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Abstract
The present study proposes a hybrid framework combining multiple methods to determine the optimal values of design vari-
ables in a flexible manufacturing system (FMS). The framework uses a multi-objective response surface methodology (RSM) 
to achieve optimum performance. The performance of an FMS is characterized using various weighted measures using the 
best–worst method (BWM). Subsequently, an RSM approximates the functional relationship between the FMS performance 
and design variables. The central composite design (CCD) is used for this aim, and a polynomial regression model is fitted 
among the factors. Eventually, a bi-objective model, including the fitted and cost functions, is formulated and solved. As 
a result, the optimal percentage for deploying the FMS equipment and machines to achieve optimal performance with the 
lowest deployment cost is determined. The proposed framework can serve as a guideline for manufacturing organizations to 
lead strategic decisions regarding the design problems of FMSs. It significantly increases productivity for the manufacturing 
system, reduces redundant labor and material handling costs, and facilitates production.

Keywords Flexible manufacturing system · Response surface methodology · Central composite design · Best–worst method · 
Multi-objective optimization

1 Introduction

FMSs were developed in response to the severity of competi-
tion in markets and the necessity of manufacturers to become 
more flexible in adapting to changes. An FMS is based on 
an integrated computer-controlled system that simultaneously 
processes numerous parts at middle-size volumes (Rifai et al. 
2018). The eight main types of flexibility consist of routing, 
machine, operation, production, expansion, process, prod-
uct, and volume (Yadav and Jayswal 2018; 2019). An FMS 
includes a set of machines and technologies that produces 
various products by performing different processes (Wang 
et al. 2018). Therefore, it is a computerized, high-tech, and 
automated manufacturing system that combines mass produc-
tion efficiency with job shops' flexibility to improve produc-
tivity (Wang et al. 2016). In automated machining environ-
ments, minimizing the total time, decreasing the risk of tool 
breakdowns, and reducing tool switching are essential. How-
ever, some other factors can affect the performance of FMSs 
(Karimi et al. 2019). Decreasing setup time and equipment 
utilization and reducing and controlling work-in-process (WIP) 
directly impact manufacturing lead time (MLT). Hence, an 
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FMS and its related factors need optimal cycle times, equip-
ment availability, and efficiency (Mahmood et al. 2017). These 
systems have a complicated design that deals with Distributed 
Data Processing (DDP) and Automated Material Flow (AMF) 
systems (Souier et al. 2019). Today, an FMS is a proper and 
prominent solution for industries to shift from a fixed type to 
a customized production (Silva et al. 2017).

The effects and importance of FMSs have been widely 
investigated. In this regard, the intelligence and flexibility 
of workstations are two critical factors. FMSs autonomously 
move material, WIPs, or production to enhance performance 
and efficiency. These systems should also be intelligent 
to respond to changes in the environment and customers' 
demands (Silva et al. 2017). FMSs are an essential solution 
for production systems to control and manage any changes 
required by the market and unforeseen demand (Yadav and 
Jayswal 2019). Due to the limited set of resources and influ-
ence on cost reduction and efficiency, optimizing FMSs 
scheduling is another essential part of the control that should 
be considered for these systems (Priore et al. 2018). Improv-
ing products' quality, work in process (WIP), lead times 
(LTs), reduction, and flexibility of operations are also con-
siderable. Thus, flexible computerized manufacturing sys-
tems play a vital role in achieving them. Versatile machines 
used in the manufacturing system to perform multiple types 
of operations can reduce MLTs and WIPs (Zhengmin et al. 
2019). FMSs are excellent production systems that have 
used and increased the development of computer-aided pro-
cess planning (CAPP) techniques. FMSs can reduce gaps 
between process planning, production planning, timetabling 
problems, and scheduling (Pellegrinelli et al. 2018).

Since setting and designing an FMS is vital for a successful 
performance, this research uses and experimentally models the 
factors affecting the performance of an FMS and proposes an 
optimum configuration for these factors to attain the systems 
most effective and efficient performance. The paper, therefore, 
addresses a gap in the academic literature by proposing a formal 
hybrid framework using RSM to increase the productivity of 
FMSs at an optimal performance level. In this regard, while pre-
vious studies have characterized the performance of FMSs using 
a single measure or variable, e.g., routing and machine flexibility 
(e.g., Souier et al. 2019; Ghadirpour et al. 2020), in this study, 
a multi-dimensional perspective is followed to examine FMSs 
performance. Furthermore, the previous literature has focused 
on operational variables (e.g., layout, routing, and dispatching 
rules) and their effect on the performance of FMSs (e.g., Jerbi 
et al. 2019; Zhang et al. 2021; Shin et al. 2020). Nonetheless, 
the academic literature has not extensively considered the opti-
mal level of multi-variables and how to apply FMS indicators. 
For example, some scholars have focused on the importance of 
influential factors in FMSs performance (e.g., Jain 2018; Jain 
and Soni 2019; Mishra 2020). The present study significantly 
contributes to these objectives by developing a hybrid framework 

that includes BWM, RSM, multi-objective optimization (MOO), 
and simulation. In this research, the RSM is also proposed to 
optimize the FMS performance of FMSs along with a nonlinear 
optimization method to tune the optimal set of parameters. In 
this regard, experiments based on a Central Composite Design 
(CCD) were conducted to investigate various component set-
tings on an FMSs performance. Some primary indexes were 
considered to measure the performance of an FMS, and the final 
response variables were calculated based on the experimental 
results. The response variables were approximated by deter-
mining different inputs and running the designed experiments, 
and a mathematical model illustrating the relationship between 
input variables and system response was fitted. Since several 
performance factors were modeled using RSM to gain a multi-
objective result, a weighting vector was obtained for different 
objectives using BWM. To this aim, a group of company experts 
initially determined the most important (best) and least important 
(worst) objectives (see Section 4 for details). Subsequently, they 
expressed their judgments regarding the pairwise preferences of 
the best objective regarding others and all objectives concerning 
the worst one. This information was then processed using the 
BWM model to determine the objective weights (Rezaei 2015). 
Ultimately, the fitted regression model was optimized, and the 
optimal designs of input variables were chosen.

