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 A bubble initiated near a rigid boundary may be almost in contact with the boundary 

due to its expansion and migration to the boundary, where a thin layer of water forms 

between them thereafter. This phenomenon is modelled using the weakly compressible theory 

coupled with the boundary integral method. The wall effects are modelled using the method 

of image. The numerical instabilities caused by the near contact of the bubble surface with 

the boundary are handled by removing the thin layer of water between them and joining the 

bubble surface with its image to the boundary. Our computations correlate well with 

experiments for both the first- and second-cycles of oscillation. The time history of the 

energy of a bubble system follows a step function, reducing rapidly and significantly due to 

emission of shock waves at inception of a bubble and at the end of collapse but remaining 

approximately as a constant for the rest of the time. The bubble starts being in near contact 

with the boundary during the first cycle of oscillation when the dimensionless standoff 

distance γ = s/Rm < 1, where s is the distance of the initial bubble centre from the boundary 

and Rm is the maximum bubble radius. This leads to (i) the direct impact of a high speed 

liquid jet on the boundary once it penetrates through the bubble, (ii) the direct contact of the 

bubble at high temperature and high pressure with the boundary, and (iii) the direct 

impingement of shock waves on the boundary once emitted. These phenomena have clear 

potential to damage the boundary, which are believed to be the new mechanisms of cavitation 

damage.  

Keywords: Bubble dynamics in contact with a rigid boundary; Cavitation damage; Bubble 

jetting; Shock waves; Local energy of a bubble system; Weakly compressible theory; 

Boundary integral method. 
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1. Introduction 

 The study of bubble dynamics in the neighbourhood of a rigid boundary is associated 

with cavitation erosion to propellers, turbines and pumps (Plesset & Prosperetti 1977; Blake 

& Gibson 1987; Young 1989; Leighton 1994; Brennen 1995; Lauterborn & Kurz 2010). The 

cavitation damage mechanism is believed to be associated with shock waves (Rayleigh 1917; 

Taylor 1942) and bubble jetting (Kornfeld & Suvorov 1944; Naudé & Ellis 1961; Plesset & 

Chapman 1971), both are formed at the end of collapse. Similarly the damage mechanism of 

underwater explosion is associated with a shock wave emitted at inception of an underwater 

explosion bubble and bubble jetting formed at the end of collapse (Cole 1948; Klaseboer et al. 

2005; Hung et al. 2010). 

 Recent research on ultrasound cavitation bubbles are associated with several important 

medical applications, including extracorporeal shock wave lithotripsy (Delius 1990; 

Klaseboer et al. 2007, Iloreta et al. 2008; Calvisi et al. 2008; Leighton et al. 2008, 2013), 

tissue ablating (histotripsy) (Roberts et al. 2006; Coussios & Roy 2007; Curtiss et al. 2013), 

and oncology and cardiology (Leslie & Kennedy 2006). In those applications, cavitation 

microbubbles absorb and concentrate significant amount of energy from ultrasound, leading 

to shape oscillation, violent collapsing, shock waves and bubble jetting (Wang & Manmi 

2014). These mechanisms are also associated with sonochemistry (Suslick 1990; Suslick & 

Crum 1997) and ultrasound cavitation cleaning - one of the most effective cleaning processes 

for electrical and medical micro-devices (Song et al. 2004; Ohl et al. 2006). 

 A bubble initiated near a rigid boundary can be almost in contact with the boundary due 

to its expansion and migration to the boundary attracted by the second Bjerknes force 

(Philipp & Lauterborn 1998). This leads to the direct impact of a liquid jet on the boundary 

once it penetrates through the bubble, the direct contact of the bubble at minimum volume at 

high pressure and high temperature with the boundary, and the direct impingement of shock 

waves on the boundary once emitted. We believe that these phenomena have clear damage 

potential to the boundary. It is therefore very important to study bubble dynamics in near 

contact with a rigid boundary. 
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 The boundary integral method (BIM) is grid-free in the flow domain and 

computationally efficient, and is thus widely used in the field of bubble dynamics. It has been 

applied for an axisymmetric configuration for a bubble near a rigid wall, a free surface or 

compliant surface (Lenoir 1979; Guerri et al. 1981; Blake et al. 1986, 1987, 1997; Zhang et al. 

