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ABSTRACT 

 

This study applied Bayesian-based distributional analyses to examine the shape of response time 

(RT) distributions in three visual search paradigms, varying in task difficulty.  The paradigms 

investigated two common observations in visual search: the effect of display size and variations in 

search efficiency across different task conditions, following a design used in previous studies 

(Palmer, Horowitz, Torralba, & Wolfe, 2011; Wolfe, Palmer, & Horowitz, 2010), where the 

parameters of the response distributions were measured.  The study showed that the distributional 

parameters in an experimental condition can be reliably estimated by moderate sample sizes when 

Monte Carlo simulation techniques are applied.  More importantly, analysing trial RTs, the study 

was able to extract paradigm-dependent shape changes in the RT distributions which could be 

accounted for together using the EZ2 diffusion model. The study shows that Bayesian-based RT 

distribution analyses can provide an important means to investigate underlying cognitive processes 

in search including stimulus grouping and the bottom-up guidance of attention.   
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Modeling visual search paradigm using three-parameter probability functions in a 

hierarchical Bayesian framework   

Distributional analyses are becoming an increasingly popular method of analyzing 

performance in cognitive tasks (e.g., Balota & Yap, 2011; Heathcote, Popiel, & Mewhort, 1991; 

Hockley & Corballis, 1982; Ratcliff & Murdock, 1976; Sui & Humphreys, 2013; Tse & Altarriba, 

2012).  When compared with analyses based on mean performance, distributional analyses 

potentially allow a more detailed assessment of the underlying processes that lead to a final 

decision.  In particular it has long been noted that response time (RT) data frequently show a 

positively skewed, unimodal distribution (Luce, 1986; Van Zandt, 2000).  Distributional analyses 

begin to allow us to decompose such skewed data and to address the processes that contribute to 

different parts of the RT function.  One approach to this is through hierarchical Bayesian modeling 

(HBM), a method that blends Bayesian statistics and hierarchical modeling.  The latter uses separate 

regressors to assess variations across trial RTs collected from a participant by estimating regression 

coefficients, contrary to conventional single-level ANOVA models which directly use RT means as 

dependent variables.  The hierarchical modeling then carries on assessing the coefficient variations 

across participants at the second level, accounting for individual differences.  One direct advantage 

of the hierarchical method is that variation across trials can be described by a positively skewed 

distribution (or other distributions, as analysts wish), in contrast to the Gaussian distribution 

implicitly adopted by a single-level ANOVA model (which works directly on the second level of 

the hierarchical method).  The flexibility to choose an underlying distribution liberates analysts 

from using statistics derived from the Gaussian distribution to represent each participant’s 

performance in an experimental condition, since a Gaussian assumption may not be appropriate 

given positively skewed RT distributions.   

Hierarchical modeling typically relies on point estimation, which itself depends on the 

critical assumption of independence of random sampling – making performance highly sensitive to 

Page 3 of 95 Attention, Perception, & Psychophysics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

Visual Search 4 

 

the sample size.  Hierarchical modeling may perform less than optimally when, relative to the 

number of estimated parameters, trial numbers are too few to account for the parameter 

uncertainties at each hierarchical level (Gelman & Hill, 2007).  This is possible when a non-

Gaussian distribution is used to estimate parameters for each participant separately in a hierarchical 

manner.  For example, a data set with ten participants, when using an ex-Gaussian distribution 

(fully described by three parameters), estimates simultaneously at least 30 (3 × 10) parameters, each 

of which should be derived from a distribution with an appropriate uncertainty description (i.e., 

parameters for variability).  This is assuming that only one experimental condition is tested.  It 

follows that small trial numbers within an experimental condition may result in biased uncertainty 

estimates, which render the effort of adapting hierarchical modeling in vain.  Bayesian statistics is 

one of the solutions to the problem of point estimation inherent in the conventional approach.  

Building on the nature of the hierarchical structure of parameter estimations, Bayesian statistics 

conceptualize each parameter at one level as an estimate from a prior distribution.  Based on Bayes’ 

theorem, the outputs of prior distributions can then be used to calculate posterior distributions, 

which are conceptualized as the underlying functions for the parameters in the next level.  By virtue 

of Monte Carlo methods, HBM is able to estimate appropriately the uncertainty at each level of the 

hierarchy, even when trial numbers are limited (Farrell & Ludwig, 2008; Rouder, Lu, Speckman, 

Sun, & Jiang, 2005; Shiffrin, Lee, Kim, & Wagenmakers, 2008).  Note that Bayesian statistics here 

are used to link variations in the trial RTs within an observer with the variations at aggregated RTs 

between observers.  This differs from applying Bayesian statistics to account for how an observer 

identifies a search target by conceptualizing that her prior experiences (e.g., search history; modeled 

the RTs in N
th

-1 trial as prior distributions) influence the current search performance (modeled the 

RTs in N
th

 trial as posterior distributions).   

HBM has been used previously in cognitive psychology to examine, for example, the 

symbolic distance effect – reflecting the influence of analog distance on number processing (Rouder 

et al., 2005; other examples see Matzke & Wagenmakers, 2009; Rouder, Lu, Morey, Sun, & 
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Speckman, 2008).  In symbolic distance studies observers may be asked to decide if a randomly 

chosen number is greater or less than 5.  Observers tend to respond more slowly when the number is 

close to the boundary (5), compared to when the number is far from it.  One interpretation based on 

mean RTs is that an additional process of mental rechecking is required when numbers are close to 

5.  The result from HBM however suggests a further refinement for this interpretation by showing 

that the locus of effect resides in the scale (rate), rather than the shape, of RT distributions.  A scale 

effect, interpreted together with other symbolic distance findings using a diffusion process or a 

random walk, implies a general enhancement of response speed, including perceptual and motor 

times, as opposed to a change merely in a late-acting cognitive process such as mental rechecking 

(Rouder, Lu, Speckman, Sun, & Jiang, 2005).   

Application to visual search 

The present study applied HBM and distributional analyses to account for the RT 

distributions generated as participants carried out visual search.  To do this, we compared 

participants’ performances under 3 search conditions varying in their task demands: a feature search 

task, a conjunction search task, and a spatial configuration search task.  A typical visual search 

paradigm requires an observer to look for a specific target.  The “template” (Duncan & Humphreys, 

1989) set-up for the target can act to guide attention to stimuli whose features match those of the 

expected target.  Depending on the relations between the target and the distractors, and also the 

relations between the distractors themselves (Duncan & Humphreys, 1989), performance is affected 

by several key factors, including the presence or absence of the target, and the similarity between 

the target and the distractor and the similarity between distractors (for a computational 

implementation of these effects based on stimulus grouping see Heinke & Humphreys, 2003; 

Heinke & Backhaus, 2011). 

The display size effect relates to how performance is affected by the number of distractors in 

the display.  Effects of display size are frequently observed in tasks where target-distractor 
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similarity is high and distractor-distractor similarity low (conjunction search being a prototypical 

example; Duncan & Humphreys, 1989).  In addition, the display size × RTs function shows a slope 

ratio of absent trials to present trials slightly greater than 2, which varies systematically with the 

types of search task, from efficient to inefficient (Wolfe, 1998).  

To date these effects have mostly been studied by examining mean RTs across trials, with 

the variability across trials considered as uncorrelated random noise (though see, for example, Ward 

& McClelland, 1989, who used across-participant variation to examine how search might be 

terminated).  The assumption of across trial random noise unavoidably sacrifices the information 

carried by response distributions, which may help to clarify underlying mechanisms (e.g., the 

influence of top-down processing on search).  In contrast to this, hierarchical distributional analyses 

set out to use the variability at each possible level of analyses as well as the mean tendency across 

responses, and through this, they relax the assumption of an identical, independent Gaussian 

distribution underlying trial RTs.  This then permits trial RTs to be accounted for by a positively 

skewed function.  The reasons we adopt HBM (see Rouder et al., 2005 as well as Rouder & Lu, 

2005) in the present study are because: (1) it harnesses the strength of Bayesian statistics which take 

into account the evolution of the entire response distributions from trial RTs in one participant to 

aggregated RTs across all participants, (2) it uses the dependencies between each level of response 

as crucial information for identifying possible differences between the experimental manipulations, 

and (3) it takes into account the differences between individual performances.  Notably, the 

response variability across different trials is no longer assumed to constitute random noise but rather 

it is treated as crucial information that must be modeled. 

Our study examined the effectiveness of distributional analyses and the HBM approach for 

understanding performance in 3 benchmark visual search tasks, which were modified from Wolfe, 

Palmer and Horowitz (2010; a different set of analyses was reported also in Palmer et al, 2011; also 

see a computational model aiming at clarifying the mechanism of search termination in Moran, 
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Zehetleitner, Müller, & Usher, 2013).  In their paradigm, an observer searched for an identical 

target throughout one task - either a red vertical bar in the feature and conjunction tasks or a white 

digital number 2 in the spatial configuration task.  The distractors, either a group of homogeneous 

green vertical bars or a mixture of green vertical and red horizontal bars, set the feature and 

configuration tasks apart.  In the feature task, the homogeneous distractors enabled the target’s color 

to act as the guiding attribute (Wolfe & Horowitz, 2008) making search efficient.  In the 

conjunction task, and possibly also in the spatial configuration task, a further stage of processing 

might be required in order to find the target amongst the distractors as no simple feature then 

suffices.  All search items were randomly presented on an invisible 5 by 5 grid.  One of the crucial 

contributions derived from previous work using RT distributions is that observers set a threshold of 

search termination depending not only on prior knowledge but also on the outcome of prior search 

trials (see Lamy & Kristjánsson, 2013, for a review).  As a consequence, instead of always 

exhaustively searching every item in a display, an observer may adapt the termination threshold 

dynamically (Chun & Wolfe, 1996).  A second contribution has been to show that variations in the 

display size can have relatively little impact on the shape of the RT distribution (Palmer et al., 2011; 

Wolfe et al., 2010) and effects on the shape of the distribution only emerge at the large display sizes 

(i.e., 18 items) when the task difficulty is high (i.e., on target absent trials in the spatial 

configuration task; Palmer et al., 2011; though see Rouder, Yue, Speckman, Pratte, & Province, 

2010, for a contrasting result).  

The 3-parameter probability functions 

Our study adopted four three-parameter probability – lognormal, Wald, Weibull and 

gamma
1
 – functions (Johnson, Kotz, & Balakrishnan, 1994) to estimate RT distributions using the 

HBM.  Differing from the frequently used ex-Gaussian function, the 3-parameter probability 

                                                

1
 The functions describe a distribution with the same set of parameters, shape, scale and shift.  Because comparing to 

other functions the previous analysis (Palmer et al., 2011) reported a worse χ
2
 fit of Weibull function, we constructed 

the comparable 3-parameter HBM to test if other functions gain a substantial better fit using hierarchical Bayesian 

approach than the Weibull function. We thank Evan Palmer for this suggestion. 
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functions describe an RT distribution with the parameters, shift, scale and shape that characterize 

the pattern of a distribution.  An increase in the scale parameter shortens the central location a 

distribution and thickens its tail.  This implies that the responses originally accumulated around the 

central part become slower and thus been moved to the tail side.  An increase in the shape 

parameter makes the tail thinner, because those originally slow responses are moved from the tail to 

the central location.  Hence the increase of the shape parameter not only changes the kurtosis, 

skewness, and variation, but also likely moves the measures of the central location.  An increase of 

shift parameter preserves the general pattern of a distribution.  That is, an identical curve is moved 

rightwards (see Figure 1 for an illustration).  

-------------------------------------------------- 

Figure 1 should be inserted around here 

-------------------------------------------------- 

The study assumed that changes in RT distributions reflect unobservable cognitive processes 

(a similar argument also made by Heathcote et al., 1991).  As illustrated in Figure 1, the factors that 

affect quick, moderate and slow responses evenly will show a selective effect on the shift 

parameter.  The effect on the scale parameter will be from the factors that alter only the proportion 

of responses that are moved from the central location to the tail part of a distribution (or vice versa).  

Lastly, the effect on the shape parameter may result from the factors that affect both the central and 

tail parts of a distribution and effectively increase the response density between them.  

The visual search processes that may change RT distributions include, but not exclusively, 

the clustering process of homogeneous distractors, the matching process of a search template with a 

target and distractors, and the process of response selection (see Duncan & Humphreys, 1989; 

Heinke & Humphreys, 2003; Heinke & Backhaus, 2011; Palmer, 1995).  Some previous work (e.g., 

Rouder et al., 2005) suggests interpreting Weibull-based analyses as reflecting psychologically 

meaningful processes.  For example, the shift, scale and shape parameters of an RT distribution 

have been suggested to link respectively with the irreducible minimum response latency 
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(Dzhafarov, 1992), the speed of processing, and high-level cognition (e.g., decision making).  This 

is similar to some reports applying distributional analyses on RT data, attempting to link 

distributional parameters with psychological processes directly (e.g., Gu et al., 2013; Rohrer & 

Wixted, 1994).  Although it is ambitious to posit links between distribution parameters and 

underlying psychological processes, a better strategy is to take advantage of the descriptive nature 

of distributional parameters (Schwarz, 2001), which permit a concise summary of how a 

distribution varies in response to a particular experimental manipulation.  The distributional 

parameters describe how an RT distribution changes in three different separable aspects (shift, scale 

& shape).  This enables researchers to examine RT data as an entirety, building on top of what can 

be provided by an analysis of mean RTs.  However, one potential pitfall is how the distributional 

parameters can be understood with regard to unobservable psychological mechanisms (e.g., the 

visual search processes we investigated here).  We explored a possible avenue to resolve this issue 

by applying a plausible computational model to understand the same set of RT data (a similar 

strategy was reported recently in Matzke, Dolan, Logan, Brown, & Wagenmakers, 2013 and 

suggested also in Rouder et al., 2005).         

To understand how our distribution-based HBM correlates with underlying cognitive 

processes, we compared the HBM parameters with those estimated from the EZ2 diffusion model 

(Wagenmakers, van der Maas, & Grasman, 2007; Wagenmakers, van der Maas, Dolan, & Grasman, 

2008) which is a closed-form and simplified variant of Ratcliff's diffusion model (1978).  The 

diffusion model conceptualizes decision-making in a two-alternative forced choice (2AFC) task as a 

process of sensory evidence accumulation.  The accumulation process is described through an 

analogy in which a particle oscillates randomly on a decision plane where the x axis represents the 

lapse of time and the y axis represents the amount of sensory evidence.  When the amount of the 

evidence surpasses either the positive or negative decision boundaries of the y axis, a decision is 

reached and the time the process takes is the decision RT.  The merits of the diffusion model are 

that it directly estimates three main cognitively-interpretable processes – the drift rate, the boundary 
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separation, and the non-decision component – three parameters that turn the random oscillation into 

a noisy deterministic process.  The drift rate is associated with the speed to reach a decision 

threshold (Ratcliff & McKoon, 2007), which is determined by the correspondence between the 

stimuli (search items) and the memory set (search template).  In the case of template-based visual 

search, the drift rate correlates with the matching of the template to the search items; thus, it is 

conceivable that the shape of an RT distribution will correlate with the drift rate, if the processing of 

template matching influences an RT shape.  The boundary separation, on the other hand, may 

reflect how conservative a participant is.  Liberal observers may reach a conclusion earlier than 

conservative observers on the basis of the same amount of evidence if their decision criterion is set 

lower.  The non-decision component is a residual time, calculated by subtracting the decision time 

(estimated by the diffusion model) from the total (recorded) RT; this may reflects the time to 

encode stimuli (perceptual times) together with the time to produce a response output (motor times) 

(Ratcliff & McKoon, 2007).   

