

University of Birmingham

Cyclic Proofs, Hypersequents, and Transitive
Closure Logic
Das, Anupam; Girlando, Marianna

DOI:
10.1007/978-3-031-10769-6_30

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Das, A & Girlando, M 2022, Cyclic Proofs, Hypersequents, and Transitive Closure Logic. in J Blanchette, L
Kovács & D Pattinson (eds), Automated Reasoning: 11th International Joint Conference, IJCAR 2022, Haifa,
Israel, August 8–10, 2022, Proceedings. 1 edn, Lecture Notes in Computer Science, vol. 13385, Springer, pp.
509-528, 11th International Joint Conference on Automated Reasoning, IJCAR 2022, part of the Federated
Logic Conference, FLoC 2022, Haifa, Israel, 8/08/22. https://doi.org/10.1007/978-3-031-10769-6_30

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 29. Apr. 2024

https://doi.org/10.1007/978-3-031-10769-6_30
https://doi.org/10.1007/978-3-031-10769-6_30
https://birmingham.elsevierpure.com/en/publications/1e0160ef-b095-42a1-84a7-1cdc3bad2ca7

Cyclic Proofs, Hypersequents,
and Transitive Closure Logic

Anupam Das(B) and Marianna Girlando

University of Birmingham, Birmingham, UK
{a.das,m.girlando}@bham.ac.uk

Abstract. We propose a cut-free cyclic system for Transitive Closure
Logic (TCL) based on a form of hypersequents, suitable for automated
reasoning via proof search. We show that previously proposed sequent
systems are cut-free incomplete for basic validities from Kleene Algebra
(KA) and Propositional Dynamic Logic (PDL), over standard transla-
tions. On the other hand, our system faithfully simulates known cyclic
systems for KA and PDL, thereby inheriting their completeness results.
A peculiarity of our system is its richer correctness criterion, exhibiting
‘alternating traces’ and necessitating a more intricate soundness argu-
ment than for traditional cyclic proofs.

Keywords: Cyclic proofs · Transitive Closure Logic · Hypersequents ·
Propositional Dynamic Logic

1 Introduction

Transitive Closure Logic (TCL) is the extension of first-order logic by an operator
computing the transitive closure of definable binary relations. It has been studied
by numerous authors, e.g. [15–17], and in particular has been proposed as a
foundation for the mechanisation and automation of mathematics [1].

Recently, Cohen and Rowe have proposed non-wellfounded and cyclic sys-
tems for TCL [9,11]. These systems differ from usual ones by allowing proofs to
be infinite (finitely branching) trees, rather than finite ones, under some appro-
priate global correctness condition (the ‘progressing criterion’). One particular
feature of the cyclic approach to proof theory is the facilitation of automation,
since complexity of inductive invariants is effectively traded off for a richer proof
structure. In fact this trade off has recently been made formal, cf. [3,12], and
has led to successful applications to automated reasoning, e.g. [6,7,24,26,27].

In this work we investigate the capacity of cyclic systems to automate reason-
ing in TCL. Our starting point is the demonstration of a key shortfall of Cohen
and Rowe’s system: its cut-free fragment, here called TCG, is unable to cyclically
prove even standard theorems of relational algebra, e.g. (a ∪ b)∗ = a∗(ba∗)∗ and

This work was supported by a UKRI Future Leaders Fellowship, ‘Structure vs Invari-
ants in Proofs’, project reference MR/S035540/1.

c© The Author(s) 2022
J. Blanchette et al. (Eds.): IJCAR 2022, LNAI 13385, pp. 509–528, 2022.
https://doi.org/10.1007/978-3-031-10769-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10769-6_30&domain=pdf
https://doi.org/10.1007/978-3-031-10769-6_30

510 A. Das and M. Girlando

(aa ∪ aba)+ ≤ a+((ba+)+ ∪ a)) (Theorem 12). An immediate consequence of
this is that cyclic proofs of TCG do not enjoy cut-admissibility (Corollary 13).
On the other hand, these (in)equations are theorems of Kleene Algebra (KA)
[18,19], a decidable theory which admits automation-via-proof-search thanks to
the recent cyclic system of Das and Pous [14].