1993, 1994; Duncan et al. 1993, 1996; Brujan et al. 2002; Pearson et al. 2004; Wang et al. 

2005; Lind & Phillips 2010, 2013; Curtiss et al. 2013) and for three dimensional 

configurations (Chahine et al. 1980, 1988, 1998a, b; Wang 1998, 2004; Zhang et al. 2001; 

Klaseboer et al. 2005, Jayaprakash et al. 2010, 2012). The BIM is suitable for an 

incompressible flow and does not account for the significant energy loss due to emission of 

shock waves associated with bubble dynamics. Lee et al. (2007) modified the BIM by 

removing empirically a part of the bubble potential energy at the end of the first-cycle of 

oscillation. 

 The weakly compressible theory for spherical bubbles was developed by Prosperetti & 

Lezzi (1986) and Lezzi & Prosperetti (1987). Wang & Blake (2010, 2011) further developed 

this theory for nonspherical bubbles using the method of matched asymptotic expansions. In 

the weakly compressible theory, the flow to second order in the outer region far away from 

the bubble satisfies the wave equation and is obtained analytically. The flow to second order 

in the inner region near the bubble satisfies Laplace’s equation and thus is modelled using the 

BIM.  

 Wang (2014) modelled bubble dynamics near a rigid boundary in a compressible flow 

using the weakly compressible theory coupled with the BIM for the bubble initiated at γ = 

s/Rm > 1. In this paper we will study the closer cases for γ < 1, where a part of the bubble 

surface starts in near contact with the rigid boundary during the expansion phase. A thin layer 

of water is formed between the bubble surface and the boundary and remains thin 

subsequently. This leads to numerical instabilities in the BIM. To avoid the numerical 

instabilities, we remove the thin layer of water between the bubble surface and the boundary, 

join the bubble surface with its image to the boundary and simulate “the combined bubble”, 

following Ni et al. (2014). Our computations correlate well with the experiments of Philipp & 

Lauterborn (1998) for both the first- and second-cycles of oscillation. 
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2. Weakly compressible theory  

 Consider the dynamics of a gas bubble near a rigid flat boundary in an inviscid and 

compressible liquid. A Cartesian-coordinate system is set as illustrated in figure 1. The x-axis 

is on the rigid boundary and the z-axis is along the axis of symmetry for the configuration.  

 

 

 

 

 

 

 

Figure 1. Illustration of a bubble near a rigid boundary, with a standoff distance s from the 

centre of the initial bubble to the boundary, and the coordinates used. 

 The maximum bubble radius Rm is chosen as the reference length, the density ρ∞ in the 

undisturbed liquid is chosen as the reference density. The pressure reference is ∆p = p∞ - pv, 

where p∞ is the pressure in the undisturbed liquid and pv is the partial pressure of vapour of 

the bubble. The reference velocity is thus obtained as ∞ρ∆= /pU . We perform 

non-dimensionalization to the problem using the reference parameters and denote 

dimensionless quantities by subscripts “*” as follows: 
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where r = (x, y, z), t is the time, ϕ is the velocity potential of the liquid flow and p is the 

pressure. The speed of sound c is normalized by its value in the undisturbed liquid c∞.  

 The compressibility of the liquid flow can be measured by the Mach number defined in 

terms of the reference flow velocity U and the speed of sound c∞ in the undisturbed liquid as 

follows: 
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1500 m s
-1

, whereas the velocity of the bubble jet is lower than 200 m s
-1

 at normal ambient 

pressure (Benjamin & Ellis 1966; Lauterborn & Bolle 1975; Shima et al. 1981; Tomita & 

Shima 1986; Vogel et al. 1989, 1990; Lauterborn & Ohl 1997; Philipp & Lauterborn 1998; 

Lindau et al. 2003; Brujan & Matsumoto 2012; Yang et al. 2013).  

