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Link prediction in complex network 
using information flow
Furqan Aziz 1,7*, Luke T. Slater 2,3,7, Laura Bravo‑Merodio 2,3,7, Animesh Acharjee 2,3,5,7 & 
Georgios V. Gkoutos 2,3,4,5,6,7,8

Link prediction in complex networks has recently attracted a great deal of attraction in diverse 
scientific domains, including social and biological sciences. Given a snapshot of a network, the goal 
is to predict links that are missing in the network or that are likely to occur in the near future. This 
problem has both theoretical and practical significance; it not only helps us to identify missing links in 
a network more efficiently by avoiding the expensive and time consuming experimental processes, but 
also allows us to study the evolution of a network with time. To address the problem of link prediction, 
numerous attempts have been made over the recent years that exploit the local and the global 
topological properties of the network to predict missing links in the network. In this paper, we use 
parametrised matrix forest index (PMFI) to predict missing links in a network. We show that, for small 
parameter values, this index is linked to a heat diffusion process on a graph and therefore encodes 
geometric properties of the network. We then develop a framework that combines the PMFI with a 
local similarity index to predict missing links in the network. The framework is applied to numerous 
networks obtained from diverse domains such as social network, biological network, and transport 
network. The results show that the proposed method can predict missing links with higher accuracy 
when compared to other state-of-the-art link prediction methods.

The field of complex networks has gained popularity in recent years as a tool for analysing complex systems. 
Researchers from diverse scientific domains have used complex networks to model complex systems, helping 
them to analyse and address real world problems ranging from technological to biological networks1,2. The 
main advantage of using a complex network lies with its ability to allow us to understand and further analyse 
the behaviour and the characteristics of the whole system. Such characteristics are typically observed once the 
individual entities of the system are put together to form the system and cannot be inferred from the properties 
of individual entities. For example, once a complex system is modelled as a complex network, we can gain a 
better understanding of the evolution of the network as well as of how the information flows from one entity to 
the other entity within the complex system. Let us assume that individuals within a population are modelled as 
nodes and that two nodes are connected via a link if the two individuals have been in contact with each other. 
Such a modelling scenario could, for example, aid the forecast of the disease spread in a contact network using 
interaction information between the individuals in the network.

One of the most important problems in network science lies in the prediction of missing relationships within 
a network. This problem is challenging for two primary reasons. Firstly, the process of acquiring all existing 
relationships between all possible pairs of nodes is not easily achievable and usually results in many missing 
links in the network. Secondly, there are pairs of individuals in the network that are not connected when the 
data was acquired but are highly likely to connect in the near future. For example, in a social network, such as 
Facebook, there is always a possibility of individuals forming new friends in future. This process of identifying 
missing or yet unformed links is commonly referred to as link prediction3. Link prediction is important both 
from a theoretical, as well as a practical, perspective. In terms of the former, the problem of link prediction is 
important due to its ability to help us understand how the network grows and evolves with time. For example, in 
a contact network, link prediction can help us understand the spread of a disease in the network. From a practical 
perspective, link prediction can be directly applied to real-world networks to predict missing links. For example, 
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in a protein-protein interaction network, link prediction can help us identify missing links between two proteins 
that will save resources and costs related to expensive in-vivo and in-vitro experiments.

The importance of link prediction has inspired many researchers from various scientific disciplines to develop 
novel link prediction algorithms that can not only be applied to a particular problem for which it is developed but 
could also be generalised to networks obtained from other domains. This follows because networks representing 
different complex systems usually share common topological features that are not present in regular or completely 
random networks4. For instance when a social network grows, two disconnected nodes that are close to each other 
in terms of shortest path distance are more likely to get connected by a link as compared to the nodes that are 
many hops away from each other. Therefore, many real-world networks tend to form clusters. This is generally 
not true for random networks where every pair of nodes is equally likely to be connected by a link. This allows 
us to use the properties of a given real-world complex network to predict which pair of disconnected nodes is 
more likely to get connected in the near future. These properties could either be the local properties that only 
consider the immediate neighbours of the two query nodes or the global properties that take into account the 
information about a larger subset of the nodes of the network to predict the missing link between the two nodes.

In this paper we develop a novel framework that is linked to a diffusion process on a network. Given two 
disconnected nodes, the proposed method considers both the neighbourhood structure of the nodes and their 
relative positions in the network to estimate the likelihood of a link between the two nodes. Our framework is 
based on the parametrised matrix forest index (PMFI)5 and the resource allocation (RA) index6. We demonstrate 
how the PMFI is linked to the flow of heat in the network. When combined with the RA index, we show the 
PMFI for small values of β can predict links with higher accuracy and also respects the community structure of 
the input network. We apply the proposed framework to numerous datasets obtained from diverse domains and 
empirically show that it improves the performance of both the local and the global similarity indices.

Related work
The problem of link prediction has been extensively studied over the last two decades and many efficient 
approaches have been proposed to predict the connection probability between two disconnected nodes in a 
given complex network. One of the most popular categories of link prediction algorithms is the structural-based 
similarity index which renders topological structural properties of the network along with the features of indi-
vidual nodes to estimate the likelihood of existence of a link between two nodes that are not already connected 
in the network. One of the most widely used structural-based similarity index is the common neighbour (CN) 
index7. This index is based on the idea that two strangers, sharing a common friend, may be introduced by that 
friend. Although originally developed for social networks, CN has been proved successful in predicting links 
in other real-world networks, such as biological networks. One of the most powerful features of CN lies with 
its easy implementation, as well as its high computational efficiency, resulting in reasonably good performance 
over many real networks.

One of the limitations of the CN index is that it only considers the local topology of the underlying net-
work and ignores the features of individual nodes and their neighbours. For instance, while computing the CN 
index, the degrees of individual nodes and their neighbours are not considered. This means that two different 
neighbouring nodes with different degrees will contribute equally to the CN score of the node. To overcome 
this problem a number of variations have been proposed to achieve higher performance on specific datasets. 
Adamic-Adar (AA) index8 is one of the earliest attempts to improve the performance of CN index. It is defined 
as the sum of the inverse logarithmic degrees of the common neighbours of the two nodes. This definition is 
based on the concept that common neighbours with large neighbourhoods are less significant when predicting 
a connection between two nodes compared with common neighbours with small neighbourhoods. A different, 
albeit relevant, index is the resource allocation (RA) index6 which is defined as the sum of inverse degrees of the 
common neighbours of the two nodes. The RA index performs better than the AA index on many real-world 
networks9. Another commonly used similarity measure that could be defined in terms of CN index is the Jaccard 
Coefficient10. It measures the proportion of common neighbours over the total number of neighbours achieving 
its maximum if all neighbours are common to both vertices. An alternative approach to CN-based measures 
is the popular Preferential attachment (PA) index11 that is motivated by the popular Preferential attachment 
principle underlying the evolution of scale-free networks. This index ignores the common neighbours of the 
two query nodes, depending only upon the degrees of the individual nodes. The more connected a node is, the 
more likely it is to receive new links.