What is more, TCL is well-known to interpret Propositional Dynamic Logic
(PDL), a modal logic whose modalities are just terms of KA, by a natural exten-
sion of the ‘standard translation’ from (multi)modal logic to first-order logic (see,
e.g., [4,5]). Incompleteness of cyclic-TCG for PDL over this translation is inher-
ited from its incompleteness for KA. This is in stark contrast to the situation for
modal logics without fixed points: the standard translation from K (and, indeed,
all logics in the ‘modal cube’) to first-order logic actually lifts to cut-free proofs
for a wide range of modal logic systems, cf. [21,22].

A closer inspection of the systems for KA and PDL reveals the stumbling
block to any simulation: these systems implicitly conduct a form of ‘deep infer-
ence’, by essentially reasoning underneath ∃ and ∧. Inspired by this observation,
we propose a form of hypersequents for predicate logic, with extra structure
admitting the deep reasoning required. We present the cut-free system HTC and
a novel notion of cyclic proof for these hypersequents. In particular, the incorpo-
ration of some deep inference at the level of the rules necessitates an ‘alternating’
trace condition corresponding to alternation in automata theory.

Our first main result is the Soundness Theorem (Theorem 23): non-
wellfounded proofs of HTC are sound for standard semantics. The proof is rather
more involved than usual soundness arguments in cyclic proof theory, due to the
richer structure of hypersequents and the corresponding progress criterion. Our
second main result is the Simulation Theorem (Theorem 28): HTC is complete
for PDL over the standard translation, by simulating a cut-free cyclic system
for the latter. This result can be seen as a formal interpretation of cyclic modal
proof theory within cyclic predicate proof theory, in the spirit of [21,22].

To simplify the exposition, we shall mostly focus on equality-free TCL and
‘identity-free’ PDL in this paper, though all our results hold also for the ‘reflexive’
extensions of both logics. We discuss these extensions in Sect. 7, and present
further insights and conclusions in Sect. 8. Full proofs and further examples not
included here (due to space constraints) can be found in [13].

2 Preliminaries

We shall work with a fixed first-order vocabulary consisting of a countable set
Pr of unary predicate symbols, written p, q, etc., and of a countable set Rel of
binary relation symbols, written a, b, etc. We shall generally reserve the word
‘predicate’ for unary and ‘relation’ for binary. We could include further relational
symbols too, of higher arity, but choose not to in order to calibrate the semantics
of both our modal and predicate settings.

We build formulas from this language differently in the modal and predicate
settings, but all our formulas may be formally evaluated within structures:

Cyclic Proofs, Hypersequents, and Transitive Closure Logic 511

Definition 1 (Structures). A structure M consists of a set D, called the
domain of M, which we sometimes denote by |M|; a subset pM ⊆ D for each
p ∈ Pr; and a subset aM ⊆ D × D for each a ∈ Rel.

2.1 Transitive Closure Logic

In addition to the language introduced at the beginning of this section, in the
predicate setting we further make use of a countable set of function symbols,
written f i, gj , etc. where the superscripts i, j ∈ N indicate the arity of the
function symbol and may be omitted when it is not ambiguous. Nullary function
symbols (aka constant symbols), are written c, d etc. We shall also make use of
variables, written x, y, etc., typically bound by quantifiers. Terms, written s, t,
etc., are generated as usual from variables and function symbols by function
application. A term is closed if it has no variables.

We consider the usual syntax for first-order logic formulas over our language,
with an additional operator for transitive closure (and its dual). Formally, TCL
formulas, written A,B, etc., are generated as follows:

A,B ::= p(t) | p̄(t) | a(s, t) | ā(s, t) | (A ∧ B) | (A ∨ B) | ∀xA | ∃xA |
TC (λx, y.A)(s, t) | TC (λx, y.A)(s, t)

When variables x, y are clear from context, we may write TC (A(x, y))(s, t) or
TC (A)(s, t) instead of TC (λx, y.A)(s, t), as an abuse of notation, and similarly
for TC . We may write A[t/x] for the formula obtained from A by replacing every
free occurrence of the variable x by the term t. We have included both TC and
TC as primitive operators, so that we can reduce negation to atomic formulas,
shown below. This will eventually allow a one-sided formulation of proofs.