 We divide the fluid domain into two asymptotic regions: the inner region near the 

bubble where (x, y, z) = O(Rm) and the outer region far away from the bubble where (x, y, z) = 

O(λ), with λ = c∞Rm/U being the wavelength of acoustic waves. Using the method of matched 

asymptotic expansions, the outer solution of the velocity potential to second order has been 

shown to satisfy the wave equation and obtained analytically as follows (Wang 2013, 2014): 

( ) ( )2

*

***
*

2
ε+

π

ε−
−=ϕ O

r

rtVo
ɺ

,                                (2.3) 

where the overdot denotes the derivative in time. The outer solution is due to the acoustic 

radiation associated with the volume oscillation of the bubble.  

 The inner solution of the velocity potential ϕ to second order satisfies Laplace’s 

equation in the flow field and the kinematic and dynamic boundary conditions on the bubble 

surface S as follows: 
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Here pL* is the liquid pressure on the bubble surface, which is given as, 

n⋅∇σ−= *** BL pp  on S,                                   (2.6a) 
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where pg0* = pg0/∆p is the initial partial pressure of the non-condensable gases of the bubble; 

V0* is the initial bubble volume, and κ is the ratio of the specific heats of the gases; n is the 

normal vector of the bubble surface, n⋅∇  provides the surface curvature and σ* = σ/(Rm∆p) 

is the surface tension coefficient. We assumed in (2.6b) that the pressure inside the bubble is 

uniform, since density of gases is usually three orders of magnitude smaller than liquids. We 

assume also that the expansion and contraction of the bubble gases are adiabatic. Additionally, 

heat and mass transfer across the bubble surface could be included (cf. Szeri et al. 2003), but 
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will not be considered in this paper. 

 The far field boundary condition of the inner solution is obtained by matching with the 

outer solution as follows (Wang 2014): 

( ) ( ) ( )2

*

**

***
2

1
ε+








−ε

π
→ϕ O

r

tV
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ɺ
ɺɺ  as r*→∞ .                          (2.5d) 

 The initial condition on the bubble surface is given as 

*0*0*0* on     
**
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==
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where R0* is the initial radius of the bubble. 

 Examining the initial and boundary problem of (2.5), one can see that the compressible 

effects appear only in the far field condition (2.5d) to the second order approximation. As the 

basic equation is Laplace’s equation, this problem can be modeled using the BIM. The details 

on the numerical model using the BIM for the problem can be found in (Best 1993; Wang et 

al. 1996a, b).  

 Bubble dynamics near a flat rigid boundary are modeled using the method of image 

(Wang et al. 2005). When the bubble surface is nearly in contact with the rigid boundary, 

simulations using the BIM are often associated with numerical instabilities. To avoid the 

numerical instabilities, we remove the thin layer of liquid between the bubble surface and the 

boundary, join the bubble surface with its image to the boundary and simulate “the combined 

bubble” (Ni et al. 2014). In the simulations performed in this paper, the join takes place when 

the minimum distance δmin between bubble surface and the boundary is in the range of 0.01 to 

0.04.  

 A composite solution ( )** , tc rϕ  of the inner and outer solutions for the entire domain 

can be given as follows 
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 The mechanical energy of a bubble system consists of the potential energy and the 

kinetic energy of the bubble system. The potential energy EP is given as follows (Wang & 

Manmi 2014)  
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where A* is the area of the bubble surface. The reference energy is chose as pRm∆3
. 
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 For a bubble system in a compressible liquid, we introduce the local kinetic energy ELK 

of the liquid flow in the inner asymptotic region ΩL near the bubble. ΩL is bounded by the 

bubble surface S and a large sphere S∞, with its centre at the centre of the initial bubble 

surface and with a radius being large compared to the bubble radius and small compared to 

the wavelength λ of the acoustic wave. Since the flow in the inner region satisfies Laplace’s 

equation to second order, the local kinetic energy ELK is given as follows, by using Green's 

divergence theorem and the outer limit of the inner solution (2.5d) (Wang 2015): 

( ) ( )∫∫∫ ε+ϕϕ=ε+
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The kinetic energy in the bubble gases are negligible since density of gases are usually three 

orders of magnitude smaller than liquids. 

