
quickly for export. Secondly, a more high-throughput detection method 
would be beneficial, to facilitate screening for high accumulating cells in 
RPP optimisation. A fluorescent microtiter plate reader could be used, or 
alternatively flow cytometry analysis. HaloTags have already been used 
in combination with flow cytometry and human Jurkat cells to study 
infection by tagged HIV [110]. 
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CYB5 Tags 

While the above methods rely on fluorescence, other tags to monitor 
periplasmic accumulation directly detect their environment. Cyto-
chrome b5 (CYB5) is a ubiquitous haemprotein that can be utilised as a 
visual tag with spectrophotometric detection [111]. Unlike some other 
chromogenic proteins, CYB5 is a strong absorber of light in the blue 
region (Amax = 413 nm), while its molar attenuation coefficient (ε) is 
117,000 M-1⋅cm-1 providing it with an intense red colouration and 
therefore a small lower detection limit. CYB5 senses the oxidation state 
of its environment; its maximum absorbance shifts from Amax = 413 nm, 
with two very small peaks at 532 nm and 559 nm when oxidised, to Amax 
= 424 nm and two peaks at 527 and 557 nm when reduced [112]. Thus, 
periplasmic accumulation of a RP-CYB5 fusion can be detected by a shift 
in the absorbance spectra. 

CYB5 also offers stability across a substantial pH range offering the 
potential for use throughout various steps in a bioprocess rather than 
just upstream process development. This approach was used to optimise 
periplasmic production of scFv and Fab antibody fragments, using Rat 
CYB5 as a C-terminal fusion [111]. Yield of the scFv increased almost 
three-fold when expressed in a fusion with CYB5, while a greater than 
two-fold increase was seen for the Fab-CYB5 fusions. This suggests that 
CYB5 could be used as an expression enhancer in addition to its spectral 
properties. CYB5 is extremely soluble (predicated at 95%) so is thought 
to facilitate improved folding of a fusion partner and enhance expression 
[113]. 

Enzyme tags: alkaline phosphatase and β-lactamase fusions 

Enzymes which are active only in the periplasm (often due to the 
requirement for disulphide bonding) can be used as fusions to detect 
periplasmic localisation. The periplasmic E. coli alkaline phosphatase 
(encoded by phoA) has been used as a fusion for studying protein 
translocation into the periplasm [114]. PhoA activity was measured 
using the chromogenic substrate 5-bromo-4-chloro-3-indolyl phosphate 
(XP), and the requirement for a signal peptide (here, BlaSP, OmpFSP and 
LamBSP) for activity was demonstrated. Applications of PhoA fusions 
were subsequently reviewed [115]. One use of alkaline phosphatase is 
determination of membrane protein topology; use of PhoA (active in the 
periplasm) and β-galactosidase LacZ (active in the cytoplasm) fusions to 
different positions of a membrane protein permit mapping of trans-
membrane, cytoplasmic, and periplasmic portions of the protein [116]. 
It should be noted that the activity of PhoA in the cytoplasm increases 
over time in non-growing cells [117], which could generate erroneous 
results. Nonetheless, PhoA has been used to probe signal peptide 
structure-function relationships [118] and to characterise the region of 
the SecA protein that binds to signal peptides [119]. 

TEM-1 β-lactamase (Bla), which cleaves the β-lactam ring of antibi-
otics such as penicillin, is active in the periplasm and can be used as a 
fusion tag to report periplasmic protein accumulation. This approach 
has been used as an assay of protein folding in the periplasm, utilising 
the SRP-dependent DsbA signal peptide [120]; screening was based on 
determination of ampicillin resistance. Broad applicability was demon-
strated by screening the periplasmic folding of a range of recombinant 
proteins, determining the effect of periplasmic chaperones, and the 
directed evolution of a peptide. A similar approach was also used to 
optimise the OmpA and PelB signal peptides for the export of Bla alone 
[121]; while screening signal peptides fused to Bla combined with a 
directed evolution approach, was used to optimise the translation 
initiation region created during cloning [122]. 

We have previously used Bla as a C-terminal fusion to screen for 
optimised signal peptides for periplasmic export of a scFv [123]. We 
measured periplasmic scFv-Bla accumulation via two functional assays: 
resistance to ampicillin, determined using a minimum inhibitory con-
centration (MIC) assay; and via the chromogenic β-lactam nitrocefin 
[124] which upon cleavage can be quantified by measurement of 

absorbance at 495 nm. Cytoplasmic Bla was shown not to confer resis-
tance to ampicillin. Our general approach was to use libraries of signal 
peptides based on the PelB signal peptide [125] generated by 
error-prone PCR or chemical synthesis. These libraries were screened for 
periplasmic accumulation of a scFv-Bla fusion first by selection of col-
onies resistant to ampicillin, then by screening using nitrocefin. Isolates 
were then characterised after shake flask growth using periplasmic 
fractionation and SDS-PAGE. 

