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A B S T R A C T

Electric vehicles (EVs) are playing an important role in power systems due to their significant mobility and
flexibility features. Nowadays, the increasing penetration of renewable energy resources has been observed in
modern power systems, which brings many benefits for improving climate change and accelerating the low-
carbon transition. However, the intermittent and unstable nature of renewable energy sources introduces new
challenges to both the planning and operation of power systems. To address these issues, vehicle-to-grid (V2G)
technology has been gradually recognized as a valid solution to provide various ancillary service provisions
for power systems. Many studies have developed model-based optimization methods for EV dispatch problems.
Nevertheless, this type of method cannot effectively handle the highly dynamic and stochastic environment
due to the complexity of power systems. Reinforcement learning (RL), a model-free and online learning
method, can capture various uncertainties through numerous interactions with the environment and adapt to
various state conditions in real-time. As a result, using advanced RL algorithms to solve various EV dispatch
problems has attracted a surge of attention in recent years, leading to many outstanding research papers
and important findings. This paper provides a comprehensive review of popular RL algorithms categorized
by single-agent RL and multi-agent RL, and summarizes how these advanced algorithms can be applied to
various EV dispatch problems, including grid-to-vehicle (G2V), vehicle-to-home (V2H), and V2G. Finally, key
challenges and important future research directions are discussed, which involve five aspects: (a) data quality
and availability; (b) environment setup; (c) safety and robustness; (d) training performance; and (e) real-world
deployment.
1. Introduction

Over the last decades, modern power systems have undergone major
changes in various aspects due to a number of technical, economic,
and environmental factors. One of the most remarkable things is as-
sociated with climate change, which has altered our energy policy
and energy mix to a low-carbon transition [1,2]. The Committee on
Climate Change (CCC), the UK’s independent climate advisory body,
claims that by setting an ambitious new target to reduce greenhouse
gas emissions to net zero by 2050, the UK can halt its contribution
to global warming within 30 years [3]. To achieve this target, large
penetration of renewable energy resources (RESs) into power systems
has been witnessed in recent years. Nevertheless, their intermittent
nature leads to new challenges to system stability and security [4]. As
one of the most important demand-side technologies, electric vehicles
(EVs) can provide various ancillary services for stable and secure power
system operations via vehicle-to-home (V2H) and vehicle-to-grid (V2G)
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technology [5], thereby contributing to the increasing integration of
EVs in modern power systems.

Integrating large-scale EVs into power systems can benefit the low-
carbon transition and system stability, but also introduces challenges
to effective EV dispatch due to the potential privacy concerns and the
difficulty of handling various system uncertainties and dynamics [6].
In recent years, model-based optimization methods have been widely
developed to model the EV dispatch problems for reliable traveling
behaviors through local charging stations and various ancillary services
through V2G technologies, e.g., energy imbalance service, carbon inten-
sity service, voltage support, frequency regulation, etc. However, the
limitations of model-based optimization methods cannot be erased and
have been listed as follows [7,8]:

• Model-based optimization methods assume that EVs require com-
plete knowledge of the experiment environment, e.g., power net-
work, transport status, uncertainty probability distribution, etc.
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Nomenclature

Abbreviations

RL Reinforcement learning
CCC Committee on Climate Change
EV Electric vehicle
G2V Grid-to-vehicle
V2H Vehicle-to-home
V2G Vehicle-to-grid
RES Renewable energy resource
DER Distributed energy resource
HILP High-impact and low-probability
AMI Advanced metering infrastructure
MDP Markov Decision Process
SoC State-of-the-charge
DQN Deep Q-network
DNN Deep neural network
SARSA State–action–reward–state–action
PPO Proximal policy optimization
DDPG Deep deterministic policy gradient
TD3 Twin delayed DDPG
SAC Soft actor–critic
TD Temporal difference
PG Policy gradient
FRL Federated reinforcement learning
CTCE Centralized training with centralized exe-

cution
DTDE Decentralized training with decentralized

execution
CTDE Centralized training with decentralized ex-

ecution
PS Parameter sharing
RNN Recurrent neural network
LSTM Long short-term memory
GRU Gated recurrent unit
GNN Graph neural network

Reinforcement learning

𝑠 State
𝑎 Action
𝑟 Reward
𝛼 Learning rate
𝜈 Soft updating rate
𝛾 Reward discount factor, 𝛾 ∈ [0, 1)
 State space
 Action space
𝜏 Trajectory, which is a sequence of states,

actions and rewards
 Replay buffer of storing experiences of

states, actions and rewards
𝜋(𝑎 ∣ 𝑠) Stochastic policy function, probability of

taking action 𝑎 in state 𝑠

However, such assumptions are normally impractical considering
the highly stochastic and dynamic real-world environment.

• Model-based optimization methods normally handle uncertainties
via stochastic programming or robust optimization, which may
only be able to capture a small number of representative scenarios
2

𝜇(𝑠) Deterministic policy function, action taken
in state 𝑠

𝑝(𝑠′ ∣ 𝑠, 𝑎) State-transition function, probability of
transitioning to state 𝑠′ from state 𝑠 taking
action 𝑎

𝑄𝜋 (𝑠, 𝑎) Action-value function, value of taking ac-
tion 𝑎 in state 𝑠 under policy 𝜋

𝑉 𝜋 (𝑠) State-value function, value of state 𝑠 under
policy 𝜋

𝜋𝜙(𝑎 ∣ 𝑠) Stochastic policy network parameterized by
𝜙

𝜇𝜙(𝑠) Deterministic policy network parameterized
by 𝜙

𝑄𝜃(𝑠, 𝑎) Action-value network parameterized by 𝜃
𝑉𝜃(𝑠, 𝑎) State-value network parameterized by 𝜃
𝐴̂ Generalized advantage function

Electric vehicle

𝑡 ∈ 𝑇 Index and set of time steps
𝑖 ∈ 𝐼 Index and set of EVs
𝛥𝑡 Time resolution
𝜆𝑔𝑡 Grid electricity price at time step 𝑡 (£/kWh)
𝑃 𝑖 Power capacity of EV 𝑖 (kW)
𝐸𝑖 Energy capacity of EV 𝑖 (kWh)
𝑆𝑖 Maximum battery SoC of EV 𝑖 (%)
𝐸𝑡𝑝𝑖,𝑡 Energy requirement for traveling of EV 𝑖

during the horizon of time step 𝑡 (kWh)
𝜂𝑐𝑖 Charging efficiency of EV 𝑖 (%)
𝜂𝑑𝑖 Discharging efficiency of EV 𝑖 (%)
𝑃 𝑐𝑖,𝑡 Charging power of EV 𝑖 at time step 𝑡 (kW)
𝑃 𝑑𝑖,𝑡 Discharging power of EV 𝑖 at time step 𝑡

(kW)
𝐸𝑖,𝑡 Battery energy content of EV 𝑖 at time step

𝑡 (kWh)
𝑆𝑖,𝑡 Battery SoC of EV 𝑖 at time step 𝑡 (%)
𝐴𝑖,𝑡 Binary indicating whether EV 𝑖 connects

with grid (𝐴𝑖,𝑡 = 1) or not (𝐴𝑖,𝑡 = 0) at time
step 𝑡

or lead to very conservative optimization results. Meanwhile,
stochastic programming can be time-consuming, especially when
a large number of scenarios are involved. Finally, the solutions
need to be re-optimized in any new state.

Reinforcement learning (RL) [9] is regarded as a model-free method
to study the sequential and dynamic decision-making problems of
agents that can gradually learn the optimal control decisions by uti-
lizing experiences acquired from their repeated interactions with the
environment, without a prior knowledge. In addition, RL as an online
learning method can make efficient use of increasing data from the en-
vironment, thereby capturing the system uncertainties and adapting to
various state dynamics. Finally, once the RL algorithm is well trained,
its policy can be directly delivered to the real-world new test set on
timescales of milliseconds without requiring any identification. There-
fore, RL is claimed as an efficient tool for real-time automatic control
applications of EV dispatch problems. Specifically, the characteristics
of both the model-based optimization method and the model-free RL
method are illustrated in Fig. 1.

Meanwhile, the critical review of RL applications in the power
and energy community has attracted surging attention, such as power
systems [10], demand response [11], sustainable energy and electric
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Fig. 1. Transition from model-based optimization method to model-free reinforcement-learning method.
systems [12,13], and building energy management [14,15]. RL-based
decision-making methods are envisioned to compensate for the lim-
itations of existing model-based optimization methods and thus are
promising to address these emerging challenges. Although there are
several review articles with regards to the EV concept, they do not
focus on the dispatch problems from a data-driven learning approach,
specifically with the application of RL algorithms. For instance, the
review in [16] explains the current regulations, standards, and in-
terfacing issues of EV transport electrification within the smart grid
concept, such as power quality, reliability, and control. Various com-
putational scheduling methods (including conventional mathematical
optimization and meta-heuristic algorithm) for integrating EVs with
power systems are reviewed and compared in [17]. Studies related to
economic dispatch and risk management of large-scale EV-penetrated
power systems in the electricity market are reviewed in [18]. The
authors of [19] reviewed the digital twin technologies for the future
smart EVs and analyzed the techno-socio-economic impact of digital
twin technology on vehicle technology. In contrast, this paper provides
a review of RL-based decision-making of EVs in power systems. We
firstly introduce various RL algorithms, then exemplify how to apply
RL to various EV dispatch problems, and finally discuss critical issues
in their applications. Overall, the key contributions of this work are
described as follows:

• Present a comprehensive and structural overview of RL algo-
rithms in terms of basic concepts, theoretical fundamentals, and
state-of-the-art RL algorithms, including both single-agent RL
(SARL) and multi-agent RL (MARL) that have been applied to EV
dispatch problems.

• Select three key applications of EV dispatch problems: grid-to-
vehicle (G2V), vehicle-to-home (V2H), and vehicle-to-grid (V2G).
Illustrate the overall procedure of applying RL algorithms to each
of three applications in terms of modeling, solution, implementa-
tion, and discussion.

• Discuss the critical challenges and future perspectives for apply-
ing RL to EV dispatch problems in terms of data quality and
availability, environment setup, safety and robustness, training
performance, and real-world deployment.

Given the comprehensiveness and specificity of this review, it can
assist the community in quickly locating relevant papers in this field
and gaining a thorough understanding of current studies through the
detailed comparison provided by this review. Additionally, this work
can help both academia and industry comprehensively grasp research
trends and challenges as well as clarify future research directions in
the field of EV dispatch problems with RL techniques. Furthermore, the
issues discussed in this review can guide policy makers and regulators
with very useful insights in terms of energy, emissions/environment,
costs, climate change, etc.

The rest of this paper is organized as follows. Section 2 describes the
preliminaries of RL, including Markov decision process, the state-of-the-
art SARL and MARL algorithms. Section 3 provides a comprehensive
3

review of RL applications to G2V, V2H, and V2G. Section 4 discusses
the key challenges and several potential future directions of RL-based
EV dispatch problems. Finally, the conclusion of this work is drawn in
Section 5.

2. Preliminaries of reinforcement learning

2.1. Markov decision process

The mathematical foundation of RL is the Markov Decision Process
(MDP). An MDP usually consists of a state space, an action space, a state
transition function, a reward function, and a discount factor. In general,
RL is a sequential decision-making process that tries to find a decision
rule (i.e., policy) that makes the studied entity obtain the maximum
cumulative reward, i.e., get the maximum benefit. In order to facilitate
the readers’ understanding and memory, the following context mainly
uses the example of an EV energy arbitrage problem [20] to explain
the elements of an MDP.

• The agent 𝑖 is the decision-maker in the problem. In the case of
the EV energy arbitrage problem, an EV is defined as an agent
that can perform charging and discharging behaviors.

• Environment  is the operation model of the problem. In the case
of the EV energy arbitrage problem, the environment is defined
as the energy management system model of the EV battery that
can generate a new state.

• State 𝑠 ∈  is a description of the environment. In the case of
the EV energy arbitrage problem, the price signals and/or battery
state-of-the-charge (SoC) can be regarded as the state. The EV
only needs to know its current state to make decisions and decide
whether to charge or discharge. Specifically, the state can be
realized as the only basis for making decisions. The state space
 is then the collection set of all possible states, which can be
either finite or infinite. In the case of the EV energy arbitrage,
the state spaces of both price signals and battery SoC are infinite
sets, since they are continuous values.

• Action 𝑎 ∈  is the decision made by the agent. In the case of
the EV energy arbitrage, the action is the battery power schedule,
e.g., charging from the main grid or discharging back to the
main grid. The action space  is the collection set of all possible
actions. In the case of the EV energy arbitrage, if the EV can only
behave in the status of charging or discharging, then the action
space is a discrete (finite) set  = {charging,discharging}. If
the EV can decide the exact value of battery charge or discharge
power, then the action space is a continuous (infinite) set  =
[−1, 1] that represents the magnitude of charging (positive) and
discharging (negative) power as a percentage of its battery power
capacity.

• The policy function 𝜋(𝑎|𝑠) is used to generate the action in ob-
serving the state. In the case of the EV energy arbitrage, when the
price and the battery SoC are both low, there is a high probability
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that the EV agent will decide to charge its battery so as to save
the energy cost but also ensure sufficient SoC for traveling.
The policy function can be defined in different ways. We intro-
duce the most common one 𝜋 ∶  ×  → [0, 1] as a conditional
probability density function:

𝜋(𝑎|𝑠) = P(𝐴 = 𝑎|𝑆 = 𝑠), (1)

where its input is the state 𝑠 and its output is a probability value
between 0 and 1 indicating the probability of selecting the action
𝑎. In the case of the EV energy arbitrage, take the state 𝑠 as input
to the policy function, its outputs the probability values of two
actions:

𝜋(charge|𝑠) = 0.7, (2)

𝜋(discharge|𝑠) = 0.3, (3)

which means charging power with a probability of 0.7 and dis-
charging power with a probability of 0.3. It can be observed that
both two actions are possible, but the probability of charging
power is higher than that of discharging power. It should be noted
that the goal of RL is to learn the policy function 𝜋(𝑎|𝑠). As long
as there is an optimal policy function, it can automatically control
the EV agent to achieve the best performance.