 The local energy of a bubble system in a compressible liquid consists of the potential 

energy EP and the local kinetic energy ELK as follows:  
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Figure 2. Illustration of the local liquid domain ΩL bounded by the bubble surface S and a 

large sphere S∞, with its centre at the centre of the initial bubble surface and with a radius R∞.  
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S∞ 

Bubble 



8 
 

3. Numerical analyses 

 The calculations are carried out for dynamics of a laser generated gas bubble at the 

maximum radius Rm = 1.45 mm near a rigid boundary for the dimensionless standoff 

distances γ = s/Rm = 0.9, 0.6 and 0.3 respectively, to compare with the experimental data by 

Philipp & Lauterborn (1998). Other computational parameters are chosen as κ = 1.4, ε = 

0.013, σ* = 0.00051, R*(0) = 0.1, Rt*(0) = 31 and pg0* = 127 (Wang et al. 2014). The 

corresponding dimensional parameters are ρ 
=

 
1000 kgm

-3
, σ 

=
 
0.07

 
Nm

-1
, p∞ = 98.1 kPa, pv =

 

2.98
 
kPa, R(0)

 
=1.45

 
mm, Rt(0)

 
=

 
307

 
ms

-1
, pg0

 
=

 
12.1

 
MPa.   

 Figure 3 shows the bubble shapes for γ = 0.9 at typical times. The bubble expands 

spherically but its lower surface is flattened by the rigid boundary towards the end of 

expansion (figure 3a). The bubble remains almost in contact with the boundary during 

collapse (figure 3b), since water cannot flow from directly below into the collapsing volume. 

Near the end of collapse, a liquid jet forms on the distal side of the bubble surface directed 

towards the boundary. Once it penetrates through the bubble at t* = 2.15 the jet impacts on 

the boundary immediately, which is associated with higher damage potential as compared to 

a jet formed away from the boundary. For the latter, the jet momentum reduces while it 

penetrates through the liquid before impact on the boundary. 

 After the jet penetrates through the bubble, a bubble ring forms. The jet pointing to the 

boundary is re-directed radially (away from the axis of symmetry) after it impacts on the 

boundary, which pushes the inner side of the bubble ring radially. As a result, the jet 

diameter increases causing a compression of the bubble volume from inside. In the 

meantime, the bubble ring collapses from other sides rapidly except for the bottom, reaching 

its minimum volume in near contact with the boundary at t* = 2.30 (figures 3c), when the 

bubble reaches the maximum pressure and temperature (Leighton 1994; Brennen 1995; 

Lauterborn & Kurz 2010). This is also associated with a damage potential. In addition, a 

shock wave is emitted at the minimum bubble volume with high pressure amplitude 

(Leighton 1994; Brennen 1995; Lauterborn & Kurz 2010), it impacts on the rigid boundary 

once it is emitted and has another clear damage potential.   

 The bubble ring then rebounds mainly upwards and externally along the boundary 

(figure 3d). It subsequently recollapses mainly from the top and the external side (figure 3e). 

The radius of the bubble ring at the end of recollapse is smaller than at the end of collapse. 

The bubble is kept almost in contact with the boundary during the second cycle of oscillation.  
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Figure 3. The motion of a bubble near a rigid boundary characterized by γ = 0.9, κ = 1.4, ε = 

0.013, σ* = 0.00051, R*(0) = 0.1, Rt*(0) = 31.0 and pg0* = 127. The bubble shapes are during (a) 

the 1
st
 expansion phase, (b-c) the 1

st
 collapse phase in a singly- and doubly-connected 

form respectively, (d) the 2
nd

 expansion phase, and (e) the 2
nd

 collapse phase. 

