
 
 

University of Birmingham

An Integrated Control Framework for Long-Term
Autonomy in Mobile Service Robots
Mudrová, Lenka; Lacerda, Bruno; Hawes, Nick

DOI:
10.1109/ECMR.2015.7324192

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Mudrová, L, Lacerda, B & Hawes, N 2015, An Integrated Control Framework for Long-Term Autonomy in Mobile
Service Robots. in European Conference on Mobile Robots 2015. Institute of Electrical and Electronics
Engineers (IEEE), pp. 164-169, 2015 European Conference on Mobile Robots (ECMR), Lincoln, United
Kingdom, 2/09/15. https://doi.org/10.1109/ECMR.2015.7324192

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists,
or reuse of any copyrighted components of this work in other works.

Checked Jan 2016

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 20. Apr. 2024

https://doi.org/10.1109/ECMR.2015.7324192
https://doi.org/10.1109/ECMR.2015.7324192
https://birmingham.elsevierpure.com/en/publications/120a2da2-6569-4b6e-b82f-f9c706355694


An Integrated Control Framework for Long-Term Autonomy
in Mobile Service Robots

Lenka Mudrova∗, Bruno Lacerda∗ and Nick Hawes∗.

Abstract— This paper describes an integrated framework for
the long-term task-driven control of mobile service robots.
The core components of the framework are: a high-level task
executor that manages execution, for example by reacting to
failures, or adding extra tasks required by the end-user on-
the-fly; a task scheduler that schedules sets of tasks throughout
the day, taking into account travel times between locations and
task durations, while satisfying the time constraints associated
with each task; and a probabilistic topological motion planner
that provides time-dependent optimal navigation policies and
expected navigation times between task locations. We illustrate
the overall framework by reporting on a three-week deployment
in a real-world office environment, and use the data collected
during the deployment to validate and illustrate the capabilities
of the framework to adapt itself to the different travel time
expectations throughout the day.

I. INTRODUCTION

Consider a mobile service robot operating in an office
building for a long period of time, where it autonomously
performs tasks to assist the occupants in their everyday
activities. One can imagine a wide array of tasks for such a
robot to execute, for example:
• “Bring me a cup of coffee as soon as possible.”
• “Check if there are people in office 123, between 20:00

- 20:15 today.”
• “Check if the emergency exits are clear every 2 hours.”
Given that the robot is performing this type of tasks for

long periods of time, they have different timing characteris-
tics. For example, some are repetitive, being executed every
day; others are requested by the end-user at arbitrary times,
and the request might be for the robot to execute the task
immediately, or execute it at a specific time in the future.
Furthermore, the robot needs to navigate between different
areas of the environment in order to arrive at its target
location in time to perform the requested task. However,
different areas of a building may present different navigation
challenges at different times of day. For example, a cafeteria
will be more crowded during lunch time, or office doors
may be closed when the office is empty, or when there is
a meeting. Therefore, the time the robot takes to navigate
around a building is dependent on the time of day.

With this in mind, the autonomous execution of tasks
in such office environments raises an array of interesting
questions. These include:

1) When should task execution start in order to satisfy
the given time constraints?

∗School of Computer Science, University of Birmingham, UK.
{lxm210, b.lacerda, n.a.hawes}@cs.bham.ac.uk

Fig. 1: Our mobile service robot during deployment at G4S
Technology.

2) How much time does the robot need to travel between
different task locations? How is it dependent on time
of day?

3) How does the robot find robust and optimal navigation
policies between different task locations?

4) How should the robot react if a new task is requested
during the execution of another?

5) How can task execution be monitored, and what reac-
tions are appropriate if a task fails or takes longer than
expected to execute?

In this paper, we leverage on our recent works on op-
timal high-level planning with probabilistic guarantees [1];
frequency-based learning and prediction of navigation dura-
tions and probabilities of navigation success [2]; and mobile
robot task scheduling [3], to develop a control framework
that deals with these issues in an integrated fashion. We
evaluate our framework on data obtained from a three week
deployment of a service robot in an office environment, at
G4S Technology, Tewkesbury, UK (Fig. 1).