The similarity indices discussed so far fall in the category of link prediction methods that are termed as local 
link prediction indices since these indices make use of the properties of the nodes or their immediate neighbours. 
From a practical point of view, local similarity indices are very effective as they are easy to implement and have 
the ability to predict most true links between nodes that are reasonably close to each other in the network in 
terms of shortest path distance. However, since these methods are based on a very small subset of the network, 
they may fail to predict important missing links in the network. Global link prediction algorithms form an 
alternative to predict missing and future links that aiming at improving the performance of local link prediction 
algorithms by considering network-level information, such as node centrality12, shortest path distance13, and 
random walks14 that are computed using a larger subset of nodes of the network. Global link prediction methods 
generally outperform local methods since they consider the whole topology of the network and can potentially 
predict links between any possible pairs of disconnected nodes in the network, even if these pairs are more 
than one hop away from each other. These methods are also consistent with the evolution of the network in the 
sense that they maintain the statistical properties of the network when new links are added15. However, global 
methods are generally more expensive to compute. Katz index16 forms an example of such methods consider-
ing the set of different length paths between two nodes whose connection probability has to be determined. It 
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is based on the idea that two disconnected nodes are more likely to connect if there are more paths of length 
greater than one connecting the two nodes. The CN index could be considered a special case of Katz index that 
only takes into account paths of length 2. Another very popular global similarity index is the matrix forest index 
that estimates the likelihood of existence of a link between two nodes by finding the number of spanning rooted 
forests consisting of both the nodes where either the first or second node is considered a root. A similar group 
of global similarity indices is based on random walks on the network. These include indices such as average 
commute time14, random walk with restart (RWR) which is a direct application of the PageRank algorithm17, and 
superposed random walk (SRW)18. Finally, matrix completion methods are another common group of methods 
that convert the adjacency matrix of the network to a likelihood matrix. The link prediction problem is then 
transformed into an optimisation problem for the likelihood matrix19.

It is worth noting that, although the global similarity indices typically result in superior performance, when 
compared to local similarity indices, in some cases, a local similarity index may outperform a global similarity 
index. This is due to the fact that complex networks obtained from different domains evolve differently despite 
the fact that they share many common structural properties. Therefore there is not a single similarity index, or 
a category of similarity indices for that matter, that could be applied to all types of networks. In recent years, a 
number of attempts have been made to develop link prediction algorithms that combine the strengths of both 
the local link prediction methods and the global link prediction methods. One such category is the Quasi-local 
link prediction algorithm that provides a trade-off between accuracy and the computational time between the 
local and the global link prediction algorithms. For example, Lü et al. have defined the local path (LP) index20 
that extends the CN index to paths of length 3 and can be considered as a special case of Katz index. The authors 
have demonstrated that the LP index is not only computationally efficient but also results in reasonably good 
performance when compared to Katz index. A more powerful approach is to incorporate the information of 
nodes that are one hop away from the query nodes21. Moreover, Kovács et al.22 have proposed an index that is 
based on paths of length three and have shown its applications in prediction of protein interactions. On the 
other hand, Cannistraci et al.23 have shown how the performance of local link prediction algorithms could be 
improved by incorporating the local community structure of the network. The resulting framework proved useful 
in predicting missing links in brain networks. Finally, in one of our recent works9, we have developed a suite of 
methods for extending local similarity indices to their global and quasi-local counterparts. We later extended 
this work to bipartite networks24 where we have explored its applications in predicting multimorbidity in elderly 
patients with multiple chronic conditions.

Methods
We first examine some fundamental definitions and concepts related to network representations as well as to 
network heat diffusion processes that will aid our understanding of the theoretical underpinnings of our pro-
posed framework.

Preliminaries.  A network consists of a finite non-empty set of nodes and a set of connections between nodes 
called links. A weighted network is a network whose links (or nodes) are assigned real values called the weight of 
the link (or node). In this paper we only consider link-weighted networks. A network is usually represented by 
a square matrix whose size is equal to the number of nodes in the network. The most commonly known repre-
sentation is the adjacency matrix of the network that is used to represent both the weighted and the unweighted 
networks. For a weighted graph, the (i, j)-th entry of the matrix is equal to the weight of the (i, j)-th link wij , if 
node i is connected to node j:

For an unweighted graph the weights wij are set to a constant value. Another very useful representation for a 
network is the Laplacian matrix which is defined as L = D − A . Here D is a diagonal matrix whose i-th diagonal 
entry represents the degrees of the i-th node of the network. For a weighted network, it is defined as follows:

The Laplacian matrix is sometimes also referred to as discrete Laplacian, since it is an approximation of the 
continuous Laplacian to the vertices of a graph and can be used to define and solve partial differential equations 
on a network. One such example is the heat equation on a network that has been extensively studied in the 
literature and has led to a number of important information processing algorithms. For example Zheng et al.25 
have used the solution of a heat equation for anisotropic image smoothing. Sun et al.26 have demonstrated its 
applications for matching and retrieving three-dimensional shapes. Another example is the wave equation that 
has been proved useful in analyzing three-dimensional shapes27.

Heat equation.  The heat equation is a second order partial differential equation that describes the transfer 
of heat via conduction. It describes how the heat diffuses over time t, as it automatically flows from places where 
it is higher towards the places where it is lower. For a network, the heat equation is defined in terms of its Lapla-
cian matrix as follows:

(1)A(i, j) =

{

wij if (i, j) ∈ E,
0 otherwise.

(2)L(i, j) =







−wij if (i, j) ∈ E,
�

(i,k)∈E wik if i = j,
0 otherwise.
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where L is the network Laplacian and Ht is the fundamental solution of the heat equation called the Heat Ker-
nel. The heat kernel can be thought of as the amount of heat that is transferred from one node i of the network 
to another node j in time t given a unit heat source at i. The heat kernel can be computed from the Laplacian 
matrix as follows:

The heat kernel is a symmetric matrix of size equal to n× n , where n is the number of nodes in the network. 
The (i, j)-th entry of the heat kernel can be computed from the eigenvalues and eigenvectors of the Laplacian 
matrix as follows:

Suppose we inject a unit amount of heat at a node i of the network and allow it to diffuse through the edges con-
nected to i. For an unweighted network, the heat will diffuse equally to all the neighbours of i. For a weighted 
network the diffusion rate is proportional to the weight of the edge. One of the useful properties of the heat kernel 
is that it is stable under small changes in the underlying network. Heat kernel can be interpreted as probability 
of Brownian motion to start at some node i and end at node j after time t. This means that Ht(i, j) is a weighted 
average over all paths between the node i and the node j in time t.