 

 Figures 4 and 5 show the bubble shapes at various times for γ 
=

 
0.6 and 0.3, 

respectively. As expected the lower part of the bubble surface starts being almost in contact 

with the boundary earlier than for γ = 0.9, at the middle and early stages of the expansion 

phase for γ = 0.6 and 0.3, as shown in figures 4a, 5a, respectively. In analogous to the case γ = 

0.9, the lower part of the bubble surface keeps in near contact with the boundary 

subsequently and the liquid jet impacts the boundary once it penetrates through the bubble 
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(see figures 4b, 5b). Comparing figures 3b, 4b and 5b, one can see that the jet is sharper for a 

larger standoff distance and its width decreases with the standoff distance.  

 The jet is again redirected horizontally pushing away the bubble from inner side after it 

impacts on the boundary. The bubble ring collapses further from the all sides except for the 

part almost in contact with the boundary, reaching its minimum volume and maximum 

pressure and temperature in near contact with the boundary at t* = 2.32, 2.34 respectively 

(figures 4c, 5c), when a shock wave is emitted and impinges on the boundary directly.  

 The bubble ring then further rebounds (figures 4d, 5d) and re-collapses (figures 4e, 5e), 

predominately from the top and external parts of the bubble surface. The radius of the bubble 

ring at the end of the second cycle of oscillation is again smaller than at the end of the first 

cycle. The maximum volume of the bubble during the second cycle increases as the bubble is 

initiated closer to the boundary.  

 We next consider the global behaviour of the bubble. Figure 6a shows the time history 

of the equivalent radius 3
*4

3
* VReq π=  of the bubble for the above three cases γ = 0.9, 0.6 

and 0.3, respectively. The maximum radius reduces significantly from the first to second 

cycles of oscillation, so does the oscillation period. The bubble maximum radius at the 

second-cycle are decreased to 0.56 Rm, 0.59 Rm, 0.65Rm for γ = 0.9, 0.6 and 0.3, respectively, 

increasing as the bubble initiated closer to the boundary.   

 Figure 6b shows the corresponding time history of the bubble centroid zcen*. The bubble 

migrates slightly away from the boundary during expansion but migrates to the boundary 

significantly during collapse. The migration accelerates as the bubble is collapsing, reaching 

the maximum speed at the minimum volume. The bubble migrates the boundary faster for a 

larger standoff distance during the first cycle of oscillation for the three cases for γ < 1.0. 

This is contrary to the trend for γ > 1.0 (Wang 2014), where the bubble migrates to the 

boundary faster for a smaller standoff distance. This is because the nearer part of the bubble 

surface is retarded by the boundary during the later stage of the expansion phase as γ < 1.0 

and the retarding effects start earlier for a smaller standoff distance γ.  

 Figure 6c shows the history of the local energy EL of the bubble system for the cases. 

The local energy reduces significantly and rapidly at inception of the bubble and at the end of 

collapse, when shock waves are emitted. It is almost a constant during the rest of time, when 

the compressible effects are approximately negligible. After the shock wave is emitted at 

inception, about 58%, 60%, 64% of the initial energy is left for γ = 0.9, 0.6 and 0.3, 
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respectively. After the shock wave is emitted at the end of collapse, only about 14%, 22% 

and 23% of the initial energy is left with the bubble system for γ = 0.9, 0.6 and 0.3, 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Bubble dynamics near a rigid boundary for γ = 0.6, with the other parameters the 

same as in figure 3. The bubble shapes are during (a) the 1
st
 expansion phase, (b-c) the 1

st
 

collapse phase in a singly- and doubly-connected form respectively, (d) the 2
nd

 expansion 

phase and (e) the 2
nd

 collapse phase. 
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Figure 5. Bubble dynamics near a rigid boundary for γ = 0.3, with the other parameters the 

same as in figure 3. The bubble shapes are during (a) the 1
st
 expansion phase, (b-c) the 1

st
 

collapse phase in a singly- and doubly-connected form respectively, (d) the 2
nd

 expansion 

phase and (e) the 2
nd

 collapse phase. 
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Figure 6. Time histories of (a) the equivalent bubble radius Req*, (b) z-component of the 

bubble centroid zc*, and (c) local energy EL/EL0 of the bubble system, for the cases in figures 