Definition 2 (Duality). For a formula A we define its complement, Ā, by:

p(t) := p̄(t)

a(s, t) := ā(s, t)

ā(s, t) := a(s, t)

p̄(t) := p(t)

∀xA := ∃xĀ

∃xA := ∀xĀ

A ∧ B := Ā ∨ B̄

A ∨ B := Ā ∧ B̄

TC (A)(s, t) := TC (Ā)(s, t)

TC (A)(s, t) := TC (Ā)(s, t)

We shall employ standard logical abbreviations, e.g. A ⊃ B for Ā ∨ B.
We may evaluate formulas with respect to a structure, but we need additional

data for interpreting function symbols:

Definition 3 (Interpreting function symbols). Let M be a structure with
domain D. An interpretation is a map ρ that assigns to each function symbol
fn a function Dn → D. We may extend any interpretation ρ to an action on
(closed) terms by setting recursively ρ(f(t1, . . . , tn)) := ρ(f)(ρ(t1), . . . , ρ(tn)).

We only consider standard semantics in this work: TC (and TC) is always
interpreted as the real transitive closure (and its dual) in a structure, rather
than being axiomatised by some induction (and coinduction) principle.

512 A. Das and M. Girlando

Definition 4 (Semantics). Given a structure M with domain D and an inter-
pretation ρ, the judgement M, ρ |= A is defined as usual for first-order logic with
the following additional clauses for TC and TC:1

– M, ρ |= TC (A(x, y))(s, t) if there are v0, . . . , vn+1 ∈ D with ρ(s) = v0, ρ(t) =
vn+1, such that for every i ≤ n we have M, ρ |= A(vi, vi+1).

– M, ρ |= TC (A(x, y))(s, t) if for all v0, . . . , vn+1 ∈ D with ρ(s) = v0 and
ρ(t) = vn+1, there is some i ≤ n such that M, ρ |= A(vi, vi+1).

If M, ρ |= A for all M and ρ, we simply write |= A.

Remark 5 (TC and TC as least and greatest fixed points). As expected, we
have M, ρ �|= TC (A)(s, t) just if M, ρ |= TC (Ā)(s, t), and so the two operators
are semantically dual. Thus, TC and TC duly correspond to least and greatest
fixed points, respectively, satisfying in any model:

TC (A)(s, t) ⇐⇒ A(s, t) ∨ ∃x(A(s, x) ∧ TC (A)(x, t)) (1)
TC (A)(s, t) ⇐⇒ A(s, t) ∧ ∀x(A(s, x) ∨ TC (A)(x, t)) (2)

Let us point out that our TC operator is not the same as Cohen and Rowe’s
transitive ‘co-closure’ operator TC op in [10], but rather the De Morgan dual
of TC . In the presence of negation, TC and TC are indeed interdefinable, cf.
Definition 2.

2.2 Cohen-Rowe Cyclic System for TCL

Cohen and Rowe proposed in [9,11] a non-wellfounded system for TCL that
extends a usual sequent calculus LK= for first-order logic with equality and
substitution by rules for TC inspired by its characterisation as a least fixed
point, cf. (1).2 Note that the presence of the substitution rule is critical for the
notion of ‘regularity’ in predicate cyclic proof theory. The resulting notions of
non-wellfounded and cyclic proofs are formulated similarly to those for first-order
logic with (ordinary) inductive definitions [8]:

Definition 6 (Sequent system). TCG is the extension of LK= by the rules:

Γ,A(s, t)
TC0

Γ,TC (A)(s, t)

Γ,A(s, r) Γ,TC (A)(r, t)
TC1

Γ,TC (A)(s, t)

Γ,A(s, t) Γ,A(s, c),TC (A)(c, t)
TC c fresh

Γ,TC (A)(s, t)

(3)

TCG-preproofs are possibly infinite trees of sequents generated by the rules of
TCG. A preproof is regular if it has only finitely many distinct sub-preproofs.
1 Note that we are including ‘parameters from the model’ in formulas here. Formally,
this means each v ∈ D is construed as a constant symbol for which ρ(v) = v.

2 Cohen and Rowe’s system is originally called RTCG, rather using a ‘reflexive’ ver-
sion RTC of the TC operator. However this (and its rules) can be encoded (and
simulated) by defining RTC (λx, y.A)(s, t) := TC (λx, y(x = y ∨ A))(s, t).