The diffusion model has been applied to various 2AFC paradigms and so far both 

psychophysical and neurophysiological studies indicate its usefulness to probe the two latent 

decision-making processes and the decision-unrelated times (e.g., Cavanagh et al., 2011; Towal, 

Mormann, & Koch, 2013; see Ratcliff & McKoon, 2007 for a review).  The EZ2 model is one of 

the simplification types (Grasman, Wagenmakers, & van der Maas, 2009; though see a review for 

more complicated statistical decision models of visual search in Smith & Sewell, 2013), which 

provides a coarse and efficient estimation for the two important aspects of search decision: decision 

rate and decision criterion.  By dissecting the joint data of RT and accuracy into parts that are 

influenced by decision-related processes or by non-decision-related processes, the EZ2 model is 

able to account for the changes in RT distributions in a psychologically meaningful way.  For 

instance, the factor that affects the non-decision process should reflect on the shift parameter that 

hardly changes the general pattern of an RT distribution, because its effect would be on all ranges of 

a distribution.  If most responses in a distribution are delayed equally, the shift parameter will also 
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increase selectively.  On the other hand, the factor that delays the decision-related processes may 

consistently delay only the responses from the quick to the central band of a RT distribution, so it 

will result in an increase of the scale parameter.  That is, as the left-most panel in Figure 1 shows, a 

scale increase shortens a distribution and thickens its tail.  Alternatively, if a decision-related factor 

delays the quick to central band of a RT distribution, but speeds up the very slow band of responses, 

it will result in a shape increase.  

The diffusion model was used to complement the distributional analysis.  The three 

diffusion processes – the evidence accumulator, the boundary separation, and the non-decision 

process – are operated at the stage of stimulus comparison in a search trial.  We used the EZ2 model 

to estimate the means across trials of the diffusion parameters in each condition.  The Weibull HBM 

on the other hand summarizes the shapes of RT distributions in each condition.  The RT 

distributions thus are the aggregated outputs from the diffusion processes.  The dual-modeling 

approach, on the one hand, assumes one search response is driven by the diffusion process, and on 

the other, all the responses in one experimental condition aggregate to form an RT distribution, 

described by the Weibull parameters.  Even though the Weibull model takes only correct trials into 

account, the EZ2 estimations were still be able to account for the descriptive model, because the 

benchmark paradigms produced high accuracy responses.  

In summary, this study examined three questions related to the perceptual decision making 

during visual search.  The first question is whether the demands of search task affect the drift rate of 

sensory evidence accumulation related to decision speed and how this influence manifests in an RT 

distribution with regard to its shift and shape. The three benchmark search tasks here likely required 

various high-level cognitive processes, such as focusing attention to improve the quality of sensory 

evidence and binding multiple features to match a search template. Particularly, the spatial 

configuration search task has been showed highly inefficient (Bricolo, Gianesini, Fanini, Bundesen, 

& Chelazzi, 2002; Kwak, Dagenbach, & Egeth, 1991; Woodman & Luck, 2003). It is reasonable to 
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expect this particular search task changes the shape of the RT distribution drastically. The second 

question examined whether the display size affects the shape of the RT distribution. As the stage 

model of information processing (Rouder et al., 2005) presumes, the shape of an RT distribution is 

likely affected specifically by late-stage cognitive process. If the increase of search item in a display 

merely adds burden on early perceptual process, we should expect no influences from the display 

size on any decision parameters and thus the RT shape. The third question examined the hypothesis 

of group segmentation and recursive rejection processes in search (Humphreys & Müller, 1993).  

Specifically, segmentation and distractor rejection may involve both late-stage cognitive processes 

(binding multiple search items as a group), and early-stage perceptual processes (recursively 

encoding sensory information). This may in turn affect the decision and non-decision parameters 

and therefore, manifest as an interaction effect in the shape of the RT distributions. 
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Method 

Participants 

Forty volunteers took part, aged 18 to 22 years old (Mean ± SE = 18.9 ± 1.01; 33 females; 5 

left-handers).  All volunteers reported normal or corrected-to-normal vision and signed a consent 

form before taking part in the study.  One participant was excluded from the analysis because of 

chance-level responses.  The procedure was reviewed and granted permission to proceed by the 

Ethics Review Committee at the University of Birmingham. 

Design 

The study used a similar design to Wolfe et al. (2010) with a slight modification.  

Specifically, we used a circular display layout with a viewing area of 7.59 × 7.59 degrees of visual 

angle, which allocates 25 locations to hold search items.  Wolfe and colleagues (2010) used a 

viewing area of 22.5 × 22.5 degrees of visual angle (also with 25 search locations) and each search 

item subtended around 3.5 to 4.1 visual angle.  Relative to Wolfe et al.'s study, our setting (i.e., 

using a similar number of search items presented in a smaller viewing area) rendered a high density 

of homogeneous distractors more likely when display sizes were large.  

-------------------------------------------------- 

Figure 2 should be inserted around here 

-------------------------------------------------- 

 The study investigated two factors, the display size (3, 6, 12, & 18 items) and whether the 

target was present or absent, using a repeated-measures, within-participant design.  One group of 

participants (N = 20) took part in the feature and conjunction search tasks, and a second group took 

part in the spatial configuration search task (N = 20).  To minimise one of the possible experimenter 

biases related to the analysis of null hypothesis significance testing (NHST; Kruschke, 2010), the 

study set a target sample size (20 in each group) before collecting data. The target sample size was 

determined based on commonly used sample sizes (approximately 5 to 20 participants) in visual 
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search literature.  We did not analyze the data from participants who withdrew and completed only 

part of the tasks; these participants were replaced with other individuals. 

In the feature search task, each observer looked for a dark square amongst varying numbers 

of gray squares (both were 0.69 × 0.69 visual angle).  In the conjunction search task, observers 

looked for a vertical, dark bar (0.33 × 0.96 visual angle) amongst two types of distractors, vertical 

gray bars (0.33 × 0.96 visual angle) and horizontal dark bars (0.96 × 0.33 visual angle).  In the 

spatial configuration search task, each observer looked for the digit 2 amongst digit 5s (both are 

0.33 × 0.58 visual angle) (see Figure 1 for one of the example trials in each task). 

Before the search display was presented, a 500-ms fixation cross appeared at the center of 

the screen, followed by a 200-ms blank duration.  A trial was terminated when the observer pressed 

the response key.  The search tasks were programmed by using PsyToolkit (Stoet, 2010), complied 

by GNU C compiler on a PC equipped with Linux hard real-time kernel 2.6.31-11-rt and NVidia 

GeForce 8500 GT graphic card, which rendered the visual stimuli on an invisible circle in black or 

gray color onto a gray background (RGB, 190, 190, 190). All stimuli were presented on a Sony 

CPD-G420 CRT monitor at the resolution of 1152 × 864 pixels with a refresh rate set at 100 Hz. 

The visible area contained the entire screen (i.e., 1152 × 864 pixels), but the relevant stimuli were 

all drawn within the viewing area of 7.59 × 7.59 visual angle. Volunteers were asked to give 

speeded responses without compromising their accuracy and responses were made using a Cedrus 

RB-830 response pad.  Each volunteer completed 800 trials, where one experimental condition 

contained 100 trials.  The volunteers carrying out the feature and conjunction search tasks 

completed the tasks in a counter-balanced sequence. 

Hierarchical Bayesian Model (HBM) 

The framework of the HBM is based on Rouder and Lu’s R code (2005), which used a 

Markov Chain Monte Carlo (MCMC) algorithm to implement hierarchical data analysis assuming a 

three-parameter Weibull function. We modified Rouder and Lu’s code into an OpenBUGS-based R 
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program by adapting Merkle and van Zandt’s (2005) WinBUGS code to run a Weibull hierarchical 

BUGS model (Lunn, Spiegelhalter, Thomas, & Best, 2009), which was linked with R codes by 

R2jags (Sturtz, Ligges, & Gelman, 2005) and JAGS (Plummer, 2003).  Readers who are interested 

in the programming details could visit the authors’ GitHub at https://github.com/yxlin/HBM-

Approach-Visual-Search. 

The Weibull function was used to model the individual RT observations, assuming that each 

of them was a random variable generated by the Weibull function.  The function comprises three 

parameters, shape (i.e., β, describing the shape of a RT distribution), scale (i.e., θ, describing the 

general enhancement of the magnitude and variability in a RT distribution), and shift (i.e., ψ, 

describing the possible minimal response time of a RT distribution). The β parameter was then 

modelled by a γ distribution with two hyper-parameters, η1 and η2, and the θ and ψ parameters 

were modelled by two uniform distributions. The former (θ) was initialized as an un-informative 

distribution, whereas the latter (ψ) was set to the range of zero to minimal RTs for the respective 

condition and participant, because the ψ parameter assumed a role as the non-decision component.  

The hyper-parameters underlying the γ distributions were then modelled by other γ distributions 

with designated parameters, following Rouder and Lu (2005).  Likewise, we replaced the Weibull 

function with the 3-parameter gamma, lognormal, and Wald functions (Johnson, Kotz, & 

Balakrishnan, 1994), keeping similar prior parameter setting.  

  In the HBM, correct RTs were modelled for each participant separately in each condition. 

The HBM ran 3 simultaneous iteration chains.  Each of them iterated 105000 times and sampled 

once every 4 iterations to alleviate possible auto-correlation problems.  The first 5000 samples were 

considered to be arbitrary and discarded (i.e., burn-in length). The same setting was applied both to 

our data and to Wolfe et al.’s data (2010) to help a direct comparison. 

Diffusion model 

The analyses also used Grasman, Wagenmakers and van der Mass’s (2009) EZ diffusion 
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model, implemented in R’s EZ2 package, to estimate the drift rate, boundary separation and non-

decision component separately for each participant in each condition.  Following the assumption of 

the EZ diffusion model (Wagenmakers et al., 2008), the across-trial variability associated with the 

drift rate, boundary separation and non-decision components was held constant.  Due to the high 

accuracy rate, the analyses applied the edge correction procedure
2
 following Wagenmakers et al. 

(2008; see also other possible solutions in Macmillan & Creelman, 2005) for the conditions where 

an observer committed no error. Present or absent responses were modeled separately, using the 

Simplex algorithm (Nelder & Mead, 1965) to approach a converging estimation. The initial input 

values to the EZ2 model was set according to the paradigm and the literature: (1) the paradigm 

permitted only two response options, either the target was present or absent and (2) the search slope 

for present-to-absent ratio was slightly greater than 2 (Wolfe, 1998). Accordingly, the initial values 

of the drift rates for present and absent responses, were respectively set at 0.5 and 0.25. The non-

decision component and the boundary separation were arbitrarily, but reasonably, set at 0.05 and 

0.09. The initial values are simply educated guesses provided for the algorithm approaches 

reasonable estimations.   

Both for the HBM and the diffusion model, the parameters were estimated as per-condition 

per-participant basis, so data from each participant contributed 24 (3 × 2 × 4) data points for each 

parameter.  The analyses assessed the variability across individuals in visually-weighted regression 

lines, using a non-parametric bootstrapping procedure, implemented by Schönbrodt (2012) for 

Hsiang’s visually-weighted regression method (2013)
3
. 

  

                                                

2
 When an observer make no error response (i.e., 100% accuracy, Pc), the accuracy is replaced with a value that 

corresponds to one half of an error, following the formula, Pc = 1 – (1/2n).    
3
 The technique was discussed and implemented in the blogsphere before it was formally published in the 2013 

technical report. 
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Results 

We report the data in four sections.  Firstly, we report standard search analyses, using mean 

measures of performance for individuals across trials.  Next, we present the distributional analyses, 

using box-and-whisker plots, probability density plots with quantile-quantile subplots, and 

empirical cumulative density plots, to recover the RT distributions. The distributions from each 

condition were then compared.  Thirdly, the standard search analyses and the distributional analyses 

were then contrasted with previous findings reported by Wolfe et al. (2010) and by Palmer et al., 

(2011)
4
.  In the last section, we report the analyses, using the HBM and the EZ2 diffusion model. 

These include the data for the Weibull and the diffusion model parameters, presented separately, 

with visually-weighted non-parameter regression plots.  From this we go on to discuss the factors 

contributing to the RT shape, shift and scale parameters, based on how these parameters change 

across the different search conditions and contrast them with the decision parameters from the 

diffusion model.  The appendix presents a simulation study to examine if Weibull HBM estimates 

of distributional parameters are reliable with a small sample size and that Bayesian diagnostics 

verify the reliability of Markov chain Monte Carlo procedure.   

We focus on the data from target present trials because absent trials likely involve a 

different set of decision processes (one possibility is an adaptive termination rule, suggested by 

Chun & Wolfe, 1996; alternatively see a recent computational model in Moran et al., 2013).  A 

decision in an absent trial is reached, possibly based on, for example, a termination rule that an 

observer deems the collected sensory evidence is strong enough to refute the presence of a target. 

Although it is likely an observer, in a present trial, may also adopt an identical termination rule to 

infer the likelihood of the target presence, he/she would rely on the stronger sensory evidence 

extracted from a target than those from non-targets. This is likely when a target image is physically 

available in a present trial and target foreknowledge is set up in an attentional template.  Thus, the 

                                                

4 We thank Jeremy Wolfe and Evan Palmer for their permission. 
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main aim of report is to examine the role of factors such as target-distractor grouping effect on the 

distribution of target present responses in search.  We nevertheless append also standard analyses 

for absent trials in all the figures.     

Mean RTs and error rates 

As is typically done for the aggregation RT analyses, we trimmed outliers by defining them 

as (1) incorrect responses or correct responses outside the range of 200 ms to 4000 ms for feature 

and conjunction searches and 200 ms to 8000 ms for spatial the configuration search (though see, 

Heathcote et al., 1991, for the downside of trimming RT data).  The trimming scheme was the same 

as in Wolfe et al. (2010). This outlier trimming resulted in a rejection rate of 9.2%, 12%, and 7.2%, 

of the responses respectively for the three tasks.  After excluding the outliers, the data were then 

averaged across the trials within each condition, resulting in 76 averaged observations for the 

feature and conjunction searches and 80 observations for the spatial configuration search. All 

outliers were defined as error responses. 

A two-way ANOVA
5
 showed reliable main effects of display size, F(3, 165) = 176.107, η

2
p 

= .762, p = 1 × 10
-13

, and search task, F(2, 55) = 108.385, η
2

p = .798, p = 1 × 10
-13

, as well as an 

interaction between these factors, F(6, 165) = 68.633, η
2
p = .714, p = 1 × 10

-13
.  The spatial 

configuration search (RTmean = 913 ms) required reliably longer response times than the conjunction 

search task (mean difference = 327 ms, 95% CI, 244~411 ms, p = 5.89 × 10
-13

), which in turn had 

longer mean RTs (586 ms) than the feature search task (428 ms; Mean difference = 158 ms, 95% CI 

= 74~243 ms, p = 6.68 × 10
-5

).       

Separate tests for the feature search task showed a significant display size effect, F(3, 54) = 

7.494, η
2
p = .294, p = 2.78 × 10

-4
.  RTs were slower for display sizes 18 and 12 when compared 

                                                

5
 The three task levels were treated as a between-participant factor for straight-forward presentation, although the levels 

of feature and of conjunction search are within-participant factor.  Even under this calculation (leaving more variation 

unexplained), the RTmean amongst three tasks still showed reliable differences.        
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with display size 3 (t = 6.37, p = 3.22 × 10
-5

, 95% CI, 11.61~31.82 ms; t = 4.03, p = 4.67 × 10
-3

, 

95% CI, 4.43~28.95 ms).  There was a reliable main effect of display size also for conjunction 

search, F(3, 54) = 103.15, η
2

p = .851, p = 1 × 10
-13

, and spatial configuration search tasks, F(3, 57) = 

113.8, η
2

p = .857, p = 1 × 10
-13

. Post-hoc t tests for the conjunction task showed reliable differences 

across all display sizes (510, 552, 615 and 667 ms), p = 2.63 × 10
-7

, 9.70 × 10
-9

, 2.67 × 10
-9

, 4.98 × 

10
-6

, 6.08 × 10
-8

, 4.19 × 10
-5

 (3 vs. 6, 3 vs. 12, 3 vs. 18, 6 vs. 12, 6 vs. 18, & 12 vs. 18; Bonferroni 

correction for multiple comparisons).  Similar effects were present for the spatial configuration 

search too (679 ms, 809 ms, 1011 ms vs. 1154 ms), p = 5.14 × 10
-7

, 5.15 × 10
-9

, 4.10 × 10
-9

, 1.42 × 

10
-7

, 1.09 × 10
-8

, 2.33 × 10
-7

 (3 vs. 6, 3 vs. 12, 3 vs. 18, 6 vs. 12, 6 vs. 18, & 12 vs. 18; Bonferroni 

correction for multiple comparisons; Figure 3).  