3, 4 and 5, where EL0 is the initial local energy.  
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4. Comparison with experiments 

 Figure 7 shows the comparison of the bubble shapes obtained using the compressible 

BIM and the experiment (Philipp & Lauterborn 1998), for cavitation gas bubble dynamics 

near a rigid boundary for Rm = 1.45 mm and γ = 0.9. The experimental and computational 

results are shown in the left and right columns, respectively. In addition, the computational 

results are added overlapped with the experimental images for a direct comparison. The 

computation agrees very well with the experiment during the whole first cycle of oscillation 

(figure 7A). The expansion of the lower part of the bubble surface is retarded by the 

boundary at t = 34 µs. It approximately takes the shape of half of a sphere at its maximum 

volume at t = 177 µs, with the lower part of the bubble surface being flattened by the 

boundary. The upper part of the bubble surface then collapses down, assuming a cone shape 

at the middle stage of the collapse phase at t = 296 µs. The jet shown in the computational 

results is not visible in the experimental images due to opaqueness of the bubble surface. 

Nevertheless, the outer profiles of the bubble obtained in the computation and experiment 

agree well. The bubble ring of the computation at the end of collapse at t = 353 µs agrees 

well with the experiment, when the bubble reaches its minimum volume.  

 Figure 7B shows the comparison during the second cycle of oscillation. The bubble 

surface in the experiment is not clear due to physical instabilities occurred. Nevertheless, the 

bubble shapes calculated correlate with the experiment data in terms of the outer profiles at 

various times. Both results show that the bubble rebounds and recollapses nearly in contact 

with the boundary. They agree in terms of the external radius and height of the bubble ring. 

 A thin circular layer of water exists between the flat boundary and the lower part of the 

bubble surface since the later stage of the expansion phase, as the bubble is initiated with the 

standoff distance being less than the maximum bubble radius. It becomes an annulus thin 

layer after the jet penetrates the bubble. The part of the bubble surface above the thin liquid 

layer is almost flat and the thickness of the liquid layer does not change significantly with 

time. This feature is shown in the images in figure 7 from t = 177 to 548 µs.  

 It can be estimated that the vertical acceleration az* of the liquid in the thin layer is 

small,  

( ) ( )minmin0** ε=ε+=
=

OOaa
zzz ,                                  (4.1)  

as az* = 0 on the rigid boundary. From the z-component of the Euler equation, we have 

*** / zpaz ∂−∂= .                                      (4.2)  

The pressure in the gap can thus be estimated as follows:  
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( ) ( ) ( ) ( )2

min*

2

min*

2

min***min** ε+=ε+=ε+⋅∇σ−=ε+= OpOpOpaOpp BBBzL n ,         (4.3)  

where the surface tension term is neglected since the curvature radius n⋅∇  is small on the 

flat part of the bubble surface.  

 The pressure in the thin layer of liquid between the bubble and the boundary is 

approximately constant and equal to the pressure of the bubble gas. The flow velocity within 

the thin layer must be close to zero. In addition the surface tension effects intend to keep the 

surface flat since the pressure being constant and equal at the two sides.  
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A. First cycle of oscillation 
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B. Second cycle of oscillation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Comparison of the compressible BIM computation (in the right column) with the 

experiment (in the left column) (reproduced with permission from Philipp & Lauterborn 1998) 

for the bubble shapes at various times for a cavitation bubble near a rigid boundary for Rm = 

1.45 mm and γ = 0.9: (A) during the first-cycle of oscillation and (B) during the second-cycle 

of oscillation. the frame width is 3.9 mm for both the computational and experimental results. 
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A. First collapse 
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Figures 8 shows the comparison between the computation and the experiment for γ = 

0.6. The computation again agrees very well with the experiment during the whole first cycle 

of oscillation (figure 8A). The bubble takes a shape of a half of sphere with the lower part 

being flattened by the wall at the middle stage of collapse at t = 247 µs. A bubble jet starts at 

t = 285 µs and fully develops at t = 302 µs. The bubble ring at the minimum volume at t = 

321 µs calculated agrees well with the experiment. Figure 8B shows the comparison during 

the second cycle of oscillation. The bubble shapes calculated correlate with the experimental 

images. They agree well in terms of the radius and height of the bubble ring at the end of 

recollapse and the period of the second cycle.   