It can be shown that the heat kernel is linked to different topological properties of the network for the differ-
ent values of the parameter t. When t → 0 , then Ht ≃ I − tL , and therefore the heat kernel depends upon the 
local structure of the graph. In other words, for very small values of t (close to 0), the function Ht(i, j) is mainly 
determined by the set of nodes that are directly connected to nodes i and j. As the value of t increases, this set 
grows and includes nodes that lie on the paths of length greater than two between nodes i and j. It is important 
to note that the rate of flow from node i to node j will depend upon the number of shortest paths between the 
two nodes. If the two nodes share many short paths of smaller length, diffusion between the two nodes will be 
fast. Therefore the heat will flow more rapidly among nodes in a more densely connected part of the network.

Parametrised matrix forest index.  In this paper we develop a framework for predicting missing links in 
a network that is based on the parameterised matrix forest index (PMFI) of the network. For this purpose, we 
first study the behaviour of PMFI for different values of its parameter β . The parametrised matrix forest index 
for parameter β , ( PMFIβ ) is defined as follows:

We first look at the case when the value of β is small, in which case PMFI can be expanded as:

Note that similarly to the heat kernel, when β → 0 , PMFIβ ≈ I − βL . In literature, the PMFI is also referred to 
as regularised Laplacian kernel28 and can be used to simulate a heat diffusion process on a network. To demon-
strate this, we take the examples of weighted and unweighted networks with four nodes and four links each. We 
set Ht(i, j) = PMFIβ(i, j) and assume that the node u1 has a unit heat. By increasing the value of the parameter 
β , we allow the heat to diffuse across the network. Figure 1 shows the simulation results for small values of β.

The top row of Fig. 1 presents the simulation results of an unweighted network with four nodes. Figure 1a 
depicts the initial configuration, where a unit heat is injected to node u1 . The amount of heat diffused to the 
remaining nodes of the network at time 0.05, 0.10, and 0.5 are presented in Fig. 1b,c,d respectively. Note that 
the node u1 transfers equal amounts of heat to its immediate neighbours u2 and u4 . However the amount of 
heat transferred to node u3 is lower as it has to go through nodes u2 and u4 . The bottom row of Fig. 1 shows the 
simulation results for a weighted graph. Here the weight of the edge (u1, u2) is 2 while the remaining edge has a 
unit weight. As with the unweighted graph, we assume a unit heat at node u1 (See Fig. 1e). It can be seen from 
Fig. 1f,g,h that the amount of heat transferred to the neighbour node u2 is higher than the amount of heat trans-
ferred to the other neighbour node u4 . This is due to the fact that the diffusion rate is proportional to the weight 
of the links between the two nodes. The above discussion suggests that the value of PMFIβ(i, j) can be thought 
of as the amount of heat transferred from node i to node j over time t = β , when β is small. This amount will 
depend upon the number of paths of different length between node i and node j. Intuitively, this means, this value 
can be considered as a weighted average over all paths between the node i and the node j26, where the weights 
are determined by the length of each path. This motivates us to use PMFIβ(i, j) with small values of parameter 
β for predicting missing links in a network. By transforming the network into a weighted network using RA 
index, we show that the PMFI can predict links with a higher accuracy when compared to alternate methods.

Note that a special case of the PMFI is obtained when β is set equal to 1. In this case the PMFI reduces to 
(I + L)−1 which is commonly known as Matrix Forest Index (MFI) in the literature. The value of MFI for the 
nodes i and j can be understood as the ratio of the number of spanning forests such that nodes i and j belong 

∂Ht

∂t
= −LHt ,

(3)Ht = exp(−tL) = I − tL+
t2

2!
L2 −

t3

3!
L3 +

t4

4!
L4 − ...

Ht(i, j) =

n
∑

k=1

exp(−�kt)φk(i)φk(j).

PMFIβ = (I + βL)−1,

PMFIβ = I − βL+ β2L2 − β3L3 + ... =

∞
∑

i=0

(−1)iβ iLi .
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to the same tree to all spanning forests of the network. Due to its connections with global properties of the 
network, the MFI has been explored in the literature for predicting missing links in a network. For example 
in29 the authors have shown that, out of 20 local and global link prediction methods, the MFI gives second best 
performance when predicting missing links in a co-authorship network. The PMFI for other values of β has 
also been used in literature to perform different tasks including predicting missing links in the network. For 
example, in30 the authors have tested PMFI with different values of β to quantify the similarity between nodes in 
a bipartite network for collaborative recommendation tasks. However, the work reported here is different in two 
respects. Firstly, before applying the PMFI, we have transformed and pre-weighted the original adjacency matrix 
according to the Resource allocation index. This assigns a higher score to the pair of disconnected nodes that are 
exactly one hop away from each other. In this way, the underlying weighted matrix encodes information about 
the common neighbours of two disconnected nodes. Secondly, we have explored the PMFI both theoretically 
and empirically and, using synthetic and real-world examples, have shown why the proposed similarity index 
is different from other similarity indices such as resource allocation and matrix forest index when predicting 
missing links in a network.

Proposed method.  As discussed in the last subsection, for small values of β , PMFIβ(i, j) is approximately 
equal to the amount of heat transferred from node i to node j, and therefore has the potential to be used as a 
measure for estimating the probability of existence of a link between a pair of disconnected nodes in a network. 
Following are some of the advantages of PMFI when used for predicting missing links in a network:

•	 When β is small, the value of PMFIβ(i, j) is determined by the set of shortest paths of smaller lengths between 
the nodes i and j. Therefore this index can capture the local structure of the graph around the nodes i and j. 
Note that, unlike the local similarity indices, such as CN, RA, and AA, PMFI, also consider paths of lengths 
greater than 2. However, since the heat diffuses at a slow rate through these paths, such paths are assigned 
less weight when predicting a link between two nodes.

•	 Since heat diffuses at a faster rate in densely connected areas of the network, PMFI index tends to predict 
the missing links within a community before predicting links between two different communities. A com-
munity is a subset of the network nodes that are more densely connected among themselves than the rest 
of the network. Therefore PMFI index can preserve the community structure of a network while predicting 
new links in the network.

•	 Since PMFI can potentially predict links between nodes that are more than two hops away, it can outperform 
local similarity indices when applied to the networks that do not follow the triadic closure principle and tend 
to form cycles of length greater than three, such as protein-protein interaction networks22.