• The reward 𝑟 ∈  is a value returned to the agent by the
environment after the agent performs an action 𝑎 in state 𝑠. In
general, rewards are defined based on the studied problem itself,
which can greatly affect the performance of an RL policy. In the
case of the EV energy arbitrage, the most straightforward reward
can be defined as the negative energy cost, i.e., the higher the
negative energy cost is, the better the control policy is.

• State transition function 𝑝(𝑠′|𝑠, 𝑎) is the function utilized by the
environment to generate a new state 𝑠′. Given the current state 𝑠,
the agent 𝑖 executes an action 𝑎, and the environment returns the
state 𝑠′ in the next step. Thus, it is a mapping from the current
state and the executed action to a new state (𝑠, 𝑎) → 𝑠′.
In general, the state transition function can be deterministic
or stochastic. In the case of the EV energy arbitrage, the state
transition function of the battery SoC 𝑆𝑖,𝑡 of EV agent 𝑖 from time
step 𝑡 to 𝑡 + 1 can be expressed as:

𝑆𝑖,𝑡+1 =

⎧

⎪

⎨

⎪

⎩

𝑆𝑖,𝑡 + (𝑃 𝑐𝑖,𝑡𝜂
𝑐
𝑖 + 𝑃

𝑑
𝑖,𝑡∕𝜂

𝑑
𝑖 )𝛥𝑡∕𝐸𝑖 if 𝐴𝑖,𝑡 = 1

𝑆𝑖,𝑡 − 𝐸
𝑡𝑝
𝑖,𝑡∕𝐸𝑖 if 𝐴𝑖,𝑡 = 0,

∀𝑖 ∈ , ∀𝑡 ∈ 𝑇 ,

(4)

where 𝑃 𝑐𝑖,𝑡 and 𝑃 𝑑𝑖,𝑡 indicate the charging (positive) and discharging
(negative) power, while 𝜂𝑐𝑖 and 𝜂𝑑𝑖 correspond to the charging and
discharging efficiencies, respectively. 𝐸𝑖 is the battery energy ca-
pacity. 𝐸𝑡𝑝𝑖,𝑡 refers to the energy consumption for traveling purpose,
and the binary 𝐴𝑖,𝑡 indicates whether the EV agent 𝑖 is connected
to the grid (𝐴𝑖,𝑡 = 1) or not (𝐴𝑖,𝑡 = 0) at time step 𝑡. Meanwhile,
the state transition function may also be stochastic, which is
characterized by the inherent variability and uncertainty of the
environment. In the case of the EV energy arbitrage, this corre-
sponds to the exogenous state features, e.g., grid price signals, EV
traveling patterns, demand profiles, PV generation, etc. In real-
world applications, it presents significant challenges to identify
suitable probabilistic models that can fully capture such random-
ness since it is influenced by many exogenous factors, such as
driving behaviors, energy usage behaviors, solar radiation, and
pricing schemes of utility companies. RL, however, remedies this
problem in a data-driven approach that does not rely on accurate
models of the underlying uncertainties but learns their probability
characteristics through the historic data or experience acquired
4

from the environment via machine learning techniques.
After introducing the elements of an MDP, we go further into the
interaction between agent and environment, as depicted in Fig. 2. The
agent observes the state 𝑠𝑡 of the environment, makes an action 𝑎𝑡,
the action then changes the state of the environment according to the
state transition function 𝑝(𝑠′|𝑠, 𝑎), and the environment feeds back to
the agent a reward 𝑟𝑡 and a new state 𝑠𝑡+1. This process continues until
the end of the episode (e.g., one trading day), then emits a trajectory:

𝜏 = 𝑠1, 𝑎1, 𝑟1, 𝑠2, 𝑎2, 𝑟2, 𝑠3, 𝑎3, 𝑟3, … , 𝑠𝑇 , 𝑎𝑇 , 𝑟𝑇 , (5)

here 𝑇 is the time horizon of the episode (e.g., 24 h). The objective
f RL is to optimize a policy to maximize the expected return given all
ossible trajectories under the optimized policy. Mathematically, given
state distribution 𝜌 and a policy 𝜋, the probability of the occurrence

f a T-step trajectory in an MDP can be expressed as:

(𝜏|𝜋) = 𝜌(𝑠1)
𝑇
∏

𝑡=1
𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡|𝑠𝑡). (6)

iven the reward 𝑟 and all possible trajectories 𝜏, the expected reward
(𝜋) can be defined as:

(𝜋) = ∫𝜏
𝑝𝜏 (𝜏|𝜋)𝑟(𝜏) = E𝜏∼𝜋 [𝑟(𝜏)], (7)

here 𝑝𝜏 represents the probability of trajectory occurrence, and the
igher the probability of occurrence, the greater the weight of the ex-
ected return calculation. The RL improves the policy by optimization
ethods to maximize the expected returns. The optimal policy 𝜋∗ can

e expressed as:
∗ = argmax

𝜋
𝐽 (𝜋). (8)

In the MDP, given a state 𝑠, there is a state-value function 𝑉 (𝑠) that
epresents the expected return using policy 𝜋, which can be defined as:

𝜋 (𝑠) = E𝜏∼𝜋 [𝑟(𝜏)|𝑠1 = 𝑠]

= E𝑎𝑡∼𝜋(⋅|𝑠𝑡)[
𝑇
∑

𝑡=1
𝛾 𝑡𝑟(𝑠𝑡, 𝑎𝑡)|𝑠1 = 𝑠],

(9)

here 𝜏 ∼ 𝜋 indicates the samples of trajectory 𝜏 that are obtained by
olicy 𝜋, while 𝑎𝑡 ∼ 𝜋(⋅|𝑠𝑡) represents the action 𝑎𝑡 sampled from the
olicy 𝜋 in observing state 𝑠𝑡, and 𝑟(𝑠𝑡, 𝑎𝑡) is the reward calculated given
he current state 𝑠𝑡 and action 𝑎𝑡. Finally, 𝛾 ∈ [0, 1) is the discount factor
o expect the long-term return of the trajectory 𝜏.

Furthermore, given an action 𝑎, there is an action-value function (or
-value function), which depends on the current state and the action

ust performed, and is related to the expected return. If an agent follows
olicy 𝜋, the action-value function is defined as 𝑄𝜋 (𝑠, 𝑎) and written as:

𝜋 (𝑠, 𝑎) = E𝜏∼𝜋 [𝑟(𝜏)|𝑠1 = 𝑠, 𝑎1 = 𝑎]

= E𝑎𝑡∼𝜋(⋅|𝑠𝑡)[
𝑇
∑

𝑡=1
𝛾 𝑡𝑟(𝑠𝑡, 𝑎𝑡)|𝑠1 = 𝑠, 𝑎1 = 𝑎].

(10)

Finally, the relationship between the state-value function 𝑉 𝜋 (𝑠) and
ction-value function 𝑄𝜋 (𝑠, 𝑎) can be expressed as:
𝜋 (𝑠, 𝑎) = E𝑎∼𝜋 [𝑄𝜋 (𝑠, 𝑎)] (11)

.2. Single-agent reinforcement learning

After reviewing the research work that applies RL to EV dispatch
roblems, we can theoretically provide a broad classification of model-
ree RL algorithms by categorizing them into two sets: value-based
nd policy-based (as depicted in Fig. 3). In the value-based set, Q-
earning [21] is the classical RL algorithm for learning action-value
unction, while deep Q-network (DQN) [22] is the originator of the
eep RL (DRL) algorithm that approximates the action-value function
ia deep neural networks (DNN). In addition, state–action–reward–
tate–action (SARSA) [9] and fitted Q-iteration [23] are also involved.
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Fig. 2. Agent–environment interaction and the process of Markov decision process.
Fig. 3. Classifications of single-agent reinforcement learning algorithms.
Additionally, policy-based RL algorithms mainly include the policy
gradient theorem of proximal policy optimization (PPO) [24], and the
actor–critic methods of deep deterministic policy gradient (DDPG) [25],
twin delayed DDPG (TD3) [26], and soft actor–critic (SAC) [27]. The-
oretically, DQN, DDPG, and TD3 all belong to the DRL algorithm.
However, both PPO and SAC can also be categorized into the DRL
algorithm if they employ DNNs as function approximators as well.

2.2.1. Q-learning
Q-Learning [21] is a tabular approach based on temporal difference

(TD) learning [28]. It is assumed that both state and action are in
discrete spaces (e.g.,  has 4 possible states and  has 3 potential
actions), the optimal Q-value function 𝑄∗(𝑠, 𝑎) can be represented as
a 4 × 3 table. In observing the current state 𝑠𝑡, the optimal action can
be selected as:

𝑎𝑡 = argmax
𝑎∈

𝑄∗(𝑠𝑡, 𝑎) (12)

that means finding the maximum Q-value of the row corresponding to
state 𝑠𝑡, and returning the action associated with that Q-value. In Q-
learning, a Q-table is used to approximate the Q-value function 𝑄∗(𝑠, 𝑎).
It first initializes all elements in the table to zero and then updates one
element of the table at a time. Eventually, the Q-table will converge to
the optimal 𝑄∗(𝑠, 𝑎). In order to update this Q-table, it uses the optimal
Bellman equation [9] and can write the updated Q-table as:

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[

target Q
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑟𝑡 + 𝛾 max

𝑎𝑡+1
𝑄(𝑠𝑡+1, 𝑎𝑡+1) −𝑄(𝑠𝑡, 𝑎𝑡)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
TD error

], (13)

where 𝛼 is the learning rate that governs the Q-table’s updating steps.
It is noted that when using a tabular approach, the Q-value function
can be represented as a large two-dimensional table. That is, there
is a separate entry for each discrete state and action. However, this
approach will be very inefficient when solving the task with a large
data space, suffering severely from the curse of dimensionality [22].
5

2.2.2. Deep Q-network (DQN)
In order to overcome the discrete state space in Q-learning, DQN

[22] employs a deep neural network (DNN) (parameterized by 𝜃) as
a function approximator to represent the Q-value function in multi-
dimensional continuous state space 𝑄(𝑠𝑡, 𝑎𝑡) ≈ 𝑄𝜃(𝑠𝑡, 𝑎𝑡). Specifically,
DQN learns this Q-value function 𝑄𝜃(𝑠𝑡, 𝑎𝑡) corresponding to the opti-
mal policy by minimizing the loss (i.e., TD error):

(𝜃) = E𝑠𝑡 ,𝑎𝑡 ,𝑟𝑡 ,𝑠𝑡+1∼[(𝑟𝑡 + 𝛾 max
𝑎𝑡+1

𝑄𝜃′ (𝑠𝑡+1, 𝑎𝑡+1) −𝑄𝜃(𝑠𝑡, 𝑎𝑡))2], (14)

where 𝑄𝜃′ (⋅) is a target Q-value function whose parameters are peri-
odically updated with the most recent 𝑄𝜃(⋅), which can help stabilize
the training performance. Another crucial technique for stabilization in
DQN is the use of an experience replay buffer , which contains tuples
(experiences) (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) that the agent interacts with the environ-
ment. It is known that there is a correlation between two consecutive
experiences because the state transition is continuous. If directly taking
a batch of experiences in sequence as the training set, the policy is easy
to overfit, since the training samples are not independent [29]. To solve
this problem, we can randomly select a small number of experiences
from the buffer  as a batch, which not only ensures that the training
samples are independent and equally distributed, but also makes the
size of each batch small enough to accelerate the training speed [22].

2.2.3. Policy gradient (PG)
PG is another popular choice for a variety of RL methods that is

able to solve problems with continuous state space. PG [30] employs
a DNN (parameterized by 𝜙) that takes a continuous state 𝑠𝑡 as input
and outputs a stochastic policy 𝜋𝜙(𝑎|𝑠) representing the selection prob-
abilities of action 𝑎 in an observed state 𝑠. The main idea is to directly
adjust the parameters 𝜙 of the policy in order to maximize the objective
𝐽 (𝜋) = E𝑠∼𝜌,𝑎∼𝜋 [𝑟(𝜏)|𝑠1 = 𝑠, 𝑎1 = 𝑎] by moving in the direction of
∇𝜙𝐽 (𝜋), so that the log-probability of choosing actions proportionate to
the sampled return 𝑟(𝜏) is increased. Using the Q-value function defined
in DQN, the gradient of the policy can be written as [31]:

∇ 𝐽 (𝜋) = E
[

∇ log𝜋 (𝑎 |𝑠 )𝑄 (𝑠 , 𝑎 )
]

, (15)
𝜙 𝑠𝑡∼𝜌,𝑎𝑡∼𝜋 𝜙 𝜙 𝑡 𝑡 𝜃 𝑡 𝑡
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where 𝜌 is the state distribution. In addition, PG is capable of handling
continuous control by representing the probability distribution of the
agent’s action with a Gaussian distribution  (𝜇𝑡, 𝜎2𝑡 ), and predicting
the mean 𝜇𝜙(𝑠𝑡) and the standard deviation 𝜎𝜙(𝑠𝑡) of it with two DNNs,
referring to a Gaussian Policy [31].

2.2.4. Proximal policy optimization (PPO)
PPO is an advanced PG algorithm that can achieve a balance

between the ease of implementation, sampling efficiency, and ease of
tuning [24]. In other words, training a relatively good performance in
the vanilla PG algorithm is very challenging, since it is very sensitive to
the learning rate, i.e., a small learning rate takes a long time to make
the training converge, while a large learning rate easily falls into the
local optimum. However, PPO can effectively address the difficulty by
constructing a probability ratio between the new and old policies, and
then clipping it within a stable interval. In this case, the policy of PPO
can be updated in a trust region. Similar to many PG algorithms, PPO is
applicable for modeling multi-dimensional continuous state and action
spaces.