This deployment was based on the overall control architec-
ture presented here, however some of its components were
not integrated in the deployed system (e.g., the frequency
based learning component). Thus, we will discuss the de-
ployment details, along with the routine performed by the
robot, and use the data gathered during the deployment to
show how our approach provides a high-level controller that
is able to adapt its task execution schedules to the expected
environment dynamics at a given time of day.

II. RELATED WORK

The CoBot service robots [4] operate in an office building
performing a variety of tasks. They use a “User to Mobile



Robot” architecture [5] running on a server. This system
manages incoming tasks from a web-based user interface,
schedules tasks across several robots [6], and keeps track
of task execution. The robots autonomously navigate on a
topological map [7], using Dijkstra’s algorithm to find a
path on the topological graph. Each robot performs given
tasks, provides an on-board user interface and speech based
“interruptible autonomy” [8] in order to modify, cancel
or add a task. As of November 2014, the four CoBots
have jointly travelled more than 1,000 km autonomously. A
similar centralised system architecture is used by the mobile
service robot Tangy [9] which performs a sequence of tasks
rather than a schedule. A sequence differs from a schedule as
exact start times for tasks are not specified, only their order.

In contrast to the previous architecture, robots Rin and
Rout use a constraint network [10]. This network is con-
tinuously modified by an executor, a monitor and a planner
in order to create configuration plans which specify causal,
temporal, resources and information dependencies between
individual actions. This general approach allows Rin and
Rout to perform a variety of tasks.

Neither Tangy, nor Rin and Rout, are aimed at long-
term behaviour. On the contrary, Willow Garage programmed
a PR2 robot to perform an uninterrupted, 13 day run in
an office environment [11]. The robot had only a simple
executive framework which queued tasks for execution, but
did use a novel failure recovery mechanism, including remote
human teleoperation, to increase its robustness.

Finally, the CRAM software toolbox [12] provides a
task executive that allows for the design, implementation,
and deployment of autonomous robots that perform every-
day manipulation activities, focussing on the integration of
knowledge into the control process.

Contrary to our approach, none of the these works is able
to cope with the set of questions we presented before in an
integrated manner.

III. CONTROL FRAMEWORK

Our control framework, depicted in Fig. 2, runs on a
single mobile robot and assumes the presence of navigation
controllers which allows it to autonomously navigate on
a topological map. We also assume the presence of other
subsystems which are able to perform the tasks required of
the robot (e.g. checking for the presence of people). A task
is the main unit of behaviour within our cognitive control
framework. It represents an instance of a behaviour that the
robot should carry out. We refer to a single task by ω with
numeric subscript i, for example ω1. Its properties – listed
below – are then referred by the same subscript.
• time properties:

– a time window 〈ri, di〉, where ri is a release date
(the earliest time instant when a task can start), and
di is a deadline (the latest time instant when a task
can finish);

– a processing time pi, which represents the expected
duration of the task;

robot's
other
subsystems

navigation
controller

task
executor

and
monitor

navigation
planning
framework

scheduler

Control framework

Fig. 2: An architecture of the proposed control framework,
see Sec. III for an explanation.

– a start time of execution si, to be defined by the
scheduling procedure;

– an end time of execution ei, defined as ei = si+pi.
• a priority ψi;
• optional start lsi and end lei locations;
• an activity to perform which has:

– a name, for example “check the fire extinguisher”;
– a predefined sequence Aωi

= (ai1 , . . . , aim) of ac-
tions how to fulfil the task. Actions are indivisible;

– a boolean flag “interruptible” signalling if the task
can be interrupted.

