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Abstract: Here, we introduce Traffic Ear, an acoustic sensor pack that determines the engine noise
of each passing vehicle without interrupting traffic flow. The device consists of an array of micro-
phones combined with a computer vision camera. The class and speed of passing vehicles were
estimated using sound wave analysis, image processing, and machine learning algorithms. We
compared the traffic composition estimated with the Traffic Ear sensor with that recorded using an
automatic number plate recognition (ANPR) camera and found a high level of agreement between
the two approaches for determining the vehicle type and fuel, with uncertainties of 1–4%. We also
developed a new bottom-up assessment approach that used the noise analysis provided by the Traffic
Ear sensor along with the extensively detailed urban mobility maps that were produced using the
geospatial and temporal mapping of urban mobility (GeoSTMUM) approach. It was applied to vehi-
cles travelling on roads in the West Midlands region of the UK. The results showed that the reduction
in traffic engine noise over the whole of the study road was over 8% during rush hours, while the
weekday–weekend effect had a deterioration effect of almost half. Traffic noise factors (dB/m) on a
per-vehicle basis were almost always higher on motorways compared the other roads studied.

Keywords: traffic noise; acoustic sensors; machine learning; telematics data; road transport

1. Introduction

Road transport represents a key pillar for economic growth, social welfare, and sus-
tainable development. For example, in 2019, the road transport and storage services sector
(including postal and courier activities) in the European Union (EU) countries employed
over ten million people, equating to about 5.3% of the total EU workforce [1]. However, it is
a leading source of a variety of undesirable and unsustainable outcomes. The transportation
sector consumes over a quarter of the world’s energy annually [2]; hence, it is one of the
leading causes of global climate change and urban air pollution at a local scale [3].

Road transport is also a major source of noise pollution in the urban environment.
Reports from Spain [4], Ghana [5], and China [6], have all shown that traffic is the main
cause of noise in urban environments. The serious impacts of noise pollution on human
health have been evidenced by a wide body of research. For example, Bao et al. highlighted
the strong correlation between noise exposure and behavioural problems in children in
China [6]. Sørensen et al. studied the potential links between noise exposure and the risk
factors for type 2 diabetes, which showed that high levels of noise pollution were associated
with an increased risk of diabetes [7]. We refer the reader to systematic reviews for more
information on the health effects of noise exposure, such as the studies published by the
authors of [8,9].

Noise maps are currently the major policy instruments that enable noise hotspot
analysis for environmental noise management and planning [10]. They help policymakers
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and urban managers in decision making on environmental noise regulations. One of the
first urban noise maps was made for the EU countries as a consequence of the Environ-
mental Noise Directive (END) known as Directive 2002/49/EC [11]. This Directive legally
obligated EU countries to develop strategic noise maps and their corresponding action
plans every five years [12]. In the UK, the latest noise strategy map was developed by
the Department for Environment, Food, and Rural Affairs (DEFRA) [13]. UK noise maps
have been historically developed using computer modelling that incorporates information,
such as traffic flow and vehicle type, whereas no actual measurements are used in the
production of these strategic maps. Therefore, they do not represent a reliable account of
noise across road transport in the UK. Strategic noise maps do not usually attempt to cover
all environmental noise sources. For example, traffic on minor roads is often not considered
due to the lack of road data [14]. Temporal variations are also often neglected in strategic
road maps; hence, most of them are annually averaged [15].

Traffic noise maps typically consider vehicles with engines operating on the road to
be the sole source of noise within the model. They use daily traffic flow as a non-acoustic
proxy to estimate noise emission from the roads [16–18]. In addition to the traffic flow, the
average speed of the vehicles moving over the roads, also referred to as the traffic flow
speed, is also often used in developing noise maps.

Traffic noise maps are usually developed through either measurement-based or model-
based methods [10]. Within measurement-based models, environmental noise is monitored
through densely distributed acoustic sensors; the noise map can be developed using
various interpolation techniques. For example, Tsai et al. used the spatial interpolation
method along with their data collected from over 345 acoustic monitoring sensors to
develop the noise maps of the city of Tainan, Taiwan [19]. The establishment of such a
network of densely distributed acoustic sensors is typically quite expensive, especially for
wide areas and regions. Moreover, there are debates on the quality of outputs generated
through interpolation methods, see for example the study published by the authors of [20].
Meanwhile, the model-based methodology to generate noise maps relies on noise prediction
models to estimate and develop noise maps, see for example the study published by the
authors of [21].