The error rates showed a similar pattern as the average RT, consistent with there being no 

trade-off between the speed and accuracy of responses.  A two-way ANOVA revealed reliable main 

effects of display size, F(3, 165) = 38.09, η
2
p = .409, p = 1 × 10

-13
 and search task, F(2, 55) = 5.75, 

η
2

p = .173, p = .005 as well as their interaction, F(6, 165) = 10.867, η
2
p = .283, p = 3.52 × 10

-10
.  

The spatial configuration search (error ratemean = 11.80 %) was more difficult than the conjunction 

search task (8.62 %), but the difference did not exceed significant level after Bonferroni correction 

(the difference of mean error rate = 3.18 %, 95% CI, -1.774~8.134 %, p = .356). The conjunction 

search task in turn was more difficult than the feature search task (5%; the difference of mean error 

rate = 3.621 %, 95% CI = -1.396~8.628 %, p = .241; again the difference was not significant). The 

only reliable difference of error rates was between the spatial configuration search and the feature 

search tasks (the difference of mean error rate = 6.801 %, 95% CI = 1.847~11.755 %, p = .004)    

For the feature search, the effect of display size was not reliable, F(3, 54) = 1.517, η
2
p 

= .078, p = .221, while there was a reliable effect of display size for both the conjunction task, F(3, 

54) = 6.075, η
2
p  = .252, p = .001, and the spatial configuration task, F(3, 57) = 41.426, η

2
p= .686, p 

= 1.24 × 10
-13

 (lower panel in Figure 3).  Post-hoc t tests indicated that in the conjunction search 
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task participants committed more errors at display size 18 (13.05 %) than at display sizes 12 

(8.84 %; p = .028) and at 6 (6.79 %; p = .043, Bonferroni correction for multiple comparisons).  In 

the spatial configuration search, there were differences across all display size pairings, p = 5.90 × 

10
-5

, 9.85 × 10
-6

, 3.58 × 10
-4

, 6.80 × 10
-6

, & 1.21 × 10
-5

 (3 vs. 12, 3 vs. 18, 6 vs. 12, 6 vs. 18, & 12 

vs. 18; Bonferroni correction for multiple comparisons), except for display sizes 3 and 6 (p = .161). 

-------------------------------------------------- 

Figure 3 should be inserted around here 

-------------------------------------------------- 

Error analysis 

To test if the shape change in an RT distribution is due to an increase of miss errors (Wolfe 

et al., 2010), we also analyzed two types of error, miss (participants pressed the absent key in target 

present trials) and false alarm (participants pressed the present key in target absent trials). 

A two-way ANOVA at the miss error rate showed reliable main effects of display size, F(3, 

165) = 38.08, η
2
p = .409, p = 1 × 10

-13
 and search task, F(2, 55) = 5.75, η

2
p = .173, p = .005 as well 

as an interaction between these factors, F(6, 165) = 10.85, η
2
p = .283, p = 3.62 × 10

-10
.  Both the 

spatial configuration, F(3, 57) = 41.37, η
2
p = .685, p = 1.25 × 10

-13
, and the conjunction search task, 

F(3, 54) = 6.08, η
2
p = .253, p = .001, showed increasing miss errors as the display size increased, 

but not the feature search task, F(3, 54) = 1.52, η
2

p = .078, p = .221.  False alarms showed only a 

display size effect, F(3, 165) = 3.94, η
2
p = .067, p = .010.  The reliable effect of false alarm errors 

was observed in both feature, F(3, 54) = 2.81, η
2
p = .135, p = .048 and conjunction search, F(3, 54) 

= 2.96, η
2

p = .141, p = .040, but not in spatial configuration search, F(3, 57) = 1.14, η
2
p = .057, p 

= .340 (Figure 4).   

-------------------------------------------------- 

Figure 4 should be inserted around here 

-------------------------------------------------- 
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Distributional analysis 

Figure 3 shows also the distributions of the means of RTs and error rates across the display 

sizes and tasks.  Three noticeable characteristics are evident.  Firstly, performance in the feature 

search task changed little across the display sizes. Secondly, in the two inefficient search tasks 

(conjunction & spatial configuration), increases in the display size not only delayed central RTs 

within the distribution (i.e., the estimates that median and mean results aim to capture), but there 

was also a shift in the entire response distribution.  Thirdly, the increases in task difficulty affected 

not only central RTs but also the variability of the distribution. There were also some differences 

between the conjunction and spatial configuration tasks.  The widely distributed RTs for the spatial 

configuration task elongated the central measures of performance as well as the long latency 

responses.  Notably, the difference between the effects of the different display sizes at the long end 

of the response distribution was exacerbated for the spatial configuration search task. 

 The box-and-whisker plot for the error rates showed a similar pattern across the display 

sizes to that for the mean of the RT data, although the effects were relatively modest in magnitude.  

-------------------------------------------------- 

Figure 5 should be inserted around here 

-------------------------------------------------- 

Figure 5 shows the RT distributions at the different display sizes and search tasks. The 

distributions were constructed based on the mean RTs (Nfeature and Nconjunction = 19 and Nspatial = 20; 

464 data points).  The feature search showed a leptokurtic (i.e., peaky) distribution and the quantile-

quantile plots indicated clear deviations at both ends of the distributions.  The conjunction and 

spatial configuration search tasks at the small display sizes, however, showed only moderate signs 

of violation of the normality assumption, though at the large display sizes, the distributions were 

platykurtic (flat) and the long RT latencies showed signs of deviation from a  normal distribution.   
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--------------------------------------------------------------- 

Figure 6 & Figure 7 should be inserted around here 

--------------------------------------------------------------- 

   Figure 6 shows the RT distributions and quantile-quantile plots. The distributions were 

constructed based on the trial RTs (43485 data points). Each density line represents the data from 

one participant. Evidently, the normality assumption was untenable across all the conditions.  All 

sub-plots showed that the data clearly deviated from the theoretical normal lines.  It is also apparent 

that individual differences play a more important role for the conjunction and spatial configuration 

tasks than for the feature task, judging by the diversity of the density lines in the two difficult search 

tasks.    

Figure 7 shows the empirical cumulative distributions, drawn based on trial RTs (43485 and 

109036 data points in our and Wolfe et al.’s data sets, respectively).  The contrasting RTs  across 

the display sizes confirm Wagenmakers and Brown’s (2007) analysis that, in inefficient relative to 

efficient search tasks, the RT standard deviation, together with the RT mean, play crucial roles in 

describing visual search performance.  Specifically, the elongated cumulative distributions suggest 

that the more items are present, the more likely an observer will produce a response that falls in the 

right tail of the RT distribution.  This observation again cautions against a reliance solely on using 

the measurement of the central location when investigating visual search performance.   

Contrasts with prior data   

We compared our data with those of Wolfe et al.’s (2010).  A comparison of the mean RT 

and error rates indicated similar patterns across the studies (Figure 3), as is suggested also by the 

probability and cumulative density plots, shown in Figure 7 -8. 

With only a small number of participants, it is difficult to rule out the normality assumption 

when examining the mean RTs (see sub-plots in Figure 8), but the data for the trial RTs reveal a 

skewed distribution (Figure 9).     
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---------------------------------------------------------------------------- 

Figure 8 & Figure 9 should be inserted around here 

----------------------------------------------------------------------------  

The HBM estimates 

In this section, we firstly presented each parameter separately for the respective ANOVA 

results, and we compared the data for the three search tasks at the different display sizes, modeled 

by the HBM.  Next, we conducted a non-parametric bootstrap regression to assess the relationship 

between the display size and the difficulty of the search task.  The analysis focused on target-

present trials.  We used deviance information criterion (DIC) to evaluate the function fit to the data.  

In general, the small the DIC, the better fit (Lunn, Jackson, Best, Thomas, & Spiegelhalter, 2013).  

Although the lognormal and Wald functions showed the smallest DIC, the DICs across the four 

fitted functions were close.  Moreover, the diagnostic of the gamma HBM suggests its posterior 

distributions did not converge.  Excluding the non-converged gamma function, we reported 

arbitrarily the estimates from the Weibull HBM, given that prior work shows this provides a highly 

robust  account, not strongly moderated by noise in the data (see a specific pathology of the Weibull 

function in Rouder & Speckman, 2004, pp 424-425; and how HBM resolves this problem in Rouder 

et al., 2005, pp. 203).     

-------------------------------------------------- 

Table 1 should be inserted around here 

-------------------------------------------------- 

Shift.  A two-way (task × display size) ANOVA
6
 revealed a significant effect of task, F(2, 

55) = 129.748,  p = 1.0 × 10
-13

, η
2
p = .825, and display size, F(3, 165) = 9.031,  p = 1.43× 10

-5
, η

2
p  = 

.141, but there was no reliable interaction, F(6, 165) = 1.14, p = .34, η
2
p = .040.  Post-hoc t tests 

showed that the feature search had a smaller shift value than conjunction search, which also had a 

                                                

6
 For the same reason as footnote 3, we analysed the three level of task as a between-participant factor. 
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smaller value than the spatial configuration search (246 ms, 342 ms, vs. 436 ms; p = 2.37 × 10
-10

 , & 

2.83 × 10
-10

).   

The plot in the upper panel of Figure 10 shows two important characteristics for target 

present trials.  First, the non-parametric regression lines show that the shift parameter varies little 

across the participants in the four display sizes within a task. Second, each task demonstrates a 

different magnitude of the shift parameter, suggesting that varying the search process gives more 

weight to this parameter than varying display sizes.   

Scale.  The two-way (task × display size) ANOVA was significant for the task, F(2, 55) = 

161.70,  p = 1.0 × 10
-13

, η
2

p  = .855, the display size, F(3, 165) = 39.75,  p = 1.0 × 10
-13

, η
2
p  = .420, 

and for the task × display size interaction, F(6, 165) = 19.31, p =  1.0 × 10
-13

, η
2
p = .413.  

Separate ANOVAs showed that there were reliable display size effects for both the 

conjunction task, F(3, 54) = 10.000,  p = 2.42 × 10
-5

, η
2
p  = .357 (206, 257, 301 and 334 ms) and the 

spatial configuration task, F(3, 57) = 33.47, p  = 1.42 × 10
-12

, η
2

p = .638 (302, 444, 607 and 760 ms), 

but not for the feature search task, F(3, 54) = .084,  p = .968, η
2
p  = .005 (201, 207, 206 and 205 ms).  

Post-hoc t tests showed that there were significant differences between all display sizes in spatial 

configuration search, p = 7.59 × 10
-3

, 9.34 × 10
-6

, 1.34 × 10
-7

, .021, 1.56 × 10
-4

, & .04 (3 vs. 6, 3 vs. 

12, 3 vs. 18, 6 vs. 12, 6 vs. 18, & 12 vs. 18; Bonferroni correction for multiple comparisons).  This 

held for conjunction search only for the 3 vs. 12, and 3 vs. 18 comparisons (ps = .001; Bonferroni 

correction for multiple comparisons).  No significant differences were observed in feature search.  

The lower panel of Figure 10 shows two important characteristics. First, the regression lines 

indicate increasing variability (i.e., decreasing ribbon density) as the display sizes increased for 

conjunction and spatial configuration search, but not for the feature search.  Second, the display size 

effect only became noticeable for the inefficient search tasks, in line with the RT mean.   
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Shape.  The two-way (task × display size) ANOVA revealed significant effects of task, F(2, 

55) = 23.50,  p = 4.21 × 10
-8

, η
2

p  = .461, and marginally display size, F(3, 165) = 2.44,  p = .067, η
2

p  

= .042 and their interaction, F(6, 165) = 3.45, p = .003, η
2
p = .111.   

Separate ANOVAs showed reliable display size effects for both conjunction search, F(3, 54) 

= 4.21,  p = .009, η
2
p  = .190 (1496, 1731, 1695 and 1702 ms) and spatial configuration search, F(3, 

57) = 4.45, p = .007, η
2
p = .190 (1573, 1541, 1397 vs. 1529 ms), but not for feature search, F(3, 54) 

= 2.13,  p = .106, η
2
p  = .106 (1702, 1819, 1976 vs. 1850 ms).  Post-hoc t tests showed significant 

display size differences at 3 vs. 6, 3 vs. 12, and 3 vs. 18, p = .022, .018, and .009 in the conjunction 

search.  In the spatial configuration search, the display size differences were observed at 3 vs. 12, 6 

vs. 12, and 12 vs. 18, p = .013, .047, and .003 (Bonferroni correction for multiple comparisons). 

The plots in the middle panel of Figure 10 show two important characteristics. First, the 

regression lines indicate differences between the search conditions only at large display sizes (i.e., 

6, 12 and 18).  Second, there is a U-shaped function for the spatial configuration task – both for the 

magnitude and variability of the shape parameter.  Interestingly, these results are not evident in 

Wolfe et al.’s (2010) data.  The emergent decreases in the mean shape parameter and the associated 

increase in the variability suggest that additional factors influenced search at the larger display sizes 

here – which we suggest reflect grouping between the elements. We elaborate on this proposal in 

the General Discussion.   

-------------------------------------------------- 

Figure 10 should be inserted around here 

-------------------------------------------------- 

Diffusion model 

The section we present the three diffusion model parameters, using an identical analysis 

protocol as in previous section.  Again, the analyses focused on target-present trials. 
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Drift rate. The two-way (task × display size) ANOVA revealed a significant effect of task, 

F(2, 55) = 9.47,  p = 2.92 × 10
-4

, η
2
p   = .256, but not display size, F(3, 165) = 0.472, p = .703, η

2
p = 

.009, and there was no interaction, F(6, 165) = 1.27, p = 0.28, η
2
p = .044.  Post-hoc t tests showed 

that the feature search (0.323) drifted faster than the conjunction search (0.265;  marginally 

significant, 95 % CI, -0.117 to .001, p = .057) and the spatial configuration search (0.220; 95 % CI, 

0.044 to 0.161, p = 1.81 × 10
-4

).  No difference was found between the conjunction and spatial 

configuration searches.  

The drift rate, shown in the upper left panel in Figure 11, manifests two critical 

characteristics.  First, for both the feature and the conjunction search tasks, the drift rate evolves at a 

constant rate across the display sizes.  The second noticeable characteristic is a clear separation of 

the drift rate across the three tasks, suggesting differences in the rate at which sensory evidence 

accumulates in the different tasks.  There was a tendency also for the drift rate to rise at the large 

display size in the spatial configuration task (Figure 11), suggesting that there was an emergent 

factor, such as the grouping of homogeneous distractor elements, which increased the drift rate – 

though the variability across observers suggests that this was not universally the case for all 

participants.  This was not evident in absent trials
7
. This upward trend was also not present in the 

data of Wolfe et al. (2010).  