The value of implementing a new and optimal technology-
oriented framework is reflected in a positive impact on the effi-
ciency and productivity of production systems. These improve-
ments lead to better responses to customers and accelerate 
manufacturing processes. Achieving these results is often based 
on high investments in experiments or trial-and-error tech-
niques. In this regard, applying simulation and experimental 
design reduces the costs of measuring each production equip-
ment status. It determines the weights of the response levels as 
a significant input for better and more accurate analytics. These 
outputs are valuable for manufacturing companies to make bet-
ter decisions with minimum cost and higher performance.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the relevant literature. FMS performance 
measures are reviewed in Section 3. The proposed method-
ology is described in Section 4, followed by its application 
in a real-world case study in Section 5. Finally, the paper is 
concluded in Section 6.

2  Basic concepts and literature review

This research is related to the production management field. 
The main components of FMSs are computer numerical con-
trol (CNC) machine tools loaded and unloaded by advanced 
industrial robots, automated material handling devices, stor-
age and retrieval systems controlled by computer systems, 
and automated equipment (Kabir and Suzuki 2018). FMSs 
problems are classified into four areas, i.e., design, planning, 
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scheduling, and control (Demesure et al. 2017). FMSs design 
problems include determining the appropriate number of 
machine tools of each type, the material handling system's 
capacity, and the size of the buffer. FMSs involve planning 
problems such as determining which parts should be machined 
simultaneously, optimizing machine tools into groups, allo-
cating pallets and fixtures to part types, and assigning opera-
tions. Problems related to FMSs scheduling include deter-
mining the optimal input sequence of parts and the optimal 
sequence of machine tools. FMS control problems are those 
concerned with monitoring the system to ensure that require-
ments and due dates are met and that unreliability problems are 
considered (Demesure et al. 2017; Priore et al. 2018; Souier 
et al. 2019; Lee et al. 2020b). The proposed research in this 
paper is focused on addressing the design problem.

Previous studies have focused on routing and machine flex-
ibility, which impact different performance parameters. FMSs 
problems are related to productivity improvement, selecting 
appropriate machines, number of allocated machines, material 
handling systems, capacity, buffers sizes, pallets allocations, 
FMSs planning, scheduling, jigs and fixtures allocations, limited 
resources optimization, and FMSs controls (Lee et al. 2020b; Bi 
et al. 2020). Table 1 presents a chronological overview of previ-
ous investigations regarding the performance of FMSs.

According to the studies above, scholars have considered 
several factors that significantly impact FMSs performance. 
Among them, authors refer to routing flexibility, sequenc-
ing flexibility, part sequencing, cutting conditions, skills 
and versatility of workers, type of machine, design changes 
required in the product, and determining the maximum 
number of routes. As Table 1 denotes, various studies have 
implemented MCDM approaches (e.g., Fuzzy MICMAC or 
ISM) to determine the importance of compelling factors and 
variables on FMSs performance. Furthermore, other studies 
have focused on optimization or simulation-based optimiza-
tion methods to determine the optimal value of variables to 
increase the overall performance of FMSs. Other researchers 
have also focused on using the DoE and statistical analy-
ses to assess the effects of variables and factors on the per-
formance of FMSs. The proposed framework satisfies all 
these objectives through a hybrid framework that includes 
MCDM, RSM, MOO and simulation. This methodology is 
applied to a real-world industrial case to demonstrate the 
potential capabilities and desired objectives.

Moreover, as illustrated in Table 1, previous studies have 
focused on the performance of FMSs from a single point of 
view. For instance, some studies have investigated the produc-
tivity dimension, while others have studied the time flow as one 
criterion or dimension. However, the current study examines 
various performance measures simultaneously to optimize the 
performance of an FMS. Furthermore, previous studies have 
focused on operational variables and their effect on FMSs' 
performance, e.g., variables including layout, routing, and 

dispatching rules have been examined extensively. Nonethe-
less, the academic literature has not considered the optimal 
level of variables and how to apply FMS indicators. Thus, the 
present study also contributes to the FMSs body of knowledge 
by considering the design variables to provide manufacturing 
managers with an insight into how to apply FMS design.

3  FMSs performance measures

In the present research, the performance of an FMS is char-
acterized by using (1) MLT, (2) production rate  (Rp), (3) 
capacity, (4) productivity, (5) availability and (6) WIP. The 
improvement of automated equipment and manufacturing 
technologies efficiency is also illustrated based on these 
indexes. For instance, the MLT and production rate indexes 
illustrate how the automated manufacturing equipment 
and CNC machines may change the production duration or 
how the Automated Storage and Retrieval Storage (AS/RS) 
warehousing system can improve productivity and produc-
tion flow. Besides, other factors such as product diversity 
and raw material ordering costs can be considered for this 
problem (Groover 2020). As FMSs offer a competitive and 
high-cost environment, internal and external factors should 
be considered (Edh Mirzaei et al. 2021). However, these per-
formance indexes create a trade-off between efficiency and 
product characteristics (i.e., quality, variety, customization). 
This point should be considered during the optimization of 
an assembly line (Moretti et al. 2021). Table 2 presents the 
indexes for FMS performance measures.

Manufacturing lead time (MLT) or production period MLT 
is the time between production authorization and completion 
(Ivanov and Jaff 2017). MLT comprises queue, setup, run, 
delay and transport times (Jaff and Ivanov 2016). Accord-
ingly, this study formulated MLT as follows.

If the operation, non-operational processes and setting 
up times are considered equal in different workstations, the 
MLT formula is simplified as follows (Groover 2020).

Production rate ( Rp). In job shop systems, if produc-
tion unit per hour ( Q = 1 ), then production time per unit is 
Tp = Tsu + To . In mass production systems, the cycle time is 
defined as the sum of the longest operational and transporta-
tion time, excluding the setting time (Sprodowski et al. 2020). 
In this study, the production rate is measured as follows. First, 
the production time of each unit is estimated with Eq. (3).

(1)MLT =
∑nm

i=1

(
Tsui + QToi + Tnoi

)

(2)MLT = nm ×
(
Tsu + QTo + Tno

)
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Then, the production rate is defined as follows (Groover 
2020).