Among the model-based developed traffic noise maps, Zamon et al. assessed subset
roads in homogenous clusters and attributed certain levels of traffic noise to each cluster
according to their main traffic flow and speed [22]. However, such road classification
neither reflects the real-world status of roads nor noise emissions across the road network.
Traffic noise maps have, for example, been developed for many cities in China by several
previous investigators, such as the ones published by the authors of [23–25]. Along with
the traditional measurements and model-based methods, machine learning approaches
have recently come to the forefront of traffic noise prediction. For example, Adulaimi
et al. used a land use regression (LUR) model based on machine learning to determine
traffic noise from the surrounding noise in Shah Alam, Malaysia [26]. They then considered
several involved factors, such as traffic lights, intersections, road toll gates, gas stations, and
public transportation infrastructures to develop the traffic noise map of the studied area.
Yin et al. analysed the functionality of four machine learning models: linear regression,
random forest, extreme gradient boosting, and a neural network in predicting the traffic
noise, and found the best results in validation tests for the extreme gradient boosting
model [27]. Fallah-Shorshani et al. assessed the traditional model-based methods with the
recently developed machine learning approaches in developing the traffic noise maps [28].
They uncovered a significantly better prediction performance for the machine learning
approaches, which can distinguish noise levels on different categories of roads.

Traffic noise maps have also been previously developed using top-down approaches.
A top-down approach to developing traffic noise maps either breaks down the monitored
noises of the environment into its compositional sources, e.g., traffic, or allocates an average
noise value to the major routes of the studied area according to the average speed. There
have been no certain assessments nor discussions on the contribution of individual sources,
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i.e., vehicles, in the above-discussed studies. Most of the existing static traffic flow maps
have been developed using numerical models supported with limited surveys and/or
data collected from the road. Within the literature, the validity of predicting the dynamic
spatiotemporal characteristics over the roads has been questioned, see for example the
study published by the authors of [29].

Depending on the availability of information and the level of detail required, bottom-
up approaches are typically proposed to achieve a detailed and reliable picture of road
transport, see for example the studies published by the authors of [30,31]. In bottom-up
approaches, the measured noise of the vehicles is accompanied by real-world road data to
create a traffic noise map which can address the spatiotemporal features of the roads.

Previous investigators have used either traffic or empirical models when developing
traffic noise maps to estimate the average vehicle speed over roads. Traffic models are
developed using numerical models as well as utilising the limited volume of road data
collected from test cars and/or surveys. There are vigorous debates on the credibility and
reliability of the traffic model results, especially regarding their highly detailed spatial and
temporal purposes; traffic models provide the annual average speed over arterial routes;
hence, the impacts of place and time of travel were missed. Empirical models have also
been constructed on the correction factors estimated through hourly monitoring of the total
noise across the urban environments, see for example the study published by the authors
of [10]. Neither of these models can provide a detailed, dynamic, and real-world picture of
road transport across urban environments mainly due to the use of insufficient real-world
road data in their estimations.

In this study, we used a bottom-up approach to develop a traffic noise map. We
have designed and developed a new-to-the-market, low-cost acoustic sensor pack named
‘Traffic Ear’, which determines the noise level and speed of passing vehicles, as well as their
specifications, i.e., vehicle class and engine type. We acknowledge that there is already a
wide range of acoustic sensors in the marketplace, so we have provided a summary of the
existing acoustic sensors followed by a detailed discussion on the design of ‘Traffic Ear’ in
the following section. The rest of this paper is organised as follows: material and methods
are discussed in Section 2, where we also provide a literature review on the acoustic sensors
and the method for estimating the traffic noise of the studied area. The results of the
study are discussed in Section 3, and the main outcomes of this research are discussed and
concluded in Section 4.