Cyclic Proofs, Hypersequents, and Transitive Closure Logic 513

The notion of ‘correct’ non-wellfounded proof is obtained by a standard pro-
gressing criterion in cyclic proof theory. We shall not go into details here, being
beyond the scope of this work, but refer the reader to those original works (as
well as [13] for our current variant). Let us write �cyc for their notion of cyclic
provability using the above rules, cf. [9,11]. A standard infinite descent counter-
model argument yields:

Proposition 7 (Soundness, [9,11]). If TCG �cyc A then |= A.

In fact, this result is subsumed by our main soundness result for HTC (Theo-
rem 23) and its simulation of TCG (Theorem 19). In the presence of cut, a form
of converse of Proposition 7 holds: cyclic TCG proofs are ‘Henkin complete’,
i.e. complete for all models of a particular axiomatisation of TCL based on
(co)induction principles for TC (and TC) [9,11]. However, the counterexample
we present in the next section implies that cut is not eliminable (Corollary 13).

3 Interlude: Motivation from PDL and Kleene Algebra

Given the TCL sequent system proposed by Cohen and Rowe, why do we propose
a hypersequential system? Our main argument is that proof search in TCG is
rather weak, to the extent that cut-free cyclic proofs are unable to simulate a
basic (cut-free) system for modal logic PDL (regardless of proof search strategy).
At least one motivation here is to ‘lift’ the standard translation from cut-free
cyclic proofs for PDL to cut-free cyclic proofs in an adequate system for TCL.

3.1 Identity-Free PDL

Identity-free propositional dynamic logic (PDL+) is a version of the modal logic
PDL without tests or identity, thereby admitting an ‘equality-free’ standard
translation into predicate logic. Formally, PDL+ formulas, written A,B, etc.,
and programs, written α, β, etc., are generated by the following grammars:

A,B ::= p | p | (A ∧ B) | (A ∨ B) | [α]A | 〈α〉A
α, β ::= a | (α;β) | (α ∪ β) | α+

We sometimes simply write αβ instead of α;β, and (α)A for a formula that is
either 〈α〉A or [α]A.

Definition 8 (Duality). For a formula A we define its complement, Ā, by:

¯̄p := p
A ∧ B := Ā ∨ B̄
A ∨ B := Ā ∧ B̄

[α]A := 〈α〉Ā
〈α〉A := [α]Ā

We evaluate PDL+ formulas using the traditional relational semantics of
modal logic, by associating each program with a binary relation in a structure.
Again, we only consider standard semantics, in the sense that the + operator is
interpreted as the real transitive closure within a structure.

514 A. Das and M. Girlando

Definition 9 (Semantics). For structures M with domain D, elements v ∈
D, programs α and formulas A, we define αM ⊆ D × D and the judgement
M, v |= A as follows:

– (aM is already given in the specification of M, cf. Definition 1).
– (α;β)M := {(u, v) : there is w ∈ D s.t. (u,w) ∈ αM and (w, v) ∈ βM}.
– (α ∪ β)M := {(u, v) : (u, v) ∈ αM or (u, v) ∈ βM}.
– (α+)M := {(u, v) : there are w0, . . . , wn+1 ∈ D s.t. u = w0, v =

wn+1 and, for every i ≤ n, (wi, wi+1) ∈ αM}.
– M, v |= p if v ∈ pM.
– M, v |= p if v /∈ pM.
– M, v |= A ∧ B if M, v |= A and M, v |= B.
– M, v |= A ∨ B if M, v |= A or M, v |= B.
– M, v |= [α]A if ∀ (v, w) ∈ αM we have M, w |= A.
– M, v |= 〈α〉A if ∃ (v, w) ∈ αM with M, w |= A.

If M, v |= A for all M and v ∈ |M|, then we write |= A.

Note that we are overloading the satisfaction symbol |= here, for both PDL+

and TCL. This should never cause confusion, in particular since the two notions
of satisfaction are ‘compatible’ as we shall now see.

3.2 The Standard Translation

The so-called ‘standard translation’ of modal logic into predicate logic is induced
by reading the semantics of modal logic as first-order formulas. We now give a
natural extension of this that interprets PDL+ into TCL. At the logical level our
translation coincides with the usual one for basic modal logic; our translation of
programs, as expected, requires the TC operator to interpret the + of PDL+.