To model the action characteristics in continuous domain, we gener-
ate a set of Gaussian distributions for the policy network parameterized
by 𝜙 to output the corresponding mean and standard deviation for all
action dimensions, the stochastic policy 𝜋𝜙(𝑎|𝑠) is then sampled for the
optimal action 𝑎𝑡 in state 𝑠𝑡. This stochastic policy can be updated by
maximizing its clipped surrogate objective that considers the restriction
of policy update:

CLIP
𝑡 (𝜙) = E𝑡

[

min(𝜁𝑡𝐴̂𝑡, clip(𝜁𝑡, 1 − 𝜖, 1 + 𝜖)𝐴̂𝑡)
]

, (16)

where the first term 𝜁𝑡𝐴̂𝑡 within the operator min{⋅} indicates the
normal policy gradient, while the second term clip(𝜁𝑡, 1 − 𝜖, 1 + 𝜖)𝐴̂𝑡
within the operator min{⋅} trims the policy gradient by clipping the
probability ratio 𝜁𝑑𝑡 between [1− 𝜖, 1+ 𝜖]. The hyperparameter 𝜖 ∈ [0, 1]
is used to truncate the gradient update of the new policy from the old
version. In other words, the advantage function 𝐴̂𝑡 will be clipped if
the probability ratio goes beyond the range [1− 𝜖, 1+ 𝜖]. In PPO policy,
the probability ratio 𝜁𝑡 can be expressed as:

𝜁𝑡 =
𝜋𝜙(𝑎𝑡|𝑠𝑡)
𝜋𝜙old(𝑎𝑡|𝑠𝑡)

, (17)

In addition, the generalized advantage function 𝐴̂𝑡 in (16) can be
xpressed as:

̂𝑡 = 𝛿𝑡 + 𝛾𝛿𝑡+1 +⋯ + 𝛾𝑇−𝑡+1𝛿𝑇−1, (18)

where 𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉𝜓 (𝑠𝑡+1) − 𝑉𝜓 (𝑠𝑡), (19)

here 𝑉𝜓 (𝑠) is the state-value function that can be approximated by a
state-value network parameterized by 𝜓 .

2.2.5. Deep deterministic policy gradient (DDPG)
DDPG is a successful DRL method to deal with high-dimensional

and continuous state and action spaces that features an actor–critic
architecture and employs two DNNs with different purposes [31],
aiming to derive directly the deterministic policies 𝜇𝜙 ∶  → . The
actor network 𝜇𝜙 takes as input a state 𝑠 and implements the policy
mprovement task, updating the policy with respect to the estimated
-value function and outputting a continuous action 𝑎 = 𝜇𝜙(𝑠). The
ritic network 𝑄𝜃 takes as input a state 𝑠 and an action 𝑎 and outputs
scalar estimate of the Q-value function 𝑄𝜃(𝑠, 𝑎).

Similarly as DQN, DDPG also incorporates an experience replay
uffer  that stores the past experiences (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) and samples a
inibatch of experiences to update the networks. Furthermore, DDPG

ntroduces target networks for both actor and critic, denoted as 𝜇𝜙′ (𝑠𝑡)
nd 𝑄𝜃′ (𝑠𝑡, 𝑎𝑡), respectively, then adopts soft update that lies in restrict-
ng the target values to change slowly so as to stabilize the learning

′ ′ ′
6

rocess, which can be expressed as 𝜙 ← 𝜈𝜙 + (1 − 𝜈)𝜙 and 𝜃 ← t
𝜃 + (1 − 𝜈)𝜃′ with the updating rate 𝜈 ≪ 1. By employing these
wo techniques of experience replay buffer and target networks, the
arameters 𝜃 of the critic network can be optimized to minimize the
D error defined as:

(𝜃) = E𝑠𝑡∼𝜌𝜇 ,𝑎𝑡∼𝜋𝜙 [(𝑄𝜃(𝑠𝑡, 𝑎𝑡) − 𝑦𝑡)
2], (20)

here the target value is:

𝑡 = 𝑟𝑡 + 𝛾𝑄𝜃′ (𝑠𝑡+1, 𝜇𝜙′ (𝑠𝑡+1)). (21)

ccording to the deterministic policy gradient theorem [31], the pa-
ameters 𝜙 of the actor network can be optimized using the gradient
scent algorithm with the computed gradient defined as:

𝜙𝐽 (𝜇𝜙) = E𝑠𝑡∼𝜌[∇𝜙𝜇𝜙(𝑠𝑡)∇𝑎𝑡𝑄𝜃(𝑠𝑡, 𝜇𝜙(𝑠𝑡))]. (22)

n addition, to aid the agent in thoroughly exploring the environment,
e construct an exploration policy 𝜇̂(𝑠𝑡) = 𝜇𝜙(𝑠𝑡) + (0, 𝜎2𝑡 𝐼) by adding
Gaussian noise  (0, 𝜎2𝑡 𝐼) to the actor’s output 𝜇𝜙(𝑠𝑡).

.2.6. Soft actor critic (SAC)
The two main challenges of RL are high sample complexity and

eak convergence. SAC [27] is proposed based on the maximum
ntropy framework to address these two challenges. Rather than just
mproving the policy by estimating the Q-value of the policy 𝜋, SAC
urther extends the soft policy iteration to a more practical function
pproximation setting. It learns by alternately optimizing between the
alue function and the policy function. Specifically, SAC includes a
oft state-value function 𝑉𝜓 (𝑠𝑡), two soft Q-value functions 𝑄𝜃1 (𝑠𝑡, 𝑎𝑡)
nd 𝑄𝜃2 (𝑠𝑡, 𝑎𝑡), and a policy function 𝜋𝜙(𝑎𝑡|𝑠𝑡), whose parameters are
epresented as 𝜓 , 𝜃1, 𝜃2 and 𝜙, respectively. In which the value function
an be directly modeled as a DNN, and the policy function is modeled
s a Gaussian distribution, whose mean and standard deviation are
stimated by the DNN. In general, we do not estimate the state-value
unction because it can be determined by the Q-value function and
olicy function, but in practice, including this term improves training
tability and allows for easy co-training with other networks.

The soft Q-value functions 𝑄𝜃𝑗 (𝑠𝑡, 𝑎𝑡), where 𝑗 = {1, 2} is updated by
sing the soft Bellman residual, which adds entropy term compared to
ellman residual as follows:

(𝜃𝑗 ) = E𝑠𝑡 ,𝑎𝑡 ,𝑟𝑡 ,𝑠𝑡+1∼[(𝑄𝜃𝑗 (𝑠𝑡, 𝑎𝑡) − 𝑦𝑡)
2],∀𝑗 ∈ {1, 2}, (23)

here the target value is:

𝑡 = 𝑟𝑡 + 𝛾E𝑠𝑡+1∼𝜌[𝑉𝜓 (𝑠𝑡+1)]. (24)

The soft state-value function 𝑉𝜓 (𝑠𝑡) is updated as:

(𝜓) = E𝑠𝑡∼[(𝑉𝜓 (𝑠𝑡) − E𝑎𝑡∼𝜋𝜙 [min
𝑗=1,2

𝑄𝜃𝑗 (𝑠𝑡, 𝑎𝑡) − log𝜋𝜙(𝑎𝑡|𝑠𝑡)])2]. (25)

As mentioned before, the policy network needs to obtain the mean
nd standard deviation of the Gaussian distribution, but the corre-
ponding mean and standard deviation are not differentiable. As such,
e use DNN to reparameterize the policy:

𝑡 = 𝑓𝜙(𝜖𝑡; 𝑠𝑡), (26)

here 𝜖𝑡 is a random variable sampled from a fixed prior distribution,
uch as a spherical Gaussian distribution. In this setting, instead of
ampling directly from the mean and standard deviation, the network
s first sampled from a Gaussian distribution and then multiplied by the
tandard deviation plus the mean to make the network differentiable.
s a result, the loss function can be rewritten as:

𝜙𝐽 (𝜋𝜙) = E𝑠𝑡∼,𝜖𝑡∼ [min
𝑗=1,2

𝑄𝜃𝑗 (𝑠𝑡, 𝑓𝜙(𝜖𝑡; 𝑠𝑡)) − log𝜋𝜙(𝑓𝜙(𝜖𝑡; 𝑠𝑡)|𝑠𝑡)], (27)

here 𝜋𝜙 is defined implicitly in terms of 𝑓𝜙, and we have noted that

he partition function is independent of 𝜙 and can thus be omitted.
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Table 1
Comparison of different single-agent reinforcement learning algorithms.
Method On-/Off-policy Value-/Policy-based Policy type State space Action space

Q-learning Off Value Deterministic Discrete Discrete
DQN Off Value Deterministic Continuous Discrete
PG On Policy Stochastic Continuous Discrete and/or Continuous
PPO On Policy Stochastic Continuous Discrete and/or Continuous
DDPG Off Policy + Value Deterministic Continuous Continuous
SAC Off Policy + Value Stochastic Continuous Discrete and/or Continuous
a
n
e
f
l
s

2.2.7. Comparison of single-agent reinforcement learning algorithms
Having described the principles and the mathematical equations of

different RL algorithms in Sections 2.2.1–2.2.6, the objective of this
subsection is firstly to make a comparison between the six described
RL algorithms from different perspectives in Table 1; and secondly, to
investigate the network structures of six RL algorithms in Fig. 4.

It can be found from Table 1 that Q-learning, DQN, DDPG, and
SAC are all categorized into the off-policy algorithm, which means
they are allowed to update the current policy using the transitions
from old policies, i.e., sampling transitions (or experiences) from the
replay buffer to calculate policy updates and can be reutilized. As a
result, the sampled transitions are mixed that are generated by different
policies, which can improve the sample efficiency. However, off-policy
algorithms are not motivated by policy improvement guarantees and do
not directly control the bias introduced by off-policy data. Meanwhile,
PG and PPO belong to the on-policy category, which means they
are allowed to update the policy based on the transitions generated
by the current policy. The critic network can make a more accurate
value prediction for the current policy network. However, the on-
policy algorithms suffer from poor sampling efficiency, since the prior
transitions cannot be utilized frequently to update the policy network.
To this end, importance sampling is normally deployed to improve the
sample efficiency and stability of on-policy algorithms.

In general, there are three approaches to representing and training
agents with RL. The first one is the value-based RL algorithm that learns
the Q-value for the optimal action-value function 𝑄∗(𝑠, 𝑎), such as Q-
learning and DQN. Typically, they use an objective function based on
the Bellman optimality equation. The second one is the policy-based
RL algorithm that learns the policy directly, such as PG and PPO.
They use gradient ascent to optimize the parameters 𝜙 directly on
the performance objective 𝐽 (𝜋𝜙). Policy-based algorithms also usually
involves learning an approximator 𝑉𝜓 (𝑠) or 𝑄𝜃(𝑠, 𝑎) for the on-policy
value function 𝑉 𝜋 (𝑠) or 𝑄𝜋 (𝑠, 𝑎), which is then used to determine how
to update the policy 𝜋𝜙. Here, we try to discuss the trade-offs be-
tween value-based and policy-based algorithms. The primary strength
of policy-based algorithms is that they are principled in the sense that
agents can directly optimize for the thing they want. This tends to make
them stable and reliable. By contrast, value-based algorithms only indi-
rectly optimize for agents’ performance by training 𝑄(𝑠, 𝑎) to satisfy a
self-consistency equation. There are many failure modes for this kind of
learning, so it tends to be less stable. However, value-based algorithms
gain the advantage of being substantially more sample efficient when
they do work, because they can reuse data more effectively than policy-
based algorithms. In this context, the third one is the algorithm that
interpolates between value-based and policy-based algorithms, such as
DDPG and SAC.

In RL algorithms, there are the concepts of stochastic and determin-
istic policies. A deterministic policy is a function of the form 𝜋(𝑠) ∶  →

, i.e., a function from the set of environment states , to the set of
action . For example, the set of actions is composed of the actions
 = {charging,discharging}. Unless the policy changes, 𝜋(𝑠) is always
the same action (e.g., ‘‘charging’’) given a state, 𝑠 ∈ . In Table 1, Q-
learning, DQN, and DDPG all belong to the category of deterministic
policy RL algorithm. A stochastic policy can be described as a family
of conditional probability distributions from the set of states to the
set of actions 𝜋(𝑎|𝑠) ∶  ×  → [0, 1]. A probability distribution is
7

a function that assigns a probability for each action (‘‘charging’’ and
‘‘discharging’’) and such that the sum of both the probabilities is 1.

Q-learning can operate only in discrete state and action spaces
because it is based on Bellman back-ups and the discrete-space version
of Bellman’s equation. However, most EV applications of RL require a
continuous state space defined by means of continuous variables such
as battery status, electricity prices, etc. The usual approach has been
to discretize the continuous variables, which quickly leads to combina-
torial explosion and the well-known ‘‘curse of dimensionality’’. To this
end, DQN, PG, PPO, DDPG, and SAC can deal with continuous state
space via a DNN-based universal function approximator that does not
use a discretization grid of the entire space. However, the value-based
DQN still suffers from the discrete action space. As a result, PG, PPO,
DDPG, and SAC, owing to their policy gradient theorem, can handle the
continuous action space. Specifically, PG, PPO, and SAC are capable of
constructing a Gaussian policy by learning the mean (sigmoid activate
function) and standard division (softplus activate function), separately.
Then, the continuous action can be directly sampled from the learned
Gaussian policy, as depicted in Fig. 4(d). DDPG, owing to its deter-
ministic policy gradient theorem, can directly compute the continuous
action value instead of sampling from a distribution. Furthermore,
the stochastic-based PG, PPO, and SAC can also generate the discrete
actions by deploying the softmax activate function to the output layer,
as depicted in Fig. 4(c).

Then, we investigate the structures of different RL algorithms in
Fig. 4. First of all, Q-learning is characterized by a tabular learning
approach; thus, there is no need for a DNN to approximate the Q-value.
DQN can employ DNNs as a function approximator (parameterized by
𝜃) that takes the state as input and the Q-values of all possible actions
as outputs via the linear activation function. To model the stochastic
policy, the softmax activation function is used to generate the selection
probabilities of all possible actions via the stochastic policy gradient
theorem, as shown in Fig. 4(c). In addition, the sigmoid and softplus
activation functions can also be used to learn the mean and standard
deviation of a Gaussian policy, as shown in Fig. 4(d). In this setting,
the continuous action value can be sampled from the learned Gaussian
policy. Unlike policy-based networks, critic network predicts the value
of the importance of being in a state (state-value) or for an action–
state pair (Q-value). As a result, PPO and DDPG are introduced via the
critic network to learn the state-value function 𝑉𝜓 (𝑠) in Fig. 4(e) and
the Q-value function 𝑄𝜃(𝑠, 𝑎) in Fig. 4(f), respectively. Furthermore,
PPO uses the softmax activation function to learn a stochastic policy
𝜋𝜙(𝑎|𝑠), whereas DDPG uses the sigmoid activation function to learn
a deterministic policy 𝑎 = 𝜇𝜙(𝑠). Finally, SAC learns a policy (actor)
network 𝜋𝜙(𝑠), two Q-value networks 𝑄𝜃1 (𝑠, 𝑎), 𝑄𝜃2 (𝑠, 𝑎), and a state-
value network 𝑉𝜓 (𝑠) in Fig. 4(g). Since SAC is an off-policy algorithm,

replay buffer is used to store the past experiences and update the
etworks for more advanced sampling efficiency. To estimate the policy
valuation, SAC, unlike PPO and DDPG, learns both the state-value
unction 𝑉𝜓 (𝑠) and the Q-value function 𝑄𝜃𝑗=1,2 (𝑠, 𝑎). Furthermore, SAC
earns two Q-value functions 𝑄𝜃1 (𝑠, 𝑎) and 𝑄𝜃2 (𝑠, 𝑎) and then takes the
maller of the two for training state-value function 𝑉𝜓 (𝑠) and policy
𝜋𝜙(𝑠). This technique can eliminate the overestimation of Q-value so as
to stabilize the training performance.