Our framework supports two types of task: on-demand
tasks and standard tasks. A standard task should be added to
the schedule and executed within its time constraints. An on-
demand task should be executed immediately, thus the time
window is not set for it. Tasks can be added to the control
framework by humans via a web interface (e.g. requesting the
robot to perform a task at a particular time); by components
of the robot’s other subsystems (e.g. requesting that a part
of the map is explored at some time in the future); and by
routine scripts which specify fixed sets of tasks for the robot
to perform every day.

In order to address Question 4 (Q4), the executor maintains
a set of tasks to be executed S = {ωj , . . . , ωl} and it
generates and executes a schedule Ŝ for these tasks. The
execution of an individual task is performed by a finite
state machine which triggers navigation to the task’s start
location lsi and then execution of actions Aωi

. It also uses
internal feedback signals xl, xa from the navigation and
action subsystems in order to react to failures (Q5).

Our framework is focused on a single robot and, based on
this, we assume that tasks cannot be interleaved or performed
in parallel. The robot is therefore the only resource for its
scheduler to manage (Q1). The scheduler’s input is the set
S of tasks, and the output is a schedule Ŝ, which is an
ordering of S, along with the corresponding start times si
and end times ei for each task ωi ∈ S. The scheduler
creates Ŝ such that the overall waiting time for task execution
is minimised. Moreover, a valid schedule ensures that a
robot has enough time to travel between the end location
lei of each finished task and the start location lsi of the



subsequent task. This is done by considering travel duration
estimations E between the end and start locations of all pairs
of tasks. Our framework provides an optimal topological
navigation framework (Section III-C) which acts both as a
travel time estimator for the scheduler, and a topological
motion planner that is called by the executor to generate
and execute optimal navigation policies P . This navigation
framework uses statistics gathered from long-term experience
to adapt P to the dynamics of the environment, addressing
(Q3, Q2).

While the robot executes a task ωi, the task monitor
observes how much time the actions have already consumed
and compares it to the expected end of execution ei (Q5).
If the execution of a task does not end before reaching
this processing time pi, the monitor sends an interruption
signal to the overrunning task, causing its cancellation. The
same monitoring and interruption procedure is also done for
navigation to the task location lsi , with the time taken to
navigate being compared with the estimated travel time E .

A. Task Executor

The task executor is the main control component in
our framework. It manages task execution and scheduling,
whilst also reacting to various forms of failures. When a
new standard task is added to the executor, it updates its
schedule using the trySchedule() method (described below)
and continues with task execution as described by its current
schedule (Ŝ). When an on-demand task is added it cancels
the currently executing task (if it is interruptible) and exe-
cutes the new task instead, whilst rescheduling its remaining
tasks, taking the new situation into account.

The method trySchedule() (Alg. 1) calls the scheduler,
which tries to find a schedule for a set containing old tasks
So (previously scheduled) and newly added tasks Sn. If it
does not succeed, method drop(Sn, 0.2) (Alg. 2), drops 20%
of the new tasks (Sd) and overwrites Sn with the remaining
80%. The dropped tasks are saved because the robot might
still be able to schedule some of them in the future.

Algorithm 1 trySchedule(Sn)

while not scheduler({So,Sn}, Ŝ) and Sn 6= ∅ do
Sn, Sd, preemptionNeeded = drop(Sn, 0.2)
if preemptionNeeded then
Sn = So + Ssn
startExecution()

end if
end while
return Ŝ

The method drop(Sn, amount) (Alg. 2) uses
task priorities ψωi

in order to drop less important
tasks if a schedule cannot be found. The method
theLowestPriorityTasks(Sn,amount) creates a subset Sd
of tasks with the lowest priority in set Sn. If this subset
contains more than amount · size(Sn) tasks, Sd is reduced
to that amount, by randomly choosing tasks in Sd and

moving them back to Sn. If there is no task currently
executing, tasks Sd are dropped. However, if there is a
task executing, the executor checks whether the tasks to
be dropped have a higher priority than the executing task.
If they do, then execution must be interrupted so that the
higher priority tasks can can propagated to execution. If
the executing task cannot be interrupted, the framework is
forced to drop the higher priority tasks.