Definition 10. For PDL+ formulas A and programs α, we define the standard
translations ST(A)(x) and ST(α)(x, y) as TCL-formulas with free variables x
and x, y, resp., inductively as follows:

ST(p)(x) := p(x) ST(a)(x, y) := a(x, y)
ST(p̄)(x) := p̄(x) ST(α ∪ β)(x, y) := ST(α)(x, y) ∨ ST(β)(x, y)

ST(A ∨ B)(x) := ST(A)(x) ∨ ST(B)(x) ST(α;β)(x, y) := ∃z(ST(α)(x, z) ∧ ST(β)(z, y))
ST(A ∧ B)(x) := ST(A)(x) ∧ ST(B)(x) ST(α+)(x, y) := TC (ST(α))(x, y)
ST(〈α〉A)(x) := ∃y(ST(α)(x, y) ∧ ST(A)(y))
ST([α]A)(x) := ∀y(ST(α)(x, y) ∨ ST(A)(y))

where TC (ST(α)) is shorthand for TC (λx, y.ST(α)(x, y)).

It is routine to show that ST(A)(x) = ST(Ā)(x), by structural induction on
A, justifying our overloading of the notation Ā, in both TCL and PDL+. Yet
another advantage of using the same underlying language for both the modal and
predicate settings is that we can state the following (expected) result without
the need for encodings, following by a routine structural induction (see, e.g., [5]):

Theorem 11. For PDL+ formulas A, we have M, v |= A iff M |= ST(A)(v).

Cyclic Proofs, Hypersequents, and Transitive Closure Logic 515

3.3 Cohen-Rowe System is not Complete for PDL+

PDL+ admits a standard cut-free cyclic proof system LPD+ (see Sect. 6.1) which
is both sound and complete (cf. Theorem 30). However, a shortfall of TCG is that
it is unable to cut-free simulate LPD+. In fact, we can say something stronger:

Theorem 12 (Incompleteness). There exist a PDL+ formula A such that
|= A but TCG ��cyc ST(A)(x) (in the absence of cut).

This means not only that TCG is unable to locally cut-free simulate the rules
of LPD+, but also that there are some validities for which there are no cut-free
cyclic proofs at all in TCG. One example of such a formula is:

〈(aa ∪ aba)+〉p ⊃ 〈a+((ba+)+ ∪ a)〉p (4)

A detailed proof of this is found in [13], but let us briefly discuss it here. First,
the formula above is not artificial: it is derived from the well-known PDL validity
〈(a ∪ b)∗〉p ⊃ 〈a∗(ba∗)∗〉p by identity-elimination. This in turn is essentially a
theorem of relational algebra, namely (a ∪ b)∗ ≤ a∗(ba∗)∗, which is often used
to eliminate ∪ in (sums of) regular expressions. The same equation was (one of
those) used by Das and Pous in [14] to show that the sequent system LKA for
Kleene Algebra is cut-free cyclic incomplete.

The argument that TCG ��cyc ST(4)(x) is much more involved than the one
from [14], due to the fact we are working in predicate logic, but the underlying
basic idea is similar. At a very high level, the RHS of (4) (viewed as a relational
inequality) is translated to an existential formula ∃z(ST(a+)(x, z)∧ST((ba+)+∪
a)(z, y) that, along some branch (namely the one that always chooses aa when
decomposing the LHS of (4)) can never be instantiated while remaining valid.
This branch witnesses the non-regularity of any proof. However ST(4)(x) is cycli-
cally provable in TCG with cut, so an immediate consequence of Theorem 12 is:

Corollary 13. The class of cyclic proofs of TCG does not enjoy cut-
admissibility.