Finally, it should be mentioned that PPO and SAC can model
both the discrete and continuous action spaces by employing different
activation functions, e.g., softmax for discrete action space in Fig. 4(c);

sigmoid and softplus for continuous action spaces in Fig. 4(d).
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Fig. 4. Network structures of (a) Q-learning, (b) deep Q-network (DQN), (c) policy gradient (PG) with discrete action, (d) policy gradient (PG) with continuous action, (e) proximal
policy optimization (PPO), (f) deep deterministic policy gradient (DDPG), and (g) soft actor–critic (SAC).
Table 2
Network structures and models for three multi-agent reinforcement learning algorithms.
Method Actor network Critic network Number of networks Training Execution

CTCE 𝜋𝜙(𝑎1∶𝐼 |𝑜1∶𝐼 ) 𝑄𝜃 (𝑜1∶𝐼 , 𝑎1∶𝐼 ) 2 Centralized Centralized
DTDE 𝜋𝜙𝑖 (𝑎𝑖|𝑜𝑖) 𝑄𝜃𝑖 (𝑜𝑖 , 𝑎𝑖) |𝐼| × 2 Decentralized Decentralized
CTDE 𝜋𝜙𝑖 (𝑎𝑖|𝑜𝑖) 𝑄𝜃𝑖 (𝑜1∶𝐼 , 𝑎1∶𝐼 ) |𝐼| × 2 Centralized Decentralized
2.3. Multi-agent reinforcement learning

In the context of RL, complex applications require the involvement
of multiple agents to learn and process different tasks simultaneously,
thus rendering SARL into multi-agent reinforcement learning (MARL).
In any MARL algorithm, the MDP is generalized to a Markov game,
which can be defined by a tuple ⟨, ,𝑖,𝑖,𝑖,  , 𝛾⟩. Specifically, a

arkov game representing a group of agents 𝑖 ∈  interacting with the
nvironment (Fig. 5) that includes a collection of global states 𝑠 ∈ , a

collection of local observations {𝑜𝑖 ∈ 𝑖}, a collection of action sets
{𝑎𝑖 ∈ 𝑖}, and a collection of reward functions {𝑟𝑖 ∈ 𝑖}, as well
s a state transition function  (𝑠, 𝑎 ). For each agent 𝑖 at time step
𝑡, an action 𝑎𝑖,𝑡 is computed using the policy 𝜋𝑖(𝑎|𝑜) conditioned on
the current local observation 𝑜𝑖,𝑡. Then, the environment transits to the
next state given the transition function  (𝑠𝑡+1|𝑠𝑡, 𝑎,𝑡), while agent 𝑖
receives a rewarded 𝑟𝑖,𝑡 and the next local observation 𝑜𝑖,𝑡+1. Following
this process, each agent 𝑖 receives a trajectory of local observations,
actions, and rewards: 𝜏𝑖 = 𝑜𝑖,1, 𝑎𝑖,1, 𝑟𝑖,1, 𝑜𝑖,2,… , 𝑟𝑖,𝑇 over 𝑖 ×𝑖 ×𝑖 →
R. In the simplest case, 𝑠 could consist of the local observations of
all agents, 𝑠 = (𝑜1,… , 𝑜𝐼 ), however it could also include additional
state information if available [32]. The objective of each agent 𝑖 is
maximizing its cumulative discounted reward 𝑅𝑖 =

∑𝑇
𝑡=0 𝛾

𝑡𝑟𝑖,𝑡, where
𝛾 ∈ [0, 1) and 𝑇 = 24 h are the discount factor and daily horizon,
respectively.

However, different from the MDP in SARL algorithms, the agents
in the Markov game are coupled with each other in the environment
and can influence the environment dynamics and the optimal policies.
8

In other words, it is more challenging to learn the optimal policies for
all agents and manage the interactions between them, since the agents’
policies are implicitly formulated as part of the environment dynamics
while their policies are continuously adjusted during the training pro-
cess, thereby easily suffering from instability issues. This section aims
at introducing three typical frameworks that are widely used in MARL
algorithms: (1) centralized training with centralized execution (CTCE);
(2) decentralized training with decentralized execution (DTDE); and
(3) centralized training with decentralized execution (CTDE). Fig. 6
illustrates the workflows of these three frameworks based on the con-
ventional actor–critic architecture of DDPG algorithm [25], in which
their network structures and detailed information are compared in
Table 2.

2.3.1. Centralized training with centralized execution (CTCE)
It can be observed from Fig. 6(a) that the CTCE framework is

managed by a central controller, which deploys a Q-value (critic)
network 𝑄𝜃(𝑜1∶𝐼 , 𝑎1∶𝐼 ) parameterized by 𝜃 and a policy (actor) network
𝜇𝜙(𝑜1∶𝐼 ) parameterized by 𝜙. As a result, the training and execution
processes are both done by the central controller that requires the
information of all agents’ local observations 𝑜1∶𝐼 and helps all agents
make actions 𝑎1∶𝐼 . Each agent 𝑖 in CTCE is responsible for interacting
with the environment, executing the action 𝑎𝑖 generated by the central
controller, and reporting the local observation 𝑜𝑖 and the reward 𝑟𝑖 to
the central controller. As a result, at time step 𝑡, the central controller
can collect all of the agents’ local observations as the state 𝑠𝑡 =
[𝑜 , 𝑜 ,… , 𝑜 ], as well as the sum of all of the agents’ local rewards
1,𝑡 2,𝑡 𝐼,𝑡
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Fig. 5. Agents–environment interactions and the process of Markov Game.
Fig. 6. Workflows of three multi-agent reinforcement learning frameworks: (a) centralized training with centralized execution (CTCE), (b) decentralized training with decentralized
execution (DTDE), (c) centralized training with decentralized execution (CTDE).
as the central controller’s reward 𝑟𝑡 = 𝑟1,𝑡+𝑟2,𝑡+⋯+𝑟𝐼,𝑡. To that end, the
critic network’s parameters 𝜃 are optimized to minimize the TD error,
which is defined as:

(𝜃) = E𝑜1∶𝐼,𝑡∼𝜌𝜇 ,𝑎1∶𝐼,𝑡∼𝜋𝜙 [(𝑄𝜃(𝑜1∶𝐼,𝑡, 𝑎1∶𝐼,𝑡) − 𝑦𝑡)
2], (28)

where the target value is:

𝑦𝑡 =
𝐼
∑

𝑖=1
𝑟𝑖,𝑡 + 𝛾𝑄𝜃′ (𝑠1∶𝐼,𝑡+1, 𝜇𝜙′ (𝑠1∶𝐼,𝑡+1)). (29)

The parameters 𝜙 of the actor network are optimized using the deter-
ministic policy gradient theorem with the computed gradient defined
as:

∇𝜙𝐽 (𝜇𝜙) = E𝑜1∶𝐼,𝑡∼𝜌[∇𝜙𝜇𝜙(𝑜1∶𝐼,𝑡)∇𝑎1∶𝐼,𝑡𝑄𝜃(𝑜1∶𝐼,𝑡, 𝜇𝜙(𝑜1∶𝐼,𝑡))]. (30)

At each time step 𝑡, the central controller collects the all agent’s
local observations 𝑜1∶𝐼,𝑡 and then makes actions 𝑎1∶𝐼,𝑡 using the policy
network deployed by the central controller:

𝑎1∶𝐼,𝑡 = 𝜇𝜙(⋅|𝑜1∶𝐼,𝑡). (31)

In this setting, the agents only need to execute the actions generated
by the central controller and do not need to learn the policies by
themselves. The reason for this is that the policy function 𝜇𝜙(⋅|𝑜1∶𝐼,𝑡)
requires the global state of all agents’ local observations as input,
whereas individual agents do not know the global state and are not
capable of taking actions on their own.

The advantage of the CTCE framework is that it is easy to imple-
ment as the conventional DDPG algorithm. Furthermore, its correctness
can be guaranteed due to the centralized training that makes use
of the complete state and action information as well as the central-
ized execution in observing the global state. However, CTCE suffers
from a latency issue, which may affect the speed of both training
and execution processes. In the framework of centralized execution,
agent 𝑖 transmits its local observation 𝑜𝑖,𝑡 to the central controller,
who generates actions 𝑎1∶𝐼,𝑡 only after collecting all local observations
𝑜1∶𝐼,𝑡. Then, the action 𝑎𝑖,𝑡 also has to be transmitted to agent 𝑖. This
process is usually slow, making real-time decision-making problems
impractical. More importantly, the CTCE framework is centralized in
both training and execution, and leads to an exponential growth in both
local observation and action spaces with the number of agents, which
raises the curse of dimensionality [22] and quickly becomes intractable
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for a large-scale multi-agent setup. Furthermore, the implementation
of the CTCE framework may raise agents’ opposition, since they are
generally unwilling to reveal their private information and exchange
such information with others.

2.3.2. Decentralized training with decentralized execution (DTDE)
The fundamental idea of the DTDE framework is to replace the

global state 𝑠𝑡 with the local observation 𝑜𝑖,𝑡, approximating a policy
(actor) network 𝜇𝜙𝑖 (𝑜𝑖) and a Q-value (critic) network 𝑄𝜃𝑖 (𝑜𝑖, 𝑎𝑖) for
each agent 𝑖. In this setting, the agents do not share parameters,
i.e., 𝜙𝑖 ≠ 𝜙𝑗 , 𝜃𝑖 ≠ 𝜃𝑗 ,∀𝑗 ∈ 𝐼 ⧵ {𝑖}. Both training and execution can be
done locally by the agent without involving a central controller or any
communication. To this end, the parameters 𝜃𝑖 of each agent’s critic
network can be optimized to minimize the TD error defined as:

(𝜃𝑖) = E𝑜𝑖,𝑡∼𝜌𝜇 ,𝑎𝑖,𝑡∼𝜇𝜙𝑖 [(𝑄𝜃𝑖 (𝑜𝑖,𝑡, 𝑎𝑖,𝑡) − 𝑦𝑖,𝑡)
2],∀𝑖 ∈ , (32)

where the target value is:

𝑦𝑖,𝑡 = 𝑟𝑖,𝑡 + 𝛾𝑄𝜃′𝑖 (𝑜𝑖,𝑡+1, 𝜇𝜙′𝑖 (𝑜𝑖,𝑡+1)),∀𝑖 ∈ . (33)

The parameters 𝜙𝑖 of the actor network of each agent 𝑖 are optimized
using the deterministic policy gradient theorem with the computed
gradient defined as:

∇𝜙𝑖𝐽 (𝜇𝜙𝑖 ) = E𝑜𝑖,𝑡∼𝜌[∇𝜙𝑖𝜇𝜙𝑖 (𝑜𝑖,𝑡)∇𝑎𝑖,𝑡𝑄𝜃𝑖 (𝑜𝑖,𝑡, 𝜇𝜙𝑖 (𝑜𝑖,𝑡))],∀𝑖 ∈ . (34)

After completing the training, agent 𝑖 no longer requires its critic
network 𝑄𝜃𝑖 (𝑜𝑖, 𝑎𝑖). The agent only needs to use its local policy network
𝜇𝜙𝑖 (𝑜𝑖) to make action 𝑎𝑖 without communication. Thus, decentralized
execution is fast and can make real-time decisions. However, the agents
in the Markov game influence each other, and the decentralized train-
ing in the DTDE framework regards the agents as independent entities
while ignoring the correlation between them and directly training each
agent independently with the SARL algorithm. As a result, using the
DTDE framework to solve the MARL problem is often ineffective in
practice.

2.3.3. Centralized training with decentralized execution (CTDE)
The previous two frameworks discuss fully centralized and fully de-

centralized methods, and both implementations have their own advan-
tages and disadvantages. Recently, the more popular MARL framework
is CTDE, in which a central controller is used to assist the agent in
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Fig. 7. The applications of EVs in power systems.
training; after training, the central controller is no longer needed, and
each agent makes actions independently based on local observation
𝑜𝑖. Similar as DTDE, each agent in CTDE has a policy (actor) network
𝜇𝜙𝑖 (𝑎𝑖|𝑜𝑖) that inputs the local observation 𝑜𝑖 and outputs the executed
action 𝑎𝑖. However, the value (critic) network 𝑄𝜃𝑖 (𝑜1∶𝐼 , 𝑎1∶𝐼 ) adopts the
centralized training of CTCE that requires the information of all agents’
local observations 𝑜1∶𝐼 and actions 𝑎1∶𝐼 . To this end, the parameters 𝜃𝑖
of each agent’s critic network can be optimized to minimize the TD
error defined as:

(𝜃𝑖) = E𝑜1∶𝐼,𝑡∼𝜌𝜇 ,𝑎𝑖,𝑡∼𝜇𝜙𝑖 [(𝑄𝜃𝑖 (𝑜1∶𝐼,𝑡, 𝑎1∶𝐼,𝑡) − 𝑦𝑖,𝑡)
2],∀𝑖 ∈ , (35)

where the target value is:

𝑦𝑖,𝑡 = 𝑟𝑖,𝑡 + 𝛾𝑄𝜃′𝑖 (𝑜1∶𝐼,𝑡+1, 𝜇𝜙′1 (𝑜1,𝑡+1),… , 𝜇𝜙′𝐼 (𝑜𝐼,𝑡+1)),∀𝑖 ∈ . (36)

The parameters 𝜙𝑖 of the actor network of each agent 𝑖 are optimized
using the deterministic policy gradient theorem with the computed
gradient defined as:

∇𝜙𝑖𝐽 (𝜇𝜙𝑖 ) = E𝑜𝑖,𝑡∼𝜌[∇𝜙𝑖𝜇𝜙𝑖 (𝑜𝑖,𝑡)∇𝑎𝑖,𝑡𝑄𝜃𝑖 (𝑜1∶𝐼,𝑡, 𝜇𝜙1 (𝑜1,𝑡),… , 𝜇𝜙𝐼 (𝑜𝐼,𝑡))],∀𝑖 ∈ .