Capacity Capacity is the maximum output rate a production 
system can produce in a given period. In this study, capacity 
is calculated based on the number of shifts and workstations 
(Elmaghraby 2011), see Eq. (5). This factor aims to reach a 
time-related production demand (Lee et al. 2020a).

where PC is the production capacity for each group of 
working stations.

Productivity Productivity is commonly defined as the ratio 
of a system or machines output quantity (value) to its capac-
ity (Grifell-Tatjé and Knox Lovell 2015). Productivity is cal-
culated based on Eq. (6).

Availability or machine reliability This vital index affects 
the performance measurement of the considered system and 
includes two factors (i) mean time between failures (MTBF) 
and (ii) mean time to repair (MTTR). MTBF is calculated 
by dividing the "Total Time" by the "Number of Failures" 
and MTTR by dividing the "Total Time" by the "Number of 
Units Under Test". The machine availability value measures 

(3)Tp =
Tsu + QTo

Q

(4)Rp =
1

Tp

(5)PC = WSw × HRp

(6)Productivity =
Output

PC
= U

automated manufacturing systems performance as follows 
(He et al. 2017).

Work‑in‑process WIP refers to partially finished goods wait-
ing for completion. WIP handling cost is one of the manu-
facturing costs. WIP products commonly have some of the 
below statuses (Chattinnawat 2013).

(a) Their production process has not been started yet;
(b) Some stages of their processes have already started, or
(c) They are finished and are being prepared for delivery.

Therefore, the completion statuses of WIP products are vari-
ous. The equation below shows this index (Groover 2020).

The best status for WIP is that all products in the pro-
duction line have been processed. Thus, the ratio is 1:1 
in mass production systems, while in batch production 
systems, the WIP ratio is 1:50 or higher. However, this 
depends on the average batch size and other production 
factors (Khan et al. 2017).

4  Methodology

RSM is an effective solution for modeling and analyzing 
variables effects on a particular response(s) of interest. In 
this case, the goal is to optimize the response(s) (Lalwani 

(7)Availability =
MTBF

MTBF +MTTR

(8)WIP =
UPC

HSw
×MLT

Table 2  FMS Performance 
Indexes

Index Description

I Operation sequence i = 1, 2,… , nm

nm Separated machines used in the production line or operation sequences
Q Quantity of products in each batch
Toi The time of each operation in the machine or workstation i
Tnoi The time of each non-operational process in the machine or workstation i
Tsui The time of setting the workpiece, tools and jigs and fixtures in the 

machine or workstation i
W The number of workstations
H The number of shifts in each workstation (Hours per day in each shift)
Sw The number of shifts in each Week
MTBF Mean time between failure
MTTR Mean time to repair
WIP Work-in-Process
U Productivity
PC Production Capacity
Rp Production Rate
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et al. 2020). Suppose a system operating under a set of 
controllable variables � =

(
x1, x2,… , xk

)
 and uncontrol-

lable variables � =
(
z1, z2,… , zp

)
 that result in a response 

variable y. It is assumed that a function of type y = f (�, �) 
is established according to some physical and chemi-
cal underlying relations. RSM aims to approximate the 
above function using a polynomial function of the least 
significant order (Myers et al. 2011; Zhang et al. 2020). 
de Oliveira et al. (2019) proposed a nine-step roadmap to 
perform an RSM.

• (1) Identifying the parameters, influencing factors and 
response(s).

• (2) Analyzing the impacts of the identified factors on the 
response variable(s).

• (3) Designing an experiment of a linear polynomial model 
to examine the main and interaction effects of factors.

• (4) Performing the designed experiments, and (5) eval-
uating the existence of curvature. (6) If no curvature 
exists, the stationary point is determined. (7) Otherwise, 
a new set of experiments adding axial points (three-level 
factorial designs like central composite or Box-Behnken 
designs) is designed and performed.

• (8) Designing a model in the form of y = �0+∑k

i=1
𝛽ixi +

∑
i<j

∑k

j=i+1
𝛽ijxixj +

∑k

i=1
𝛽iix

2

i
+ 𝜀 , for each  

response ( � the error), where �0 , 
(
�1,… , �k

)
, (

�12,… ., �k−1,k
)
, 
(
�11,… , �kk

)
 are the intercept, the main 

effect or first order, the interaction and pure-quadratic 
term coefficients, respectively.

• (9) Optimizing the designed model.

The methodology was designed based on the nine steps to 
conduct the RSM analysis proposed by de Oliveira et al. (2019) 
in Fig. 1. Each step is described in the subsequent sections. The 
first step of the proposed methodology (i.e., factor identification 
and DoEs) corresponds to steps 1–3 of de Oliveira et al. (2019) 
methodology. This step identifies and measures the considered 
response variables (i.e., productivity). Then, a two-block CCD 
design is scheduled. Afterwards, the experiments were imple-
mented using simulation to measure the response variables. The 
FMS productivity factors such as MLT, production rate, WIPs, 
capacity, productivity and availability are considered to reach 
the optimized combination of equipment. Hence, the calculated 
simulation results reached from these factors are the input or 
response level of the CCD design for each run. The third step of 
the proposed framework (i.e., metamodel building and optimiza-
tion) deals with designing the model as explained in steps 5–8 of 
de Oliveira et al. (2019). Step 4 of the proposed framework (i.e., 
model optimization) corresponds to the optimization of the devel-
oped model according to step 9 of de Oliveira et al. (2019). This 
step determines the weight of productivity measures using the 
BWM method. Then, the overall performance function is deter-
mined, and the final aggregated model is designed and optimized.

 

(1) Factor identification and DoEs 

(de Oliveira et al. (2019) steps 1-3) 

Determining Productivity measures Design a CCD two block design 

Determining factor Levels for 

designing FMS production line 

(2) Simulation (de Oliveira 

et al. (2019) step 4) 
Approximate FMS productivity in 

different situations  

via equations (1) to (8) 

(3) Metamodel building (de 

Oliveira et al. (2019) steps 5-8)  Meta-Model design using simulation 

results and equations (9) and (10) 

(4) Model optimization (de 

Oliveira et al. (2019) step 9) 

Determining Productivity 

measures weights by BWM Eqs. 