•	 Finally, PMFI is robust to edge failure, when the two nodes are reachable through more than one path.

These characteristics of PMFI are further demonstrated through examples later in this section. Note that since 
the information diffuses more quickly in a densely connected area, one of the limitations of PMFIβ(i, j) is that it 
tends to predict all the missing links in a densely connected community before predicting links in more sparse 
parts of the network. In order to increase the ability of PMFI to predict missing links in sparse communities, 
we convert the original network into a transformed weighted network whose link weight is determined by the 

(a) β = 0.00 (b) β = 0.05 (c) β = 0.10 (d) β = 0.50

(e) β = 0.00 (f) β = 0.05 (g) β = 0.10 (h) β = 0.50

Figure 1.   Approximation of heat diffusion process for small values of β.
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adjacency matrix of the network and the information about common neighbours of the two nodes in the network. 
This is a two-step process. In the first step the network is transformed into a network where two disconnected 
nodes are connected by a link if they share at least one common neighbour. In the second step, the network is 
pre-weighted, where the weights are assigned by applying one of the local link prediction algorithms, such as 
CN, AA, and RA, to the original network (before the transformation). In this paper, we propose to use the RA 
index to weight the edges of the network as it outperforms other local similarity indices on many real-world 
networks9. We demonstrate in the experiment section that pre-weighting the adjacency matrix according to the 
RA index can result in improved performance. We refer to the resulting index as weighted parametrised matrix 
forest index (WPMFI).

Figure 2 demonstrates the process transforming and pre-weighting a network with 9 nodes and 9 links into 
a network with the same number of nodes and 18 links. The transformed network contains all the links that 
are present in the original network. In addition to this, two disconnected nodes in the transformed network 
are also connected by a link if they share at least one common neighbour. The link (i, j) is assigned the weight 
w(i, j) = A(i, j)+ RA(i, j) , where A represents the adjacency matrix of the original network and RA(i, j) is com-
puted from the degrees of the common neighbours of nodes i and j. More specifically, the value of RA(i, j) equals 
the sum of the reciprocal degrees of all the common neighbours of nodes i and j. Figure 2 shows the adjacency 
matrices of the original and the transformed networks. Consider the node c which is connected to node b, d, and 
e in the original network. Since c does not share any common neighbour with e, the weight of the link (c, e) equals 
1. The nodes c and b share the common neighbour d with degree 2 and therefore the weight of the link (c, b) is 
1+ 1

2 = 3
2 . Finally the weight of the link (c, d) is 43 since c and d share a common neighbour b whose degree is 3.

In order to empirically highlight the characteristics and advantages of the WPMFI and compare it with 
alternative indices, we apply it, along the three other similarity indices (RA, MFI, and PMFI), to both a small 
synthetic network as well as a real world-network. The synthetic network consists of a network with 10 vertices 
and 12 edges and is shown in Fig. 3. The solid black lines represent the links of the original network, while the 
dashed lines show the links predicted by different indices. This network consists of two different communities, 
i.e., {0, 1, 2, 3, 4} and {5, 6, 7, 8, 9} . Figure 3a shows the sequence (represented by the label of each predicted link) 
in which the links are added to the network according to the RA index. The RA index assigns the highest score 
to the pair of disconnected nodes (0, 2), (5, 7) and (6, 8). All three pairs of nodes have two common neighbours 
with degrees 2 and 3 respectively. Next the link (1, 3) is added which is followed by links (2, 4), (0, 6), (0, 8), (5, 9) 
and (7, 9) all having the same RA score. Finally, all the remaining pairs of disconnected nodes that are exactly 
one hop away from each other get connected.

In contrast to the local link prediction indices, such as RA index, the link prediction methods, based on the 
parametrised matrix forest index, predict links in order that respects the community structure of the network. 
In this example the first eight links predicted by all the three methods (MFI, PMFI, WPMFI) are the links that 
connect the nodes belonging to the same community. However, the order in which the links are predicted is 
different for all the three methods. The MFI may assign a higher score to a link between two nodes that are more 
than one hop away from each other. For example, before connecting the node pairs (0, 6) (and (0, 8)) that are one 
hop away from each other, the MFI index connects the nodes 8 and 9. The PMFI and the WPMFI, on the other 
hand, assign a lower score to the link (8,9). Both these methods connect the nodes that are exactly one hop away 

Figure 2.   Original network and the transformed version of the network and their adjacency matrices.
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before connecting the nodes 8 and 9 that are two hop away. Note that, the PMFI and WPMFI differ by the order 
in which the links are added to the network. For the WPMFI, the order is more consistent with the RA index.

We next consider a real-world network termed Bombing31. This network consists of 64 nodes and we have 
identified three different communities in this network using Girvan–Newman algorithm32. The nodes belong-
ing to the same community are coloured identically to indicate community membership. As with the synthetic 
network example, we have applied all the four indices to predict new links in this network. For the RA index, 
we have used three different threshold values to predict a total of 149 new links in the network. These values are 
0.25, 0.2 and 0.15 and they have resulted in 23, 84 and 42 new links in the network. Figure 4a shows the order 
in which the set of links are added by the RA index (dashed lines). The red, green and blue colours represent the 
first, second and the third set of links respectively. Figure shows that the RA index does not respect the com-
munity structure of the network. We note that all the three sets of links predicted by the RA index contain many 
links that are formed between nodes from two different communities. On the other hand, the order in which 
the links are predicted by the MFI index is different as shown in Fig. 4b. In this case the majority of the links in 
the first set are formed between the nodes belonging to the same community. For comparison purposes, we have 
shown the top 149 links in Fig. 4b (and also in Fig. 4c,d), where the first 23 predicted links are coloured as red, 
the next 84 as blue and the final 42 as green. In contrast to these two methods, the PMFI (for β = 0.05 ) assigns 
higher scores to the links that could be formed between nodes belonging to the same community. However all the 
links, apart from two, across the three sets are formed between nodes that are members of the blue community 
(See Fig. 4c). Finally, as shown in Fig. 4d by pre-weighting the network using RA index, WPMFI is capable of 
predicting missing links in sparse communities and also respects the community structure of the network with 
only a small fractions of links predicted between nodes belonging to different communities.