2. Materials and Methods
2.1. Acoustic Sensors and Traffic Ear
2.1.1. Literature Review

Traffic monitoring is a prerequisite element of all intelligent transport systems across
the globe. Acoustic sensors, which rely on the analysis of sound waves emitted by road
vehicles, are promising assets for such purposes. In contrast to the existing and previously
established systems, such as radar and lidar sensors, acoustic sensors do not emit any
signals; hence, they do not have any side effects on humans, urban monitoring, or com-
munication systems. Several approaches have been proposed in the literature to detect
the passing of vehicles using acoustic sensors. For example, Ishida et al. and Uchino et al.
used a method that relied on the time difference of arrival (TDOA) of sound signals on
two microphones on a sidewalk to detect the vehicles [32,33]. Several other researchers
demonstrated the use of a new method based on the analysis of sound intensity signals
measured in a two-dimensional space to determine the average speed of the vehicle and the
direction of traffic flow [34–36]. Other approaches to acoustic vehicle detection have been
constructed on machine learning-based techniques, as discussed by Gatto and Forster [37].
To our knowledge, sound intensity analysis was not previously used for detecting the
engine type (including diesel, petrol, or hybrid/EV) as well as the class (car, bus, van, HGV,
etc.,) of the vehicle. Vehicle class and speeds were usually determined with the aid of image
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processing (using deep learning algorithms) from video cameras, see for example the study
published by the authors of [38].

In this study, we proposed a new approach based on the combination of noise signal
analysis, image processing, and machine learning to study the noise of vehicles according
to their class, engine type, and speed. Our approach was based on simultaneous visual and
acoustic assessments that were supported using the machine learning algorithms.

2.1.2. Traffic Ear

Traffic Ear is the name of the sensor pack that was designed during this study, which
was mounted on a roadside structure above the road surface at 5 m from the ground. It
attaches to and is powered by a street light column, and works without interrupting the
traffic flow, cutting the road surface, or requiring other major infrastructure. Traffic Ear
includes an acoustic sensor, a camera, a sensor to measure the ambient concentration of
particulate matter (PM), as well as supporting electronic circuitry. It can identify passing
vehicles with their engine noise, which is mainly of low frequency, but also contains high
frequency harmonics [39]. An image of the Traffic Ear mounted in the city of Sandwell in
the West Midlands, UK, is shown in Figure 1.
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Figure 1. An image of Traffic Ear mounted on a street column in the metropolitan borough of
Sandwell, West Midlands, UK.

This acoustic sensor includes a four-channel microphone, as displayed in Figure 2a.
We used the beamforming technique to analyse the main noise sources during the pass-by
of a vehicle. Beamforming has previously been applied successfully to analyse the noise
structure of aeroplanes and trains; meanwhile, only a few research studies have used this
technique for traffic noise purposes, see for example the studies published by the authors
of [40,41]. We used the beamforming approach in determining the vehicle speed, traffic
flow direction, and engine noise through a method developed by Ballesteros et al. and
Sarradi et al. [40–42]. The basic idea was to focus on an assumed source position and to
apply signal processing to the microphone signals.
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Essentially, the total intensity of the moving object was measured first, and the source
position was then determined using a Kalman filter in a method that was previously
proposed by Szwoch and Kotus [36]. The object was then considered by the sensor if its
total intensity was found to be higher than the usual noise of road vehicles. Together, with
our real-world measurements, it has been shown that the sound wave energy (total) emitted
by moving road vehicles is concentrated in the mid-frequency range of 50–200 dB [36]. In
order to avoid false-positive recordings, only the objects located in the front area of the
sensor with a total length of 85 m were considered. The front area is subdivided into three
zones (zones A, B, and C, as displayed in Figure 2b), for which three parts of microphone
arrays were allocated for each zone, as indicated in Figure 2a. In zones A and C, which
cover 80 m in total (2 × 40 m), the total intensity of the detected object was compared
with the estimated background noise, and if it was greater than the detection threshold,
this signifies that a vehicle was detected, otherwise the background noise estimate was
updated. The sensor then analysed the external tyre noise produced by the tyres of the
detected vehicle to determine whether it is approaching or departing, i.e., the direction
of traffic flow. A deep learning algorithm was then developed that uses the direction of
arrival (DOA) algorithm, which determines the tyre noise as well as the background noise
and vehicle speed, in an approach discussed in detail by Szwoch and Kotus [36]. In Zone
B, which covers 5 m of the road ahead of the place of the sensor, the engine noise of the
vehicle was then analysed.

To enhance the accuracy of the Traffic Ear in terms of its estimated vehicle speed,
vehicle counting, and vehicle class detection, we accompanied a camera to the acoustic
sensor to simultaneously monitor the moving vehicles and tally up the results. Visual
processing of the captured images for vehicle counting, speed estimation, and classification
was conducted by many previous investigators, such as the authors of [38,43,44]. In an
online object-tracking method (see the study published by the authors of [45]), the vehicle
speed was estimated through a certain frame with virtual boundaries, as shown in Figure 2c.
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We used a convolutional neural network algorithm discussed in detail by Hu et al. [46] to
determine the class and speed of the passing vehicles. A deep learning algorithm compares
the results of the acoustic and visual parts of the Traffic Ear, which are examined using the
acoustic sensor and the camera, respectively. Traffic Ear then stores the result if there is an
acceptable agreement (of less than 5% difference) between the vehicle speeds measured
using the acoustic sensor and the camera. The block diagram of the designed system for
determining the noise and speed of the passing vehicles is shown in Figure 2d. The fuel
type of an engine was determined through a deep learning acoustic detection algorithm,
which was designed based on the method proposed by Göksu [47]. Traffic Ear was also
equipped with a telecommunication part, which permits the storage of the measured valid
results in the Cloud and to use them online.