(14-15) 

Determining overall performance 

function by equations (11) to (13) 

Designing Final aggregated model 

by equations (17) and (18) 

Optimization via compromise 

programming and equation (19) 

Fig. 1  The framework of the current study
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4.1  Factor identification and DoEs

The first step involves defining an FMSs productivity index 
and identifying the variables affecting these measures. The 
primary assumption is investigating production productivity 
by considering various factors and equipment compositions in 
the automated manufacturing system. In dealing with the prob-
lem of FMSs productivity, different variables are introduced 
as essential factors affecting FMSs performance. This research 
evaluated various equipment compositions affecting the FMS 
productivity indices. The critical factors are as follows.

• Computer-Aided Design/Manufacturing/Engineering 
(CAD/CAM/CAE) plans to design and locate the auto-
mated assembly workstations along with CNC machines.

• Programmable Logic Controller (PLC).
• AS/RS and Automated Guided Vehicles (AGV) for stor-

age and material handling system.
• Jigs and Fixtures, including a funnel, power supply, etc.
• Group Technology (GT) implementation with determined 

cell. The problem framework is illustrated in Fig. 2. The 
main objective is to determine how to set different factors 
to maximize FMSs productivity.

To calculate the response surface "y" for each experiment, 
these factors and measures are aggregated using the BWM 
weights. A CCD in two blocks was designed to analyze the 
illustrated problem in Fig. 2. In a CCD, each factor is evaluated 
at two factorial levels, indicated with (-1, 1), two axial levels 
±�, and a central level, indicated with 0. A complete CCD with 
k factors is composed of a set of 2k factorial points, 2k axial 
points and nc the central point, a total of 2k + 2k + nc experi-
ments (Myers et al. 2011). For k = 5 , a complete CCD includes 
more than 42 + nc experiments. To decrease the number of 
required experiments, a half-CCD plan was used that included 
2k−1 + 2k + nc experiments in each iteration. Therefore, for 
k = 5 , the designed experiment included 26 + nc experi-
ments in each replication. Using Minitab Statistical Software 
(MINITAB) to design the experiments, the optimal value of � 
for five factors was determined to equal 2. The factor levels are 

illustrated in Fig. 3. This figure sets the factor levels according 
to their settlement amount in the production line.

4.2  Simulation

To represent the studied FMS with different factor com-
binations (treatments), a discrete-event simulation using 
the AnyLogic software has been employed. Discrete event 
simulation captures different systems performances under 
various situations (Choi and Kang 2013; Rao and Naikan 
2016). Simulation provides an easier way of dealing with 
sources of variations. The present study aims to analyze the 
effects of designing factors on FMS productivity. Since six 
different productivity measures represented the performance 
of the FMS, as described in Section 4, simulation was used 
to approximate the FMS productivity in different situations.

4.3  Metamodel building

While simulation represents an illustration of the considered sys-
tem, a metamodel develops a mathematical model of the behav-
ior of a system using the simulation results for further analysis 
(Chen et al. 2019). Two general types of methodologies are used 
to build metamodels. First, if the underlying relationships among 
variables are known and perceptible, mathematical modeling 
translates the interrelation among variables into corresponding 
mathematical equations. On the other hand, when these relation-
ships are complex and unknown, building an empirical model 
would be appropriate (de Oliveira et al. 2019). Empirical model-
building techniques are usually based on regression analyses to 
fit a polynomial regression model. The degree of this polyno-
mial depends on the significance of the corresponding term in 
the statistical analysis phase. To this aim, DoE is used to test the 
significance of the related terms and then to fit the suitable form 
of the meaningful polynomial of the required order. Considering (
x1, x2,… , xk

)
 as the impacting factors on the response y, the 

first-order (linear) model is as follows.

(9)y = �0 + �1x1 + �2x2 +⋯ + �kxk + �

Fig. 2  The design FMS problem 
framework

 

FMS factory 

Automated WS + 

CNCs + 

CAD/CAM/CAE 

PLCs 

AS/RS + AGVs 

GT 

[1]. MLT 

[2]. Production Rate 

[3]. Capacity 

[4]. Productivity 

Availability and 

Reliability 

[5]. WIP 
Jigs and Fixtures 
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The second-order metamodel of the form in Eq. (10) is 
more popular.

Higher-order terms are usually insignificant due to the 
sparsity of effects, meaning that higher-order interactions are 
scarcely significant and neglected. The sparsity of effects is 
studied and approved by Bergquist et al. (2011). Six main 
manufacturing factors, including MLT ( x1 ), production rate 
x2 , capacity x3 , productivity x4 , availability x5 and WIP x6 , 
were used in the experiments to measure the response level 
for the manufacturing system, as discussed in Section 3.

4.4  Model optimization

As described in Section 3, six measures were used to evalu-
ate the performance of the studied FMS. Suppose that y1(k) 
is the approximated performance for the MLT measure; 
y2(k) the model fitted for production rate; y3(k) the model 
developed for capacity under treatment k; y4(k) the model 
developed for productivity; y5(k) the model obtained for 
availability or machine reliability, and y6(k) is the model 
developed for WIP under treatment k. Consequently, the 
overall performance function under treatment k is obtained 
to optimize the FMS performance.

where W =
(
w1,w2,… ,w6

)
 is the performance measures 

weight vector and y�i(k), i = 1, 2,… , 6 are the normalized 
performance of ith measure under treatment k. For the first 
MLT and sixth WIP measures, Eq. (12) is estimated.

(10)
y = 𝛽0 +

∑k

i=1
𝛽ixi +

∑

i<j

∑k

j=i+1
𝛽ijxixj +

∑k

i=1
𝛽iix

2

i
+ 𝜀

(11)y(k) =
∑6

i=1
wi × y�i(k)

(12)y�i(k) =

min
k
yi(k)

yi(k)

While for the second (production rate), third (capac-
ity), fourth (productivity), and fifth (availability) measures, 
Eq. (13) is employed as follows.