In the experiment section, we have set β = 0.05 , when the proposed index is applied to real-world networks. 
We have demonstrated that PMFI achieves the best performance when β is set to a value less than or equal to 0.05. 
As the value of β increases, the performance of WPMFI decreases. It is worth mentioning that, when β is very 
small, the order in which the first few links are predicted, by the WPMFI index, becomes similar to the order in 
which the links are predicted by the RA index. This is because when β → 0 , WPMFIβ = I − βL = (I − D)+W , 
where W is the weighted adjacency matrix of the graph whose (i, j)-th weight is determined by RA index, if 
(i, j) /∈ E and i  = j . For the Bombing example discussed above, if we set β = 10−4 , the order in which the links 
are added by the WPMFI and the RA index is similar. But since WPMFI can potentially predict links between 
nodes that are more than one hop away, it can outperform RA index even when β is small. However, the con-
nection probability for nodes that are more than one hop away is very low in this case. Therefore, if links with 
very low connection probability are ignored, the performance of the PMFI for a very small value of β will be the 
same as that of the RA index.

Algorithm.  The proposed algorithm for implementing WPMFI is given in Algorithm  1. This algorithm 
accepts the adjacency matrix A of the network and the value of the parameter β . Since we are investigating the 
behaviour for small values of β , we set its default value to 0.05. The output of the algorithm is the score matrix 
WPMFI, whose (i, j)-th entry is the likelihood score of occurrence of a connection between the nodes i and j. 
From Line-4 to Line-9, the algorithm first computes a matrix of scores computed according to the RA index. 
The diagonal values of the matrix are set to 0 in the loop from Line-10 to Line-12. Next, the weighted matrix of 
the original network is added to the score matrix which gives us the final weighted adjacency matrix W of the 
network. In Line-15, the Laplacian matrix L is computed which, along with the value of the parameter β , is used 
to obtain the final score matrix WPMFI.

Figure 3.   The order in which links are added by different indices in a small synthetic network. The edge label 
represents the rank of the added link.
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The running time of the Algorithm 1 is dominated by Lines 9 and 16. Line 9 requires two matrix multiplica-
tion operations and takes O

(

|V |3
)

 time in the worst case. Line 16 requires one matrix inversion operation which 
also takes O

(

|V |3
)

 time in the worst case. All the remaining operations either take O
(

|V |2
)

 time in the worst case 

(a) RA (b) MFI

(c) PMFI(β = 0.05) (d) WPMFI(β = 0.05)

Figure 4.   The order in which the new links are added to the network by different similarity indices.
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or have linear worst-case running time. Therefore the worst case running time of Algorithm 1 is O
(

|V |3
)

 . Note 
that in practice, the algorithm runs very fast. This is because of the fact that all the operations in the algorithm, 
including the two for loops, can be implemented using vectorised versions. In addition, since the matrix A is 
a sparse matrix and D is a diagonal matrix, the multiplications could be efficiently implemented using sparse 
matrix operations. Therefore, for large matrices, the running time of WPMFI is close to the running times of 
the alternative global link prediction algorithm such as Katz index and MFI.

Experimental settings
Evaluation metric.  To estimate the performance of the proposed and alternative methods, we use the 
standard area under the receiver operating characteristic (AUC​) metric33. To understand how this metric is com-
puted, consider a simple undirected network G = (V ,E) . We refer to the set of existing links E in the network as 
observed links while the remaining node pairs that are not connected are represented by the complement set E′ . 
In other words, E′ = {(u, v) : u, v ∈ V , (u, v) /∈ E} . Since the sets E and E′ are complement of each other, the two 
set are mutually exclusive and their union forms the universal set U that consists of all possible n(n−1)

2  links that 
the network G can have. To estimate the performance of the prediction algorithm, the set of observed links E is 
divided into two disjoint sets, namely, a training set ET and a probe set EP . The metric AUC can be interpreted 
as the probability that a randomly chosen link in EP gets a higher score than a randomly chosen link in E′ . The 
AUC​ is defined as follows:

where σ is the number of independent comparisons, σ1 is the number of times a missing link has a higher score 
than a non-existent link, and σ2 is the number of times a missing link and a nonexistent link have the same score. 
If all the link scores are randomly generated according to an independent identical distribution then the value 
of AUC should be about 0.5. Therefore, a value greater than 0.5 indicates how well the prediction algorithm 
performs when compared to pure chance.

Algorithms.  To assess the performance of the proposed method, we compare it with a number of alternative 
methods. These include Common Neighbour (CN)7, Adamic Adar (AA)8, Resource Allocation (RA)6, Prefer-
ential Attachment (PA)11, Matrix Forest Index (MFI)5, Linear Optimisation (LO)19, Common Neighbour and 
Centrality (CNC)12, Common Neighbour and Distance (CND)13, Superposed Random Walk (SRW)18, Random 
Walk with Restart (RWR)18, Katz index16, and Local Path (LP)20. Some of these methods require additional 
parameters to be adjusted before we can apply them. The values of these parameters are set to the same values 
that are used in the original paper. Table 1 lists the mathematical formula for computing each of these indices.

Datasets.  The proposed method was tested on real-world networks that are obtained from diverse domains 
ranging from social networks to biological networks. These networks are publicly available and could be down-
loaded from KONECT34. Here we give a brief introduction of each of these datasets. Table 2 lists some of the 
topological properties of each of these networks.

AUC =
σ1 + 0.5σ2

σ
,

Table 1.   Formula for link prediction methods used in this paper. Here α , β , c and t are the tunable parameters. 
Ŵi represents the set of neighbours of node i, while |Ŵi| represents the degree of the node i. [A]ij represents the 
(i, j)-th entry of the matrix A, AT represents the transpose of the matrix A, and dij is the length of the shortest 
distance between node i and node j. P is the transition matrix whose (i, j)-th entry represents the probability 
that a random walker staying at node i will walk to j in the next step. It is computed as P = D−1A . ei is an n× 1 
vector with the i-th element equal to 1 and remaining are 0.

Method Formula

Common neighbour CN(i, j) = |Ŵi ∩ Ŵj | = [A2]ij

Adamic adar AA(i, j) =
∑

k∈{Ŵi∩Ŵj}
1

log |Ŵk |

Resource allocation RA(i, j) =
∑

k∈{Ŵi∩Ŵj}
1

|Ŵk |

Preferential attachement PA(i, j) = |Ŵi | × |Ŵj |

Matrix forest index MFI(i, j) = (I + L)−1

Linear optimisation LO(i, j) = A
(

α
(

αATA+ I
)−1

ATA
)

CN and distance CND(i, j) =
|Ŵi∩Ŵj|

2 +
1−A(i,j)

di,j

Superposed random walk SRW(i, j) =
∑t

l=1

(

|Ŵi |πij(t)

2|E| +
|Ŵj |πji (t)

2|E|

)

 where πi(t) = PTπi(t − 1)

Random walk with restart RWR = qxy + qyx where qx = (1− c)
(

I − cPT
)−1

ex

Katz index Katz(i, j) = (I − βA)−1 − I

Local path LP(i, j) = [A2 + βA3]ij
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Karate35 This dataset was collected from the members of a university karate club in 1977. This network is 
commonly known as the Zachary karate club and has been very popular for evaluating community detection 
and link prediction algorithms. The nodes of this network represent club members while the links represent ties 
between two members.