The designed deep learning algorithm also trains according to the background noise,
the noise signature of diesel/petrol engines, etc. We mounted Traffic Ear in three loca-
tions of the city of Birmingham and the metropolitan borough of Sandwell, UK, before
using it for the current study. The deep learning algorithms were then trained for over
1,000,000 measurements. During the training campaign, we also validated the measured
intensities using a sound level meter (Tadeto, model SL720), which was able to measure
sound levels in the range from 30 to 130 dB with an uncertainty of ±2.0 dB.

2.2. The Spatial Scope of the Study and the Locations of the Measurements

The traffic noise map was developed for the West Midlands road network in the UK.
The West Midlands had a population of over three million people in 2021, and is the second
most populous county in England, after Greater London. The West Midlands county
includes the seven metropolitan boroughs of Birmingham, Coventry, Dudley, Sandwell,
Wolverhampton, Solihull, and Walsall. The City of Birmingham, with a population of
over 1.2 million reported in 2021, is the biggest borough in the West Midlands. The West
Midlands and its boroughs are represented in Figure 3a. According to the road traffic data
of the Department for Transport (DfT) in the UK [48], in 2021, 28.3 billion vehicle miles of
traffic were travelled across the 20.8 thousand miles of roads in the West Midlands, ranking
the West Midlands as the region with the fourth highest levels of traffic in Great Britain.
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The contribution of each of the boroughs to the population of the West Midlands, the
road length, and miles of traffic are reported in Table 1. The dominant contribution of the
city of Birmingham to the overall traffic in the West Midlands was observed in this study.
Vehicle miles here refer to the total distance travelled by all vehicles during the year [45],
while road length is given as the actual length of the roads in the area.

Table 1. The contribution (%) of the West Midlands boroughs to the population, road length, and
vehicle miles across the West Midlands. The statistics are for the year 2021 and were extracted from
Refs. [48,49].

Borough Birmingham Sandwell Walsall Wolverhampton Solihull Dudley Coventry

Population (%) 39 12 10 9 7 11 12
Road length (%) 33 12 11 10 11 12 11
Vehicle miles (%) 35 13 10 7 14 10 11

Traffic Ear sensors were mounted in ten locations in the borough of Sandwell, in the
West Midlands, between April and October 2022. It should be noted that researchers from
the Sandwell Metropolitan Borough Council were involved in this research and therefore
arranged for most of the sensors to be installed in the city of Sandwell. The locations of
the Traffic Ear devices have been indicated on the West Midlands map (as displayed in
Figure 3) by blue push pins. Traffic Ears were attached to the street light columns so that
they did not disturb the traffic flow for the measurement period. For the study period,
nearly 300,000 valid measurements were recorded.

2.3. Vehicle Telematics Data and the Method of GeoSTMUM

Vehicle telematics data, which are collected during the telecommunication between
the GPS-connected vehicles and the positioning satellites, can provide a real world and
detailed picture of road transport. Vehicle telematics data are mainly collected from the
vehicles belonging to drivers who are going to enjoy fairer insurance premiums and so
voluntarily share their location data. There are various methods for collecting vehicle
telematics data, such as black boxes, driver cell phones, etc., see the review paper of
Ghaffarpasand et al. [50]. Recently, Ghaffarpasand and Pope proposed the approach of
geospatial and temporal mapping of urban mobility (GeoSTMUM) to convert vehicle
telematics (location) data into several urban mobility characteristics, such as the average
speed of vehicles, and the percentage of time spent idling, cruising, accelerating, etc. [51].
GeoSTMUM disaggregates road transport in the West Midlands into over 300,000 GeoST
segments, and then estimates the urban mobility characteristics over each GeoST seg-
ment [52]. GeoST segments are polylines features with a length range of 15–150 m, which
cover all features of road networks, such as roundabouts, crossroads, bends, etc. GeoST
segments have certain spatial and temporal characteristics. Their spatial characteristics
were determined using their geographic coordinates (latitude and longitude). To define
the temporal characteristics of the GeoST segments, the annual data was split into 35 time
slots, including seven diurnal time slots (00:00–06:59, 07:00–08:59, 09:00–11:59, 12:00–13:59,
14:00–15:59, 16:00–18:59, and 19:00–23:59, respectively) in five days (Mondays, Tuesdays,
Fridays, Saturdays, and Sundays, respectively). It was assumed that the traffic behaviour
on Wednesdays and Thursdays was similar to Tuesdays. The selected hours of the day were
chosen to correspond to weekday ‘early morning hours’, ‘morning rush hours’, ‘morning
non-rush hours’, ‘noon rush hours’, ‘afternoon non-rush hours’, ‘evening rush hours’, and
‘evening non-rush hours’, respectively.