Algorithm 2 drop(Sn,amount)

Sd = theLowestPriorityTasks(Sn,amount)
if not taskCurrentlyExecuting then

return Sn \ Sd, Sd, false
else

if smallestPriority(Sd) ≤ taskExecuting.priority then
return Sn \ Sd, Sd, false

else
if isCurrentTaskInterruptible then

return Sn, ∅, true
else

return Sn \ Sd, Sd, false
end if

end if
end if

1) Execution control and monitoring: The task executor’s
behaviour is driven by the schedule. Execution proceeds
sequentially through the schedule, taking the next task to
be executed, triggering navigation to the start location of
the task, then triggering action execution. Before starting
navigation, the executor checks whether it is the correct time
to execute the task, i.e. that the estimated travel duration will
cause the robot to arrive at the start location after release
date ri, in time to complete the task before deadline di. If
it is too early for this, then the executor simply causes the
robot to wait at its current location for the minimum duration
before the ri constraint can be satisfied. If the estimated
arrival time plus execution time will exceed di then the task
is considered failed, and rescheduling is performed with the
remaining tasks.

While the robot is navigating to the start location of a
task, the task executor monitors both the duration of travel,
and whether it arrives successfully. If the duration exceeds
the estimated duration E by a configurable proportion then
navigation is preempted. If this happens, or navigation itself
reports failure, then the task is cancelled and considered
failed. Similar monitoring is performed during task exe-
cution, with it being preempted if it exceeds its stated
processing time pi by a configurable proportion.

Tasks can provide a feedback signal stating whether they
are interruptible or not. This is used to prevent the task
executor from preempting an action sequence that should
not be interrupted, e.g. when the robot is interacting with a
human, or performing some crucial processing. This flag can
change its value at runtime and is checked before any of the
above preemptions are triggered.



Fig. 3: Visualisation of two possible situations for task ωj

and ωk, which has overlapping time windows. Tasks are same
in both situations, but the travel time differs.

B. Scheduler

Schedules are created using Mixed Integer Programming
(MIP), using the tasks properties to create a set of constraints.
We then use the SCIP solver [13] to find a solution to the
set of constraints with the following optimisation criterion:

min
∑

i∈{1...m}

ei (1)

The first constraint ensures that a task ωj is executed
within its time window:

rj ≤ sj ∧ ej ≤ dj . (2)

The second constraint makes sure that execution of tasks
does not overlap. Therefore, two tasks ωj , ωk are performed
in one of the following orderings: O1: ωj < ωk (read ωj

precedes ωk) or O2: ωk < ωj , see Fig. 3. Between execution
of task ωj and ωk, a robot must travel between locations
lej and lsk and it consumes E(lej , l

s
k) time units. Notice, that

E(lej , l
s
k) 6= E(lek, l

s
j) in a general case as illustrated in Fig. 3.

This is represented by the following constraint:

sj + pj + E(lej , l
s
k)− sk ≤ 0. (3)

∨

sk + pk + E(lek, l
s
j)− sj ≤ 0. (4)

Solving scheduling problems using MIP is a standard tech-
nique in the community [5]. In [3], we demonstrated how it is
possible to simplify the MIP problem by choosing between
Eq. (3) or Eq. (4) when constructing the constraints. This
allows our framework to schedule hundreds of tasks at a
time with only a minor reduction in the optimisation criteria
with respect to optimal.

C. Topological Navigation with Probabilistic Guarantees

In order to have robust navigation in populated, dynamic,
environments, lower level motion controllers must be inte-
grated with higher level discrete planners. Ideally, the higher-
level planner should also be able to provide expectations
on travel times, and use the experience gathered by the
robot to improve such expectations. These expectations can
then be provided as an input to the scheduling mechanism.

Fig. 4: A fragment of G4S metric and topological maps. Blue
edges use default ROS navigation, red edges use a specialised
door crossing behaviour, and the green edge uses a docking
behaviour. All edges are bi-directional.