Non-decision time. The two-way (task × display size) ANOVA was significant for the main 

effect of task, F(2, 55) = 5.64,  p = .006, η
2
p   = .170 and the interaction, F(6, 165) = 4.16,  p = .001, 

η
2

p   = .131.  Post-hoc t tests showed that spatial configuration search (79 ms) was associated with a 

longer non-decision time than feature search, (57 ms; 95 % CI, 4.53 to 38.1 ms, p = .008) and 

conjunction search (61 ms; 95 % CI, 0.707 to 34.2 ms, p = .038).  There were reliable display size 

effects for the spatial configuration task, F(3, 57) = 6.886,  p = 4.89 × 10
-4

, η
2

p  = .266 (60.59, 80.54, 

89.50 vs. 84.23 ms), but not at feature or conjunction search tasks.  

                                                

7 See https://github.com/yxlin/HBM-Approach-Visual-Search for absent trial data. 
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Boundary separation. The two-way (task × display size) ANOVA revealed a significant 

effect of the task, F(2, 55) = 31.75,  p = 6.81 × 10
-10

, η
2

p   = .536,  the display size,  F(3,165) = 7.6,  p 

= 8.61 × 10
-5

, η
2
p   = .121 and a task × display size interaction, F(6, 165) = 4.76,  p =  1.69 × 10

-4
, η

2
p   

= .147.  The value of the boundary separation for feature search (0.111) was smaller than that for 

spatial configuration search (0.192, p = 1.01 × 10
-9

, 95 % CI, 0.055 to 0.107), and this was not 

different from that found for conjunction search (0.132). The conjunction search task also 

demonstrated a reliable difference from the spatial configuration condition (p = 1.49 × 10
-6

, 95 % 

CI, 0.034 to 0.086). Separate ANOVAs showed reliable display size effects for the spatial 

configuration search, F(3, 57) = 6.73,  p = .001, η
2
p  = .262 (0.148, 0.170, 0.201 vs. 0.249; 3, 6, 12, 

vs. 18), but not for the feature or conjunction searches.  

--------------------------------------------------------------------- 

Figure 11 and Table 2 should be inserted around here 

--------------------------------------------------------------------- 
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General Discussion 

The study applied an integrated approach to modeling visual search data.  We examined the 

data not only using standard aggregation approaches, but also using distributional approaches to 

extract cognitive-related parameters from the trial RTs.  This approach allows us to reveal the 

possible accounts of the three distributional parameters – shift, shape and scale – associating them 

with non-decision time, drift rate and boundary separation estimated from the diffusion model.  Our 

study goes further than most previous studies (Balota & Yap, 2011; Heathcote et al., 1991; Sui & 

Humphreys, 2013; Tse & Altarriba, 2012) that have applied distributional analysis to RT data.  We 

used conventional distributional analyses to examine empirical RT distributions and the associated 

parameters were complemented with Bayesian-based hierarchical modeling to optimise estimates.  

Moreover, we examined those distributional parameters against a plausible computational model – 

the EZ2 diffusion model – to link the distributional parameters to underlying psychological 

processes.   

Replicating many previous findings in the search literature our data show efficient search for 

feature targets and inefficient search when targets can only be distinguished from non-targets by 

conjoining multiple features (shape and color, or shape only; see Chelazzi, 1999; Chun & Wolfe, 

2001, for reviews).  The display size effect present in the feature search (415, 426, 432 and 437 ms) 

suggests some limitations on selecting feature targets but the analyses based on mean RTs do not 

differentiate if the effect (η
2

p = .294) is due to post-selection reporting (Duncan, 1985; Riddoch & 

Humphreys, 1987) or an involvement of focal attention in feature search. This question is addressed 

by examining the estimates from the HBM together with the EZ2 diffusion model. The lack of 

display size effects in the non-decision time suggest that the increasing trend in the mean RTs is 

unlikely due to a delay in the peripheral processes, such as motor or early perceptual times.  Neither 

drift rate showed a reliable effect at the display size at the feature search. The only possible 

difference is an unreliable display size effect (p = .106) together with an increase of variation at the 

Page 28 of 95Attention, Perception, & Psychophysics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

Visual Search 29 

 

shape parameter in the condition of display size 18.  This result appears to favour the explanation of 

focal attention.  

Though previous results have indicated that search is often inefficient for conjunction and 

configuration-based stimuli, our findings indicated that spatial configuration search was particularly 

difficult (Bricolo, Gianesini, Fanini, Bundesen, & Chelazzi, 2002; Kwak, Dagenbach, & Egeth, 

1991; Woodman & Luck, 2003). This could reflect either a reduction in the guidance of search from 

spatial configuration compared with simple orientation and color information, or the length of time 

taken to identify each item after it had been attended.  Interestingly, although when compared with 

the standard deviation of the conjunction search (9.68 ms), configuration search generally showed a 

larger value across participants (24.54 ms), the standard deviations within the configuration search 

decreased as the display sizes increased (35.17, 27.12, 15.38, vs. 20.49 ms). This last result suggests 

high density homogeneous configurations of distractors does facilitate search, a point we return to 

below (Bergen & Julesz, 1983; Chelazzi, 1999; Duncan & Humphreys, 1989; Heinke & 

Humphreys, 2003; Heinke & Backhaus, 2011). 

Methodological issues 

The analyses for the mean RTs however do not always accord with the analyses of trial RTs.  

For example, the density plots at mean RTs (Figure 5) suggest that the data are distributed 

symmetrically, contrasting with the common notion that an RT density curve tends to be positively 

distributed towards long latencies (Luce, 1986).  However, the analyses of the trial RTs (Figure 6) 

reveal clearly skewed RT distributions. This is because the procedure of determining a 

representative value using a central location parameter (the mean in the case of our data) from each 

observer's RT distribution of a condition (individual curves in Figure 6) is affected greatly by the 

weight of slow RTs.  The conditions and observers that contribute the slow responses tend to move 

the central location towards long latencies within a distribution, hence we observe more 

symmetrical and sub-Gaussian (i.e., flat) density curves for the mean RTs.  Additionally, because 
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the density curve for the mean RTs is usually constructed by a biased central location parameter 

(with respect to a skewed RT distribution), the nature of the RT distribution (e.g., if there is a 

majority of quick responses and a minority of slow responses) is hidden by an unrepresentative 

central location parameter.  A solution has been proposed recently by using some variants of 

distributional analyses (Balota & Yap, 2011; Bricolo et al., 2002; Heathcote et al., 1991) and these 

have been applied to various cognitive tasks (Palmer et al., 2011; Sui & Humphreys, 2013; Tse & 

Altarriba, 2012; Wolfe et al., 2010).  Essentially, the distributional approach constructs an empirical 

distribution using trial RTs from each individual in a condition and uses a plausible distributional 

function (such as Weibull or ex-Gaussian) to extract distributional parameters, with the parameters 

averaged across participants then being compared across the different conditions.  This approach 

descriptively dissects an RT distribution into multiple components (e.g., mu, sigma, & tau), each 

potentially reflecting contrasting psychological process (Balota & Yap, 2011).  However, the link 

between the component and the underlying process can be elusive (Matzke & Wagenmakers, 2009) 

without directly modeling of the underlying factors.  We address this issue by contrasting the 

empirical data modeled, respectively, by both a distributional approach (HBM) and a computational 

model (the EZ2 diffusion model).   

On top of the analyses of mean performance, the integration of hierarchical Bayesian and 

EZ2-diffusion modeling helped to throw new light on search.  Following Rouder and colleagues 

(2005), HBM dissects an RT distribution into three parameters, shift, scale and shape. The shift 

parameter has been linked to residual RTs, the scale parameter linking with the response rate and 

the shape parameter with post-attentive response selection (Wolfe, Võ, Evans, & Greene, 2011).  

The EZ2-diffusion model estimates directly three parameters: (1) the drift rate, reflecting the quality 

of the match between a memory template and a search display (the goodness-of-match, in Ratcliff & 

Smith’s term, 2004), (2) the boundary separation reflecting the response criterion (Wagenmakers et 

al., 2007), and (3) the non-decision time reflecting the time an observer encodes stimuli and 

executes a motor response.  This conceptualization can help articulate the correlation between the 
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descriptive parameters from the RT distribution and those estimated by the diffusion model.  For 

example, the role of shift in a Weibull function is to set directly a minimal threshold for responses 

and rules out the possibility of negative responses.  This suggests an association between the RT 

shift and non-decision time parameters.  

Model-based analysis 

 The EZ2 diffusion model and the HBM suggest that distributional parameters reflect 

different aspects of search.  First, the shift parameter varied across the search tasks and display 

sizes, a pattern that is in line with our illustration and the ideal analysis (see Figure 1 & Appendix 

B).  This parameter reflects the psychological processes influencing evenly all ranges of RTs.  One 

of the diffusion processes likely to influence the shift changes is the drift rate, which showed only 

the main effect of the task.  As the drift rate aims to model the rate of information accumulation 

determined by the goodness-of-match between templates and search stimuli, the shift parameter 

appears to result from the change in the quality of the memory match.  This is a plausible account, 

because the three search tasks demand contrasting matching processes, from (i) feature search 

requiring only pre-attentive parallel processing to extract just one simple salient feature, to (ii) 

conjunction search, where binding two simple features must be bound to facilitate a good match, 

and to (iii) spatial configuration search, demanding both features binding and coding of the 

configuration of the features.  The lack of interaction with display size further supports our 

argument that the shift reflects the factors affects the RT distribution equally.  The weak display 

size effect can be readily explained by the crowded layout we used; it was not observed [F(3,75) = 

0.016, p = 0.997]  in Wolfe et al.’s data (2010).  This weak effect at the shift parameter is further 

accounted for by our visually weighted plot in the drift rate parameter, showing a clear split of 

trends and an increase of between-observer variation at the large display size.  Specifically, a subset 

of participants adopted a strategy similar as those participants in Wolfe and colleagues’ study.  They 

did not assemble similar a search unit, so the predicted drift rate decreases at the large display sizes, 
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whereas the other subset of participants benefited from the crowded homogeneous distractors and 

thus increased drift rate at the large display sizes.        

Another account for the strong task effect, but the weak effect of display size, is that it 

reflects a process such as the recursive rejection of distractors proposed by Humphreys and Müller 

(1993) in their SERR model of visual search (see also Heinke & Humphreys, 2005).  Humphreys 

and Müller (1993) argued that search can reflect the grouping and then recursive rejection of 

distractors.  The process here may reflect the strength of grouping rather than the number of 

distractors since multiple distractors may be rejected together in a group – indeed effects of the 

number of distractors may be non-linear as grouping can increase at larger display sizes.  Grouping 

and group selection both reflect the similarity of targets and distractors and the similarity of the 

distractors themselves, and these two forms of similarity vary in opposite directions in conjunction 

and spatial configuration search (relative to a feature search condition as employed here, there is 

stronger target-distractor grouping and weaker distractor-distractor grouping; see Duncan & 

Humphreys, 1989). If the process of distractor rejection is more difficult in conjunction and 

configuration search, compared with feature search, then there will be effects on a parameter 

reflecting this process, and this may not vary directly with display size, as we observed.   

 In contrast to the shift parameter, the shape parameter showed marginal effect of the display 

size, a reliable effect at the task, and an interaction between these factors.  The magnitude of this 

parameter increased monotonically with the display size for the feature and conjunction searchers 

but there was a U-shaped function for the spatial configuration search.  This last result is consistent 

with there being a contribution from an emergent property of the larger configuration displays, such 

as the presence of grouping between the multiple homogeneous distractors leading to a change in 

perceptual grouping (see also Levi, 2008, for a similar argument concerning visual crowding).  This 

change in the shape parameter in the large display size of the spatial configuration task is in line 

with a sudden increase of the drift rate standard deviation (0.080, 0.050, 0.054, 0.344), suggesting 
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either (1) a change in the quality of a match between the stimuli and the template or (2) a variable 

grouping unit (amongst different observers) affecting the recursive rejection process.   

 In addition, we observed a general increase in the values of the shape parameter from 1.73 

of the display size 3, 1.86 of the display size 6, 2.05 of the display size 12, to 1.96 of display size 18 

on absent trials in the spatial configuration task, F(3, 57) = 6.13, p = .001, η
2

p = .244.  The target 

absent-induced shape change in the spatial configuration task was observed also in Palmer and 

colleagues’ analysis (2011).  However, their data showed no reliable shape change across display 

sizes for present trials (Palmer et al., 2011).  Following Wolfe et al.’s (2010) suggestion, Palmer 

and colleagues (2011) speculated that the display size effect for the shape parameter might result 

from the premature abandoning of search, a view that is supported by their data showing high rate 

of miss errors in the spatial configuration task (Wolfe et al., 2010).  The high rate of miss errors 

might reflect when an observer prematurely decides to give an absent response on a target present 

trial.  This will in turn reduce the overall number of slow responses leading to an RT distribution 

with low skew.  This indicates that in the conditions with high miss errors, participants tended to set 

a low decision threshold for the target absent response.  The tendency might also appear in the 

absent trials, resulting in correct rejection by luck, a result leading to RT distributions in the absent 

trials with increase shape parameters.  We, applying a more sensitive method under the constraint of 

limited trial numbers, show reliable display size effects on the RT shape in the present trials of the 

spatial configuration and the conjunction searches.  Together with the miss error data, our data do 

indicate that a link between the miss errors and the shape of the RT distribution is plausible.  In 

addition to the explanation of participants abandoning search prematurely (i.e., a dynamic changes 

of boundary separation), we propose another explanation that, relative to the feature search, the 

factor that changes the RT shape in the spatial configuration search is the goodness-of-match 

between the search template and the search display (i.e., the drift rate changes).  This implies the 

factors contributing a change in different parts of an RT distribution will result in its shape changes.  

As our simulation study shows (Appendix B), doubling the shape parameter results in a decrease at 
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the boundary separation (in line with the miss-error account) and an increase at the drift rate (in line 

with the goodness-of-match account).  Both of the diffusion parameters likely are the processes 

driven the changes at the distributional shape.  

Among the three Weibull parameters, the scale parameter showed the highest correlation 

with mean RTs (Pearson r = .78, p = 2.20 × 10
-16

), a result replicating Palmer et al.’s (2011) 

analysis.  The high correlation should not be surprising, considering that both the RT scale and the 

mean RTs capture the change in the central location of RT distributions.  The scale parameter 

estimates an overall enhancement (or reduction) of response latency as well as response variance, so 

do the mean and variance RTs (see a review in Wagenmakers & Brown, 2007).   Unlike the mean 

RTs, however, the scale parameter in our dataset was not sensitive to the display size in the feature 

search task.  A cross-examination with the boundary separation in the diffusion model appears to 

indicate that the scale parameter might reflect the influence of response criteria, with only the 

inefficient tasks showing the display size effect.  This should not be taken as evidence indicating 

that the scale parameter is a direct index of the response criteria however; rather changes in the 

scale parameter are a consequence of altering the response criteria.  An observer with a conservative 

criterion, for example, might show a general change of response latency and variance (the more 

reluctant to make a decision, the more variable a response will be), so the scale parameter reflects 

this change.  

Distributional parameters reflect underlying processes                  

The RT distributional parameters were posited, under the framework of the stage model of 

information processing, to reflect different aspects of peripheral and central processing. The shift 

parameter was associated with the speed of peripheral processes (i.e., irreducible minimum 

response latency, Dzhafarov, 1992), the scale parameter with the speed of executing central 

processes, and the shape together with the scale parameters related to the insertion of additional 

stages into the central processing (Rouder et al., 2005).   
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Using the benchmark paradigms of visual search (Wolfe et al., 2000), our data indicate that 

the shift parameter, instead of reflecting the speed of peripheral processes, may be associated with 

the process of distractor rejection and the quality of the match between a template and a search 

display.  This is supported by the analysis using the EZ2 diffusion model.  As we argued 

previously, the shift parameter captures the factors that influence the entire RT distribution equally.  