In this study, we used the GeoSTMUM approach to estimate the average speed of the
vehicles that moved over the West Midlands roads for different time slots of the year 2018.
The vehicle telematics data were supplied by the Floow (www.thefloow.com), a telematics
UK-based company.

www.thefloow.com
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2.4. Fleet Composition

A bottom-up approach was used to develop the traffic noise map of the studied area.
Fleet composition in terms of the distribution of vehicle classes, i.e., cars, buses, vans, etc.,
over the road fleet is one of the major requirements to create noise maps of the roads. Traffic
Ear can determine the class as well as the fuel type of the monitored vehicles, and we used
the estimated fleet composition in our calculations. We used the results of an automatic
number plate recognition (ANPR) camera as our reference data to evaluate the performance
of the Traffic Ear sensor in determining the fleet composition. The ANPR camera was
mounted in a place that was indicated using a red push pin in Figure 3 for two weeks
(May–April 2022) to achieve a proven reliable fleet composition of the studied area. ANPR
cameras convert the taken picture of the registration number plates (reg numbers) of the
passing vehicles into their number digits. The corresponding information of the collected
reg numbers was then extracted from the existing driving archives provided by the Driver
and Vehicle Licensing Agency (DVLA). From this dataset, we used anonymised statistics
(in compliance with the GDPR) of nearly 57,000 records to estimate the fleet composition of
the studied area.

2.5. Noise Map Development

As discussed by previous investigators, such as the authors of [17], traffic flow speed
and its corresponding average speed-based noise levels are the major factors underlying
the prediction of the traffic noise maps. In this study, we used Traffic Ear sensors.

Our vehicle noise measurements showed a significantly linear relationship between
the average speed of the passing vehicles, within all vehicle classes, and their noise intensity.
The linear relationship between the noise intensity and the vehicle speed was also observed
in the study of Ref. [10]. The noise intensity of the passing vehicles was estimated in this
study using the following equation:

Lk = ak × v + bk (1)

where Lk (dB) and v (km/h) are the noise intensity of vehicle class k and the speed of a
passing vehicle, respectively. ak and bk are the constant coefficients which were determined
during the linear regression analysis for the vehicle class. We studied five classes of
vehicles, which were as follows: petrol cars, diesel cars, vans, buses, and heavy goods
vehicles (HGVs).

The results of the regression analysis of the traffic noise measurements have been
reported in Table 2. The p-values for all the cases examined were less than the significance
level of 0.05, which demonstrates a strong linear correlation between the average speed
and the noise intensity if accompanied with high values of correlation coefficients.

Table 2. Results of the regression analysis of the linear relationship between the average speed and
the noise intensity.

Vehicle Class A (dB h/km) b (dB) R-Square p-Value

Petrol cars 1.45 −5.45 0.87 <2.2 × 10−16

Diesel cars 1.45 −5.47 0.87 <2.2 × 10−16

Vans 1.3 −1.15 0.77 <2.2 × 10−16

Buses 1.4 −5.05 0.85 <2.2 × 10−16

HGVs 1.3 −4.4 0.86 <2.2 × 10−16

The average speed of the passing vehicles over the roads was estimated using the
GeoSTMUM method. Traffic noises over each GeoST segment were then estimated using
the following equation:

L(i,j) = ∑
k

gk × Lk,i,j (2)
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where L(i,j) is the average traffic noise (dB) over a GeoST segment, where (i, j) are the
spatial and temporal characteristics of the studied GeoST segment, respectively. gk is the
contribution of vehicle class k to the total fleet, which was determined using the fleet
composition of the studied area. We highlight that L(i,j) is the average traffic noise on a
per-vehicle basis and must be multiplied by the traffic flow activity (the corresponding
number of passing vehicles for the studied GeoST segments) if the net amount of traffic
noise is desired.