Thus, in our approach, the high-level motion planner is used
both for generation and execution of optimal plans, and
for calculation of expected travel times that are used to
inform the scheduler, providing it with accurate estimations
for different times of day.

Our approach is based on building time-indexed Markov
decision process (MDP) models of topological maps. We
define a topological map as a set of k topological nodes
V = {0, ..., k−1}, representing locations in the environment,
and a set of topological edges E ∈ V × V , providing
mappings that represent the motion controller to be used to
navigate between nodes. A fragment of the topological map
used in the G4S deployment is depicted in Fig. 4.

We developed a topological navigation executor that
executes and monitors the navigation between topological
nodes, using the corresponding motion controller, and logs
data on this execution to a database. This data is then
used to build frequency models for each edge (see [2]
for details). Such models provide, for each edge e, time-
dependent probabilities of success pe(t), and execution time
expectations τe(t). They can then be used to build time-
indexed Topological Map MDPs: For a given time t ∈ R≥0,
we defineMt = 〈S, s,A, δt, ct〉, where: (i) S = V is a finite
set of states, corresponding to the topological nodes; (ii)
s ∈ S is the initial state, corresponding to the initial position
of the robot in the environment; (iii) A = E is a finite set of



actions, corresponding to the edges in the topological map;
(iv) δt : S × A × S → [0, 1] is a probabilistic transition
function, where

∑
s′∈S δt(s, a, s

′) ∈ {0, 1} for all s ∈ S,
a ∈ A. For i, j ∈ S, if there is an edge e = (i, j) ∈ E,
we define δt(i, e, j) = pe(t), δt(i, e, i) = 1 − pe(t) and
δt(i, e, j) = 0 for all j ∈ S\{i, j}; and (v) ct : S×A→ R≥0
is a cost function, representing the expected edge transversal
time at time t. For i, j ∈ S, if there is an edge e = (i, j) ∈ E,
we define ct(i, e) = τe(t).

Then, we use the work in [1] to generate a cost-optimal
policy, which, for all topological nodes v ∈ V , maps v to
the optimal edge to be transversed to reach a target node vt,
and provides an expected travel time from v to vt.

Note that, in our integrated framework, we are only
using single state reachability specifications. However, [1]
allows for the specification of more general tasks, expressed
in co-safe linear temporal logic. Extending our integrated
control framework to allow for this more general class of
specifications is subject of future work.

As we will see in the next section, our current approach
provides good travel time estimations, and robust optimal
policies. These allow our integrated framework to efficiently
adapt its behaviours, taking into account the predictions on
navigation times for different times of day.

IV. EVALUATION

In this evaluation, we use a dataset gathered in 2014,
during a three-week long deployment of our robot in the
offices of G4S Technology, Tewkesbury, UK. This deploy-
ment environment has approximately 300 m2 and is used by
approximately 20 people. Every week day between 22/5/14
and 13/6/14, the robot followed a routine – using the control
framework presented in this work, without the travel times
learning component – where it would perform a range of
tasks (checking fire doors and fire extinguishers, building 3D
maps, searching for objects) in preconfigured time windows
(roughly three hour slots from 08:45 onwards), returning to
a docking station when idle. During this time, the robot
covered 20.64km and completed 963 tasks successfully.
Fig. 5 shows how the tasks were executed throughout the
deployment.

To illustrate and evaluate the integration of our scheduling
mechanism with the topological motion planner, and its
ability to adapt to the learned travel times, we split the dataset
into training data (the first two weeks of the deployment),
and testing data (the last week of the deployment).

A. Influence of environment dynamics

To evaluate the long-term adaptation of our framework we
compare the following approaches for modelling navigation
in a dynamic environment:
• W0: MDP using distance-based estimates, no data;
• W1: MDP model using data from just the first week;
• W2: MDP model using data from two weeks.