We isolated mutated signal peptides in four functional categories; 
those giving rise to lower or similar periplasmic accumulation to the 
wild-type PelB signal peptide; those giving rise to higher translocation of 
scFv-Bla to the periplasm; and those where scFv-Bla production was 
higher than PelBsp but did not confer increased translocation to the 
periplasm. Highly translocating signal peptide variants had mutations 
that increased the positive charge of the n-region and altered hydro-
phobicity and / or were predicted to change the helical nature of the h- 
region, all proposed important for signal peptide function. In intensified 
fed-batch fermentations, periplasmic yields were higher for selected 
mutant signal peptides than the original PelB signal peptide, both for 
scFv-Bla fusions and after removal of the Bla fusion. 

It was noted that for all signal peptides (original and mutated), 
specific periplasmic productivity for the scFv-Bla fusions were higher 
than that of the scFv alone, suggesting that the Bla fusion might improve 
translation, translocation or stability of the scFv. This is a potential 
hazard of using fusion tags; while aiding detection, the tag can alter the 
overall translation, folding, stability, or translocation of the protein of 
interest. It is therefore very important to validate the outputs of screens 
in the absence of the fusion tag. In addition, tags are only useful 
industrially during process development; cleavage of tags using pro-
teases is not practical in production processes due to downstream issues. 
An industrial workflow would typically involve screening using a tag 
followed by validation of the screen outputs without the tag to select 
development candidates for production. 

A comparable approach using Bla fusions was employed to select for 
mutations in the E. coli Tat apparatus enabling enhanced translocation, 
so-called “supersecreter” strains [126]. An scFv-Bla fusion was targeted 
to the periplasm via Tat using a TorA signal peptide. Bacteria also car-
ried randomly mutagenized tatABC on a plasmid; mutants with high 
translocation were selected on the basis of elevated Carbenicillin resis-
tance. Three such mutants were isolated, with mutations in tatB and / or 
tatC (although not tatA). Enhanced translocation of scFv without the Bla 
fusion was confirmed by Western blotting of subcellular fractions. Eight 
other proteins of biotechnological interest were also shown to be 
translocated more effectively by the selected strains, again using TorAsp, 
Bla fusion and measurement of carbenicillin resistance. As each mutant 
strain contained multiple point mutations in tatB and / or tatC, a similar 
approach was used to identify the specific mutations responsible for 
translocation enhancement. Finally, it was found that each mutated Tat 
translocase exhibited suppression of quality control, leading to 
enhanced translocation. Overall, these studies demonstrate the promise 
of Bla fusions for screening, both for enhanced signal peptides and 
translocation apparatus. 

Antibody fragments, affinity and display 

Monoclonal antibodies represent the largest class of bio-
pharmaceuticals, used to treat a range of cancers and other diseases such 
as rheumatoid arthritis [1]. Selection of antibodies on the basis of af-
finity to relevant antigens is a key part of the development of novel 
antibody therapeutics; because of the complexity of full-length mono-
clonal antibodies, antibody fragments such as scFv and Fab are 
frequently used as development tools [127]. Selection typically uses a 
display approach, where antibody fragments are displayed on the sur-
face of virus particles or cells [128]. Mutagenesis is used to generate a 
library of genes encoding antibody fragments, so each cell displays an 
antibody fragment with different structure and thereby affinity. Cells are 
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incubated with a fluorescently-labelled antigen and 
fluorescence-activated cell sorting (FACS) is used to physically select 
cells displaying optimal fragments; the cell contains the relevant gene 
variant thereby permitting linkage of genotype and function. There are a 
number of such display approaches using E. coli, where antibody frag-
ments are directed to the periplasm or cell surface, in each case requiring 
translocation across the inner membrane [129–131]. 

In the APEx (Anchored Periplasmic Expression) system [129], anti-
body fragments are fused either via the N-terminus to the leader peptide 
and first six amino acids of the inner membrane lipoprotein NlpA, or via 
the C-terminus to the M13 gene 3 minor coat protein. In order for the 
labelled antigen to access the antibody fragments in the periplasm, the 
outer membrane requires permeabilisation with EDTA and lysozyme. 
APEx was initially used to screen scFv libraries [129] and has since been 
used for screening full-length immunoglobulin Gs [132]. Translocation 
of antibody fragments through the outer membrane (permitting true 
surface display and screening without OM permeabilization) adds to the 
complexity of the approach, and for this reason E. coli surface display 
lags behind phage display and yeast surface display; readers are directed 
to [128] for a discussion of different display approaches. 

A recent study reported a continuous selection platform for optimi-
sation of protein-protein interactions in the periplasm, named peri-
plasmic phage-assisted continuous evolution (pPACE; Fig. 4) [133]. This 
approach is a development of phage-assisted continuous evolution 
(PACE), a directed evolution method where M13 bacteriophage trans-
fers genes between E. coli bacteria [134]. The infection rate of the phage 
is linked to the desired activity (e.g., protein-protein interaction) via 
control of expression of the pIII gene which mediates host cell entry. A 
major advantage of PACE is that it is continuous and does not require 
human intervention, permitting hundreds of rounds of directed evolu-
tion in a few days. 