 

B. Second cycle of oscillation  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Comparison of the compressible BIM computation (in the right column) with the 

experiment (in the left column) (Philipp & Lauterborn 1998) for the bubble shapes for Rm = 

1.45 mm and γ = 0.6: (A) during the first-cycle of oscillation and (B) during the second-cycle 

of oscillation.  
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Figures 9 shows the comparison of the computation with the experiment for the bubble 

dynamics near a rigid boundary for γ = 0.3, starting from the late stage of collapse at t = 280 

µs. The computation agrees very well with the experiment until the end of the collapse phase 

at t = 354 µs. The bubble ring calculated agrees well with the experiment during early 

rebounding phase to t = 389 µs. 

 

A. First collapse 
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B Second expansion 

 

 

 

 

 

 

 

 

 

 

Figure 9. Comparison of the compressible BIM computation (in the right column) with the 

experiment (in the left column) (Philipp & Lauterborn 1998) for the bubble shapes for Rm = 

1.45 mm and γ = 0.3: (A) during the first-cycle of oscillation and (B) during the second-cycle 

of oscillation.  

  

5. Summary and conclusions 

 Bubble dynamics in nearly contact with a rigid boundary are modelled using the weakly 

compressible theory coupled with the boundary integral method (BIM). The near contact of 

the bubble surface with the boundary may cause numerical instabilities in the BIM, which is 

avoided by joining the bubble surface with its image to the boundary. Our computations 

correlate well with the experimental data for both the first- and second-cycles of oscillation.  

 Some of important features of the bubble dynamics near a rigid boundary have been 

noticed.  

1. A bubble initiated near a rigid boundary may be nearly in contact with the boundary due 

to its expansion and migration to the boundary, where a thin layer of water forms between 

them thereafter. The pressure in the thin layer of liquid is shown being approximately 

constant and equal to the pressure of the bubble gas. The bubble side of the thin layer remains 

flattened due to surface tension effects. The flow velocity within the thin layer is close to 

zero.   

2. The bubble starts nearly touching the rigid boundary during the expansion period when γ 

≲ 1, where γ is the dimensionless standoff distance of the bubble from the boundary in terms 
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of the equivalent maximum bubble radius. This leads to (i) the direct impact of a high speed 

liquid jet on the boundary once it penetrates through the bubble at the end of collapse, (ii) the 

direct contact of the bubble ring at high temperature and high pressure at its minimum 

volume with the boundary, and (iii) the direct impingement of a shock wave on the boundary 

once it is emitted at the end of collapse. These phenomena have clear potential to damage the 

boundary. We believe these three phenomena are possible new mechanisms of cavitation 

damage. 

3. As observed in (Philipp & Lauterborn 1998; Wang 2014), the bubble starts touching the 

boundary during the second cycle of oscillation when 1 ≲ γ ≲ 2. This leads to (i) the direct 

impact of a high speed liquid jet on the boundary once it penetrates through the bubble at the 

end of recollpase, (ii) the direct contact of a bubble ring at high temperature and high 

pressure at its second minimum volume with the boundary, and (iii) the direct impingement 

of a shock wave on the boundary once emitted at the end of recollapse.   

4. It has been observed that the jet is sharper and thinner at a larger standoff distance.  

5. The time history of the energy of the bubble system follows a step function, reducing 

significantly due to emissions of shock waves at its inception and the end of collapse but 

remaining as a constant during the rest of the time. The loss of the local energy at the end of 

collapse reduces with the standoff distance. 
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