Consider ing the six performance cr iter ia for 
the FMS performance, a cr iter ia weight vector 
W =

(
w1,w2,… ,w6

)
 is required. In this regard, the BWM 

method was implemented. BWM is commonly employed 
to extract criteria weights (Rezaei 2015). Further devel-
opments of this method have been designed for specific 
and uncertain circumstances (Mahdiraji et al. 2020). In 
this paper, the nonlinear approach of BWM was used as 
follows (Rezaei 2015).

1. Determine the set of decision criteria known as 
( 
{
C1,C2,… ,Cn

}
).

2. Define the best (most important) and worst (least 
important) criteria using experts opinions. The best 
criteria is known as (B) or (b), and the worst crite-
ria is denoted as (W) or (w). Subsequently, deter-
mine the preference of the best criteria over other 
criteria by a number between 1 and 9, known as 
AB =

(
Ab1,Ab1,… .,Abn

)
.

3. Measure the importance of other criteria over the 
worst criteria on a scale between 1 and 9, denoted by 
AW =

(
A1w,A2w,… .,Anw

)
 by each expert through a 

designed questionnaire.
4. Determine the optimal weights by solving the NLP 

model as (14) via GAMS software. The results are 
emanated as Wk

j
=
{
Wk

1
,Wk

2
,… ,Wk

n

}
 for the  kth expert. 

Then, these weights are aggregated via arithmetic 
mean to measure the final weight of each FMS perfor-
mance indicator.

(13)y�i(k) =
yi(k)

max
k

yi(k)

Fig. 3  Factor levels used for 
designing FMS production line
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5. To check the reliability of the extracted weights, the com-
patibility ratio (CR) for each expert is investigated via 
Eq. (15), where CRk is the consistency ratio for  kth expert. 
In this research, CR less than 0.1 is acceptable. CI deter-
mines the consistency index adopted by Rezaei (2015).

Using y(k) as the aggregated response variable, the first 
objective of the problem is formulated as follows.

where f
(
x1, x2,… , x5

)
= f1(x) is a polynomial metamodel, 

as discussed in Section 4.3. However, an additional objec-
tive function is also considered since deploying these fac-
tors requires infrastructure investment. If a one-percent 
increase in the level of factor xi, i = 1, 2,… , 5 needs a cost 
of ci, i = 1, 2,… , 5 , then the cost-related function is formu-
lated as follows.

Therefore, the final model is as follows.

A weighted Lp-metric-based model was used to solve the 
Eq. (18) model using compromise programming (Zeleny 
1973). Defining f ∗

i
(x) and fi∗(x) as the ideal and non-ideal 

solutions of fi(x), i = 1, 2 respectively, the Lp-metric objec-
tive function is formulated as follows.

Where W =
(
w1,w2

)
 is the weight vector of objectives in a 

way that wi ≥ � and w1 + w2 = 1 . The above problem is usu-
ally solved for p = 1, 2 and ∞ . Since the approximated objec-
tive functions are expected to be second-order polynomial; 
thus, the above model is a nonlinear programming model.

(14)

min ξ

St ∶
�
�
�
�
WB

Wj

− Abj

�
�
�
�
≤ ξ; for all j

�
�
�
Ajw −

Wj

WW

�
�
�
≤ ξ; for all j

∑
Wj = 1,

Wj ≥ 0

(15)CRk =
�∗

CI

(16)Maxy = max
x1,x2,…,x5

f
(
x1, x2,… , x5

)
= Max f1(x)

(17)Min
∑5

i=1
cixi = Minf2(x)

(18)
Max f1(x)

Minf2(x)

S.T. 0 ≤ xi ≤ 1, i = 1, 2,… , 7

(19)Min
�∑2

i=1
wi

�
f∗
i
(x)−fi(x)

f∗
i
(x)−fi∗(x)

�p�1∕p

S.T. 0 ≤ xi ≤ 1, i = 1, 2,… , 7

5  Case study

The FMSs of an elevator control panel and electric boards 
produced by an Iranian manufacturing organization were 
considered as a case study to illustrate the application of the 
proposed framework in this paper. The FMS used to produce 
the elevator control panel and electric boards were launched 
in 2007. In 2007, the factory was established on a  500m2 
site. After four years, they moved to a larger, brand-new site 
with all the developed facilities. Continuous improvement, 
the lowest delivery time, and quality control were the main 
strategies for the organization to satisfy its customers. The 
main activities were internal and external logistics, electri-
cal operations, control panel operations, production quality 
control, sales, after-sales services, and marketing. The infor-
mation about the production line and the required equipment 
was gathered from interviews with company experts at the 
end of November 2020. An initial list of company experts 
was compiled based on their experience (at least three 
years), electronic equipment knowledge (at least a bachelors 
degree in engineering), and their knowledge regarding the 
current production system (at least managerial level). As a 
result, eight experts were nominated for the initial list. The 
board of directors introduced this list by considering the 
abovementioned criteria. According to this list, the board 
of directors compiled a final list of experts using the Borda 
method and expert selection criteria (Du and Gao 2021). 
Thus, the weight of each expert was measured accordingly. 
Table 3 illustrates the results of the Borda method analy-
sis. Consequently, experts No. 5 to 8, i.e., CEO, Planning 
Manager, Financial Manager, and Quality Manager, were 
selected for data gathering. The data gathering was carried 
out through interviews and a questionnaire.

The interviews included a briefing on the research and a 
structured interview using the questionnaire/protocol rep-
resented in Appendix A. Regarding the surveys and BWM 
questionnaire; the authors thoroughly explained the method-
ology steps. The questions were sent to the interviewees five 
days before the interview session. As a result, 75 min were 
spent on average for each interview. Furthermore, the BWM 
questionnaire (Appendix B) was presented by the research 
team and given to the experts. These were then collected 
three weeks later, in December 2020. The manufacturing 
system studied included two main production lines (i) Cabin 
and (ii) Control panel and board production lines.

Moreover, there was an automated storage and retrieval 
system for warehousing. The automated elevator control 
panel consisted of various types of equipment such as AGVs, 
AS/RS warehousing systems, automated machines, robots, 
CNC machines, cabins production lines, jigs and fixtures, 
conveyors, and an automated packing system. Thus, the 
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production line of the control panel was based on a mechani-
cal process and included wiring, board and drive installation 
and assembly, final quality control, and packing. An over-
view of the studied production line is illustrated in Fig. 4.