(37)

This framework effectively circumvents the challenge of environ-
mental non-stationary during the training process when knowing the
information of all agents’ local observations and actions. During test
time, the critic network is not needed and the policy execution is fully
decentralized through each agent’s actor network that only takes as
input its own local observation. Nevertheless, as in centralized training,
CTDE is not privacy-preserving and also suffers from a similar curse of
dimensionality to CTCE, which is problematic in practical large-scale
multi-agent applications. If the considered Markov game consists of
agents with the same observation, action, and reward function, their
policies can be trained with enhanced efficiency by using a parameter-
sharing (PS) technique [33]. Specifically, PS allows all agents to share
the parameters of a single control policy. This enables the shared policy
to be trained with the sample experiences gathered by all agents, while
still allowing different behaviors among different agents since each
agent receives different local observations.

3. Applications of RL on EV dispatch problems

A typical EV dispatch problem mainly focuses on how to charge
power efficiently and economically when EVs are connected to charg-
ing stations, such that EVs can have sufficient energy for their daily
journeys, e.g., traveling from home to the office in the morning and
back home from the office in the evening. In addition to the charging
requirement, EVs can also discharge power to homes (V2H) or the elec-
tricity grid (V2G) for various ancillary service provisions, e.g., overload
reduction, energy imbalance service, carbon intensity service, voltage
and frequency regulations, etc. For instance, as shown in Fig. 7, EVs
can choose to charge power from the home charging stations during the
night for the coming day’s traveling energy requirement or discharge
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power to the grid for certain ancillary service provisions. When V2H or
V2G technologies are activated, it is more possible for EV users to make
energy arbitrage through smart charging and discharging behaviors.

As discussed in Section 1, RL demonstrates the benefits of dealing
with real-time stochastic and dynamic problems without the need
for knowledge of system models and technical parameters. So far,
RL algorithms have been successfully applied to various EV dispatch
problems, including EV charging towards cost minimization, EV charg-
ing/discharging towards overload reduction, EV ancillary service provi-
sions (e.g., energy balance, frequency, voltage, etc.), as better summa-
rized in Tables 3, 4, 5, and 6, respectively. To apply RL algorithms to
the various EV dispatch problems, the common practice in the existing
work is to first formulate them as an MDP solved by SARL algorithms or
a Markov game solved by MARL algorithms. The following subsections
then provide the detailed components of the MDP or Markov game
corresponding to different EV applications.

3.1. RL for G2V

Transport sectors are regarded as one of the largest contributors to
the excessive use of oil resources and various environmental problems
(e.g., pollution and climate change) [34]. In order to address these
issues, many countries have passed regulations to restrict the fossil fuel
consumption of traditional vehicles, promising a low-carbon future,
which has led to a rapid increase in the use of EVs in the transport sec-
tor [35]. As an alternative to traditional vehicles, travel requirements
should be firstly satisfied for EV owners through effective EV charging
behaviors when they are connected to the grid through local charging
stations [36].

Note that uncontrolled EV charging behaviors can influence the nor-
mal travel of users and lead to a significant increase in operating costs.
From the electricity market perspective, many utilities have started
offering time-varying electricity price signals, which allows EV owners
to select appropriate timeslots for more economical charging [37].
In other words, EVs can make use of electricity price variations and
demand flexibility to shift the charging power to the periods when
electricity prices and/or grid demand are relatively low. For this reason,
much research has focused on developing RL-based smart charging
schemes for EVs towards charging cost minimization but also ensuring
travel requirements, as summarized in Table 3. The most commonly-
used state/observation, action, and reward function have been detailed
as follows:

3.1.1. State
Since the EV charging problems involve both transport and power

sectors, the local observations 𝑜𝑖,𝑡 of EV agent 𝑖 at time step 𝑡 shall
include the information from both sectors, which can be generalized
as:

𝑜 = [𝑡, 𝛥 , 𝐿𝑟𝑑 , 𝑉 𝑟𝑑 , 𝑆 , 𝜆𝑔 , 𝐺𝑟𝑒𝑠, 𝐷𝑝 , 𝐷𝑒𝑣],∀𝑖 ∈ ,∀𝑡 ∈ 𝑇 , (38)
𝑖,𝑡 𝑖,𝑡 𝑖,𝑡 𝑖,𝑡 𝑖,𝑡 𝑡 𝑖,𝑡 𝑖,𝑡 𝑖,𝑡
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Table 3
Summary of G2V.

Ref. State Action Reward Algorithm Key features

[38] Time, RES, load,
weather, traffic,
waiting time, etc.

Charging
rate

Minimize charging
cost, non-completion
penalty

SAC,
PPO,
DDPG

Combine the advantages of optimal
control policy characterizations and
model-free DRL algorithm.

[39] Travel energy
requirement, charging
time, price signals

Charging and
discharging
rates

Minimize charging
cost, non-completion
penalty

DDPG,
DQN

Use two replay buffers to address the
limitations of sparse rewards, use LSTM
to extract time-series price information.

[37] Time, aggregate
charging demand

Charging
rate

Minimize charging
cost, non-completion
penalty

Fitted
Q-iteration

Contribute a new MDP formulation with a
scalable state representation independent
of the number of charging stations.

[40] Time, SoC,
electricity price

Daily
charging
energy

Minimize charging
cost

Fitted
Q-Iteration

A Bayesian neural network is employed to
predict the electricity prices; a linear
program is used to optimally schedule
the PEV battery charging.

[41] Time, SoC, RES,
charging rate,
charging time,
electricity price

Charging
rate

Minimize charging
cost and wind power
fluctuation

DDPG Realize the optimized EV charging control
under uncertain wind power, electricity price,
charging pile, and user requirements.

[42] Time, SoC, RES, energy
requirement, charging
demand, charging time,
electricity price

Startup time
of charging
pile

Improve charging
satisfaction, reduce
operation cost and
PV curtailment

DQN Propose a charging station scheduling
strategy that combines EV random
charging behavior characteristics
with DRL algorithm.

[43] Residual
charging demand
and parking time

Charging
price and
charging
rate

Maximize charging
station profit

SARSA Develop a model-free data-driven method
for joint pricing and charging scheduling
at an EV charging station with random EV
arrivals and departures.

[44] Queuing system
capacities, arrival
rate, completed
time periods

Charging
price

Improve the
quality of service

Actor-critic
Q-learning

Propose a new dynamic pricing framework
for EV charging stations that can offer
multiple charging options to customers
over a finite time horizon.

[45] PV generation,
building demand,
SoC, departure time

Charging
rate

Maximize PV
self-consumption,
achieve the
highest SOC

DDQN,
P-DQN,
DDPG

Propose three mathematical formulations
of the problem in the form of MDPs that
differ by the type of action space.

[46] Travel energy
requirement

Charging
rate

Minimize charging
cost

Fitted
Q-iteration

EV charging is controlled by a heuristic
scheme, and the resulting charging
behavior is learned by batch RL.

[47] RES, DG output, SoC,
temperature, charging
demand, AC status

Charging
rate

Minimize DG
generation, EV
charging, and battery
degradation cost,
ensure user comfort

DDPG,
A2C

Propose a two-layer interactive
architecture for effective control
while preserving the user privacy data.

[48] Wind power output
and traffic demand

Charging
service fee

Minimize total
social cost

DDPG,
Fitted
Q-iteration

Develop a RL framework to decouple
and solve the stochastic EV charging problem
in a coupled power-transport network.

[49] EV location, SoC,
traffic condition,
electricity price,
waiting time

Designated
charging
station,
planned route

Minimize battery
consumption, travel
time, charging cost
and waiting time.

DQN State features are extracted out of
collected data including traffic condition,
charging price and waiting time via a
shortest charging route model.

[50] EV arriving time,
number of charging
piles

Scheduled EV,
chosen station,
charging mode

Minimize charging
time and travel
distance

DQN Aim to reduce total charging time
and travel distance
of EVs charging en-route.

[51] Time, charging station
number, location,
road length, SoC

Charging
station choice

Minimize charging cost
and travel time

Rainbow
DQN

Propose a new platform for real-time EV
charging navigation based on graph RL.

[52] Time, location, SoC,
charging station capacity,
the number of charging
and waiting EVs,
road speed, nodal voltage

Charging
station choice

Minimize estimated
time cost

DQN Propose a physical connection-based
graph formulation method with feature
projection to integrate multi-dimensional
information into a graph.

[53] Storage capacity,
charging demand,
electricity price

Charging and
discharging rate

Minimize charging
cost, over charging
loss and increase
pre-charge benefits

CommmNet,
DQN,
PPO

Use MARL algorithm for energy
management of charging stations
in a distributed manner under dynamic
time-varying PV generation.

[54] Time, SoC, location,
charging interval

Pass, charge,
assign

Minimize charging
cost and travel
cost

MADQN Propose a novel framework with
decentralized learning and centralized
decision making for EV ride-hailing.

(continued on next page)
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Table 3 (continued).
Ref. State Action Reward Algorithm Key features

[55] Time, SoC,
location

Rebalancing
or charging
decision

Charging cost MADQN Consider joint charging scheduling, order
dispatching, and vehicle rebalancing for
large-scale shared EV fleet operator.

[56] Time, SoC, number
of charging piles,
charging demand

Bidding
quantity
and price

Minimize charging
cost

MADQN Propose a multi-agent DQN algorithm to
learn the optimal bidding strategy for
multiple EVs in an auction market.

[57] Time interval,
charging load,
historical
charging price

Charging
price

Maximize charging
profit

MASAC Propose a strategic charging pricing
scheme for charging station operators
based on a non-cooperative Stackelberg
equilibrium framework.

[58] Each player’s
rationality and
charging price

Charging
price

Maximize charging
profit

MADQN Use MARL to model the pricing competition
of multiple charging stations in transport
networks with elastic traffic demands.
where 𝑜𝑖,𝑡 consists of three parts: (1) the time information of current
time step 𝑡 and charging interval 𝛥𝑖,𝑡 of EV agent 𝑖 at time step 𝑡; (2) the
ransport information of EV location 𝐿𝑟𝑑𝑖,𝑡 and traffic volume 𝑉 𝑟𝑑

𝑖,𝑡 ; and
(3) the power information of battery state-of-the-charge (SoC) level 𝑆𝑖,𝑡,
grid electricity price 𝜆𝑔𝑡 , nodal renewable generation 𝐺𝑟𝑒𝑠𝑖,𝑡 , nodal power
demand 𝐷𝑝

𝑖,𝑡, and EV charging demand 𝐷𝑒𝑣
𝑖,𝑡 . Among them, 𝑡, 𝜆𝑔𝑡 , 𝐺

𝑟𝑒𝑠
𝑖,𝑡 ,

and 𝐷𝑝
𝑖,𝑡 belong to exogenous states that represent the local information

unaffected by actions, while 𝛥𝑖,𝑡, 𝐿𝑟𝑑𝑖,𝑡 , 𝑉
𝑟𝑑
𝑖,𝑡 , 𝑆𝑖,𝑡, and 𝐷𝑒𝑣

𝑖,𝑡 correspond to
endogenous states that serve as the feedback signals of executed routing
and scheduling actions by EV agent 𝑖.

3.1.2. Action
Similarly, the action 𝑎𝑖,𝑡 of EV agent 𝑖 at time step 𝑡 also involves two

parts corresponding to both transport and power sectors, which can be
generalized as:

𝑎𝑖,𝑡 = [𝑎𝑡𝑠𝑝𝑖,𝑡 , 𝑎
𝑝𝑜𝑤
𝑖,𝑡 ],∀𝑖 ∈ , ∀𝑡 ∈ 𝑇 , (39)

where (1) the discrete routing action 𝑎𝑡𝑠𝑝𝑖,𝑡 ∈ {0, 1,… , 𝑁𝑟𝑑} is selected
from the set of potential routes upon the transport node, in which 0
denotes no routing behaviors and 𝑁𝑟𝑑 denotes the number of available
commuting routes at current transport node; and (2) the continuous
charging action 𝑎𝑝𝑜𝑤𝑖,𝑡 ∈ [0, 1] represents the magnitude of charging rate
of EV agent 𝑖 as a percentage of its power capacity 𝑃 𝑖. It is worth noting
hat discharging behaviors are not considered in the G2V problem.

.1.3. Reward function
At the end of time step 𝑡, the EV agent 𝑖 obtains its reward 𝑟𝑐𝑖,𝑡. The

bjective of EV agent 𝑖 is to minimize charging costs while also ensuring
sufficient energy requirement for travel. As such, the reward function
𝑖,𝑡 in Eq. (40) can be designed as two parts conditioned on: (1) the cost
f charging power 𝑃𝑖,𝑡 when EV agent 𝑖 is connected to the grid (𝐴𝑖,𝑡 = 1)
n the power network at time step 𝑡; (2) the penalty of insufficient
harging upon departure in the transport network, i.e., 𝐸𝑖,𝑡 = 𝑆𝑖,𝑡𝐸𝑖 ≥
𝐸𝑡𝑝𝑖 may not be satisfied when EV is traveling (𝐴𝑖,𝑡 = 0).

𝑟𝑔2𝑣𝑖,𝑡 =

⎧

⎪

⎨

⎪

⎩

−𝜆𝑔𝑡 𝑃
𝑐
𝑖,𝑡 if 𝐴𝑖,𝑡 = 1

𝜅[𝐸𝑖,𝑡 − 𝐸
𝑡𝑝
𝑖,𝑡]

− if 𝐴𝑖,𝑡 = 0
,∀𝑖 ∈ , ∀𝑡 ∈ 𝑇 , (40)

where 𝜅 is a penalty factor to penalize the extent of constraint violation.