First, the 435 paths which the robot travelled during the
testing week are obtained from the dataset. For each path
we obtain the ground truth value g which states how long

9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00

2014-06-13

2014-06-12

2014-06-11

2014-06-10

2014-06-09

2014-06-06

2014-06-05

2014-06-04

2014-06-03

2014-06-02

2014-05-30

2014-05-29

2014-05-28

2014-05-27

2014-05-23

2014-05-22

Fig. 5: The tasks performed by the robot. Key: yellow, object
checks; red, door checks; purple, 3D mapping; pink, object
search; orange, waiting.

the navigation actually took. Then, a set of time estimates
EX on each path is obtained from the various MDP models,
where X = {W0,W1,W2}.

1) Methodology: The relative difference between an esti-
mate and the ground truth is calculated as follows:

∆EX =
EX − g
g

. (5)

Positive values of ∆EX mean that the particular method
overestimates the time needed to travel between tasks. In
terms of robot behaviour this typically means the robot
will arrive early for tasks and must therefore wait around
(wasting time) before executing the associated actions. In
contrast, negative values mean that a schedule is created
that underestimates the time needed to travel between task
locations. As a result, the robot will fail to successfully
complete the schedule. Therefore underestimates are a more
damaging form of estimation error in our framework.

2) Results: The absolute mean errors and corresponding
standard deviations of the relative results, plus their quantiles,
on the 435 paths are reported in Tab. I. Estimates for selected
paths from Fig. 4 are visualised in Fig. 6. It can be observed
that the MDP with the most training data, ∆EW2, provides
the best estimates (lowest mean error). As would be expected,
the non-adaptive model based during on distance ∆EW0

underestimates by a larger degree to either adaptive model.
After one week of data the adaptive model (∆EW1) substan-
tially overestimates most of the paths. When a second week
of data is added, more experience of environment causes the
estimates to increase in accuracy. ∆EW2 still overestimates
but significantly less than model ∆EW1. As can be observed
in Fig. 5, during the first days of the deployment the routine
was not followed very well (due to bugs in other parts of the
system). Due to this, the data available for training ∆EW1

has a different temporal distribution to the testing data. The
second week of data corrects this, demonstrating that long-
term experience improves our approach.



set 0.1-q 0.25-q 0.75-q 0.9-q error std-dev

∆EW0 -0.457 0.141 1.844 2.714 1.155 0.895

∆EW1 -0.151 0.244 2.088 12.823 8.522 30.526

∆EW2 -0.189 0.227 1.171 1.896 0.982 1.082

TABLE I: The results of travel time estimates on the dataset.

origin

target

W0

W1

W2

23

13

20

16

16

15

15

4

4

6

5

9

9

11

11

4

4

23

43

4

4

0

1

6

1

22

23

15

15

16

23

1

-1.0 -0.7 -0.3 0 3.7 7.3 11.0

Fig. 6: Selected estimated relative travel times.

B. Adaptive Scheduling using Travel Time Estimations

The time-dependent travel time estimations also have an
influence on the scheduling mechanism itself, as it tries to
build a schedule that does as many tasks as soon as possible.
To illustrate this, we generated a test scheduling problem,
comprised of 16 tasks across 13 different locations. Fig. 7,
depicts the schedules computed for different times of day.

It can be observed that the set of tasks can be scheduled
more compactly as the expected travel times get less over-
estimated as a result of the larger amount of data used for
learning. Furthermore, the results with one week of learning
data illustrate the adaptive nature of our framework: the
schedules are different throughout the day. However, this
variation after one week of learning is largely incorrect.
Because our environment was not very dynamic after two
weeks of data the schedules look the same throughout the
day. Notice though that they are different to the schedules
based on distance estimates, as our model adapts to the
robot’s behaviour in the environment. We are in the process
of a new deployment in a more dynamic office environment,
where we expect to have adaptive schedules even after longer
periods of learning.