A possible situation that the peripheral process may result in a clear shift change is when the other 

two parameters are kept constant.  That is, when no factor influences the decision-making process 

and when the shape of an RT distribution is unchanged.  We suggest that the data better reflect a 

process such as the recursive rejection of the grouped distractors and the quality of the match to a 

target template, which, when accurate, contributes to an entire RT distribution.   

Our results for the scale parameter are consistent with those of Rouder and colleagues 

(2005) in suggesting that it reflects the speed of execution in a central decision-making process.  As 

the execution speed closely links with the decision boundaries and the initial state of sensory 

information an observer sets for a response trial, we observed a similar pattern in the scale 

parameter, the boundary separation and the non-decision time.  The pattern in the non-decision time 

is readily accounted for by the fact that EZ2 diffusion model absorbs the parameter reflecting the 

initial state of sensory evidence into the non-decision time.  The distance between the decision 

boundary and the initial state of sensory evidence can then be taken as reflecting changes in the 

response criteria and hence altering the scale of an RT distribution.        

For the shape parameter we observed an emergent effect of perceptual grouping at the large 

display size in the spatial configuration search.  This is in line with the drift rate data in that the drift 

rate was slower for the spatial configuration search task relative to the two simple search tasks both 

in our data (0.323, 0.265 vs. 0.220) and those of Wolfe et al. (2010) (0.341, 0.299 vs. 0.203).   In 

Palmer et al.’s analysis (2011) no task effect was found in the shape parameter. Using the HBM we 

observed a significant task effect, F(2, 55) = 23.50, p = 4.21 × 10
-8

, η
2
p = .461, suggesting that the 
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previous result might reflect a lack of power.  The observations of shape invariance in Palmer et 

al.’s analysis could also be interpreted in term of a memory match account (Ratcliff & Rouder, 

2000).  This account presumes that, when the integrity of a memory match between the template 

and search items is still intact, the evidence strength is strong enough to permit a correct decision 

(Smith, Ratcliff, & Wolfgang, 2004; Smith & Sewell, 2013).  Since the previous study recruited 

fewer participants and some might find strategies to conduct the difficult searches still using the 

same processing stages as the feature search task, the shape parameter reflects only a marginal 

effect.  

Another possible factor that may explain the different finding at the shape parameter is 

illustrated by the drift rate visually weighted plot.  The visually weighted regression lines predict 

two groups of participants accumulating sensory evidence at different rates, but indicate only one 

homogeneous group in Wolfe et al.’s data.  As our simulated study shows (Appendix B), the drift 

rate can also weigh-in to change the shape parameter.  This suggests that some of our participants 

took advantage of the crowded layout to facilitate search using the spatial configuration task, and 

some did not.  This did not happen in Wolfe et al.’s sparse layout, and likely contribute also to our 

significant finding at the shape parameter on present trials.     

Limitation 

The analytic approach we adopted assumes that individual RTs are generated by the 3-

parameter probability functions.  The selection of the Weibull function is determined, on the one 

hand, by its probing three important aspects, the shift, scale and shape, of an RT distribution, 

differing from what the ex-Gaussian function describes (mu, tau, & sigma).  On the other hand, we 

selected the Weibull function, because it permits a reliable converged posterior distribution, has 

broad application to memory as well as visual search (Logan, 1992; see also Hsu & Chen, 2009) 

and application to the hierarchical Bayesian framework (Rouder et al., 2005).             
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Conclusion 

In conclusion, our study shows how the HBM-based distributional analysis, complemented 

with the EZ2 diffusion model, can help to clarify processes mediating visual search.  The data 

indicate that different effects of search difficulty contribute to performance, with the effects of the 

search condition being distinct from effects of display size in some cases  (on the drift rate and shift 

parameters) but not in others (e.g., effects on non-decision factors and the separation of decision 

boundaries). We have linked this dissociation to the involvement of distractor grouping and 

rejection (on the one hand) and serial selection of the target and the setting of a response criterion 

(on the other).  The approach goes beyond what can be done using standard analyses based on mean 

RTs.
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Appendix A   

HBM simulations 

The stimulation study was to examine the estimation biases on three standard distributional 

parameters– mean, variance, and skew–when various probability functions were fitted under 

different sample sizes per experimental condition and when true distributions generating RTs are 

known. The study helped to clarify whether the per-condition trial number is sufficient to allow 

reliable parameter estimation using the HBM. The conclusion from this simulation suggested that 

(1) no difference between HBM and maximum likelihood estimation (MLE) when sample size was 

larger than 120; (2) HBM was better than MLE to estimate variance when the sample size was 

small; (3) the specification of equally plausible probability function is crucial only when it matches 

the true distribution that generates the RT data. 

The simulations
8
  examined four scenarios, alternatively assuming that the true distribution 

followed a normal, an ex-Gaussian, a Wald or a Weibull function (which adopted Cousineau, 

Brown & Heathcote's parameter values, 2004).  Specifically, we used the parameter values listed in 

Table 3 of Courineau et al.'s report to construct four true distributions, which in turn repeatedly 

generated randomly simulated RTs.  The simulations generated twenty homogeneous participants; 

each participant contributed RT observations in 10 different sample sizes ranging from 20 to 470 

with a step size of 50.  The simulated data were then submitted separately to the HBM and the 

maximum likelihood estimation (MLE) to estimate shift, scale, and shape parameters.  Both 

methods assumed that RTs are random variables generated by the Weibull function.  Those 

parameters were then analytically converted to the mean, the variance and the skewness to evaluate 

the performance of the two methods.  

                                                

8
 We used R routines – rnorm, rexGAUS, rinvgauss, and rweibull3 – to generate those computer-simulated data. 
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-------------------------------------------------- 

Figure 12 should be inserted around here 

-------------------------------------------------- 

Figure 12 shows the absolute value of the difference between the true value and the 

estimates at the mean, variance and skewness of a distribution.  In general, no differences were 

observed between the two methods when estimating the mean.  The only factor that improved the 

estimation was per-condition sample size, F(9, 1520) = 64.46, p < .0000.  The more observations 

are in a condition, the higher the precision of the estimate is.  The bias dropped rapidly when the 

trial number surpassed 100, from 17.59 ms at 20 observations to 6.74 ms at 120 observations and it 

decreased at a slower rate when the trial size was over 120 observations (an average, 5.4 ms).  The 

specification of the true distribution did not alter the precision of mean estimation, F(3, 1520) = 

1.912, p = .126, even though both estimation methods assume that a Weibull function accounts for 

the RT data.   

In contrast, the HBM demonstrated a clear advantage over the maximum likelihood method 

when recovering the variance, F(1, 1520) = 9.345, p = .0023.  Again, a large number of 

observations helped to improve the fit, F(1, 1520) = 29.84, p < .0000.  Importantly, the HBM 

estimated the parameters better than the MLE at the small sample size (N = 20), F(1, 152) = 6.907, 

p = .0095, though the difference was gradually resolved when the observation numbers exceeded 

120, F(1, 152) = .936, p = .335 (i.e. the dash line in Figure 12).  The mis-specification of the 

underlying distribution resulted in different estimations of variance, F(3, 1520) = 7.635, p < .0000.  

Both methods needed a sample size larger than 170 to resolve this issue.  The parameter recovery 

was better when the true distribution followed the Weibull function.  

As for variance, the skewness was again better estimated by the HBM than the MLE, F(1, 

1520) = 22.596, p < .0000.  The correct specification of the distribution played an important role in 
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estimating the skewness, F(3, 1520) = 1818.549, p < .0000.  Specifically, when the true distribution 

followed either ex-Gaussian or Wald functions, there was no advantage to using HBM after a trial 

size of 70. In this case increasing the sample size did not mitigate the problem, whereas when the 

true distribution followed a Weibull function, the HBM showed consistently higher precision than 

the MLE (see Figure 13).  Interestingly, the HBM also gave better estimates than the MLE when the 

true distribution was normal (i.e., skewness = 0).  Increasing the sample size helped to resolve the 

inferiority of MLE, but for this there needed to be at least 220 observations in each condition. 

-------------------------------------------------- 

Figure 13 should be inserted around here 

-------------------------------------------------- 

Model diagnostics 

In this section, we assess the performance of the HBM and the MLE estimation methods for 

the three parameters expressed in the Weibull function.  Firstly, a goodness-of-fit index, the 

Anderson-Darlings statistic, was used to compare the fits between the two methods.  Next, we 

present graphical and statistical diagnostics on the convergence and stationarity of the MCMC 

chains.  Stationarity refers to whether the multi-chain process of MCMC converges to a reliable and 

single distribution after a long iteration process.  Each step of MCMC process uses the pre-defined 

model (i.e., the Weibull function in our case) to fit the empirical data and predicts a posterior 

distribution. The posterior distribution is then used as a prior distribution in next step to fit a new 

posterior distribution.  This process iterates itself until the pre-defined iteration times (105000 times 

in our setting).  The final posterior distribution is the predicted distribution presuming as the true 

distribution underlying an RT distribution in the visual search paradigm we examined.  We ran 

three separate independent MCMC processes (i.e., 3 chains) to test if all three converged to an 

identical final posterior distribution.  If this is so, it indicates that our hierarchical Bayesian setting 

Page 49 of 95 Attention, Perception, & Psychophysics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

 

 

and the Weibull function provide an appropriate approximation towards an RT distribution.  A non-

convergent MCMC process does not provide a reliable prediction for the final posterior distribution.  

That is, it predicts, even after a long iteration process, different distributions accounting for the 

empirical data.   

Goodness of fit.  As RT distributions are formed by a continuous rather than discrete 

random variable, we used the Anderson-Darling statistic, rather than chi-square, as the index of 

goodness-of-fit.  Figure 14 shows that there were few differences between the MLE fit and the 

HBM fit.  Both methods performed similarly and improved their fits when as the display size 

increased.   

------------------------------------------------------ 

Figure 14 should be inserted around here 

------------------------------------------------------ 

Bayesian model diagnosis. In this section, we examined if the estimated parameters 

converged to a stationary posterior distribution and evaluated if the setting for conducting MCMC 

sampling were appropriate to permit reliable inferences.   

Figures 14 and 15 shows one of the examples of the diagnostic plots, indicating the 

convergence of β (i.e., the shape parameter), which was estimated from one of the participants 

performing the spatial configuration search at display size 18 in the target-present condition.  The 

figures are the posterior density curve and the autocorrelation plot.  We ran three Markov chains in 

parallel to approach a stationary posterior distribution, so there are three sets of parallel data to 

represent three processes.  Three MCMC chains mixed quickly to a limited range after the iteration 

process began (after 5000 burn-in iterations), suggesting that the posterior distribution reached a 
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reliable stationary point
9
.  This impression is supported by the posterior density distributions 

(Figure 15), showing all three chains predict overlapping distributions with very similar shapes and 

dispersions, consistent with the three chains predicting an identical posterior distribution.  The 

autocorrelation plots (Figure 16) show the MCMC sampling interval (in our case, the computer 

program took one sample every 4 iterations) is appropriate to reduce the inter-iteration correlation 

rapidly within first 50 iterations (this is after first 5000 samples were discarded).    

----------------------------------------------------------------- 

Figure 15 and Figure 16 should be inserted around here 

-------------------------------------------------------------------- 

The information from the graphical diagnoses is compatible with the non-parametric 

statistical tests.  Figure 17 presents the graphical summary of the non-parametric tests for the 

stationarity across all the conditions and participants. The upper panel shows the Brooks-Gelman-

Rubin (BGR, Brooks & Gelman, 1998) shrink factor.  The recommended BGR upper limit is 1.1 

(Gelman & Hill, 2007; Gelman, 2004), and values below it are deemed acceptable.  We drew the 

reference line at the grand average 95 % confident interval to allow a clear inspection of the 

distribution of the statistic. Very few BGR diagnostics exceeded the grand average of 95% 

confidence interval. Although a few values fall outside the upper limit of the box-and-whisker plots, 

they are nevertheless all within the recommended upper limit.  The BGR shrink factor provides no 

evidence of an unstable mixing of the three chains, confirming the observations from the trace plots. 

------------------------------------------------------------ 

Figure 17 should be inserted around here 

------------------------------------------------------------ 

The middle panel shows the Geweke Z score.  This test examines the stationarity of the 

                                                

9
 A non-stationary mix will manifest as three clearly separated lines. 
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posterior distribution.   A Z score exceeding ±1.96 is considered problematic. Only a few cases at 

display size 6 in the conjunction search and at display size 3 in the spatial configuration search 

exceeded the two reference lines, drawn at Z =±1.96.  In general, the distribution of the Geweke Z 

is compatible with the stationarity assumption that we have observed in the posterior density plots.  

In other words, the posterior distribution estimated from the three separate chains converged to an 

identical distribution.     

 The lower panel shows the distribution of the p values from Heidelberger and Welch's test. 

The reference line was drawn at .05 p value.  The figure complements the observations found both 

in the graphical diagnostics and the Geweke Z test.  None of the p values exceeded .05 levels.  In 

summary, we found, from both graphical diagnoses and non-parametric tests, no obvious evidence, 

in all estimated parameters across all participants and conditions, against either the hypothesis of 

the stationarity of the posterior distributions, the ill-mixed Markov chains, or an unreliable 

convergence. 
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Appendix B   

EZ2 diffusion model simulations 

The stimulation study was to undertaken to examine how the parameters estimated from 

EZ2 diffusion model correlate with the Weibull parameters in a simple well-controlled situation.  

We performed 3 case studies that changed only one of the Weibull parameters.  Note that the three 

distributional parameters jointly determine the general shape of a distribution.  Thus a change in the 

drift rate may alter one or more Weibull parameters.  The 3 studies respectively doubled the shift, 

the scale and the shape parameters in a Weibull function and simulated 200 RTs from 20 

homogeneous observers.   

The data were than submitted to the EZ2 model to estimate the drift rate, boundary 

separation and non-decision time.  The result indicates that firstly doubling the shift parameter 

resulted in a near two-fold increase of non-decision time (416 vs. 827 ms), small increases in the 

drift rate (0.012 vs. 0.013), and small decreases of the boundary separation (4.89 vs. 4.57).  Second, 

doubling the scale parameter resulted in a decrease of the drift rate (0.013 vs. 0.009), an increase of 

boundary separation (4.70 vs. 6.57), and a 10-ms increase at the non-decision time (407 vs. 417 

ms).  Finally, doubling the shape parameter resulted in an increase of the drift rate (0.013 vs. 0.018), 

a decrease of the boundary separation (4.57 vs. 3.39) and again a small increase at the non-decision 

time (410 vs. 507; although this increase was relatively larger than that of doubling the scale 

parameter).  Figure 18 shows a comparison across the three case studies.    

-------------------------------------------------- 

Figure 18 should be inserted around here 

-------------------------------------------------- 
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Appendix C   

Why use Weibull function? 

The Weibull probability function is one of the many plausible functions that can 

accommodate positively skewed RT distributions.  We chose it to describe RT distributions, 

because of its parametric characteristics, permitting us to describe the shape of an RT 

distribution in an intuitive way.  Nevertheless, there are other alternatives, such as gamma, log-

normal, and Wald functions.  All of them are capable of accommodating skewed RT 

distributions and provide similar descriptive parameters.  Here, we delineate our reasons to fit 

the HBM Weibull function to RT data. 

First reason is that the Weibull function is able to provide a concise way to summarize 

the shape of an RT distribution.  As described in the main text and illustrated in Figure 1, 

changes in t6he three parameters, shift, scale and shape, are associated differently with 

increases/decreases of RT densities, allowing us to understand how an experimental factor may 

alter different areas of an RT distribution.  Secondly, the 3-parameter gamma function does not 

converge when fitted with hierarchical Bayesian approach.  The compatible 3-parameter gamma 

function shows signs of non-convergence and perhaps because of this, it fits the data slightly 

worse, indicated by the DICs.  Third, we fitted also the other two 3-parameter functions: Wald 

and log normal.  They provide the same set of descriptive parameters as the Weibull function.  