3.1.4. Discussion
Primary research limitations and potential solutions to the RL-based

G2V problems have been listed and discussed as follows:

3.1.4.1. Detailed transportation network models.

• Research limitations: As described in Table 3, most existing
work uses certain probability distributions or real-world datasets
to capture random EV arrival and departure behaviors, SoC levels,
and required charging demand for uninterruptible daily journeys.
12
However, these papers do not consider the model details of
transport networks and real-time EV routing behaviors, which
can be unrealistic and lead to inaccurate results. In fact, only a
few references (e.g., [48–50]) apply RL-based methods for both
EV routing and scheduling characteristics. It is worth noting
that these routing and scheduling decisions are mutually influ-
enced, since an efficient routing decision can better avoid traffic
congestion and save more time for EVs to exploit their energy
flexibility for ancillary service provision, while an efficient power
scheduling decision can ensure a high battery SoC level for EVs to
exploit their transportation mobility. As such, to obtain accurate
charging intervals and charging demand, it is necessary to capture
both the routing and scheduling characteristics of EV fleets in RL
setups.

• Potential solutions: To effectively apply RL algorithms to both
the routing and scheduling behaviors of EVs, the main challenge
is related to the hybrid discrete and continuous action domains,
while classical RL algorithms are mainly applied in either discrete
or continuous action domains. Therefore, it is difficult to use one
RL policy to capture both the routing and scheduling actions of
EVs. To address this challenge, there has been research employing
the hybrid RL algorithm (e.g., [8]) and hierarchical RL algorithm
(e.g., [81]) for EV dispatching problems, which are capable of
capturing both discrete and continuous actions. However, the
scalability and reliability of hybrid RL algorithms should be fur-
ther investigated, especially when a multi-agent setup is required
for large-scale EV fleets.

3.1.4.2. Effective reward function designs.

• Research limitations: The reward function for EV dispatch prob-
lems involves different perspectives. In more detail, charging cost
and the penalty for non-completion are two basic elements to
ensure successful EV daily journeys. Note that the model-free
RL algorithm cannot handle the traveling energy requirement
constraint in a mathematical manner like the model-based op-
timization approach [74]. In general, introducing appropriate
weighting factors is necessary to fuse several different objectives
into one reward function and differentiate their prioritization.
However, determining the values of weighting factors for a trade-
off can be very difficult due to the lack of accurate knowledge
about the priority of different objectives. As such, a sensitivity
analysis may be required to further evaluate the impact of penalty
factors on the trained policy and identify the suitable selection for
their values in EV dispatch problems, which is not a trivial task.

• Potential solutions: To better capture different objectives in
the reward function design process, two potential solutions are
available in existing work: (i) applying multi-objective RL meth-
ods (e.g., pareto reinforcement learning) [89] on EV dispatch
problems, which can output a pareto front rather than a single
solution and then effectively eliminate the need for weighting



Renewable and Sustainable Energy Reviews 173 (2023) 113052D. Qiu et al.

3

p
s
t
t
c
t
m
o
n

Table 4
Summary of V2H.

Ref. State Action Reward Algorithm Key features

[59] Time, SoC, load,
EV number,
charging requirement

Charging
rate

Maximize charging
reward and
departure reward

DQN Address a simple but scalable smart
charging coordination strategy for EVs
with forward-looking charging schedules.

[60] Residual demand,
remaining time,
current time

Charging
rate

Minimize the penalty
over the aggregate
charging rate

PPO Extend the action space to be consistent
and state-independent for network training,
and revise the reward function to penalize
the neural network output.

[61] Time, occupancy
of parking lot,
EV cluster,
charging rate,
power threshold

Charge or
not

Maximize
transferred
energy without
violating
power threshold

DDQN Ensure the completion of charging
transactions in a timely manner while
reducing demand peaks.

[62] Time,
electricity price, SoC,
charging demand

Charging and
discharging
rate

Maximize power
scheduling profit,
minimize non-
completion penalty

DQN Consider a public charger shared among
multiple users, estimate probability
density functions from EV charging data
using kernel density estimation.

[63] Electricity price,
demand

Charging
price

Maximize charging
profit

DDPG Establishes a quarter-hourly V2G dynamic
time-sharing pricing model based on DDPG.

[64] Time, SoC,
electricity price

Charging and
discharging
rate

Minimize EV charging
costs, peak-cutting,
valley-filling, meet
charging demand

DDPG Propose a distributed real-time
scheduling optimization structure
and establish a scheduling model
of a single EV agent.

[65] Location, load,
solar irradiance,
SoC

Moving
direction,
charge/idle/
discharge

Minimize charging
cost

DQN Address uncertainties in power
supply and demand by dispatching EVs
to supply energy for consumers
at different locations.

[66] Time, SoC,
location,
transformer load

Charge
or not

Minimize charging
cost, increase user
satisfaction
and avoid overload

MASCO Build a multi-objective architecture in a
distributed manner, aiming at minimizing
energy costs and avoiding overloads,
while allowing EV recharging.

[7] Time, location, SoC,
charging demand,
electricity price

Charging and
discharging
rate

Minimize charging
cost and drivers’
range anxiety,
avoid overload

MASAC Formulates the EVs charging problem as
a Markov game with an unknown transition
function and propose a cooperative charging
control strategy.

[67] Time, location,
SoC

Charging,
find
passengers

Finding passengers
and minimize
charging cost

MAQ-
learning

Define the charging loads of plug-in
electric taxis in both the temporal
and spatial scales.

[68] Time, SoC, charging
preference, temperature,
electricity price

Charging or
discharging
rate

Minimize the
transformer
loss and the EV
dissatisfaction

MATD3,
TD3

A centralized evolutionary curriculum
learning mechanism is adopted to
enhance the coordination of
multiple EVs.

[69] Time, charging power,
congestion signals

Charging and
discharging
rate

Maximize the
substation
loading

MASAC Propose an adaptive control algorithm
for plug-in EV charging without straining
the power system.

[70] Time, EV type,
SoC, load,
electricity price

Charging and
discharging
rate

Minimize charging
cost, range anxiety,
transformer loss,
battery degradation

MASAC Propose a decentralized EV charging
framework for optimization of the loss of
transformer life considering
the dis-satisfactions of EV owners.
factors; (ii) formulating the RL-based EV dispatch problems as
constrained policy optimization algorithms [90,91], which can
handle the reward and the constraints independently and do not
need to carefully design specific reward functions for constraint
violations.

.2. RL for V2H

The growth of EVs brings viable solutions for future low-carbon
ower systems. Nevertheless, the large-scale EV penetration into power
ystems can also significantly increase residential demand, leading to
he potential overload of distribution grid transformers or even prema-
ure failures. Specifically, uncoordinated EV charging could raise the
urrent peak demand level or cause a new peak demand by changing
he profile of the system demand. As a result, the system operator
ust appropriately coordinate the charging and discharging behaviors

f large-scale EV fleets to reduce the risk of overloading distribution
etworks via vehicle-to-home (V2H) technologies.
13
Coordinating the charging rates of EVs to flatten the load profile
and reduce its variance is a non-trivial task because of the potential
privacy issues and EV-related uncertainties (e.g., arrival and departure
time, charging interval, SoC level, etc.). As a model-free approach,
RL can encapsulate various uncertainties into the training procedure
and assist EVs to reach a cooperative fashion within a decentralized
framework for better privacy protection. There has been much research
focused on using RL algorithms to avoid overloading issues caused by
the integration of large-scale EVs, as better summarized in Table 4.
The most commonly-used state, action, and reward function have been
detailed as follows:

3.2.1. State
Given that the V2H problem only affects the power sector, the local

observation 𝑜𝑖,𝑡 of EV agent 𝑖 at time step 𝑡 can be generalized as follows:

𝑜 = [𝑡, 𝛥 , 𝑆 , 𝜆𝑔 , 𝐺𝑟𝑒𝑠, 𝐷𝑝 , 𝐷𝑒𝑣],∀𝑖 ∈ ,∀𝑡 ∈ 𝑇 , (41)
𝑖,𝑡 𝑖,𝑡 𝑖,𝑡 𝑡 𝑖,𝑡 𝑖,𝑡 𝑖,𝑡
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Table 5
Summary of V2G.

Ref. State Action Reward Algorithm Key features

[71] Time, SoC,
utilization rate of
charging piles,
electricity price,
station capacities

Charging or
discharging
rate

Maximize charging
profit

DDPG,
TD3, SAC

Construct a DRL based Stackelberg game
model for a VPP with EV charging
stations.

[72] SoC, wind speed,
station capacity,
solar irradiance,
trading volume,
observed utility

Charging rate,
bidding price

Minimize charging
cost

DDPG An asynchronous learning framework is
put forward to help aggregators formulate
bids, including bidding price and volume.

[73] Time, SoC,
electricity price,
charging preference

Charging and
discharging
rate

Minimize charging
cost and the driver’s
aggregate anxiety

SAC, DQN,
TD3, PPO

Introduce an aggregate anxiety concept to
characterize both the driver’s anxiety on
the EV’s range and uncertain events.

[74] Electricity price,
flexible and
inflexible EV
demand

Retail prices Maximize overall
profit while avoid
constraint
violations

Q-learning,
DQN,
DDPG

Propose a DRL algorithm that sets up
the problem in multi-dimensional
continuous state and action spaces.

[75] SoC,
past 24-hour
electricity prices

Charging and
discharging
rate

Maximize power
scheduling profit

Constrained
PG, DQN,
DDPG

Propose a constrained charging and
discharging scheduling strategy to minimize
the charging cost as well as guarantee
the EV can be fully charged.

[76] EV location, SoC,
electricity price

Charging and
discharging
rate

Minimize charging
cost, degradation
cost, range anxiety

DQN Formulate the EV charging and discharging
scheduling problem as an MDP from the
user’s perspective.

[77] Time, SoC,
electricity price,
PV generation

Charging and
discharging
rate

Minimize charging
cost and overcharging
penalty,
undercharging, and
user preference

PG,
A3C

Present a hierarchical DRL method for the
scheduling of energy consumption
of smart home appliances and DERs.

[78] SoC,
electricity price

Charging and
discharging
rate

Minimize charging
cost and penalties of
battery safety and
travel requirement

DQN,
DDPG

Combine the feature extraction ability of
DL and the decision-making ability of RL
for an EV charging strategy that reduces
charging cost for the EV owner

[79] Day, time, SoC,
electricity price,
EV status

Discharge,
idle, or
charge

Minimize charging
cost, penalty of
insufficient energy
for travel

Q-learning,
DQN

Propose a demand response method to
reduce the long-term charging cost of
single plug-in EV while overcoming
obstacles from uncertainties.

[80] EV aggregator
suppliers’
capacities

Bidding
price

Maximize payoff after
market clearing

MAQ
-learning

Propose a competitive bidding strategy for
wind power plants and EV aggregators in a
pool-based day-ahead electricity market.

[81] Location, traffic
volume, demand,
RES, SoC,
electricity price,
carbon intensity

Moving
direction,
charging or
discharging
rate, balance
service provision

Maximize ancillary
service profit,
minimize travel time

HRL,
MAPPO,
PPO

Develop a MARL algorithm for cooperative
EVs to optimize the provision of multiple
interdependent services, including
charging, demand management, carbon
intensity, and balancing service.

[82] Electricity price,
SoC, charging
demand, PV
generation

Charging and
discharging
rate, and energy
selling price
schedule

Maximize power
scheduling profit,
minimize overcharging
and undercharging
penalties

FRL,
SAC

Propose a privacy-preserving distributed RL
framework that maximizes the profits of
multiple smart charging stations integrated
with photovoltaic and energy storage systems
under a dynamic pricing strategy.

[8] Electricity price,
carbon intensity,
SoC, RES, load,
location, line status

Moving
direction,
charging and
discharging rate

Maximize power
scheduling profit,
reduce load shedding

Hybrid
MAPPO

Propose a MARL method to address the
routing and scheduling problem of multiple
EVs towards ancillary service provision
and resilience control.
3

i
a
c
p

where 𝑜𝑖,𝑡 consist of three parts: (1) the time information of current
time step 𝑡 and charging interval 𝛥𝑖,𝑡; and (2) the power information
of battery SoC level 𝑆𝑖,𝑡, grid electricity price 𝜆𝑔𝑡 , nodal renewable
generation 𝐺𝑟𝑒𝑠𝑖,𝑡 , nodal power demand level 𝐷𝑝

𝑖,𝑡, and EV charging
demand 𝐷𝑒𝑣

𝑖,𝑡 .

3.2.2. Action
In the V2H problem, the action 𝑎𝑖,𝑡 of EV agent 𝑖 at time step 𝑡 only

captures the power sector and can be generalized as:

𝑎 = 𝑎𝑝𝑜𝑤,∀𝑖 ∈ , ∀𝑡 ∈ 𝑇 , (42)
14

𝑖,𝑡 𝑖,𝑡 a
where the continuous scheduling action 𝑎𝑝𝑜𝑤𝑖,𝑡 ∈ [−1, 1] represents the
magnitude of charging (positive) and discharging (negative) power
rates of EV agent 𝑖 as a percentage of its power capacity [−𝑃 𝑖, 𝑃 𝑖].

.2.3. Reward function
When employing large-scale EVs for V2H problems, the overload

ssues caused by the power demand of households in the residential
reas should be included in the reward function in addition to the
harging cost and sufficient travel energy requirement. Note that the
ower demand of households includes both EV charging characteristics
nd non-EV loads. Similar to [7,66], the penalty for the transformer
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Table 6
Summary of V2G (frequency and voltage regulations).

Ref. State Action Reward Algorithm Key features

[83] Load, voltage,
SoC, time

Charging and
discharging
rate

Minimize voltage
deviation,
charging and traveling
penalties

DDPG,
DQN

Propose a human intervention coordinated
with DRL to prevent the huge learning
loss, realize emergency control, find
preferable control policy.

[84] Local voltage,
SoC, active and
reactive load

Active and
reactive
power rate

Limit voltages
within
acceptable
range

Constrained
DDPG

Formulate the real-time voltage control
problem of EVs as a Markov Game
considering both reactive power control
and V2G modes of EVs.

[85] Date, time, load,
SoC, weather,
traffic flow

Prediction for
the boundary
condition

Maximize DSO
profits

DDPG Propose an optimal EV charging strategy
to maximize DSO profits while satisfying
all the physical constraints.

[86] SoC, RES, active
and reactive load,
location

Active and
reactive
power rate

Maximize V2G
revenue, minimize non-

completion penalty

DDPG Propose a parameter sharing-based DDPG
algorithm to address the coordinated active
and reactive power scheduling problem of
multiple self-dispatched EVs towards
demand-side response and voltage regulations.