2.6. Rush/Non-Rush Hour and Weekday/Weekend Effects Analysis

Here, traffic noise was estimated for the GeoST segments covering the studied road
network spatially and temporally in 35 time slots for the year 2018. The rush/non-rush
hours and weekday/weekend effects were then analysed by calculating the relative differ-
ence between a pair of corresponding cases over each GeoST segment. In other words, for
example, the relative difference between the rush hour and non-rush hour traffic noise on a
particular road section (GeoST segment) represents the rush hour/non-rush hour effects on
the traffic noise of the GeoST segment under study.

The 5% trimmed mean was then used to provide an average of the relative differences
examined. The trimmed mean is defined a statistical measure of central tendency that
involves determining the mean after discarding certain parts of a probability distribution
or sample at the high and low extremes. In a 5% trimmed mean, the lowest 5% and highest
5% of the data are excluded, and the mean is calculated from the remaining 90% of the data
points. We used the 5% trimmed mean to exclude the likely outliers.

In order to analyse the weekday/weekend effect, the weighted average was used to
ensure that the different weights for the weekdays and weekends (in terms of the number
of weekdays and weekends) were considered.

3. Results and Discussions
3.1. Fleet Composition

The performance of the Traffic Ear sensor in terms of fleet composition estimation
was assessed against the results obtained through the ANPR campaign reported in Table 3.
Both techniques recorded the dominant contribution of cars (78–82%) to the total fleet.
This complies with the UK fleet statistics that have been estimated for the areas outside of
London [53]. Fleet composition by fuel type investigated by Traffic Ear and ANPR camera
is shown in Figure 4a,b. Figure 4 reveals that the Traffic Ear sensor was able to determine
the class of vehicles with a degree of uncertainty between 1–4%, which was deemed an
acceptable level of agreement. The class of 5% of the passing vehicles was not able to be
determined using either of these methods. However, it was noted that the offline results of
the ANPR camera were extracted after a long and complicated administrative procedure
through stringent legal restrictions. In contrast, Traffic Ear determined the class of the
vehicle in real time. Traffic Ear provides an online picture of road transport in terms of the
number and class of moving vehicles. However, a few partial discrepancies were observed
in the estimation of the fuel type of the passing vehicles. Whilst Traffic Ear estimated an
equal contribution of petrol and diesel cars, ANPR results indicated a higher proportion for
petrol cars. It is worthwhile to note that Traffic Ear determines the vehicle class through a
mutual visual-acoustic assessment, while the fuel type was estimated through an intelligent
acoustic signature-matching procedure. Hence, it is expected that the uncertainty in the
determination of the fuel type will decrease through further algorithmic training over time.
Traffic Ear can also detect hybrid/electric vehicles; a car is specified as hybrid/electric if it
is not specified as either petrol or diesel. However, given the small share of hybrid/electric
vehicles in the fleet (at the date of this study), more training will be needed to provide
reliable outputs for these vehicles. Currently, an uncertainty level of 5–8% in fuel type
determination was achieved in the current version of Traffic Ear. The fleet composition was
estimated using the Traffic Ear for different locations in the study area; therefore, we used
that for the development of the traffic noise map.
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Table 3. The Traffic Ear and ANPR camera-estimated contributions (%) of different vehicle subsets to
the fleet composition of the study area.

Cars Vans Buses HGVs NA

Traffic Ear 78 12 2 3 5
ANPR camera 82 11 1 1 5
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Figure 4. The contribution of diesel and petrol cars estimated using the (a) Traffic Ear sensor and
(b) ANPR camera.

3.2. Traffic Noise Assessment on a Per-Vehicle Basis

The traffic noise maps of the studied area for different time slots were developed using
the method discussed in Section 2.5. The results were provided here through considering
the results of the corresponding GeoST segments. These results provide an estimation
of the noise emitted from an average vehicle passing through the road network. It does
not currently provide a total noise intensity of the whole fleet, which would be the total
integrated noise of all moving vehicles passing over a specific road segment per unit of
time. Estimating the road noise intensity, which requires additional information, such as
the traffic flow and road occupancy, is a future direction of this research.