The DICs suggest these function fit both ours and Wolfe, Palmer and Horowitz’s (2010) data 

slightly better than Weibull function.  However, we have maintained the Weibull function 

because all four functions fit are very similar for each task, display size, target types, and data 

set (Figure 19).  To test whether any function would work we fitted a Gaussian function.  The 

Gaussian fit DICs (~ -3150) are far worse than the four plausible functions that can 
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accommodate positive-skewed RT.  Below we reported the detailed procedure to fit gamma 

functions. 

-------------------------------------------------- 

Figure 19 should be inserted around here 

-------------------------------------------------- 

To test whether the Weibull function fit better than the gamma function, we built a 3-

parameter gamma function in the HBM framework.  Because currently BUGS does not 

implement a pre-built 3-parameter gamma function, we used Johnson, Kotz, and Balakrishnan’s 

(1994, pp 337, eq. 17.1) equation to implement the gamma function.  Practically, the BUGS 

code is to change the density function to: 

#--------------------------# 

# Gamma density              # 

#--------------------------# 

term1[i,j] <- beta[i]*log(theta[i]) + (y[i,j] - psi[i])/theta[i] + loggam(beta[i]) 

term2[i,j] <- (beta[i]-1)*log(y[i,j] - psi[i]) 

Similar to the way we implemented the Weibull function, we assessed the parameters via 

minus log-likelihood and used pseudo-Poisson (zero) trick.  This implementation resulted in 

unstable, non-converged estimations.  Take the shape parameter as an example.  In the spatial 

configuration search participant 3, the shape (beta) estimation yielded three different of 

posterior distributions and the trace plots from the three chains unstably oscillated around 

different ranges.  In addition, the autocorrelation plots indicated a problem and this does not 

abate with increasing iterations.  In summary, the diagnostics show the gamma function does 

not converge when fitted with a HBM framework.  
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This failure of gamma fit could be because (1) it is not suitable for HBM in this context, 

and/or (2) the gamma function indeed fits worse than Weibull function (as the DIC suggests).  

Note that we have run a high number of iteration (i.e., 105000) and reasonable thinning length 

and this still cannot resolve the non-converged gamma fit.   
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Figures 

 

Figure 1. An illustration of the changes of the scale, shape, and shift parameters. The figure was 

simulated by a 3-parameter Weibull function.  The legends in each panel show the extent to which 

the parameter is adjust while the others are kept constant 
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Figure 2. A schematic representation of the tasks; in each there was a target present (black item 

[feature]; black vertical [color-form conjunction] and the number 2 [spatial configuration]). 
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Figure 3. The box-and-whisker plots. The upper and lower panels show the means of RTs and error 

rates, respectively. The subplot in the upper-left panel shows a zoom-in view of the bar-plot of the 

feature search task (y axis ranging between 405 to 450 ms; x axis labelling four display sizes). The 

left and right panels present the analyses from the current and Wolfe et al.’s (2010) data sets, 

respectively. 
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Figure 4. Mean rates of miss and false alarm errors. The error bars show one standard error of the 

mean. The y axis shows percentage of errors. F, C and S stand for feature, conjunction and spatial 

configuration searches.  
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Figure 5. The mean-RT distributions. The sub-plots are quantile-quantile normalised plots, showing 

the deviations of data from the theoretical normal distribution. The y axis of the Q-Q normalised 

plots compares RT means [y axis label, RT (ms)] with normalised z score [x axis label, (Z-score)]. 

F, C, and S stand for feature, conjunction, spatial configuration tasks.  P and A are present and 

absent trials, respectively. 
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Figure 6. The trial-RT distributions. The y axis of the Q-Q normalised plots compares trial RTs [y 

axis label, RT (ms)] with normalised z scores [x axis label, (Z-score)] 
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Figure 7. The empirical cumulative RT density curves drawn based on the trial RTs.  The areas 

within each envelope represent the differences between target present and target absent trials for 

each task. The two dashed lines show the positions of the 50% and 95% cumulative densities. Long 

latencies (right border of envelopes) were consistently observed on target absent trials. 
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Figure 8. The mean-RT distributions. The y axis of the Q-Q normalised plots compares RT means 

[y axis label, RT (ms)] with normalised z score [x axis label, (Z-score)]. Data are from Wolfe et al 

(2010). 
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Figure 9. The trial-RT distributions. The y axis of the Q-Q normalised plots compares trial RTs [y 

axis label, RT (ms)] with normalised z scores [x axis label, (Z-score)]. Data are from Wolfe et al 

(2010). 
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Figure 10. Visually-weighted regression (VWR) plots (Hsiang, 2012) for the three Weibull 

parameters. VWR performs regressions using display size as the continuous independent variable 

and Weibull function estimates (shift, shape or scale) as the predicted variables separately for the 

three search tasks.  The white lines in the middle of each ribbon show the predicted regression lines. 

To show differences across the conditions (display sizes and tasks), the uncertainty, which usually 

error bars aim to communicate, is estimated via bootstrapping nonparametric regression lines (i.e., 

the three grey-scaled lines).  Here we used locally weighted smoothing (Cleveland, Grosse, & Shyu, 

1992). The density of lines and saturation of gray-scale lines were drawn in a way to reflect the 

extent of uncertainty.  The denser and more saturated a ribbon is, the less between-participant 

variation it shows.    
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Figure 11. The visually-weighted regression plot for the EZ2 diffusion model parameters. 
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Figure 12. This figure compares the sample mean, variance and skewness to the true values that 

generated the simulated data. HBM and MLE stand for hierarchical Bayesian model and maximum 

likelihood estimate, respectively. The mean and variance are on the scale of seconds and square of 

seconds, respectively. The skewness was calculated by dividing the third moment about the RT 

mean [m3=(RT-RTmean)
3
/N] by the cube of the RT standard deviation, which renders it 

dimensionless (Crawley, 2002).  The three dashed lines are drawn at the sample sizes, 120, 170, and 

220 to show critical changes of the three parameters with regard to the sample sizes. 
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Figure 13. The estimation of skewness. The figure traces the difference between the HBM and 

MLE along different sample sizes in an experimental condition. 
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Figure 14. The figure shows the goodness-of-fit of the empirical data against the Weibull 

distribution, using maximum likelihood (MLE) and hierarchical Bayesian model (HBM) methods 

likelihood (MLE) and hierarchical Bayesian model (HBM) methods. 
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Figure 15. The diagnostic posterior density plots for the Markov Chain Monte Carlo (MCMC) 

process. The left panel shows the density curves, separately, for the three MCMC processes (i.e., 

Chain in the legend). The right panel draws them together to demonstrate that three processes reach 

a consistent estimation of the posterior density distribution, suggesting the MCMC process is 

reliable. The figure shows only β (shape) parameter from one of the participants in the target 

present condition of display size 18 in the spatial configuration search. 
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Figure 16. The diagnostic autocorrelation plots for the Markov Chain Monte Carlo (MCMC) 

process. The figure shows only β (shape) parameter from one of the participants in the target 

present condition of display size 18 in the spatial configuration search. 
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Figure 17. The figure shows three diagnostic tests for assessing MCMC convergence, using box-

and-whisker plots to summarise the distribution of the three tested statistics. In each condition 

(display size × search task), each participant contribute 3 data points from the three Weibull 

parameters. The figure was drawn as a function of the diagnostic statistics against the display sizes. 

The three panel rows, from top to bottom, show the Brooks-Gelman-Rubin convergence test, the 

Geweke Z score, and the Heidelberger-Welch test, respectively.  In the upper panel, the reference 

dashed line was drawn on the upper bound of the 95 % confident interval, separately for each search 

tasks.  The middle panel used two reference lines at -1.96 and 1.96 (the upper and lower borders of 

95% confident interval) to show that most of Geweke Z scores fell in the acceptable range.  The 

lower panel shows the p values from the Heidelberger-Welch test.  The reference line was drawn on 

the .05 alpha level. 
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Figure 18. The figure shows how the change in a distributional parameter may alter the parameters 

estimated by the EZ2 diffusion model.  Ter, a and v stand for the non-decision time, the boundary 

separation and the drift rate, respectively. 
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Figure 19. The figure compares the Bayesian DICs for the fitted 3-parameter probability functions 

across the data sets, search tasks, target types, and display sizes. L and W stands for ours and 

Wolfe, Palmer, and Horowitz’s (2010) data sets.  
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Table 

Table 1. The DICs of the 4 fitted functions. They are averaged across the absent and present trials, 

tasks and display sizes. 

 Lin, Heinke, & Humphreys (2014)  Wolfe, Palmer, & Horowitz (2010) 

Gamma 385,348,342 975,871,147 

Log normal 385,348,002 975,870,279 

Wald 385,348,026 975,870,358 

Weibull 385,348,139 975,871,078 
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Table 2. Summary table for the significance of two-way ANOVAs for all tested parameters.  

 Mean 

RT  

Error 

rate 

RT 

Shift 

RT 

shape 

RT 

scale 

Drift 

rate 

Non-

decision 

time 

Boundary 

separation 

Display 

size 

V V V  V   V 

Task V V V V V V V V 

Interaction V V  V V  V V 
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Response to Reviewers 

Reviewer: 1 

Comments to the Author 

Overall the manuscript is much improved and the authors have responded well. The details of the 

Bayesian modelling are much clearer. Just a few minor points: 

Comment 1 

- Figure 14 may not be required. The reporting of diagnostic information of the MCMC process is 

very thorough, and a visual depiction of the chains is not necessary. Especially given the presence of 

Figure 15. 

Thank you for this suggestion.  Figure 14 (original) has been removed from the manuscript. The 

description in the Appendix A has also been modified to reflect this change.    

Comment 2 and Comment 3 

- My hunch is that JAGS and BUGS will be used for a long time to come, but that STAN and PyMC are 

the future. But the software landscape here is changing rapidly. The limitations you mention in 

terms of certain distributions (and others) are likely to be solved with these packages as they are 

under much more active development. But as you say, this is for future work. 

- For future work, I suggest the authors consider including figures of the graphical model diagrams, 

as these can greatly increase the accessibly of the modelling. 

Thank you for the suggestions.   
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Reviewer: 2 

(There are no comments.) 
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Reviewer: 3 and Editor’s summary 

################################################################################## 

1. Reply to the issue of the justification of the Weibull function as the vehicle of major 

insights 

################################################################################## 

First reason is that the Weibull function is able to provide a concise way of summarising 

the shape of an RT distribution.  We agree with Palmer’s suggestion that mapping the Weibull 

parameters directly to psychological processes is difficult.  Thus, we took this suggestion and 

followed Schwarz’s (2001) work similarly using the Weibull function as a descriptive model of 

response time. 

Secondly, we found that 3-parameter gamma function does not converge in HBM.  We 

followed Palmer’s suggestion in his previous comments to fit a gamma function.  The compatible 

3-parameter gamma function shows signs of non-convergence and perhaps because of this, it 

provides a slightly worse fit to the data (DIC).  

Thirdly, we fitted also the other two 3-parameter functions, Wald and log normal.  They 

also provide descriptive parameters similar to the Weibull function.  The DICs suggest that they 

fit both ours and Wolfe, Palmer and Horowitz’s (2010) data better than the Weibull function.  

However, we still prefer the Weibull function, partly because we have found it to be highly 

robust and because all four function fits are very similar when examined separately for each 

task, display size, and target types (see below figure).  We have fitted a Gaussian function to test 

whether our impression that all four 3-parameter functions provide better matches than other 

approaches. The Gaussian fit DICs are ~ -3150, which are far different from the four plausible 

functions that can accommodate positive-skewed RT.  Below we reported the detailed 

procedure to fit gamma functions. 
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To test whether the Weibull function fit better than the gamma function, we built a 3-

parameter gamma function in the HBM framework.  Because currently BUGS does not 

implement a pre-built 3-parameter gamma function, we used Johnson, Kotz, and Balakrishnan’s 

(1994, pp 337, eq. 17.1) equation to implement the gamma function.  Practically, the BUGS code 

is to change the density function to: 

#--------------------------# 

# Gamma density           # 

#--------------------------# 

term1[i,j] <- beta[i]*log(theta[i]) + (y[i,j] - psi[i])/theta[i] + loggam(beta[i]) 

term2[i,j] <- (beta[i]-1)*log(y[i,j] - psi[i]) 

Similar to the way we implemented the Weibull function, we assessed the parameters 

via minus log-likelihood and used the pseudo-Poisson (zero) trick.  This implementation resulted 

in unstable, non-converged estimations.  Take the shape parameter as an example.  In the 

spatial configuration search participant 3, the shape (beta) estimation reported three different 

posterior distributions and the trace plots from the three chains oscillated unstably around 

different ranges.  

 

In addition, the autocorrelation plots indicated a problem and this does not abate with 

increasing iterations. 
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In summary, the diagnostics indicate that the gamma function does not converge when 

fitted with a HBM framework.  This failure could be because (1) the gamma function does not 

suit for HBM in this context, and/or (2) the gamma function indeed fits worse than Weibull 

function (as the DIC suggests).  Note that we have run a high number of iterations (i.e., 105000) 

and reasonable thinning length (every 4 iterations) and this still cannot resolve the non-converged 

gamma fit.   

As in the paper we report all four HBM fits, the Weibull model is no longer emphasised 

in the title (and elsewhere) – though, for the reasons we discussed above, it is still a major part 

of the paper (e.g., providing a  useful and theoretical interesting way to describe RT distributions 

in visual search).        

 

 Add text to this modification (In introduction section, after the sub-section of “The 3-

parameter probability functions”) 

The 3-parameter probability functions 

Our study adopted four three-parameter probability functions – lognormal, Wald, 

Weibull and gamma
1
 (Johnson, Kotz, & Balakrishnan, 1994) to estimate RT distributions 

using the HBM.  Differing from the frequently used ex-Gaussian function, the 3-parameter 

probability functions describe an RT distribution with the parameters, shift, scale and shape 

that characterize the pattern of a distribution.  An increase of scale parameters shortens the 

central location within a distribution and thickens its tail.  This implies that the responses 

originally accumulated around the central part become slower and thus been moved to the tail 

side.  An increase in the shape parameter makes the tail thinner, because those originally slow 

responses are moved from the tail to the central location.  Hence the increase of the shape 

parameter not only changes the kurtosis, skewness, and variation, but also likely moves the 

measures of the central location.  An increase in the shift parameter preserves the general 

pattern of a distribution.  That is, an identical curve is moved rightwards (see Figure 1 for an 

illustration).  

-------------------------------------------------- 

Figure 1 should be inserted around here 

-------------------------------------------------- 

The study assumed that changes in RT distributions reflect unobservable cognitive 

processes (a similar argument also made by Heathcote et al., 1991).  As illustrated in Figure 

1, the factors that affect quick, moderate and slow responses evenly will show a selective 

effect on the shift parameter.  The effect on the scale parameter will be from the factors that 

alter only the proportion of responses that are moved from the central location to the tail part 

of a distribution (or vice versa).  Lastly, the effect on the shape may result from the factors 

that affect both the central and tail parts of a distribution and effectively increase the response 

density between them.  

                                                           
1
 The functions describe a distribution with the same set of parameters, shape, scale and shift.  Because 

comparing to other functions the previous analysis (Palmer et al., 2011) reported a worse χ
2
 fit of Weibull 

function, we constructed the comparable 3-parameter HBM to test if other functions gain a substantial better fit 

using hierarchical Bayesian approach than the Weibull function. We thank Evan Palmer for this suggestion. 
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 Modify the sentence in page 9 from “…in line with…” to “…is similar to…” 

This is similar to some reports applying distributional analyses on RT data, attempting 

to link distributional parameters with psychological processes directly (e.g., Gu et al., 2013; 

Rohrer & Wixted, 1994). 