4 Hypersequent Calculus for TCL

Let us take a moment to examine why any ‘local’ simulation of LPD+ by TCG

fails, in order to motivate the main system that we shall present. The program
rules, in particular the 〈 〉-rules, require a form of deep inference to be correctly
simulated, over the standard translation. For instance, let us consider the action
of the standard translation on two rules we shall see later in LPD+ (cf. Sect. 6.1):

Γ, 〈a0〉p〈∪〉0
Γ, 〈a0 ∪ a1〉p

�
ST(Γ)(c),∃x(a0(c, x) ∧ p(x))

ST(Γ)(c),∃x((a0(c, x) ∨ a1(c, x)) ∧ p(x))

Γ, 〈a〉〈b〉p
〈;〉

Γ, 〈a; b〉p �
ST(Γ)(c),∃y(a(c, y) ∧ ∃x(b(y, x) ∧ p(x)))

ST(Γ)(c),∃x(∃y(a(c, y) ∧ b(y, x)) ∧ p(x))

516 A. Das and M. Girlando

Fig. 1. Hypersequent calculus HTC. σ is a ‘substitution’ map from constants to terms
and a renaming of other function symbols and variables.

The first case above suggests that any system to which the standard translation
lifts must be able to reason underneath ∃ and ∧, so that the inference indicated
in blue is ‘accessible’ to the prover. The second case above suggests that the
existential-conjunctive meta-structure necessitated by the first case should admit
basic equivalences, in particular certain prenexing. This section is devoted to the
incorporation of these ideas (and necessities) into a bona fide proof system.

4.1 A System for Predicate Logic via Annotated Hypersequents

An annotated cedent, or simply cedent, written S, S′ etc., is an expression {Γ}x,
where Γ is a set of formulas and the annotation x is a set of variables. We
sometimes construe annotations as lists rather than sets when it is convenient,
e.g. when taking them as inputs to a function.

Each cedent may be intuitively read as a TCL formula, under the following
interpretation: fm({Γ}x1,...,xn) := ∃x1 . . . ∃xn

∧
Γ . When x = ∅ then there are

no existential quantifiers above, and when Γ = ∅ we simply identify
∧

Γ with
�. We also sometimes write simply A for the annotated cedent {A}∅.

A hypersequent, written S,S′ etc., is a set of annotated cedents. Each hyper-
sequent may be intuitively read as the disjunction of its cedents. Namely we set:
fm({Γ1}x1 , . . . , {Γn}xn) := fm({Γ1}x1) ∨ . . . ∨ fm({Γn}xn).

Definition 14 (System). The rules of HTC are given in Fig. 1. A HTC pre-
proof is a (possibly infinite) derivation tree generated by the rules of HTC. A
preproof is regular if it has only finitely many distinct subproofs.

Our hypersequential system is somewhat more refined than usual sequent
systems for predicate logic. E.g., the usual ∃ rule is decomposed into ∃ and inst,

Cyclic Proofs, Hypersequents, and Transitive Closure Logic 517

whereas the usual ∧ rule is decomposed into ∧ and ∪. The rules for TC and TC
are induced directly from their characterisations as fixed points in (1).

Note that the rules TC and ∀ introduce, bottom-up, the fresh function sym-
bol f , which plays the role of the Herbrand function of the corresponding ∀
quantifier: just as ∀x∃xA(x) is equisatisfiable with ∀xA(f(x)), when f is fresh,
by Skolemisation, by duality ∃x∀xA(x) is equivalid with ∃xA(f(x)), when f is
fresh, by Herbrandisation. The usual ∀ rule of the sequent calculus corresponds
to the case when x = ∅.

4.2 Non-wellfounded Hypersequent Proofs

Our notion of ancestry, as compared to traditional sequent systems, must account
for the richer structure of hypersequents:

Definition 15 (Ancestry). Fix an inference step r, as typeset in Fig. 1. A
formula C in the premiss is an immediate ancestor of a formula C ′ in the
conclusion if they have the same colour; if C,C ′ ∈ Γ then we further require
C = C ′, and if C,C ′ occur in S then C = C ′ occur in the same cedent. A cedent
S in the premiss is an immediate ancestor of a cedent S′ in the conclusion if
some formula in S is an immediate ancestor of some formula in S′.

Immediate ancestry on both formulas and cedents is a binary relation, induc-
ing a directed graph whose paths form the basis of our correctness condition:

Definition 16 ((Hyper)traces). A hypertrace is a maximal path in the graph
of immediate ancestry on cedents. A trace is a maximal path in the graph of
immediate ancestry on formulas.