The organization (known as CAP Co.) can employ the 
proposed framework and relevant results when developing 
manufacturing systems, automated tools, and related CAD/
CAM solutions to optimize productivity and increase produc-
tion capacity. The company employed some of these auto-
mated systems on a small scale. Consequently, more than 20% 
improvement in production rate, an 8% reduction in WIP and 
an increase in the capacity of workstations were achieved.

As described in Section 4.1, five types of FMS technolo-
gies were considered, namely (1) WS, CNCs and CAD/
CAM/CAE, (2) PLCs, (3) AGV and AS/RS, (4) Jigs and 

Fixtures, and (5) GT. Moreover, five main performance 
factors, i.e. (1) MLT, (2) production rate, (3) capacity, (4) 
productivity, availability, and machine reliability, and (5) 
WIPs were employed. Furthermore, a half-CCD experiment 
with three replicates, i.e., 96 runs, was designed to investi-
gate the effect of the factors on the FMS performance. The 
factor levels are represented in Fig. 4. In this research, the 
experiments were designed based on the five main equip-
ment classes. For instance, if any equipment, e.g., a CNC 
machine, was eliminated, all the CNC machines in both 
product lines could not be used, and these processes were 
performed manually. To approximate productivity measures, 
different factor combinations were simulated. Each combi-
nation was simulated in MATLAB to analyze the results of 
the performance response measures. The simulation runs 

Table 3  The results of the Borda method for experts weighting and selection

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Sum of Scores Weights Rank

Expert 1 10 5 5 10 5 15 0 15 210 9.95% 7
Expert 2 5 10 5 10 15 20 5 20 250 11.85% 5
Expert 3 5 5 10 20 0 5 15 0 220 10.43% 6
Expert 4 0 10 0 5 20 0 15 5 155 7.35% 8
Expert 5 20 0 20 0 15 10 15 15 320 15.17% 3
Expert 6 15 5 15 5 10 5 0 5 270 12.80% 4
Expert 7 15 10 5 20 5 20 15 10 340 16.11% 2
Expert 8 10 20 15 10 5 10 5 15 345 16.35% 1
Score 7 6 5 4 3 2 1 0 2110

Fig. 4  The view of the automated equipment layout of the case study production line
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were performed for 5,000,000-time units on a PC with a 
Core 2 Duo CPU (2.00 GHz) and 1.99 GB of RAM, and 
each run took about 5 to 6 min. The equations for calculating 
the performance measures are presented in Section 3. The 
underlying logic of the simulation was to simulate the effect 
of designing factors on each measure. Table 4 denotes some 
parts of the simulation results for six main classifications of 
automated equipment and illustrates the impact of setting all 
five types of equipment as automated.

Except for MTBF, which results were obtained through 
each experiment, others were derived from the simulation. 
The approximated performance measures were evaluated by 
simulating 96 treatments based on the above logic. A part of 
the obtained results and the corresponding treatment combi-
nations is illustrated in Table 5.

Moreover, the considered measures were weighted using 
the BWM by gathering the required comparisons from the 
panel of experts (via the questionnaire described in Appen-
dix B). Accordingly, by implementing model (14), the 
importance of the FMS performance measures were 0.08, 
0.17, 0.17, 0.33, 0.17 and 0.08, respectively. These weights 
were used for different aggregate performance measures in 

experimental treatments to achieve an overall performance. 
The BWM questionnaire was completed by a group of 
experts from the studied company, including four middle 
and high-level managers. The CR of the panel of experts 
was measured through Eq. (12). The results indicated that 
the expert panel weights were reliable (CR = 0.021).

After running all the required experiments, approximat-
ing performance measures and aggregating them using 
the weights mentioned above, the next step was to meas-
ure the functional form of the FMS performance based on 
the design variables. These functions were approximated 
through regression analysis. The complete model included 
five main effect terms (i.e., xi ), ten interaction terms (i.e., 
xixj) and five pure quadratic terms (i.e., x2

i
 ). However, only 

the statistically significant terms were used in the models 
using analysis of variance (ANOVA) and the notion of the 
significant test. Figure 5 illustrates the obtained regression 
models with the corresponding statistical significance tests 
for each response. The box-Cox transformation was used 
to improve the approximated models, and all models were 
developed using MINITAB19. Equation (10) was approxi-
mated using the optimal Box-Cox transformation.

Table 4  Simulation for six main 
classifications of automated 
equipment (sample data)

2aexpected effect of this combination in different measures
2bone of the equipment was fully automated, and others are semi-automated
2ctwo or three types of equipment were automated, and others were partially automated
2dall equipment was set in level 0, which meant that 50% of the production line was automated
2eone of the equipment was automated, while the others were semi-automated
2fall of the pieces of equipment were in level -1 or all except one were in level -1

Q Nm Tsu Tno Sw Output MTTR MTBF

2a. The first classification
11.36 0.12 0.8 0 37.5 84.25 2.512563 29.41176
2b. The second classification
7.27 0.1875 1.25 0 24 53.92 1.60804 18.82353
2c. The third classification
5.91 0.23 1.53 2 19.5 43.81 1.3065 15.294
2d. The fourth classification
4.55 0.3 2 0 15 33.7 1.005025 11.76471
2e. The fifth classification
1.82 0.75 5 1 6 13.48 0.40201 4.705882
2f. The sixth classification
0.45 3 20 4 1.5 3.37 0.100503 1.176471

Table 5  Treatment 
combinations and the simulated 
performance measures (sample)

CNC and 
Automated 
PL

AGV 
and AS/
RS

PLC Jigs and 
Fixtures

GT MLT Rp Pc U Availability WIP

1 1 1 -1 -1 1.127 0.322 150.768 0.270 0.934 18.792
0 0 -2 0 0 4.595 0.276 39.724 0.083 0.775 20.194
0 0 2 0 0 0.616 0.272 156.868 0.332 1.298 10.693
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In the above equation, the coefficient of determination 
( R2 ) is 98.26%, while the adjusted R2 is 97.80%. Further-
more, the model assumptions were tested, as shown in Fig. 5.