 Add texts in sub-section, “Hierarchical Bayesian Model (HBM)” of the Method section (page 

15) 

… Likewise, we replaced the Weibull function with the 3-parameter gamma, 

lognormal, and Wald functions (Johnson, Kotz, & Balakrishnan, 1994), keeping similar prior 

parameter setting. 

 Add texts  in the sub-section of “The HBM estimates” in the Result section (page 23) 

… We used deviance information criterion (DIC) to evaluate the function fit to the 

data.  In general, the smaller the DIC, the better the fit (Lunn, Jackson, Best, Thomas, & 

Spiegelhalter, 2013).  Although the lognormal and Wald functions showed the smallest DIC, 

the DICs across the four fitted functions were close.  Moreover, the diagnostic of the gamma 

HBM suggests its posterior distributions did not converge.  Excluding the non-converged 

gamma function, we reported arbitrarily the estimates from the Weibull HBM, given that 

prior work shows this provides a highly robust  account, not strongly moderated by noise in 

the data (see a specific pathology of the Weibull function in Rouder & Speckman, 2004, pp 

424-425; and how HBM resolves this problem in Rouder et al., 2005, pp. 203).        

 Add texts in the sub-section of “Limitation” in General discussion section 

… other hand, we selected the Weibull function, because it permits a reliable converged 

posterior distribution, has broad application to memory … (Rouder et al., 2005).        

 Add Appendix C 

Appendix C 

Why use Weibull function? 

The Weibull probability function is one of the many plausible functions that can 

accommodate positively skewed RT distributions.  We chose it to describe the RT distributions, 

because of its parametric characteristics, permitting us to describe the shape of an RT distribution 

in an intuitive way.  Nevertheless, there are other alternatives, such as gamma, log-normal, and 

Wald functions.  All of them are capable of accommodating skewed RT distributions and provide 

similar descriptive parameters.  Here, we delineate our reasons to fit the HBM Weibull function to 

RT data. 

First reason is that the Weibull function is able to provide a concise way to summarize the 

shape of an RT distribution.  As described in the main text and illustrated in Error! Reference 

source not found., changes in the three parameters, shift, scale and shape, are associated 

differently with increases/decreases of RT densities, allowing us to understand how an 

experimental factor may alter different areas of an RT distribution.  Secondly, the 3-parameter 

gamma function does not converge when fitted with hierarchical Bayesian approach.  The 

compatible 3-parameter gamma function shows signs of non-convergence and perhaps because of 
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this, it fits the data slightly worse, indicated by the DICs.  Third, we fitted also two other two 3-

parameter functions: Wald and log normal.  They provide the same set of descriptive parameters 

as the Weibull function.  The DICs suggest that these functions fit both ours and Wolfe, Palmer 

and Horowitz’s (2010) data slightly better than the Weibull function.  However, we have 

maintained the Weibull function because all four function fits are very similar for each task, 

display size, target types, and data set (Figure). To test whether any function would work we 

fitted a Gaussian function. The Gaussian fit DICs (~ -3150) are far worse than the four plausible 

functions that can accommodate positive-skewed RT.  Below we reported the detailed procedure 

used to fit gamma functions. 

-------------------------------------------------- 

Figure 19 should be inserted around here 

-------------------------------------------------- 

To test whether the Weibull function fit better than the gamma function, we built a 3-

parameter gamma function in the HBM framework.  Because currently BUGS does not 

implement a pre-built 3-parameter gamma function, we used Johnson, Kotz, and Balakrishnan’s 

(1994, pp 337, eq. 17.1) equation to implement the gamma function.  Practically, the BUGS code 

is to change the density function to: 

#--------------------------# 

# Gamma density           # 

#--------------------------# 

term1[i,j] <- beta[i]*log(theta[i]) + (y[i,j] - psi[i])/theta[i] + loggam(beta[i]) 

term2[i,j] <- (beta[i]-1)*log(y[i,j] - psi[i]) 

Similar to the way we implemented the Weibull function, we assessed the parameters via 

a minus log-likelihood and used the pseudo-Poisson (zero) trick.  This implementation resulted in 

unstable, non-converged estimations.  Take the shape parameter as an example.  In the spatial 

configuration search for participant 3, the shape (beta) estimation yielded three different posterior 

distributions and the trace plots from the three chains unstably oscillated around different ranges.  

In addition, the autocorrelation plots indicated a problem and this did not abate with increasing 

iterations.  In summary, the diagnostics show that the gamma function does not converge when 

fitted with a HBM framework.  

This failure of gamma fit could be because (1) it is not suitable for HBM in this context, 

and/or (2) the gamma function indeed fits worse than Weibull function (as the DIC suggests).  

Note that we have run a high number of iteration (i.e., 105000) and reasonable thinning length 

and this still cannot resolve the non-converged gamma fit.   

 Add Table 2 

Table 1. The DICs of the 4 fitted functions. They are averaged across the absent and 

present trials, tasks and display sizes. 

 Lin, Heinke, & Humphreys (2014)  Wolfe, Palmer, & Horowitz (2010) 

Gamma 385,348,342 975,871,147 

Log normal 385,348,002 975,870,279 

Wald 385,348,026 975,870,358 

Weibull 385,348,139 975,871,078 
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 Add Figure 19 

 

Figure 19. The figure compares the Bayesian DICs for the fitted 3-parameter probability 

functions across the data sets, search tasks, target types, and display sizes. L and W stands for 

ours and Wolfe, Palmer, and Horowitz’s data sets.  

################################################################################## 

2. Answer to the issues related to the splits of the drift parameter in the visually weighted 

regression plot of the diffusion parameter 

################################################################################## 

We add interpretation, specifically mentioning the split prediction in the visually weighted 

regression.  The following highlights the new interpretation extracted from the General 

Discussion section  

------------------------------------------------------------------------------------------------------------- 

This weak effect with the shift parameter is further accounted for by our visually weighted 

plot at the drift rate parameter, showing a clear split of trends and an increase of between-

observer variation at the large display size.  Specifically, a subset of participants adopted a 

strategy similar as those participants in Wolfe and colleagues’ study.  They did not assemble 

similar distractors as a search unit, so the predicted drift rate decreases at the large display 

sizes, whereas the other subset of participants benefited from the crowded homogeneous 

distractors and thus increased drift rate at the large display sizes.   

⁞ 

Another possible factor that may explain the different findings for the shape parameter is 

illustrated by the drift rate visually weighted plot.  The visually weighted regression lines 

predict two groups of participants accumulating sensory evidence at different rates, but 

indicate only one homogeneous group in Wolfe et al.’s data.  As our simulated study shows 

(Appendix B), the drift rate can also weigh-in to change the shape parameter.  This suggests 

that some of our participants took advantage of the crowded layout to facilitate search using 

the spatial configuration search, and some did not.  This did not happen in Wolfe et al.’s 
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sparse layout, and likely contributed also to our significant finding for the shape parameter on 

present trials. 

 

################################################################################## 

3. Answer to the issue related to how the EZ2 model complements the result of Weibull 

function fit 

################################################################################## 

(1) The diffusion model’s assumed three psychological processes, the evidence 

accumulator, the decision boundary, and the non-decision process, are operated at the 

stage of stimulus comparison in a search trial.  We used the EZ2 model to estimate the 

means across trials of the three diffusion parameters in each condition.  The Weibull 

HBM on the other hand summarizes the shapes of RT distributions in each condition.  

The RT distributions summarized by the Weibull HBM represent the outputs from the 

diffusion processes.  Therefore, the complementary of the two modeling approach is 

because, on the one hand, we assume one search response is driven by the diffusion 

process, and on the other, all the responses in one experimental condition aggregate to 

form an RT distribution, described by the Weibull parameter.  Even though the Weibull 

model takes only correct trials into account, the EZ2 estimation will still make sense, 

because the benchmark paradigms produce very high accuracy data. 

(2) To make this interpretation more concrete, we ran 3 Monte Carlo simulations, using the 

3-parameter Weibull function to simulate 6 20-participant datasets.  Each participant 

contributed 200 trials.  We then used EZ2 diffusion model to fit the simulated data.  We 

show in Appendix B that, when doubling one Weibull parameter and keeping the others 

constant, how the EZ2 model fits the data and how the three diffusion parameters 

change.  The General Discussion used the simulation result to interpret how the EZ2 

model complements the Weibull HBM.   

 

 Add texts in the Introduction section, page 11 

 

The diffusion model was used to complement the distributional analysis.  The three diffusion 

processes – the evidence accumulator, the boundary separation, and the non-decision process 

– are operated at the stage of stimulus comparison in a search trial.  We used the EZ2 model 

to estimate the means across trials of the diffusion parameters in each condition.  The Weibull 

HBM on the other hand summarizes the shapes of RT distributions in each condition.  The 

RT distributions thus are the aggregated outputs from the diffusion processes.  The dual-

modeling approach, on the one hand, assumes one search response is driven by the diffusion 

process, and, on the other, all the responses in one experimental condition aggregate to form 

an RT distribution, describing by the Weibull parameters.  Even though the Weibull model 

takes only correct trials into account, the EZ2 estimations were still able to account for the 

descriptive model, because the benchmark paradigms produced high accuracy responses. 
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 Revise texts and interpretation in the subsection, “Model-based analysis” in the General 

discussion section 

Model-based analysis 

 Previous version Current version 

 First, the shift parameter varied across 

the search tasks but was less affected by 

the display size, a pattern that was also 

observed in the drift rate. 

First, the shift parameter varied across 

the search tasks and display sizes, a 

pattern that is in line with our illustration 

and the ideal analysis (see Figure 1 & 

Appendix B). This parameter reflects the 

psychological processes influencing 

evenly all ranges of RTs.  One of the 

diffusion processes likely to influence the 

shift changes is the drift rate, which 

showed only the main effect of the task. 

 As the drift rate is to model the rate of 

information accumulation determined by 

the goodness-of-match between templates 

and search stimuli, the shift parameter 

appears to reflect the quality of the 

memory match. 

As the drift rate aims to model the rate of 

information accumulation determined by 

the goodness-of-match between templates 

and search stimuli, the shift parameter 

appears to result from the change in the 

quality of the memory match. 

New This is a plausible account, because the 

shift parameter captures the quick 

responses in a distribution.  In a multi-

item search array, it shows a correct 

decision made with a good template-

stimulus match in the first few attempts 

to locate the target. 

This is a plausible account, because the 

three search tasks demand contrasting 

matching processes, from (i) feature 

search requiring only pre-attentive 

parallel processing to extract just one 

simple salient feature, to (ii) conjunction 

search, where binding two simple 

features must be bound to facilitate a 

good match, and to (iii) spatial 

configuration search, demanding both 

features binding and coding of the 

configuration of the features. 

 

The lack of interaction with display size 

further supports our argument that the 

shift reflects the factors affects the RT 

distribution equally.  The weak display 

size effect can be readily explained by 

the crowded layout we used; it was not 

observed [F(3,75) = 0.016, p = 0.997]  in 

Wolfe et al.’s data (2010).  This weak 

effect at the shift parameter is further 

accounted for by our visually weighted 

plot in the drift rate parameter, showing a 

clear split of trends and an increase of 

between-observer variation at the large 

display size.  Specifically, a subset of 
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participants adopted a strategy similar as 

those participants in Wolfe and 

colleagues’ study.  They did not assemble 

a single search unit, so the predicted drift 

rate decreases at the large display sizes, 

whereas the other subsets of participants 

benefited from the crowded 

homogeneous distractors and thus 

increased drift rate at the large display 

sizes.     

same Another account for the strong task 

effect, but the weak effect of display size, 

is that it reflects a process such as the 

recursive rejection of distractors 

proposed by Humphreys and Müller 

(1993) in their SERR model of visual 

search (see also Heinke & Humphreys, 

2005). 

Another account for the strong task 

effect, but the weak effect of display size, 

is that it reflects a process such as the 

recursive rejection of distractors 

proposed by Humphreys and Müller 

(1993) in their SERR model of visual 

search (see also Heinke & Humphreys, 

2005). 
  

same Humphreys and Müller (1993) argued 

that search can reflect the grouping and 

then recursive rejection of distractors. 

Humphreys and Müller (1993) argued 

that search can reflect the grouping and 

then recursive rejection of distractors. 

same The process here may reflect the strength 

of grouping rather than the number of 

distractors since multiple distractors may 

be rejected together in a group – indeed 

effects of the number of distractors may 

be non-linear as grouping can increase at 

larger display sizes. 

The process here may reflect the strength 

of grouping rather than the number of 

distractors since multiple distractors may 

be rejected together in a group – indeed 

effects of the number of distractors may 

be non-linear as grouping can increase at 

larger display sizes. 

same Grouping and group selection both reflect 

the similarity of targets and distractors 

and the similarity of the distractors 

themselves, and these two forms of 

similarity vary in opposite directions in 

conjunction and spatial configuration 

search (relative to a feature search 

condition as employed here, there is 

stronger target-distractor grouping and 

weaker distractor-distractor grouping; see 

Duncan & Humphreys, 1989). 

Grouping and group selection both reflect 

the similarity of targets and distractors 

and the similarity of the distractors 

themselves, and these two forms of 

similarity vary in opposite directions in 

conjunction and spatial configuration 

search (relative to a feature search 

condition as employed here, there is 

stronger target-distractor grouping and 

weaker distractor-distractor grouping; see 

Duncan & Humphreys, 1989). 

same If the process of distractor rejection is 

more difficult in conjunction and 

configuration search, compared with 

feature search, then there will be effects 

on a parameter reflecting this process, 

and this may not vary directly with 

display size, as we observed. 

If the process of distractor rejection is 

more difficult in conjunction and 

configuration search, compared with 

feature search, then there will be effects 

on a parameter reflecting this process, 

and this may not vary directly with 

display size, as we observed.   

same In contrast to the shift parameter, the 

shape parameter showed marginal effect 

of the display size, a reliable effect at the 

In contrast to the shift parameter, the 

shape parameter showed marginal effect 

of the display size, a reliable effect at the 
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task, and an interaction between these 

factors. 

task, and an interaction between these 

factors. 

same The magnitude of this parameter 

increased monotonically with the display 

size for the feature and conjunction 

searchers but there was a U-shaped 

function for the spatial configuration 

search. 

The magnitude of this parameter 

increased monotonically with the display 

size for the feature and conjunction 

searchers but there was a U-shaped 

function for the spatial configuration 

search. 

same This last result is consistent with there 

being a contribution from an emergent 

property of the larger configuration 

displays, such as the presence of 

grouping between the multiple 

homogeneous distractors leading to a 

change in perceptual grouping (see also 

Levi, 2008, for a similar argument 

concerning visual crowding). 

This last result is consistent with there 

being a contribution from an emergent 

property of the larger configuration 

displays, such as the presence of 

grouping between the multiple 

homogeneous distractors leading to a 

change in perceptual grouping (see also 

Levi, 2008, for a similar argument 

concerning visual crowding). 

 This change in the shape parameter in the 

large configuration search display is in 

line with a sudden increase of the drift 

rate standard deviation 

(.080, .050, .054, .344), suggesting either 

a change in the quality of a match 

between the stimuli and the template or a 

variable grouping unit affecting the 

recursive rejection process.   

This change in the shape parameter in the 

large display size of the spatial 

configuration task is in line with a sudden 

increase of the drift rate standard 

deviation (0.080,  0.050, 0.054,  0.344), 

suggesting either (1) a change in the 

quality of a match between the stimuli 

and the template or (2) a variable 

grouping unit (amongst different 

observers) affecting the recursive 

rejection process. 