[87] Number of
precharged
batteries for
frequency.

Battery
regulation
capacity

Maximize
charging revenue,
frequency support,
reduce battery
degradation cost

DQN Schedule the hourly regulation capacity
in real time to maximize the battery
swapping stations revenue for providing
fast frequency regulation services.

[88] Frequency and
voltage deviation,
EV active and
reactive power
output

Active power
rate, power
angle factor
of the charger

Reduce voltage
and frequency
deviations

DDPG Aim at the voltage and frequency regulations
of microgrid caused by wind disturbance and
load fluctuation.
3

overload can be defined according to each household’s contribution to
the total power demand as:

𝑟𝑡𝑓𝑖,𝑡 =

⎧

⎪

⎨

⎪

⎩

−
𝑃 𝑑𝑒𝑚𝑖,𝑡

𝑃 𝑡𝑓𝑡
([|𝑃 𝑡𝑓𝑡 | − 𝑃

𝑡𝑓
𝑡 ])2 if |𝑃 𝑡𝑓𝑡 | > 𝑃

𝑡𝑓
𝑡

0 else
, ∀𝑖 ∈ ,∀𝑡 ∈ 𝑇 , (43)

here 𝑃 𝑑𝑒𝑚𝑖,𝑡 is the household power demand of EV agent 𝑖 at time step
, 𝑃 𝑡𝑓𝑡 =

∑

𝑃 𝑑𝑒𝑚𝑖,𝑡 is its total transformer load, and 𝑃
𝑡𝑓
𝑡 is the available

ransformer capacity at time step 𝑡.
Combining the charging cost for user satisfaction and the penalty

or the overload issue, the reward for EV agent 𝑖 at time step 𝑡 is as
ollows:
𝑣2ℎ
𝑖,𝑡 = 𝑟𝑔2𝑣𝑖,𝑡 + 𝜅𝑟𝑡𝑓𝑖,𝑡 , ∀𝑖 ∈ ,∀𝑡 ∈ 𝑇 , (44)

here the trade-off between charging cost and overload penalty can
e decided by the weight coefficient 𝜅. In practice, the setting of
oefficient 𝜅 depends on the users’ charging preference [7].

.2.4. Discussion
Some research limitations and potential solutions to the RL-based

2H problems have been listed and discussed as follows:

.2.4.1. Privacy issues of evs’ cooperation.

• Research limitations: The main purpose of this V2H service is
to cooperate with electrical devices for load shift through realistic
charging and discharging behaviors. In other words, privately
owned EVs can work as a controllable load to reduce overloading
risk via the onboard or offboard bidirectional charger when they
finish their daily journeys and are connected to a home grid [5].
However, potential privacy issues should be carefully addressed
during this V2H process, especially when large-scale private EVs
are connected and organized for a common target. In this case,
SARL methods may not be ideal due to their centralized training
and testing framework, compared with MARL methods.

• Potential solutions: To address these issues, there have been
several papers developing effective MARL algorithms for EV dis-
patch problems towards V2H service provision, e.g., [7,66–70].
15
However, current MARL algorithms are still under development
with many limitations. If MARL algorithms are implemented un-
der the CTCE and CTDE frameworks, they can still raise privacy
issues, and the training procedure may suffer from the curse of
dimensionality due to the centralized training procedure, which
is impractical in large-scale EV applications. MARL algorithms
implemented under the DTDE framework may suffer from se-
vere instability issues, leading to slow convergence and even
divergence.
To this end, there has been some work developing MARL algo-
rithms based on parameter sharing (PS) framework (e.g., [8,58,
92]) to solve the problem, which produces a coordinating strategy
for the PEV fleet charging in a distributed manner. Addition-
ally, an attention-based federated RL (FRL) algorithm is proposed
in [93] to address the EV charging management problem under a
privacy protection mechanism, which can allow all EVs to share
the parameters (e.g., the weights of the actor and critic networks)
of a single policy. However, similar to CTDE, these approaches
still suffer from the curse of dimensionality with regard to the
need to incorporate all agents’ local observations and actions
to estimate the Q-value function, and additionally, the privacy
violation still persists.
Overall, it is still very challenging to design a MARL algorithm
that can avoid the privacy issue and the curse of dimensionality.

.2.4.2. Influence of communication networks.

• Research limitations: the physical setting of V2H normally cor-
responds to small areas, which requires a fast response from EV
owners when a potential overloading risk occurs. As such, the
information and communication networks in these local areas
(e.g., the home area network and the local area network) are
critical to provide timely information sharing between EV own-
ers [5]. The delay in signal transmission may severely influence
the ability of EVs to provide V2H service. However, there is no
research investigating the influence of communication networks
on the RL environment setup. Further research into V2H service
provision in a time-triggered manner will be conducted in the
future.
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• Potential solutions: To capture the influence of signal transmis-
sion delays on EV cooperative dispatch problems, a
co-optimization paradigm including both communication systems
and power systems is a necessity, which can enhance the col-
laboration capabilities of large-scale EVs via optimized signal
transmission efficiency and energy consumption. It is worth not-
ing that, when communication networks are integrated, power
systems are inevitably exposed to cyber-attacks, and the risk of
information leakage increases with an increase in communica-
tion traffic and distance, which leads to the requirements for
blockchain and cyber security technologies [94].

.3. RL for V2G services

The increasing penetration of renewable energies (e.g., PVs and
Ts) into power systems poses operational challenges due to their

nherent uncertainty and intermittent nature [95], resulting in a high
emand for various ancillary services. As a broad concept, ancillary
ervices can include a wide range of services with various time scales
e.g., seconds, minutes, hours, and even longer) and different per-
pectives (e.g., demand–supply balance, frequency/voltage regulation,
perating reserve, carbon intensity service, and resilience control) [96–
8]. As one of the demand-side technologies, EVs have been widely
pplied in current power systems for ancillary service provision due to
heir significant advantages in both mobility and flexibility compared
o traditional DERs (e.g., flexible demand and energy storage) [99–
01]. However, it is worth noting that the large-scale deployment of EV
leets also introduces further challenges to efficient and stable system
perations due to the complexity of capturing both power and transport
etworks. As a result, it is urgent to develop an effective distributed
ontrol algorithm for these large-scale and small-size decentralized
Vs to exploit their mobility and flexibility in various V2G service
rovisions.

To address these challenges, RL algorithms have been applied to
arious V2G problems for real-time energy arbitrage, as summarized
n Tables 5 and 6. Under an RL setup, large-scale EVs can better
oordinate with each other for effective dispatch behaviors against
arious uncertainties, e.g., EV departure/arrival time and SOC levels.
he general state, action, and reward function used in existing work
re detailed as follows:

.3.1. State
Since there are many different kinds of ancillary services that EV can

rovide, the most commonly-used state or observations are summarized
s follows:

𝑖,𝑡 = [𝑡, 𝛥𝑖,𝑡, 𝑆𝑖,𝑡, 𝜆
𝑔
𝑡 , 𝐺

𝑟𝑒𝑠
𝑖,𝑡 , 𝐷

𝑝
𝑖,𝑡, 𝜆

𝑐
𝑡 , 𝛥

𝐹
𝑖,𝑡, 𝛥

𝑉
𝑖,𝑡, 𝐷

𝑞
𝑖,𝑡],∀𝑖 ∈ ,∀𝑡 ∈ 𝑇 , (45)

where the first six observation features in 𝑜𝑖,𝑡 are the same as the
previous two parts, allowing EV agents to provide grid balance services.
Once the carbon intensity price signals 𝜆𝑐𝑡 are observed, the carbon
service to the national grid can be achieved. Finally, the other ancillary
services such as frequency and voltage regulations can be provided by
EV agents when grid frequency deviation 𝛥𝐹𝑖,𝑡, voltage deviation 𝛥𝑉𝑖,𝑡, and
odal reactive power demand 𝐷𝑞

𝑖,𝑡 are available.

.3.2. Action
The action 𝑎𝑖,𝑡 of an EV agent 𝑖 at time step 𝑡 can be generalized as:

𝑖,𝑡 = [𝑎𝑝𝑜𝑤,𝑝𝑖,𝑡 , 𝑎𝑝𝑜𝑤,𝑞𝑖,𝑡 ], ∀𝑖 ∈ ,∀𝑡 ∈ 𝑇 , (46)

where the continuous power scheduling actions 𝑎𝑝𝑜𝑤,𝑝𝑖,𝑡 ∈ [−1, 1] and
𝑎𝑝𝑜𝑤,𝑞𝑖,𝑡 ∈ [−1, 1] represent the output rates of active and reactive power
of EV agent 𝑖 as a percentage of its power capacity [−𝑃 𝑖, 𝑃 𝑖], but are
lso limited by its apparent power capacity 𝑆

𝑝𝑜𝑤
𝑖 . Furthermore, only the

action 𝑎𝑝𝑜𝑤,𝑝 is required for EVs if the goal is to provide energy balance
16

𝑖,𝑡
and carbon services. Otherwise, both active and reactive power actions
are required, e.g., when EVs are used to provide frequency or voltage
regulation services.

3.3.3. Reward function
When EVs choose to provide grid balance service, the reward for

discharging power to the grid can be written as:

𝑟𝑒𝑖,𝑡 = 𝜆𝑔𝑡 𝑃
𝑑
𝑖,𝑡, ∀𝑖 ∈ ,∀𝑡 ∈ 𝑇 , (47)

where 𝑃 𝑑𝑖,𝑡 refers to the quantity of power discharge of EV agent 𝑖 at
time step 𝑡.

Similarly, when EVs choose to provide carbon intensity service, the
reward for discharging power to the grid can be written as:

𝑟𝑐𝑖,𝑡 = 𝜆𝑐𝑡𝑃
𝑑
𝑖,𝑡, ∀𝑖 ∈ ,∀𝑡 ∈ 𝑇 , (48)

where the carbon price 𝜆𝑐𝑡 observed by EV agent 𝑖 at time step 𝑡 in
response to carbon intensity signals (gCO2/kWh) can be forecasted
and estimated in real time by the National Grid’s Carbon Intensity
API [102]. This carbon intensity forecast includes CO2 emissions from
all large metered power stations, interconnector imports, transmission,
and distribution losses, and also accounts for the national electricity
demand, embedded wind, and solar generation.

Additionally, EVs can also be used to provide resilience service
(e.g., load restoration), as studied in [8]. In this case, the reward
function can be written as:

𝑟𝑟𝑖,𝑡 = 𝜆𝑙𝑠𝑖 𝑃
𝑑
𝑖,𝑡, ∀𝑖 ∈ ,∀𝑡 ∈ 𝑇 , (49)

where 𝜆𝑙𝑠𝑖 is the load shedding cost of EV agent 𝑖, which refers to
the load priority, e.g., essential load and non-essential load. Note that
a resilient power system should mainly focus on the restoration of
essential loads (e.g., medical facilities and trading centers), given the
large disruptions caused by extreme events [103].

Furthermore, EVs can also be used to provide frequency and voltage
regulation services when a certain level of disturbances occur in power
systems that may cause system instability issues. Using the voltage
regulation service as an example, the reward function can be written
as:

𝑟𝑣𝑖,𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−(𝑉 − 𝑉𝑖,𝑡) if 𝑉𝑖,𝑡 < 𝑉

0 if 𝑉𝑖,𝑡 ∈ [𝑉 , 𝑉 ]

−(𝑉𝑖,𝑡 − 𝑉 ) if 𝑉𝑖,𝑡 > 𝑉

∀𝑖 ∈ ,∀𝑡 ∈ 𝑇 , (50)

where 𝑉 and 𝑉 are the nodal voltage upper and lower limits (e.g., 0.95
p.u. and 1.05 p.u.), respectively. It is worth noting that the reward
function 𝑟𝑓𝑖,𝑡 for the frequency regulation service can be carried out in
a similar manner, as discussed in [88].

Finally, the reward function for the V2G problem of EV agent 𝑖 at
time step 𝑡 can be summarized as

𝑟𝑣2𝑔𝑖,𝑡 = 𝑟𝑔2𝑣𝑖,𝑡 + 𝑟𝑒𝑖,𝑡 + 𝑟
𝑐
𝑖,𝑡 + 𝑟

𝑟
𝑖,𝑡 + +𝛽1𝑟𝑣𝑖,𝑡 + 𝛽2𝑟

𝑓
𝑖,𝑡, ∀𝑖 ∈ ,∀𝑡 ∈ 𝑇 , (51)

where 𝑟𝑔2𝑣𝑖,𝑡 is the G2V reward designed in (40). To further balance
the importance of service provisions between voltage regulation and
frequency regulation, two weight coefficients 𝛽1 and 𝛽2 are introduced.
This is because they are not directly related to the EVs’ monetary
reward.

3.3.4. Discussion
Some research limitations and potential solutions to the RL-based

V2G problems have been listed and discussed as follows:

3.3.4.1. Ancillary services related to climate change.

• Research limitations: As shown in Tables 5 and 6, there have
been plenty of studies on EVs’ energy arbitrage problems for
energy imbalance services. However, there is not much research
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on other types of ancillary services. Specifically, only one Ref. [8]
applied MARL to EV dispatch problems for carbon intensity ser-
vices and resilience enhancement, where both normal operation
and emergency operation are considered to fully reveal the ad-
vantages of EVs in reducing carbon emissions and improving
load survivability. It is worth noting that many countries have
passed regulations to restrict fossil fuel consumption of traditional
vehicles, promising a low-carbon future, which has led to a rapid
increase in the use of EVs [2,35].
Additionally, high-impact and low-probability (HILP) events have
happened more frequently in recent years, partly because of the
rapid climate change [103]. According to [104], seven of ten
major storms during the last four decades have happened in the
last decade, while each event caused a huge economic loss (over
$1 billion). As one type of mobile power source, EVs can be
called up in a short time and appropriately deployed for resilience
enhancement in the presence of HILP events [105–108]. As such,
these two types of services have become important in recent years
and deserve further investigation.

• Potential solutions: To address these challenges caused by cli-
mate change and HILP events, it is necessary to develop a com-
prehensive framework for EV dispatch problems, fully revealing
the advantages of EVs in proving carbon intensity services and
enhancing resilience. In this context, RL algorithms incorporating
different modules (e.g., normal mode for carbon intensity and
emergency mode for resilience [8]) can be developed to appropri-
ately address these two issues. Going further, multi-objective RL
methods (e.g., pareto reinforcement learning) [89] may also be an
option for EV dispatch problems towards multi-service provisions.