In the pPACE system, expression of gIII (controlling phage infection 
rate) is controlled by the CadC regulator. CadC spans the inner mem-
brane and comprises a periplasmic sensor domain, a transmembrane 
helix, and a cytoplasmic DNA-binding domain. Native CadC dimerises 
when the periplasmic sensor domain detects high pH and low lysine 
concentrations. In pPACE, the periplasmic domain of CadC is replaced 
with an antigen. The system was used to engineer scFv fragments with 
high affinity to the leucine zipper GCN4, and novel scFv variants of the 
breast cancer therapeutic monoclonal antibody Trastuzumab to a Her2 
mimetic peptide (Her2 being the therapeutic target of Trastuzumab). 

Screening in Gram positive bacteria 

Gram positive bacteria are not common hosts for production of 
biopharmaceuticals, although they are widely used for production of 
recombinant and native enzymes [135]. As they are bounded by a single 
membrane, translocation via Sec or Tat permits secretion into the cul-
ture broth. Many Gram-positive hosts for protein production permit 
effective secretion of products and as such, much research on the Sec 
translocon and signal peptides has focused on Gram positives [40]. 
Screening approaches here often rely upon secreted enzymes whose 
activity can be assayed in the culture broth. 

Amylase activity can be measured using high-throughput assays; this 
reporter system has been used to Identify genes whose overexpression 
improves Sec-dependent translocation [136] and screen libraries of 
Sec-dependent signal peptides [137], both in Bacillus subtilis. Signal 
peptide library screening has also been completed using secreted lipo-
lytic enzymes [138], protease [139], and cutinase [140]. A recent screen 
of signal peptides in B. subtilis used the secreted amylase AmyQ to 
hydrolyse a fluorescein-labelled starch [141]. Cells were grown in 
nanolitre reactors (NLRs), essentially microcompartmentalisation using 

Fig. 4. The pPACE (periplasmic phage-assisted continuous evolution) system. pPACE is a development of PACE (phage-assisted continuous evolution), based on 
bacteriophage M13 (a). The product of gene III (gIII) is required for host cell entry. The PACE system (b) comprises a selection phage (SP) encoding the gene of 
interest (GOI) to be mutated and selected in place of gIII. The host cell also contains an accessory plasmid (AP) encoding gIII under the control of a promoter 
responding to the activity of the product of the gene of interest being mutated. An additional mutagenesis plasmid (MP) encodes genes that increase the error rate of 
DNA replication. In action (c), arabinose is used to induce mutagenesis from MP, the gene of interest is mutated, generating variability, and phage DNA containing 
the GOI is packaged into new phage particles. The phage infects new host cells; optimal GOI sequences give rise to enhanced infection rates. The mutagenic cycle 
takes 10 – 60 min. In pPACE (d), gIII expression is regulated by the dimerization of the periplasmic product of the gene of interest, inducing dimerization of the CadC 
transcription activator. 
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a water-in-oil emulsion, with each water droplet initially containing a 
single cell, and screened using FACS. Microcompartmentalisation ap-
proaches have similarly been used to screen for the production of a range 
of secreted compounds, as reviewed by [142]. If a comparable approach 
were to be used in E. coli or other Gram-negatives, the outer membrane 
would need to be permeabilised in some way to release the periplasmic 
proteins. However, envelope permeabilization would potentially risk 
leakage of cytoplasmic components across the inner membrane, inva-
lidating the approach. Since envelope stability is compromised by stress, 
it would be difficult to set up such assays. 

Conclusions 

The theoretical advantages of periplasmic production of recombi-
nant proteins in Gram-negative bacteria can be difficult to translate into 
real-world applications and processes as optimisation can be difficult. 
There are an expanding number of tools to assist development of such 
processes, although as can be seen, limitations are observed in most of 
these methods and these limitations must be considered when choosing 
experimental workflows. 

Development of periplasmically-active fluorescent proteins con-
tinues, and these can be used for some screening work, although it is not 
clear how broadly applicable these are: for example, how do high con-
centrations of rapidly-folding fluorescent proteins in the E. coli peri-
plasm affect bacterial physiology and native periplasmic proteins? 
Enzyme fusions show great promise although consideration must be 
given to how accurately enzyme activity reflects subcellular localisation. 
Both fluorescent protein and enzyme fusions could also alter the pro-
ductivity, translocation, and folding of the protein of interest, requiring 
validation of results omitting the fusion. As with many branches of 
biotechnology, techniques must be used in combination to prevent 
erroneous conclusions from being drawn. Self-labelling tags represent a 
very useful tool as they function in a more orthologous manner than 
protein fusions; we expect that they will become more utilised in future. 
The pPACE method [133] represents a novel synthetic biology workflow 
of great potential commercial interest. Given the recent renewed com-
mercial interest in antibody fragments as biopharmaceuticals, applica-
tion of such approaches could accelerate future drug development. 

As well as allowing optimisation of periplasmic RPP processes, these 
techniques have allowed better characterisation of the periplasmic 
translocation pathways, Sec and Tat. However, as has been seen, the 
exact mechanisms of translocation, and how the structure of the signal 
peptide interacts with the translocon (for example, whether DsbASP di-
rects peptides through the co- or post-translational pathways) are not 
fully understood. Tools to analyse periplasmic protein accumulation can 
therefore also be used to better understand the translocation pathways 
themselves. 
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