The annual distribution of average vehicle noise (on a per-vehicle basis) across the
West Midlands road network is shown in Figure 5a. The high level of average vehicle
noise on arterial roads (motorways and trunk roads) was determined to be due to the
increased speeds observed on these roads. The probability distribution function (PDF) of
the annual average speed of the different roads studied is shown in Figure 5b. Vehicles
have higher speeds on motorways, meaning therefore that arterial roads are the hotspots
of traffic engine noise. Motorways, trunk roads, primary roads, and secondary roads
contributed 8%, 34%, 23%, and 35%, respectively; hence, 70% of the studied road types
were either secondary or trunk roads. In Figure 5c, we show the PDF of the traffic noise
factor (dB/m) as the annual average traffic noise per average vehicle over each GeoST
segment per segment length on the studied road types. The PDF profile of the traffic noise
factor in motorways exhibited a sharper peak than the profile for the other road types. The
median value of the PDF of the traffic noise factor for the motorways, primary, secondary,
and trunk roads was 0.47 dB/m, 0.38 dB/m, 0.35 dB/m, and 0.40 dB/m, respectively. This
was attributed to the higher average speed of vehicles on motorways compared with that
on other roads.
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3.3. Spatiotemporal Distribution of the Traffic Noise

The probability distribution function (PDF) of the average vehicle noise level over the
GeoST segments with different spatial and temporal characteristics has been studied in this
section. We remind the reader that the results presented here are the average vehicle noise
levels, and not the total noise intensity, across the roads studied. Figure 6 shows the PDF of
traffic noise for different hours over a day across the studied roads. It reveals that GeoST
segments placed in the motorways have higher levels of traffic noise than those placed
in the other studied roads. The major peak of the PDF profiles in the motorway GeoST
segments was around 60 dB, while the dominant contribution of the GeoST segments in
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the other roads displayed traffic noises smaller than 40 dB, respectively. The hourly traffic
noise variation noted in the motorways was higher than that observed in the other studied
roads. A considerable reduction was observed in the PDF profiles of traffic noise for the
morning and evening rush hours in the motorways compared with the non-rush hour
profiles. However, in all the studied roads, the PDF profile of traffic noise was shifted to
higher values when moving from rush to non-rush hours. These variations correlated with
the level of congestion and hence the average vehicle speed over the different hours of
the day.
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Figure 6. The hourly variation of the traffic noise across the (a) secondary roads, (b) primary roads,
(c) trunk roads, and (d) motorways of the West Midlands for the year 2018.

The PDF of traffic noise over the GeoST segments for the different days of the week has
been represented in Figure 7. Solid, dashed, and dotted lines correspond to morning rush
hours (07:00–09:00), evening rush hours (16:00–19:00), and non-rush hours (19:00–23:00),
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respectively, while the red two-dashed line represents the noon-rush hours (12:00–15:00). A
significant variation was observed in the PDF profile of the motorway GeoST segments.
Furthermore, the PDF profiles (of all road types) displayed shorter peaks in the midday
rush hour on the weekends compared to the other times examined.
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Figure 7. Diurnal variation of the traffic noise across the (a) secondary roads, (b) primary roads,
(c) trunk roads, and (d) motorways of the West Midlands for the year 2018. Note that the x-axis scale
is different for the motorways compared to the other road types. Solid, dashed, and dotted lines
correspond to morning rush hours (07:00–09:00), evening rush hours (16:00–19:00), and non-rush
hours (19:00–23:00), respectively.
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On working days, the major peak of the PDF profile of traffic noise was sharper under
non-rush hours than that observed for non-rush hours. It also formed at higher traffic noise
values compared with that under non-rush hours. At weekends, and especially on the
motorways, the PDF profile of the traffic noise during the morning rush hour period was
sharper, with higher traffic noise levels observed compared to the rest of the day.

3.4. Rush/Non-Rush Hour and Weekday/Weekend Effects

As previously mentioned in Section 2.6, we parameterized the rush/non-rush hour
and weekday/weekend effects by analysing the relative difference between the pair of
corresponding GeoST segments for each case. The relative difference between the average
vehicle noise during the rush hours and non-rush hours, and between the weekdays and
weekends, have been reported in Table 4. The average vehicle noise during rush hours was
smaller than that observed under non-rush hours by 18%, 9%, 10%, and 10% for driving
over motorways, secondary, primary, and trunk roads, respectively. We also estimated
the weighted average according to the contribution of the studied road types; 24.4%,
36.8%, 33.5%, and 5.2% of the studied roads were primary, secondary, trunk roads, and
motorways, respectively. Table 4 shows that rush hours reduced the average traffic noise
levels per vehicle on the studied roads with a weighted average of 8.4%. The effect of
rush/non-rush hours on the motorways was higher than that on the other studied roads.
This was determined to be likely due to the wider range of speeds that are allowable on
the motorways. The weekday/weekend effect was smaller than the rush/non-rush hour
effect, whereby traffic noise on the weekdays was smaller than that at the weekends with
an average of 5%.