Train bombing (Bombing)31 This dataset is obtained from a list of 64 suspected terrorists who were believed 
to be involved in the Madrid train bombing on March 11, 2004. The nodes of the network are the suspected 
terrorists and a connection is established between the two nodes if the corresponding terrorists are friends or 
have co-participated in training camps.

Iceland36 This is a network of sexual contacts of male homosexuals in Iceland, collected in 1992.
Les Misérables (LesMis)37 This is an undirected network that represents the co-occurrences of characters in 

the famous ‘Les Misérables’ novel written by Victor Hugo. A node of the network represents a character of the 
novel and two nodes are connected if the two characters appeared in the same chapter of the book.

Caenorhabditis elegans (Neurons)38 This is a network of 279 neurons that represent the nodes of the network. 
Here the links represent the synaptic connections between neurons.

E.Coli39 This is a protein-protein interaction network of Escherichia coli that consists of 329 nodes and 456 
links.

Network Science40 The nodes of this network represent scientists working on network theory and a link 
between two nodes indicates that the two corresponding authors are co-authors on the same paper.

Infectious41 This is a contact network of individuals who have attended the exhibition, “infectious: stay away” 
in 2009 in Dublin. The nodes of the network are individuals and a connection is established between the two 
nodes if there is a face-to-face contact between the corresponding individuals that was active for at least 20 
seconds.

Caenorhabditis elegans (Metabolic)42 This is the undirected metabolic network of the roundworm Caenorhab-
ditis elegans, where nodes represent metabolites (e.g., proteins), and links represent the physical interactions 
between them.

US Air43 This network encodes information about direct flights among 500 US airports. The nodes represent 
airports and two nodes are linked together if there is a direct flight between the corresponding airports.

A Song of Ice and Fire (ASoIaF)34 This is the fictional social network constructed from a series of fantasy 
novels ‘A Song of Ice and Fire’ by George R. R. Martin. The first volume of the series, A Game of Thrones, was 
published in 1996. The nodes of this network represent characters and a link between two nodes denotes that 
the two characters are mentioned within fifteen words of each other. This version of the dataset covers the first 
five books of the series.

Email44 This is a network of email communication between individuals at the University Rovira i Virgili 
in Tarragona in the south of Catalonia in Spain. Here the nodes represent individuals and a link is established 
between two individuals, if one of the two users has sent at least one email to the other user.

Yeast45 A protein-protein interaction network of yeast, where a node represents a protein and a link represents 
an interaction between the two proteins.

Human Proteins (Vidal)46 This network represents an initial version of a proteome-scale map of Human 
binary protein-protein interactions.

Table 2.   Topological properties of the networks used in experiments. |V | and |E| are the number of nodes and 
links respectively. C is the clustering coefficient. 〈k〉 and 〈d〉 are average degree and average path length. Finally 
ρ denotes the density of the network while H is the heterogeneity defined as H =

�k2�
�k�2

.

Datasets |V | |E| C 〈k〉 〈d〉 ρ H

Karate 34 78 0.588 4.588 1.204 0.139 7.769

Bombing 64 243 0.711 7.594 1.345 0.121 12.597

Iceland 75 114 0.614 3.04 1.6 0.041 8.36

LesMis 77 254 0.736 6.597 1.321 0.087 12.055

Neurons 279 2287 0.337 16.394 1.218 0.059 25.916

E.coli 329 456 0.222 2.772 2.421 0.008 12.314

Netscience 379 914 0.798 4.823 3.021 0.013 8.021

Infectious 410 2765 0.467 13.488 1.815 0.033 18.716

Metabolic 453 2025 0.655 8.94 1.332 0.02 40.098

US Air 500 2980 0.726 11.92 1.496 0.024 53.785

ASoIaF 796 2823 0.635 7.093 1.708 0.009 29.749

Email 1133 5451 0.254 9.622 1.803 0.009 18.688

Bible 1707 9059 0.71 10.614 1.688 0.006 41.629

Yeast 2375 11693 0.388 9.847 2.548 0.004 34.223

Vidal 2783 6007 0.109 4.317 2.42 0.002 15.776

Household 874 4003 0.317 9.16 1.608 0.01 34.176

Friendships 1788 12476 0.166 13.955 1.726 0.008 45.546

Hamster 2000 16098 0.573 16.098 1.794 0.008 43.776
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Hamster34 There are three different networks (Household, Friendship, Hamster) that have been obtained from 
an online social networking website, hamsterster.com. These Networks contain friendships and family-links 
between users of the website.

Note that some of these networks have been preprocessed for our purpose. For disconnected networks (net-
works having more than one connected component) only the largest connected component is considered and 
the statistics given in Table 2 are for the largest connected component. Some networks contain multiple links 
between the same pair of nodes and/or loops (links having the same source and destination) while in some cases 
edges are weighted. All the multiple edges, loops and weights were ignored in our case.

The properties of the networks listed in Table 2 suggest that the networks used for the experiments have 
different topological structures. Some networks share similar properties. For example both the E.Coli and the 
Email networks share low clustering coefficient and low density. However the density of the Email is significantly 
higher than that of the E.Coli. This allows us to estimate the performance of the proposed method and compare 
it with alternative methods on structurally different networks.

Results and discussion
In order to assess the performance of the proposed method we apply it and the alternative methods to the datasets 
discussed above. The performances are estimated using AUC. As discussed above, given a network G = (V ,E) , 
we first partition its links into a training set, ET and a probe set EP . The set EP is selected in such a way that 
the subnetwork obtained after removing the links belonging to set EP remains connected. This is done by first 
computing a minimum spanning tree (MST) of the original network G. An MST is a node connected network 
that does not contain any cycle. The set EP is then randomly selected from the E that does not belong to the MST. 
All the remaining edges, including the edges that belong to the MST, are then added to the training set ET . The 
same training and probe sets are used for both the proposed and the alternative methods. In our first experiment, 
we use 90% of the observed links as for training and the remaining 10% for the test set. To obtain an unbiased 
estimate of performances, all the experiments were repeated 100 times for smaller networks (Karate, Bombing, 
Iceland, LesMis, Neurons, Netscience, Infectious, Metabolic, US Air, ASoIaF) and 10 times for larger networks 
(Email, Bible, Yeast, Vidal, Household, Friendships, Hamster). In each run of the experiment, an independent 
random sampling of the observed links into test and probe sets was performed. The average accuracies along 
with standard deviation values of each method on all the 18 datasets are reported in Table 3.