Definition 17 (Progress and proofs). Fix a preproof D. A (infinite) trace
(Fi)i∈ω is progressing if there is k such that, for all i > k, Fi has the form
TC (A)(si, ti) and is infinitely often principal.3 A (infinite) hypertrace H is pro-
gressing if every infinite trace within it is progressing. A (infinite) branch is pro-
gressing if it has a progressing hypertrace. D is a proof if every infinite branch
is progressing. If, furthermore, D is regular, we call it a cyclic proof.

We write HTC �nwf S (or HTC �cyc S) if there is a proof (or cyclic proof,
respectively) of HTC of the hypersequent S.

In usual cyclic systems, checking that a regular preproof is progressing is
decidable by straightforward reduction to the universality of nondeterministic
ω-automata, with runs ‘guessing’ a progressing trace along an infinite branch.
Our notion of progress exhibits an extra quantifier alternation: we must guess an
infinite hypertrace in which every trace is progressing. Nonetheless, by appealing
to determinisation or alternation, we can still decide our progressing condition:

Proposition 18. Checking whether a HTC preproof is a proof is decidable by
reduction to universality of ω-regular languages.
3 In fact, by a simple well-foundedness argument, it is equivalent to say that (Fi)i<ω

is progressing if it is infinitely often principal for a TC -formula.

518 A. Das and M. Girlando

As we mentioned earlier, cyclic proofs of HTC indeed are at least as expressive
as those of Cohen and Rowe’s system by a routine local simulation of rules:

Theorem 19 (Simulating Cohen-Rowe). If TCG �cyc A then HTC �cyc A.

4.3 Some Examples

Example 20 (Fixed point identity). The sequent {TC (a)(c, d)}∅, {TC (ā)(c, d)}∅

is finitely derivable using rule id on TC (a)(c, d) and the init rule. However we
can also cyclically reduce it to a simpler instance of id. Due to the granularity of
the inference rules of HTC, we actually have some liberty in how we implement
such a derivation. E.g., the HTC-proof below applies TC rules below TC ones,
and delays branching until the ‘end’ of proof search, which is impossible in TCG.
The only infinite branch, looping on •, is progressing by the blue hypertrace.

init

{ }∅

id

{a(c, d)}∅, {ā(c, d)}∅

init

{ }∅

id

{a(c, e)}∅, {ā(c, e)}∅

.

.

.
TC •

{TC (a)(e, d)}∅, {TC (ā)(e, d)}∅

∪
{a(c, e)}∅, {TC (a)(e, d)}∅, {ā(c, e),TC (ā)(e, d)}∅

2∪
{a(c, d), a(c, e)}∅, {a(c, d),TC (a)(e, d)}∅, {ā(c, d)}∅, {ā(c, e),TC (ā)(e, d)}∅

inst

{a(c, d), a(c, e)}∅, {a(c, d),TC (a)(e, d)}∅, {ā(c, d)}∅, {ā(c, x),TC (ā)(x, d)}x

TC

{TC (a)(c, d)}∅, {ā(c, d)}∅, {ā(c, x),TC (ā)(x, d)}x

TC •
{TC (a)(c, d)}∅, {TC (ā)(c, d)}∅

This is an example of the more general ‘rule permutations’ available in HTC,
hinting at a more flexible proof theory (we discuss this further in Sect. 8).

Example 21 (Transitivity). TC can be proved transitive by way of a cyclic proof
in TCG of the sequent TC (a)(c, d),TC (a)(d, e),TC (ā)(c, e). As in the previous
example we may mimic that proof line by line, but we give a slightly different
one that cannot directly be interpreted as a TCG proof:

init { }∅

id
a(c, d), ā(c, d)

Ex. 20

TC (ā)(d, e),TC (a)(d, e)
∪

a(c, d),TC (a)(d, e), ā(c, d),TC (ā)(d, e)
inst

a(c, d),TC (a)(d, e), {ā(c, x),TC (ā)(x, e)}x

init { }∅

id
a(c, c′), ā(c, c′)

...
TC ◦

TC (a)(c′, d),TC (a)(d, e),TC (ā)(c′, e)
∪

a(c, c′),TC (a)(c′, d),TC (a)(d, e), ā(c, e), ā(c, c′),TC (ā)(c′, e)
inst

a(c, c′),TC (a)(c′, d),TC (a)(d, e), ā(c, e), {ā(c, x),TC (ā)(x, e)}x

2∪
a(c, d), a(c, c′), a(c, d),TC (a)(c′, d),TC (a)(d, e), ā(c, e), {ā(c, x),TC (ā)(x, e)}x

TC
TC (a)(c, d),TC (a)(d, e), ā(c, e), {ā(c, x),TC (ā)(x, e)}x

TC ◦
TC (a)(c, d),TC (a)(d, e),TC (ā)(c, e)

The only infinite branch (except for that from Example 20), looping on ◦, is
progressing by the red hypertrace.