.3.4.2. Ancillary services related to frequency and voltage regulations.

• Research limitations: There are not many papers focusing on
developing RL algorithms for EV dispatch problems towards fre-
quency and voltage regulations. In fact, with the V2G technology
and inverter-based interface at local charging stations, both the
active and reactive power of a charging EV can be controlled
within certain charging and capacity limits, and adjusted in a
real-time fashion following specific control signals for voltage
and frequency regulations [109]. Going further, most existing
research on voltage and frequency regulations is based on SARL
algorithms, which may not be suitable for large-scale EV dispatch
problems due to privacy concerns; thus, MARL algorithms should
be further developed to bridge the gap in this area.

• Potential solutions: To apply MARL algorithms for EV dispatch
problems towards frequency and voltage regulations, privacy per-
severance must be one of the most important concerns, leading
to the requirements for PS-based or attention-based RL frame-
works [86]. Additionally, frequency and voltage instabilities can
directly influence the secure operations of power systems that are
normally regarded as critical infrastructure in modern societies. In
this context, safe RL methods [90] that are capable of handling all
the physical constraints of power systems can be developed to en-
sure secure system operations when large-scale EVs are integrated
into power systems for frequency and voltage regulations.

. Challenges and future perspectives

This section presents the critical challenges and future research di-
ections of using RL algorithms in EV dispatch problems, including five
spects: (1) real-world data availability, (2) detailed RL environment
etup, (3) safety and robustness of trained policies, (4) efficient RL
raining performance, and (5) real-world RL deployment. Note that all
hese five aspects are directly associated with the reviewed RL-based EV
ispatch problems, including G2V, V2H, and V2G. The applications of
17

L-based algorithms on other research areas are not involved. Because m
f this narrow and specific research focus, the key discussions that
ollow can be very concise and straightforward. These aspects are
ighlighted in Fig. 8 and have been discussed thoroughly as follows:

.1. Real-world data availability

Capturing various uncertainties associated with state features is
ecoming a necessity for current EV dispatch problems due to the
ighly uncertain environment, e.g., time-varying electricity price sig-
als, demand profiles, renewable generation, real-time traffic statuses,
tc. According to the existing work, RL algorithms essentially learn
rom interactions with the environment, implying that they amass a
arge amount of knowledge on various datasets that can reflect the
haracteristics of state features. In addition, real-world scenarios are
ormally characterized by more complex and chaotic data (e.g., incor-
ectly formatted, corrupted, or incomplete data within a dataset), which
eads to the requirement for data cleaning and mining procedures that
an be used as pre-treatment techniques to improve the data qual-
ty [110] for RL-based EV dispatch problems. In detail, various types
f measurement data can be collected from advanced metering infras-
ructure (AMI) using smart meters and communication networks [111],
hich are preprocessed via data mining techniques and then benefit the
pplication of data-driven RL algorithms in many ways, e.g., improving
ata efficiency and determining effective observations [112].

An EV battery operation should capture realistic models and param-
ters, such as power and energy capacities, charging and discharging
fficiencies, energy consumption on the road, and even the degradation
ost associated with the number of charging and discharging cycles,
rom the perspective of an EV agent. More importantly, the dynamic
odels of the battery energy transition are not only related to the

harging and discharging efficiencies, but are also influenced by many
ther factors, such as battery materials and vehicle weights [113]. To
his end, future research will investigate more realistic models of EV
atteries for the experiment environment. Furthermore, studies will
ocus on large-scale heterogeneous EV fleets considering the collective
ehavior of drivers and fast charging abilities, which can better reflect
eal-world EV dispatch characteristics. All the aspects need to be real-
zed by a huge amount of real-world data, which further increases the
omplexity of data sampling. When large-scale datasets are unavailable,
ata availability will become an issue for the application of various RL
roblems to EV dispatch problems.

Furthermore, there may not be enough data reflecting real-world
V dispatch characteristics that is available for the RL training process.
n this case, a potential solution is to construct training samples or
enerate virtual samples from the limited data of existing system oper-
tions to boost the data availability [114]. It would also be interesting
o explore the incorporation of recurrent neural network (RNN) based
ayers (such as long short-term memory (LSTM) or gated recurrent
nits (GRU)) to deal with time-series data (e.g., electricity price and
enewable generation) for performance enhancement [115].

.2. Detailed RL environment setup

In the existing work on EV dispatch problems, the RL environment
s mainly built on the power sector, including various electricity price
ignals, renewable generation, load information, etc. However, there
re not many papers that consider a more realistic power network
odel (e.g., voltage limits, power flows, etc.) in the RL setup, which

an lead to unrealistic EV charging and discharging behaviors. Fur-
hermore, the power network environment can be extended to capture
mportant operating conditions of power distribution systems, such
s dynamic voltage regulation, frequency response, reactive power
upport, etc. Finally, the impact of local EV flexibility on the national
evel and wholesale market can be also captured through a tri-level

odel [116,117].
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Fig. 8. Challenges and future perspectives of reinforcement learning algorithms applied to electric vehicle dispatch problems in power systems.
Except for the power network, the RL environment can also include
the transport network with real-time traffic information to capture
detailed EV routing characteristics, as suggested in [8,81]. Additional
sources of flexibility (e.g., heat pumps in heat networks, gas boilers in
gas networks, etc.) can be considered in the RL environment setup to
further reflect the complexity of real-world integrated energy systems.
It is worth noting, however, that reliable communication networks
capable of capturing transmission delays must be considered in the
RL setup to ensure more realistic energy transactions between differ-
ent sectors. The follow-up work may focus on in-depth analysis and
research in these directions and may even add corresponding hardware
circuit experiments or semi-physical simulation experiments.

The main goal of EV agents is still to seek economic benefits.
As such, appropriate pricing mechanisms in different energy markets
can also be included in the RL setup to provide incentives for EV
owners that can increase their willingness to contribute to V2G ser-
vice provisions. Future and ongoing work can focus on investigating
appropriate market mechanisms and user behaviors to improve the
coordination between a heterogeneous set of EV fleets for providing
multiple ancillary services [81].

4.3. Safety and robustness of trained policies

Existing work on EV dispatch problems mainly focuses on the de-
tailed EV routing and scheduling characteristics and ignores the influ-
ence of physical constraints related to stability properties (e.g., voltage
limits and network congestion) on optimal results, which can lead to
unsafe EV dispatch behaviors and even destroy the secure operation
of power systems [84]. It should be noted that power systems are
critical infrastructures in modern societies. Therefore, it is critical to
ensure that the EV dispatch behaviors do not cause the power system
operation to violate critical physical constraints or cause any instability
issues [10]. However, it is difficult to verify whether a trained policy is
safe or whether the generated actions can ensure zero-constraint viola-
tions since the training process of DNN for conventional RL algorithms
is an unconstrained optimization problem that ignores system physical
constraints [75].

In order to address such practical issues, it is a common practice
to formulate the constraint violation as a penalty term and add it to
the reward function [118,119]. However, as discussed in Section 3.1.4,
this can make the reward function very complicated, and it may be
challenging to select the suitable values for penalty weighting factors.
Furthermore, when a large number of constraints need to be penalized,
this approach cannot guarantee that the control policy always leads to
safe power system operations.
18
An alternative way is to formulate the investigated problems as
a constrained MDP (CMDP) to handle physical constraints of power
system operations, e.g., modeling these as penalty functions, chance
constraints, or budget constraints [115,120], even though such schemes
usually lead to conservative results and may not be able to han-
dle complex and highly dynamic system environments. Additionally,
adversarial RL and robust RL are two advanced algorithms to deal
with parametric uncertainties, data errors, and mismatches between
simulators and real-world systems, which can also benefit secure power
system operation, as discussed in [10]. However, since reliability and
security issues are crucial in power systems, the safety of the power
system operation must be guaranteed all the time (even during the
initial exploration of the RL training process), which is unattainable in
these methods. Finally, authors in [121] combine MARL algorithm with
binary integer programming (BLP) and propose a Value Decomposition
Network (VDN) to solve the real-time scheduling problem in battery
charging stations with the joint action constraints. As such, further
efforts are required to develop more safe and robust RL algorithms
to ensure zero-constraint violations during the test and even training
process.

4.4. Efficient RL training performance

Sample efficiency (or data efficiency) in RL [122] means that the
algorithm can make better use of the samples collected, resulting in
faster policy learning. Using the same number of training samples
(e.g., counted by time steps in MDP), a sample-efficient RL algorithm
can perform better in terms of the learning curve or final results
than other sample-inefficient RL algorithms. However, for existing RL
algorithms, it takes more than hundreds or thousands of samples to
gradually learn the optimal policies. This poses a key question in RL:
how to design more effective RL algorithms for agents that can learn
faster with fewer samples? The importance of this issue is mainly
because real-time or real-world agents often require a certain amount
of time and energy consumption in interacting with their environ-
ment. Learning from expert demonstrations [123] is a potential way to
improve the sampling efficiency of RL algorithms. This idea requires
an expert to provide the training samples with high reward values,
which falls under the category of Imitation Learning [124]. It attempts
not only to imitate the expert’s action choices but also to learn a
generalization policy that solves unseen states. The combination of
imitation learning and RL is also a promising area of research that
can be applied to EV dispatch problems to alleviate the issue of low

sampling efficiency in conventional RL algorithms.
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When large-scale EVs are integrated, more advanced techniques
such as graph attention networks (GAN) [125] can be used to
strengthen the cooperation among EV agents. Furthermore, new EV
agents may be willing to participate in this collaboration scheme; in this
case, knowledge from expert EVs can be shared with the newcomer, for
example, by using transfer learning [126] to share knowledge among
agents, which avoids the time-consuming task of re-training RL algo-
rithms. In addition, using convolutional neural networks (CNN) and
graph neural network (GNN) for function approximation might be more
useful under specific circumstances than normal neural networks [127],
especially when there is a need to represent agent observations as a
matrix, which deserves further investigation. To model the large-scale
EV scheduling problem, it is also possible to use the mean-field MARL
algorithm [128], which has been successfully deployed to the large-
scale peer-to-peer energy trading problem for multi-energy prosumers
in a local energy market.

Finally, RL algorithms normally involve many hyper-parameters
that need to be carefully selected. Thus, future research should focus
on evaluating the sensitivity of hyper-parameters to policy quality. In
any RL algorithm, the discount factor 𝛾 greatly influences the training
performance. A larger 𝛾 expecting a long-term return may cause in-
stability of the RL policy; while a smaller 𝛾 learning a myopia policy
may converge to the local optimum. As a result, selecting a suitable
value of 𝛾 becomes important for the RL policy. The discount factor
𝛾 is typically used to calculate the effective time range for single-step
action selection: 1 + 𝛾 + 𝛾2 +⋯ = 1∕(1 − 𝛾). For example, for 𝛾 = 0.99,
we can usually disregard the reward after 100 time steps.

To further improve the training performance, RL with a distributed
structure may be investigated, where multi-threaded parallel com-
puting can provide a reliable algorithm basis for promoting adapt-
ability [129]. Compared to centralized structures, distributed RL ap-
proaches do not require any data sharing at the central server, which
can significantly reduce the RL learning time by training each agent
using its own data [53]. However, under the MARL setting, some RL
agents may not be able to acquire enough training data, resulting in an
overfitting problem and thereby yielding inaccurate policies [66]. In
this context, FRL is a promising solution to tackle the overfitting issue
by periodically updating local neural network models, while preventing
data privacy leakage at the server [82]. Going further, attention-based
information sharing mechanisms can be incorporated into the FRL
framework for more efficient coordination of RL agents with enhanced
scalability and privacy protection [93].

4.5. Real-world RL deployment

There have been many studies developing advanced MARL methods
for EV dispatch problems for different purposes. Nevertheless, most ex-
isting MARL methods are trained and tested on small-scale systems with
several EV agents, which can be impractical in real-world scenarios.
The main reason for this scalability issue is that as the number of agents
increases, the state and action spaces expand dramatically, resulting
in the curse of dimensionality, as discussed in Section 2.2.6. Several
advanced techniques such as parameter sharing and abstracted critic
network have been applied to multi-agent EV dispatch problems to deal
with this issue [8], while they are still under development with many
limitations.

The ultimate goal of any RL algorithm is real-world deployment
[130]. In the existing studies, there is no research deploying and testing
their trained RL policies in real-world applications. As such, future
work is required to further validate the applicability of various RL
methods to real-world EV dispatch problems. For instance, as a start,
well-trained RL methods can be extended to cover a broader range of
parameter settings (e.g., use of finer decision timeslots), and then be
validated with hardware circuit experiments or semi-physical simula-
tion experiments, which can improve the safety and interoperability of
19

RL algorithms. After the comprehensive validation, RL algorithms may b
be able to be deployed in industrial applications and conduct real-world
operational tests.

5. Conclusion

This work first provides a comprehensive review of the applications
of various RL algorithms to EV dispatch problems. The key components
of MDP including agents, environment, state, action, policy function,
reward, and state transition function are presented in detail, while
classical SARL algorithms (Q-learning, DQN, PG, DDPG, PPO, and SAC)
and advanced frameworks for MARL algorithms (CTCE, DTDE, and
CTDE) are compared and discussed thoroughly in this work. Three
different aspects of the applications of RL algorithms to EV dispatch
problems are summarized in a comprehensive way, including G2V,
V2H, and V2G. Finally, several key challenges and future research
directions are discussed from five different perspectives: real-world
data availability; detailed RL environment setup; safety and robustness
of trained policies; efficient RL training performance; and real-world
RL deployment.

To summarize, many practical problems still remain unsolved when
employing advanced RL algorithms for EV dispatch problems, even
though there have been plenty of studies in this field. Specifically,
real-world data quality and availability are two of the main issues
that influence the training performance of RL algorithms, while the
insufficient safety and robustness issues of existing RL algorithms in
ensuring zero-constraint violations limit their applications in real-world
scenarios due to the high-security requirements of modern power sys-
tems. Furthermore, the balance between economic EV dispatch results
and user privacy issues has not been well addressed in the existing
studies. Even though many works have developed different types of
MARL methods to simulate EV dispatch cases, the scalability, reliabil-
ity, and stability of MARL algorithms should be further investigated
before deploying them for real-world applications.
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