It is important to note that the alternative methods were chosen in such a way that all the three categories 
of algorithms, namely the local, the global and the quasi-local link prediction algorithms, are included in the 
comparison. In Table 3, the first four methods CN, AA, RA and PA are local link prediction algorithms, the next 
four methods MFI, LO, CND, and Katz are global link prediction algorithms, and the next three methods SRW, 
RWR, and LP are the quasi-local link prediction algorithms. There are a number of important observations that 
can be made from the results shown in Table 3. Firstly, we note that the global link prediction does not always 
give best performance when compared to the local and the quasi-local methods. For example, for the Iceland 
and the Metabolic datasets the AA and the RA indices give significantly better performance when compared to 
the global methods such as Katz index. Secondly, since most of the local link prediction indices are based on the 
triadic closure principle (TCP), they fail to predict true links in networks with very low average clustering coef-
ficients. For example, from Table 2, we can see that the three networks Vidal, E.Coli, and friendship have very 
low clustering coefficients and all the local TCP-based link prediction algorithms give poor performance on these 
datasets. On the other hand, these TCP-based methods perform very well and may achieve better performance 
when compared to global and quas-local methods when applied to datasets with very high clustering coeffi-
cients. This is evident when we compare the performances of all the methods on networks with high clustering 
coefficients such as Bombing, LesMis, Netscience, US Air and Bible. Finally, it is evident from the table that the 
proposed link prediction index, WPMFI, outperforms all the alternative methods on all the datasets. It does not 
only give better results for networks with low clustering coefficients but it also improves the performances of 
local link prediction algorithms on networks with very high clustering coefficients such as E.Coli, and Vidal. It 
also gives better performance when compared to the MFI index applied on the original network.

We next investigate the performance of the proposed method and the other methods with varying sizes of 
the training set. For this purpose we randomly choose 10%, 20%, 30%, 40%, and 50% links for the probe set 
respectively, while the remaining links are used for the training set. As with the previous experiment, the probe 
set EP is chosen in such a way that the network obtained after removing links EP remains connected. For com-
putational reasons, we have chosen only four alternative methods for comparison with at least one candidate 
method from each of the three categories of link prediction algorithms. These include RA (local), Katz (global), 
LP (quasi local), and the MFI. The experiments were repeated 100 times for smaller networks and 10 times for 
larger networks and in each run of the experiment, an independent random sampling of the observed links into 
test and probe sets was performed. The performances were estimated using AUC and the average values of AUC 
of the proposed and other state-of-the-art methods are plotted in Figure 5.

These results show that WPMFI outperforms other methods when we reduce the size of the training set ET . 
We note that the performance of the RA index decreases significantly with decrease in training size. This is due 
to the fact that when more edges are removed from the network the local topology of the network around a node 
is likely to be changed. Therefore there is a sharp decline in the performance of the RA index when the number 
of training links are decreased. However, the WPMFI can still predict missing links with higher accuracy. For 
example for Metabolic, US Air, and Bible datasets the performance of RA is close to that of WPMFI when 90% of 
the links are used for the training set. However the performance of RA is significantly less than that of WPMFI 
when only 50% of the links are used for the training set. This suggests that WPMFI can still give reasonably good 
performance when very limited information is available about the structure of the network.
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In order to analyse the importance of the parameter β , we apply WPMFI multiple times by varying the value 
of parameter β to all the real-world networks. We have tested the performance of WPMFI by choosing seven 
different values of β from the set {0.0001, 0.001, 0.05, 0.1, 0.2, 0.5, 1} . Figure 6 shows the AUC values for all the 18 
datasets. For better visualisation, the results are presented in two separate figures. These results clearly demon-
strate that we achieve better performance, when the value of the parameter β is kept low. There are two important 
observations to note from Fig. 6. Firstly, in most cases, the performance tends to decrease monotonically as 
the value of β increases from 0.05 to 1. This suggests that it is not useful to set the value of β greater than 0.05. 
Secondly, the performance of WPMFI does not always improve when β is further reduced and set to a smaller 
value less than 0.05. We note that in few cases the performance increases but in other cases it either reduces 
or remains roughly the same. We also note that the difference in the performance when β = 0.0001 and when 
β = 0.001 is negligible in most cases. As discussed in Sect. 3.4, when β is very small PMFI does not respect the 
community structure of the network as the link predicted by PMFI in this case will tend to follow the order in 
which the links are predicted by the RA index. We therefore set β = 0.05 in all our experiments.

In our final experiment, we analyse the performance of WPMFI by using different methods for pre-weighing 
the adjacency matrix of the transformed network. For this purpose, we first transformed the network by con-
necting two disconnected nodes if they share at least one common neighbour. Next, we have pre-weighted 

Table 3.   AUC values for different datasets. The cell Bold shows the best performance while the one Italic 
shows the second best performance for each dataset.

Method Karate Bombing Iceland LesMis Neurons E.Coli

CN 0.7327±0.0890 0.9493±0.0288 0.9252±0.0517 0.9678±0.0209 0.8648±0.0123 0.6286±0.0652

AA 0.7704±0.0977 0.9572±0.0288 0.9456±0.0455 0.9704±0.0210 0.8800±0.0121 0.6327±0.0674

RA 0.7829±0.0986 0.9582±0.0285 0.9443±0.0450 0.9698±0.0211 0.8862±0.0120 0.6329±0.0675

PA 0.6970±0.1186 0.8014±0.0509 0.8519±0.0919 0.8286±0.0414 0.7281±0.0161 0.8388±0.0485

MFI 0.7837±0.0682 0.9413±0.0253 0.8883±0.0387 0.9481±0.0214 0.8755±0.0097 0.8890±0.0374

LO 0.6900±0.1140 0.9430±0.0366 0.9046±0.0562 0.3833±0.0222 0.7135±0.0239 0.6579±0.1011

CND 0.7412±0.0799 0.9530±0.0252 0.9291±0.0416 0.9691±0.0188 0.8659±0.0120 0.8612±0.0340

Katz 0.7745±0.0861 0.9470±0.0267 0.9300±0.0467 0.9668±0.0216 0.8721±0.0108 0.8897±0.0356