Table 4. Trimmed mean of the relative difference between the traffic noise over a pair of corresponding
GeoST segments (see Section 2.6). * The weighted average is the average of the different road types
weighted with the occurrence in the whole of the West Midlands.

Motorways Secondary
Roads

Primary
Roads Trunk Roads Weighted

Average *

Rush/non-rush
hour effect 18% 9% 10.3% 10% 8.4%

Weekday/weekend
effect 5.3% 4.5% 5.4% 4.7% 4.8%

4. Summary, Conclusions, and Future Research Directions

Traffic noise inventories in urban areas have faced several technical challenges, such
as the determination of noise from passing vehicles according to their characteristics, the
use of traffic flow maps with a low spatial resolution, the lack of temporal assessments, etc.

In this study, we proposed a new bottom-up approach to developing traffic noise maps
within urban environments using Traffic Ear, a new-to-the-market sensor pack. Traffic
Ear employs machine learning algorithms, using traffic noise, to disaggregate passing
vehicles based on their class, speed, and engine type. A major benefit of the Traffic Ear is
that it can be mounted on existing street furniture e.g., a lamp post, and can listen to the
traffic and determine the noise intensity of passing vehicle engines without interrupting
the traffic flow.

Traffic Ear was mounted in ten urban locations from April to October 2022 to create a
reliable traffic noise dataset and used the beamforming technique to determine the traffic
flow direction, vehicle speed, and engine noise. The Traffic Ear sensor also incorporates a
camera that can be used to increase the credibility and reliability of the results. The results
obtained from Traffic Ear in terms of the fleet composition and fuel type determination
of the passing vehicles were compared with the results of an automatic number plate
recognition (ANPR) camera, which was installed in the same location. The results revealed
that Traffic Ear determined the fleet composition with a small level of uncertainty (<4%).
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We analysed the variation between the traffic noise and the speed of the passing
vehicles and found significantly linear relationships for different vehicle subsets. We
then used the newly developed method of geospatial and temporal mapping of urban
mobility (GeoSTMUM) to estimate the average speed of the passing vehicles over the entire
urban environment with high spatial and temporal resolutions. GeoSTMUM uses vehicle
telematics (location) data to estimate the urban mobility characteristics, e.g., average vehicle
speed, over extensively detailed geospatial and temporal frameworks. This case study was
set in the West Midlands, which is the second most populated county after Greater London
in the UK. The West Midlands traffic noise map was created from a traffic noise dataset that
was derived from the Traffic Ear campaigns (undertaken in the boroughs of Sandwell and
Birmingham, West Midlands, UK), fleet compositions estimated using an ANPR camera,
and the outputs from the GeoSTMUM methodology. A dominant contribution (almost
70%) of the studied roads in the West Midlands are trunk roads and secondary roads, while
motorways have the highest average vehicle noise levels. The median of the PDF profile
of the traffic noise factor (dB/m) on the motorways was 19.0%, 25.5%, and 15.0% higher
than on the primary, secondary, and trunk roads, respectively, in line with the measured
traffic speeds.

Analysis of the traffic noise levels (on a per-vehicle basis) revealed that urban areas
have a lower average vehicle noise per vehicle during rush hours and weekends than during
off-peak hours and weekdays, respectively. However, it has been shown that the rush/non-
rush hour effect on the traffic noise was greater on the motorways than on the other roads. A
future research direction for the current study may be to incorporate additional information,
such as the traffic flow and road occupancy, to estimate the integrated traffic noise intensity.

This research introduced the Traffic Ear as a low-cost sensor package that can be
deployed as a network at many points in the urban environment, providing an online
picture of urban mobility. It can telecommunicate geospatial data with the cloud, and
thus can be processed and used on the Internet of Things (IoT) platforms. Such cheap
sensors can have wide applications in urban digital twins, where data flow between the
physical and digital twins needs to be established. The future direction of this research is the
feasibility study of the wide applications of such cheap sensors in advanced technologies
and paradigms, such as the IoT and digital twins.
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