According to Fig. 5, the normal probability plot proved 
the normality assumption, whereas residual plots versus fit 
and order illustrated the homogeneity of variances and ran-
domness. Therefore, the fitted model was acceptable. On the 
other hand, considering the required monetary investment 
for increasing the percentage of five characteristics of the 
FMS, the cost of different machines associated with five 

(20)

y1.31888 = 0.52466 + 0.09154x1 + 0.08618x2 + 0.09204x3 + 0.08934x4

+ 0.09639x5 − 0.02686x2
1
− 0.02117x2

2
− 0.02097x2

3
− 0.02352x2

4

− 0.02658x2
5
− 0.00896x1x2 − 0.01589x1x3 − 0.02022x1x4

− 0.01788x1x5 − 0.01720x2x3 − 0.01750x2x4 − 0.01995x2x5

− 0.00967x3x4 − 0.01704x3x5 − 0.01643x4x5

factors were approximated as $39,500, $1,000, $115,000, 
$10,000, and $2,000, respectively. Therefore, the cost func-
tion was formulated as follows.

The studied company also considered a budget of 
$100,000 to enhance its FMS performance by equipping the 
company with the considered machines and technologies. 
Therefore, the final model configuring the factors affecting 
the FMS performance was formulated as Eq. (22).

(21)
39, 500x1 + 1, 000x2 + 115, 000x3 + 10, 000x4 + 2, 000x5

Fig. 5  Residual analysis for the approximated model
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The model in Eq.  (22) is a multi-objective nonlinear 
programming model. Its Hessian matrix was constructed 
to investigate the concavity of the considered function, and 
the eigenvalues were determined. The eigenvalues of the 
first objectives Hessian matrix were determined as -0.1127, 
-0.0416, -0.0343, -0.0302 and -0.0192. Since all the eigenval-
ues were negative, it was concluded that the first objective was 
concave. Therefore, the obtained solutions were the global 
optimum of the problem. According to the proposed method, 
the next step was to find the ideal solutions. The ideal solution 
for the objective functions were obtained as f1∗ = 52.47% , 
and f2∗ = 100, 000 . Finally, the single objective function was 
formulated as follows according to Eq. (19).

The model was solved for different values of p and 
w. To this aim, three distinct values of p = 1 , p = 2 , and 
p = ∞(inf) were considered. Moreover, the weights 
were respectively assigned as w1 = 0, 0.1, 0.2,… , 1 and 
w2 = 1 − w2 . Figure 6 illustrates the respective Pareto-opti-
mal solutions found by solving the model.

(22)

Max 0.52466 + 0.09154x1 + 0.08618x2 + 0.09204x3 + 0.08934x4 + 0.09639x5

− 0.02686x2
1
− 0.02117x2

2
− 0.02097x2

3
− 0.02352x2

4
− 0.02658x2

5
− 0.00896x1x2

− 0.01589x1x3 − 0.02022x1x4 − 0.01788x1x5 − 0.01720x2x3 − 0.01750x2x4

− 0.01995x2x5 − 0.00967x3x4 − 0.01704x3x5 − 0.01643x4x5

Min 39, 500x1 + 1, 000x2 + 115, 000x3 + 10, 000x4 + 2, 000x5

S.T.

39, 500x1 + 1, 000x2 + 115, 000x32 + 10, 000x4 + 2, 000x5 ≤ 10, 0000

0 ≤ xi ≤ 1, i = 1, 2,… , 5

(23)

Min
[
w1

(
115.35%−f1(x)

62.88%

)p

+ w2

(
f2(x)

100,000

)p]1∕p

S.T.

39, 500x1 + 1, 000x2 + 115, 000x3 + 10, 000x4 + 2, 000x5 ≤ 100, 000

0 ≤ xi ≤ 1, i = 1, 2,… , 5

According to Fig. 6, decision-makers can choose differ-
ent solutions and select optimal FMS settings. Consider the 
case where w1 = w2 = 0.5 . For three values of p, Table 6 
represents the optimal setting of FMS factors.

For p = 1, the company must equip all its production lines 
with PLCs, all the lines must be structured as GT, and jigs 
and fixtures must be used. However, the other two factors 
were not required. Considering the costs of the above three 
solutions, it might seem unreasonable to increase the cost 
from $13,000 to more than $19,000 for a 3% to 5% of perfor-
mance improvement. Therefore, if managers consider equal 
weights over cost and performance objectives, the best FMS 
settings were obtained using the solution for p = 1 . On the 
other hand, if the company considers only the performance 
of the system, i.e., w1 = 1,w2 = 0 , then the results are shown 
in Fig. 7 for different values of p.

The next concern is the sensitivity of the obtained results 
to the variation of parameters, especially the available budget. 
For different levels of objective weights, the budget is increased 
from $0 to $100,000 with a step size of 1,000. Figure 8 illus-
trates the results of solving 101 models with different avail-
able budgets (horizontal axis) and the optimum performance 
(vertical axis). According to Fig. 8, by increasing the weight 
of the first objective, the results become more sensitive to the 
available budget. The correlation of FMS performance with 

Fig. 6  The Pareto front for dif-
ferent values of p and w 
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the available budget increased from 17.15% 
(
w1 = 0.1

)
 to 

89.29%
(
w1 = 1

)
 . It means that the more important the FMS 

performance becomes, the higher budget is required.