 In addition, we observed a general 

increase in the values of the shape 

parameter across the display sizes on 

absent trials in the spatial configuration 

task, F(3, 57) = 6.13, p = .001, η
2

p = .244 

(1.73, 1.86, 2.05, & 1.96; 3, 6, 12, & 18). 

In addition, we observed a general 

increase in the values of the shape 

parameter from 1.73 of the display size 3, 

1.86 of the display size 6, 2.05 of the 

display size 12, to 1.96 of display size 18 

on absent trials in the spatial 

configuration task, F(3, 57) = 6.13, p 

= .001, η
2

p = .244. 

Same The target absent-induced shape change 

in the spatial configuration task was 

observed also in Palmer and colleagues’ 

analysis (2011). 

The target absent-induced shape change 

in the spatial configuration task was 

observed also in Palmer and colleagues’ 

analysis (2011). 

Same However, their data showed no reliable 

shape change across display sizes for 

present trials (Palmer et al., 2011). 

However, their data showed no reliable 

shape change across display sizes for 

present trials (Palmer et al., 2011). 

 Following Wolfe et al.’s (2010) 

suggestion, Palmer and colleagues (2011) 

speculated that the display size effect for 

the shape parameter might result from the 

premature abandoning of search, a view 

that appears to be supported by their data 

showing high rate of miss errors in the 

Following Wolfe et al.’s (2010) 

suggestion, Palmer and colleagues (2011) 

speculated that the display size effect for 

the shape parameter might result from the 

premature abandoning of search, a view 

that is supported by their data showing 

high rate of miss errors in the spatial 
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spatial configuration task (Wolfe et al., 

2010). 

configuration task (Wolfe et al., 2010). 

Same The high rate of miss errors might reflect 

when an observer prematurely decides to 

give an absent response on a target 

present trial. 

The high rate of miss errors might reflect 

when an observer prematurely decides to 

give an absent response on a target 

present trial. 

same This will in turn reduce the overall 

number of slow responses leading to an 

RT distribution with low skew. 

This will in turn reduce the overall 

number of slow responses leading to an 

RT distribution with low skew. 

same This indicates that in the conditions with 

high miss errors, participants tended to 

set a low decision threshold for the target 

absent response. 

This indicates that in the conditions with 

high miss errors, participants tended to 

set a low decision threshold for the target 

absent response. 

same The tendency might also appear in the 

absent trials, resulting in correct rejection 

by luck, a result leading to RT 

distributions in the absent trials with 

increase shape parameters. 

The tendency might also appear in the 

absent trials, resulting in correct rejection 

by luck, a result leading to RT 

distributions in the absent trials with 

increase shape parameters. 

 We, applying a more sensitive method 

under the constraint of limited trial 

numbers, show reliable display size 

effects on the RT shape in the present 

trials of the spatial configuration 

searches. 

We, applying a more sensitive method 

under the constraint of limited trial 

numbers, show reliable display size 

effects on the RT shape in the present 

trials of the spatial configuration and the 

conjunction searches. 

same Together with the miss error data, our 

data do indicate that a link between the 

miss errors and the shape of the RT 

distribution is plausible. 

Together with the miss error data, our 

data do indicate that a link between the 

miss errors and the shape of the RT 

distribution is plausible. 

 In addition to the explanation of 

participants abandoning search 

prematurely, we propose another 

explanation that, relative to the feature 

and the conjunction searches, the factor 

that changes the RT shape in the spatial 

configuration search is the goodness-of-

match between the search template and 

the search display. 

In addition to the explanation of 

participants abandoning search 

prematurely (i.e., a dynamic changes of 

boundary separation), we propose 

another explanation that, relative to the 

feature search, the factor that changes the 

RT shape in the spatial configuration 

search is the goodness-of-match between 

the search template and the search 

display (i.e., the drift rate changes). 

same This implies the factors contributing a 

change in the structure of trial RTs will 

result in shape changes for the RT 

distributions. 

This implies the factors contributing a 

change in different parts of an RT 

distribution will result in its shape. 

New  

 
As our simulation study shows 

(Appendix B), doubling the shape 

parameter results in a decrease at the 

boundary separation (in line with the 

miss-error account) and an increase at the 

drift rate (in line with the goodness-of-

match account).  Both of the diffusion 

parameters likely are the processes driven 
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the changes at the distributional shape. 

new  Both of the diffusion parameters likely 

are the processes driven the changes at 

the distributional shape. 

same Among the three Weibull parameters, the 

scale parameter showed the highest 

correlation with mean RTs (Pearson r 

= .78, p = 2.20 × 10
-16

), a result 

replicating Palmer et al.’s (2011) 

analysis. 

 

Among the three Weibull parameters, the 

scale parameter showed the highest 

correlation with mean RTs (Pearson r 

= .78, p = 2.20 × 10
-16

), a result 

replicating Palmer et al.’s (2011) 

analysis. 

 The high correlation should not be 

surprising, considering that both the RT 

scale and the mean RTs capture a general 

change in RT distributions. 
 

The high correlation should not be 

surprising, considering that both the RT 

scale and the mean RTs capture the 

change in the central location of RT 

distributions. 

 The scale parameter estimates an overall 

enhancement (or reduction) of response 

latency as well as response variance, as 

does the mean RTs (see a review in 

Wagenmakers & Brown, 2007). 

The scale parameter estimates an overall 

enhancement (or reduction) of response 

latency as well as response variance, so 

do the mean and variance RTs (see a 

review in Wagenmakers & Brown, 

2007). 

 Unlike the mean RTs, however, the scale 

parameter in our dataset was not sensitive 

to the display size, and a separate 

ANOVA failed to indicate a reliable 

effect in the feature search task. 

Unlike the mean RTs, however, the scale 

parameter in our dataset was not sensitive 

to the display size in the feature search 

task. 

same A cross-examination with the boundary 

separation in the diffusion model appears 

to indicate that the scale parameter might 

reflect the influence of response criteria, 

with only the inefficient tasks showing 

the display size effect. 

A cross-examination with the boundary 

separation in the diffusion model appears 

to indicate that the scale parameter might 

reflect the influence of response criteria, 

with only the inefficient tasks showing 

the display size effect. 

same This should not be taken as evidence 

indicating that the scale parameter is a 

direct index of the response criteria 

however; rather changes in the scale 

parameter are a consequence of altering 

the response criteria. 

This should not be taken as evidence 

indicating that the scale parameter is a 

direct index of the response criteria 

however; rather changes in the scale 

parameter are a consequence of altering 

the response criteria. 

 An observer with a conservative 

criterion, for example, might show a 

general change of response latency and 

variance (the more reluctant to make a 

decision, the more variable a response 

will be), so the scale parameter reflects 

this change. 

An observer with a conservative 

criterion, for example, might show a 

general change of response latency and 

variance (the more reluctant to make a 

decision, the more variable a response 

will be), so the scale parameter reflects 

this change. 

  

 Revise texts and interpretation in the subsection, “Distributional parameters reflect 

underlying processes” in the General discussion section 
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Distributional parameters reflect underlying processes                  

 Previous version Current version 

same The RT distributional parameters were 

posited, under the framework of the stage 

model of information processing, to 

reflect different aspects of peripheral and 

central processing. 

The RT distributional parameters were 

posited, under the framework of the stage 

model of information processing, to 

reflect different aspects of peripheral and 

central processing. 

same The shift parameter was associated with 

the speed of peripheral processes (i.e., 

irreducible minimum response latency, 

Dzhafarov, 1992), the scale parameter 

with the speed of executing central 

processes, and the shape together with 

the scale parameters related to the 

insertion of additional stages into the 

central processing (Rouder et al., 2005). 

The shift parameter was associated with 

the speed of peripheral processes (i.e., 

irreducible minimum response latency, 

Dzhafarov, 1992), the scale parameter 

with the speed of executing central 

processes, and the shape together with 

the scale parameters related to the 

insertion of additional stages into the 

central processing (Rouder et al., 2005). 

Same Using the benchmark paradigms of visual 

search (Wolfe et al., 2000), our data 

indicate that the shift parameter, instead 

of reflecting the speed of peripheral 

processes, may be associated with the 

process of distractor rejection and the 

quality of the match between a template 

and a search display. 

Using the benchmark paradigms of visual 

search (Wolfe et al., 2000), our data 

indicate that the shift parameter, instead 

of reflecting the speed of peripheral 

processes, may be associated with the 

process of distractor rejection and the 

quality of the match between a template 

and a search display. 

same This is supported by the analysis using 

the EZ2 diffusion model. 

This is supported by the analysis using 

the EZ2 diffusion model. 

 As we argued previously, the shift 

parameter descriptively captures the fast 

responses in an RT distribution and 

should not be taken as a peripheral 

process, because, even in these quick 

responses, observers have completed 

both peripheral and central operations in 

order to produce measurable responses. 

As we argued previously, the shift 

parameter captures the factors that 

influence the entire RT distribution 

equally. 

New  A possible situation that the peripheral 

process may result in a clear shift change 

is when the other two parameters are kept 

constant. 

New  That is, when no factor influences the 

decision-making process and when the 

shape of an RT distribution is unchanged. 

same We suggest that the data better reflect a 

process such as the recursive rejection of 

the grouped distractors and the quality of 

the match to a target template, which, 

when accurate, contributes to the fast end 

of the RT distribution. 

We suggest that the data better reflect a 

process such as the recursive rejection of 

the grouped distractors and the quality of 

the match to a target template, which, 

when accurate, contributes to an entire 

RT distribution.   
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same Our results for the scale parameter are 

consistent with those of Rouder and 

colleagues (2005) in suggesting that it 

reflects the speed of execution in a 

central decision-making process. 

Our results for the scale parameter are 

consistent with those of Rouder and 

colleagues (2005) in suggesting that it 

reflects the speed of execution in a 

central decision-making process. 

same As the execution speed closely links with 

the decision boundaries and the initial 

state of sensory information an observer 

sets for a response trial, we observed a 

similar pattern in the scale parameter, the 

boundary separation and the non-decision 

time. 

As the execution speed closely links with 

the decision boundaries and the initial 

state of sensory information an observer 

sets for a response trial, we observed a 

similar pattern in the scale parameter, the 

boundary separation and the non-decision 

time. 

same The pattern in the non-decision time is 

readily accounted for by the fact that EZ2 

diffusion model absorbs the parameter 

reflecting the initial state of sensory 

evidence into the non-decision time. 

The pattern in the non-decision time is 

readily accounted for by the fact that EZ2 

diffusion model absorbs the parameter 

reflecting the initial state of sensory 

evidence into the non-decision time. 

same The distance between the decision 

boundary and the initial state of sensory 

evidence can then be taken as reflecting 

changes in the response criteria and 

hence altering the scale of an RT 

distribution. 

The distance between the decision 

boundary and the initial state of sensory 

evidence can then be taken as reflecting 

changes in the response criteria and 

hence altering the scale of an RT 

distribution. 

same For the shape parameter we observed an 

emergent effect of perceptual grouping at 

the large display size in the spatial 

configuration search. 

For the shape parameter we observed an 

emergent effect of perceptual grouping at 

the large display size in the spatial 

configuration search. 

same This is in line with the drift rate data in 

that the drift rate was slower for the 

spatial configuration search task relative 

to the two simple search tasks both in our 

data (0.323, 0.265 vs. 0.220) and those of 

Wolfe et al. (2010) (0.341, 0.299 vs. 

0.203). 

This is in line with the drift rate data in 

that the drift rate was slower for the 

spatial configuration search task relative 

to the two simple search tasks both in our 

data (0.323, 0.265 vs. 0.220) and those of 

Wolfe et al. (2010) (0.341, 0.299 vs. 

0.203). 

same In Palmer et al.’s analysis (2011) no task 

effect was found in the shape parameter. 

In Palmer et al.’s analysis (2011) no task 

effect was found in the shape parameter. 

 Using the HBM we observed a marginal 

task effect, F(2, 25) = 3.22, p = .06, η
2

p 

= .205, suggesting that the previous result 

might reflect a lack of power. 
 
  

Using the HBM we observed a 

significant task effect, F(2, 55) = 23.50, p 

= 4.21 × 10
-8

, η
2

p = .461, suggesting that 

the previous result might reflect a lack of 

power. 

same The observations of shape invariance in 

Palmer et al.’s analysis could also be 

interpreted in term of a memory match 

account (Ratcliff & Rouder, 2000). 

The observations of shape invariance in 

Palmer et al.’s analysis could also be 

interpreted in term of a memory match 

account (Ratcliff & Rouder, 2000). 

 This account presumes that, when the 

integrity of a memory match between the 

template and search items is still intact, 

the evidence strength is strong enough to 

This account presumes that, when the 

integrity of a memory match between the 

template and search items is still intact, 

the evidence strength is strong enough to 
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permit a correct decision (Smith, Ratcliff, 

& Wolfgang, 2004; Smith & Sewell, 

2013). 

permit a correct decision (Smith, Ratcliff, 

& Wolfgang, 2004; Smith & Sewell, 

2013). 

same Since the previous study recruited fewer 

participants and some might find 

strategies to conduct the difficult 

searches still using the same processing 

stages as the feature search task, the 

shape parameter reflects only a marginal 

effect. 
 

Since the previous study recruited fewer 

participants and some might find 

strategies to conduct the difficult 

searches still using the same processing 

stages as the feature search task, the 

shape parameter reflects only a marginal 

effect. 

New  Another possible factor that may explain 

the different finding at the shape 

parameter is illustrated by the drift rate 

visually weighted plot. 

New  The visually weighted regression lines 

predict two groups of participants 

accumulating sensory evidence at 

different rates, but indicate only one 

homogeneous group in Wolfe et al.’s 

data. 

New  As our simulated study shows (Appendix 

B), the drift rate can also weigh-in to 

change the shape parameter. 

New  This suggests that some of our 

participants took advantage of the 

crowded layout to facilitate search using 

the spatial configuration task, and some 

did not.   

New  This did not happen in Wolfe et al.’s 

sparse layout, and likely contribute also 

to our significant finding at the shape 

parameter on present trials. 

 

 

 Added Appendix B  

Appendix B 

EZ2 diffusion model simulations 

The stimulation study was undertaken to examine how the parameters estimated from 

EZ2 diffusion model correlate with the Weibull parameters in a simple well-controlled 

situation.  We performed 3 case studies that changed only one of the Weibull parameters.  

Note that the three distributional parameters jointly determine the general shape of a 

distribution. Thus a change in the drift rate may alter one or more Weibull parameters.  The 3 

studies respectively doubled the shift, the scale and the shape parameters in a Weibull 

function and simulated 200 RTs from 20 homogeneous observers.   
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The data were than submitted to the EZ2 model to estimate the drift rate, boundary 

separation and non-decision time.  The result indicated that firstly, doubling the shift 

parameter resulted in a near two-fold increase in the non-decision time (416 vs. 827 ms), 

small increases in the drift rate (0.012 vs. 0.013), and small decreases of the boundary 

separation (4.89 vs. 4.57).  Second, doubling the scale parameter resulted in a decrease of the 

drift rate (0.013 vs. 0.009), an increase in boundary separation (4.70 vs. 6.57), and a 10-ms 

increase for the non-decision time (407 vs. 417 ms).  Finally, doubling the shape parameter 

resulted in an increase of the drift rate (0.013 vs. 0.018), a decrease of the boundary 

separation (4.57 vs. 3.39) and again a small increase at the non-decision time (410 vs. 507; 

although this increase was relatively larger than that of doubling the scale parameter).   

Figure 18 shows a comparison across the three case studies.    

 

Figure 18. The figure shows how the change in a distributional parameter may alter the 

parameters estimated by the EZ2 diffusion model.  Ter, a and v stand for the non-decision 

time, the boundary separation and the drift rate, respectively. 
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