SRW 0.7496±0.1213 0.9236±0.0333 0.8700±0.0957 0.9575±0.0263 0.8463±0.0123 0.6026±0.0654

RWR​ 0.7240±0.0989 0.9130±0.0352 0.8945±0.0865 0.9531±0.0265 0.8207±0.0126 0.6051±0.0617

LP 0.7799±0.0839 0.9467±0.0271 0.9314±0.0449 0.9672±0.0211 0.8732±0.0107 0.8739±0.0469

WPMFI 0.8249±0.0619 0.9629±0.0331 0.9526±0.0291 0.9757±0.0166 0.9002±0.0097 0.9011±0.0301

 Method Netscience Infectious Metabolic US Air ASoIaF Email

CN 0.9904±0.0065 0.9554±0.0073 0.9283±0.0108 0.9664±0.0054 0.9715±0.0052 0.8763±0.0123

AA 0.9922±0.0065 0.9586±0.0073 0.9536±0.0095 0.9715±0.0050 0.9752±0.0052 0.8780±0.0122

RA 0.9922±0.0064 0.9593±0.0074 0.9572±0.0092 0.9744±0.0048 0.9754±0.0052 0.8775±0.0122

PA 0.6053±0.0422 0.7237±0.0149 0.7957±0.0230 0.9282±0.0121 0.8777±0.0127 0.8142±0.0099

MFI 0.9924±0.0027 0.9669±0.0031 0.9181±0.0093 0.9451±0.0047 0.9566±0.0041 0.9317±0.0065

LO 0.9838±0.0145 0.8352±0.0202 0.3866±0.0118 0.7448±0.0215 0.3835±0.0113 0.3205±0.0074

CND 0.9934±0.0023 0.9674±0.0042 0.9291±0.0105 0.9676±0.0048 0.9761±0.0037 0.9209±0.0080

Katz 0.9915±0.0026 0.9703±0.0035 0.9274±0.0108 0.9659±0.0056 0.9761±0.0037 0.9364±0.0062

SRW 0.9581±0.0163 0.9462±0.0073 0.8954±0.0135 0.9602±0.0066 0.9585±0.0066 0.8661±0.0142

RWR​ 0.9586±0.0154 0.9437±0.0072 0.8759±0.0132 0.9569±0.0066 0.9538±0.0063 0.8712±0.0127

LP 0.9916±0.0028 0.9700±0.0038 0.9281±0.0107 0.9664±0.0054 0.9764±0.0037 0.9325±0.0070

WPMFI 0.9961±0.0022 0.9773±0.0032 0.9588±0.0092 0.9770±0.0039 0.9833±0.0033 0.9414±0.0062

 Method Bible Yeast Vidal Household Friendships Hamster

CN 0.9816±0.0024 0.9324±0.0039 0.6750±0.0125 0.9018±0.0098 0.8206±0.0030 0.9722±0.0020

AA 0.9879±0.0024 0.9330±0.0039 0.6758±0.0125 0.9068±0.0100 0.8230±0.0029 0.9754±0.0020

RA 0.9887±0.0024 0.9331±0.0039 0.6758±0.0125 0.9061±0.0098 0.8235±0.0029 0.9766±0.0019

PA 0.8270±0.0101 0.8867±0.0053 0.8590±0.0068 0.9179±0.0048 0.8899±0.0059 0.8474±0.0075

MFI 0.9728±0.0024 0.9811±0.0038 0.8967±0.0062 0.9027±0.0101 0.9472±0.0020 0.9708±0.0020

LO 0.4438±0.0035 0.4126±0.0063 0.2412±0.0096 0.2490±0.0099 0.2108±0.0044 0.4330±0.0043

CND 0.9832±0.0021 0.9807±0.0035 0.8849±0.0078 0.9185±0.0089 0.8819±0.0021 0.9786±0.0014

Katz 0.9803±0.0017 0.9838±0.0036 0.9045±0.0079 0.9356±0.0092 0.9370±0.0023 0.9808±0.0012

SRW 0.9533±0.0049 0.9276±0.0032 0.6384±0.0157 0.8964±0.0104 0.8242±0.0031 0.9679±0.0022

RWR​ 0.9471±0.0038 0.9283±0.0031 0.6637±0.0134 0.8957±0.0090 0.8184±0.0034 0.9592±0.0022

LP 0.9805±0.0017 0.9808±0.0035 0.8596±0.0124 0.9356±0.0093 0.9380±0.0021 0.9809±0.0013

WPMFI 0.9916±0.0016 0.9877±0.0031 0.9153±0.0051 0.9458±0.0073 0.9613±0.0017 0.9855±0.0014
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Figure 5.   The accuracies estimated by AUC with different split of train/probe sets. All the experiments are 
executed multiple times and average values of AUC are executed.
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the adjacency matrix of the transformed network according to CN, AA, and RA indices. We have applied the 
resulting indices to all the 18 datasets. In addition to this, we have also applied PMFI to the original adjacency 
matrix (without transforming and pre-weighting the original adjacency matrix). The value of the parameter β 
was set to 0.05 in all cases. The AUC values for all the four methods are shown in Fig. 7. These results show that 
in most cases the parametrised matrix forest index pre-weighted with RA index gives superior performance when 
compared to all the other versions while in very few cases it gives comparable performance to PMFI. This dem-
onstrates that the performance of PMFI can be improved by pre-weighting the matrix according to the RA index.

Conclusion
In this paper we have investigated the applications of parametrised matrix forest index for predicting missing 
links in a network. We have demonstrated that the parametrised matrix forest index is related to a heat diffusion 
process on a network and therefore has the potential to be used for predicting missing links in a network. The 
edges of the networks are weighted in a manner such that the information flows more quickly between two nodes 
that are highly likely to be connected in near future than the two disconnected nodes that are less likely to be 
connected. This was achieved using the popular resource allocation index. The method was tested on 18 differ-
ent real-world networks and was compared to other state-of-the-art methods under different settings. Although 
the proposed approach was tested only on unweighted networks, one of the advantages of the work presented 
here is that it can be easily extended to weighted networks. In terms of future work we plan to extend the work 
presented here to more complicated cases such as bipartite networks and multiplex networks and explore its 
applications in real-world networks such as drug-target interaction networks.

Figure 6.   Effect of the parameter β on AUC values. The values of β are chosen as 0.0001, 0.001, 0.05, 0.1, 0.2, 
0.5, and 1. The dashed gray vertical line indicates the value of 0.05 that was chosen in the experiments.

Figure 7.   Comparing PMFI without and with pre-weighting. Here PMFI represents the parametrised matrix 
forest index applied to the original adjacency matrix without transformation and pre-weighting, while WCN , 
WAA , and WRA represent WPMFI when the original adjacency matrix is transformed and pre-weighted 
according to CN, AA, and RA indices respectively.
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Data availability
The datasets analysed during the current study are publicly available in the Konect repository, and can be down-
loaded from http://​konect.​cc/​netwo​rks/.
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