V. CONCLUSION

We presented an integrated framework for long term
deployments of mobile service robots in office environments.
We illustrated how our approach allows a service robot
to robustly execute a variety of tasks, with different tim-
ing requirements, in such an environment. Our framework
is implemented as a set of ROS packages, available on-
line at https://github.com/strands-project/
strands_executive.

Future work includes further evaluation of our approach in
real-life scenarios; extending the topological motion planner
to include our recent developments on policy generation
for MDPs [14]; and extending the scheduler such that it
creates schedules with improved robustness, by using the

W0

W1

W2

09:45-11:01 12:30-13:46 15:30-16:46

Fig. 7: Schedules using different methods for travel time
estimates. White space between tasks represent the expected
time to travel between tasks locations.

probabilities of navigation satisfaction that can be provided
after integrating [14] in the control framework.

ACKNOWLEDGMENT

The research leading to these results has received funding
from EU FP7 under grant agreement No 600623, STRANDS.

REFERENCES

[1] B. Lacerda, D. Parker, and N. Hawes, “Optimal and dynamic planning
for Markov decision processes with co-safe LTL specifications,” in
Proc. of 2014 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2014.

[2] J. P. Fentanes, B. Lacerda, T. Krajnı́k, N. Hawes, and M. Hanheide,
“Now or later? Predicting and maximising success of navigation
actions from long-term experience,” in Proc. of 2015 IEEE Int. Conf.
on Robotics and Automation (ICRA), 2015.

[3] L. Mudrova and N. Hawes, “Task scheduling for mobile robots using
interval algebra,” in Proc. of 2015 IEEE Int. Conf. on Robotics and
Automation (ICRA), 2015.

[4] M. M. Veloso, J. Biswas, B. Coltin, S. Rosenthal, T. Kollar, C. Mericli,
M. Samadi, S. Brandao, and R. Ventura, “Cobots: Collaborative robots
servicing multi-floor buildings.” in Proc. of 2012 IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS), 2012.

[5] B. Coltin, M. M. Veloso, and R. Ventura, “Dynamic user task
scheduling for mobile robots.” in Proc. of 2011 AAAI Workshop on
Automated Action Planning for Autonomous Mobile Robots, 2011.

[6] B. Coltin and M. M. Veloso, “Online pickup and delivery planning
with transfers for mobile robots,” in Proc. of 2014 IEEE Int. Conf. on
Robotics and Automation (ICRA), 2014.

[7] J. Biswas and M. M. Veloso, “Localization and navigation of the
cobots over long-term deployments,” The International Journal of
Robotics Research, vol. 32, no. 14, 2013.

[8] B. C. Yichao Sun and M. Veloso, “Interruptible autonomy: Towards
dialog-based robot task management,” in Proc. of 2013 AAAI Work-
shop on Intelligent Robotic Systems, 2013.

[9] W.-Y. G. Louie, T. S. Vaquero, G. Nejat, and J. C. Beck, “An
autonomous assistive robot for planning, scheduling and facilitating
multi-user activities,” in Proc. of 2014 IEEE Int. Conf. on Robotics
and Automation (ICRA), 2014.

[10] M. D. Rocco, F. Pecora, and A. Saffiotti, “When robots are late:
Configuration planning for multiple robots with dynamic goals.” in
Proc. of 2013 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2013.

[11] W. Meeussen, E. Marder-Eppstein, K. Watts, and B. P. Gerkey, “Long
term autonomy in office environments,” in ICRA 2011 Workshop on
Long-term Autonomy, 2011.

[12] M. Beetz, L. Mösenlechner, and M. Tenorth, “CRAM – A cognitive
robot abstract machine for everyday manipulation in human environ-
ments,” in Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2010.

[13] T. Achterberg, “SCIP: Solving constraint integer programs,” Mathe-
matical Programming Computation, vol. 1, no. 1, 2009.

[14] B. Lacerda, D. Parker, and N. Hawes, “Optimal policy generation for
partially satisfiable co-safe LTL specifications,” in Proc. of 24th Int.
Joint Conf. on Artificial Intelligence (IJCAI), 2015.