6  Discussion

The problem of converting traditional manufacturing sys-
tems into FMSs is a challenging and cost-consuming deci-
sion. Madson et al. (2020) focused on the lack of a formal 

framework for designing FMSs. The problem studied in this 
paper is devoted to finding a suitable solution. Since FMSs 
are comprised of several modules with different impacts, 
this study determines an optimal set of these modules by 
simultaneously optimizing the performance of an FMS and 
its implementation costs. The primary response variable, 
i.e., xj , was defined as the extent to which a given machine 
type j must be implemented in an FMS. However, different 
machines have diverse direct or indirect effects on the per-
formance of an FMS. To find these effects, RSM was used to 
design experiments to study the impact of different machine 
implementation scenarios on the FMS performance. The 
performance of the FMS, known as a response, was charac-
terized using six different and prominent measures. On the 
other hand, the factors affecting these performance meas-
ures were determined by the extent of implementation of 
different machines in the manufacturing system. A CCD 
was proposed to measure the direct and indirect effects, and 
the overall response surface was obtained. Accordingly, all 
considered machines had a potentially positive effect on the 
overall performance of the FMS. Considering the results 
emanated from the proposed method and illustrated in Sec-
tions 4 and 5, a one percent increase in the implementation 
of CNC and automated PLC had a 9.15% × 0.01 = 0.092% 
positive effect on the overall performance of the FMS. 
Similarly, AGV and AS/RS, PLC, jigs and fixtures, and 
GT received 0.082%, 0.092%, 0.089%, and 0.096% posi-
tive effects, respectively. These values indicate that all the 
considered machines directly improve the performance of 
an FMS, and the GT effect is partially more than the others, 
while the difference is insignificant.

For two variables x1 and x2 , a 1% simultaneous increase 
impacts the performance by 0.17%. However, the curvature 
effects of these two variables decreased the improvement by 
0.048%, and their mutual effect also had a 0.0001% nega-
tive effect on the performance of the system. On the other 
hand, the cost dimension can also adjust the setting of the 
optimal decision. For instance, according to Eq. (20), if all 

Table 6  The optimal settings of FMS factors

p = 1 p = 2 p = ∞

WS + CNCs 0% 17% 38%
PLCs 100% 100% 100%
AS/RS + AGV 0% 0% 0%
GT 100% 100% 100%
Jigs and Fixtures 100% 100% 100%
Cost 13,000 19,633 27,920
Approximated performance 92.17% 94.57% 97.79%
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Fig. 7  The limiting case with w1 = 1,w2 = 0

Fig. 8  The sensitivity of the 
model to the available budget
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the factors were set at 100%, an overall performance of 70% 
would be obtained. However, the cost of applying all the 
machines at the full level was $167,500. This investment 
is risky for a manufacturing system. Therefore, it will be 
required to trade off the amount of increasing the perfor-
mance against its required cost. Figure 9 illustrates the effect 
of a 1% increase in machine usage against its imposed cost.

According to Fig. 9, increasing the usage of different 
machines illustrates a range of performance increase between 
0.085% to less than 0.098%. Nevertheless, the cost of this 1% 
increase ranges between 10 to more than $11,000. This limited 
range of performance improvement against the wide range of 
costs illustrates the necessity of seeking Pareto-optimal solu-
tions, as discussed in the previous section.

7  Conclusions

This study considers the problem of optimally using various 
advanced and automated manufacturing equipment. To this 
aim, an empirical model-building based on RSM was proposed 
to determine the level of deployment of different technological 
components of FMSs. A combination of CCD design, simula-
tion, regression modeling, BWM, and MOO allowed the inves-
tigation of FMS performance measures and clarified design 
variables impact, individually and mutually. The proposed 
method was applied in a real-world case study. The results 
determined the Pareto-optimal configuration of the system for 
its practitioners. Theoretically, this method includes measur-
ing manufacturing indexes based on sub-category parameters 
using BWM and RSM. The input factors from the simulation 
were WIPs, production rates, availability, and performance. 
Different combinations of automated manufacturing systems 

such as robots, CNC machines, automated warehouse systems 
and AGVs were the output of RSM, and the regression equa-
tion and the performance of the system in each status were the 
models results. Hence, this analytical method was applied to 
balance the production line indexes, elaborate on the details 
of production factors, and change different factors to reach the 
best solutions. This method can be easily used for other large-
scale FMSs and is not limited to any specific system.

Furthermore, changing the parameters and indexes and 
even the combinations of automated manufacturing tech-
nologies is possible. Designing FMSs is expensive, and this 
technique and stages of this research enabled us to reach the 
best combination of automated equipment used in FMSs as 
accessible as possible since this method is cheaper and more 
flexible for different production lines. Using DoE to enter 
"y" for each experiment is one of the practical benefits of 
this research, as this hard-to-change model cannot calculate 
the inputs of DoEs. Simulation enables enterprises to meas-
ure them simply and with minimum time. Thus, a notable 
innovation of this research was measuring all the responses 
without reasonable expenses and experiments. Improving 
production line productivity, controlling WIPs, working 
on machines and equipment efficiency, comparing suitable 
technologies, elaborating production problems, and reducing 
the workforce were some of the consequences and results of 
using this system. However, although simulation is a valu-
able tool, the results might defer from reality and should be 
considered a significant constraint.

The respective Pareto-optimal values based on the cost and 
performance objectives make it possible to choose various 
solutions and required FMS combinations, including advanced 
machines, CNCs, PLCs, AS/RS, AGV, GT, Jigs and Fixtures. 
Also, decision-makers can compare these FMS settings and 

Fig. 9  Machine usage and the 
trade-off between cost and 
performance
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choose the combination that is possible to implement. Besides, 
as the three values of p illustrated, it is required to spend more 
budget to reach higher production performance.

In this paper, the levels of design variables were specified 
at fixed levels while considering the range [0, 100]. However, 
a random effect model can be developed in future studies. On 
the other hand, since non-controllable and external factors 
can affect the optimal combination of design variables, robust 
designs are also recommendable for future studies to eliminate 
the harmful effects of external nuisance. A combination of 
design and operational variables is also considerable for future 
researchers to hybridize the strength of the current study with 
previous ones. Accessing accurate data (e.g., manufacturing 
process details, resources, precise real-world parameters, etc.) 
was another limitation of this research. As a result, some required 
information was gathered from experts based on their subjective 
judgment. This data-gathering approach may negatively impact 
the performance indexes and simulation results. Hence, these 
issues have influenced the generalizability of the research. As 
a recommendation, future investigators could focus on gaining 
access to the response level of experimental design, the discrete 
event simulation results, and reaching precise data. This change in 
information could be used for more complicated models and large-
scale manufacturing systems. Moreover, this study focused on 
the design variables of an FMS at the highest level. However, the 
design is extendable to more operational variables. Moreover, this 
research neglected environmental and social factors in designing 
the FMS and should be considered in future investigations.
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