Finally, it is pertinent to revisit the ‘counterexample’ (4) that witnessed
incompleteness of TCG for PDL+. The following result is, in fact, already implied
by our later completeness result, Theorem 28, but we shall present it nonetheless:

Proposition 22. HTC �cyc ST((aa ∪ aba)+)(c, d) ⊃ ST(a+((ba+)+ ∪ a))(c, d).

Cyclic Proofs, Hypersequents, and Transitive Closure Logic 519

Proof. We give the required cyclic proof in Fig. 2, using the abbreviations:
α(c, d) = ST(aa∪aba)(c, d) and β(c, d) = ST((ba+)+ ∪a)(c, d). The only infinite
branch (looping on •) has progressing hypertrace is marked in blue.
Hypersequents R = {α(c, d)}∅, {α(c, d),TC (α)(e, d)}∅, {TC (a)(c, y), β(y, d)}y

and R′ = {α(c, d)}∅, {α(c, d)}∅, {TC (a)(c, y), β(y, d)}y have finitary proofs,
while P = {aba(c, e)}∅, {TC (α)(e, d)}∅, {TC (a)(c, y), β(y, d)}y has a cyclic
proof.

Fig. 2. Cyclic proof for sequent not cyclically provable by TCG.

5 Soundness of HTC

This section is devoted to the proof of the first of our main results:

Theorem 23 (Soundness). If HTC �nwf S then |= S.

The argument is quite technical due to the alternating nature of our progress
condition. In particular the treatment of traces within hypertraces requires a
more fine grained argument than usual, bespoke to our hypersequential structure.

Throughout this section, we shall fix a HTC preproof D of a hypersequent S.
For practical reasons we shall assume that D is substitution-free (at the cost of
regularity) and that each quantifier in S binds a distinct variable.4 We further
assume some structure M× and an interpretation ρ0 such that ρ0 �|= S (within
M×). Since each rule is locally sound, by contraposition we can continually
choose ‘false premisses’ to construct an infinite ‘false branch’:

Lemma 24 (Countermodel branch). There is a branch B× = (Si)i<ω of D
and an interpretation ρ× such that, with respect to M×:
4 Note that this convention means we can simply take y = x in the ∃ rule in Fig. 1.

520 A. Das and M. Girlando

1. ρ× �|= Si, for all i < ω;
2. Suppose that Si concludes a TC step, as typeset in Fig. 1, and ρ× |=

TC (Ā)(s, t) [d/x]. If n is minimal such that ρ× |= Ā(di, di+1) for all i ≤ n,
ρ×(s) = d0 and ρ×(t) = dn, and n > 1, then ρ×(f)(d) = d1

5 so that
ρi+1 |= Ā(s, f(x))[d/x] and ρ× |= TC (Ā)(f(x), t)[d/x].

Unpacking this a little, our interpretation ρ× is actually defined as the limit of a
chain of ‘partial’ interpretations (ρi)i<ω, with each ρi �|= Si (within M×). Note
in particular that, by 2, whenever some TC -formula is principal, we choose ρi+1

to always assign to it a falsifying path of minimal length (if one exists at all),
with respect to the assignment to variables in its annotation. It is crucial at this
point that our definition of ρ× is parametrised by such assignments.

Let us now fix B× and ρ× as provided by the Lemma above. Moreover, let us
henceforth assume that D is a proof, i.e. it is progressing, and fix a progressing
hypertrace H = ({Γi}xi)i<ω along B×. In order to carry out an infinite descent
argument, we will need to define a particular trace along this hypertrace that
‘preserves’ falsity, bottom-up. This is delicate since the truth values of formulas
in a trace depend on the assignment of elements to variables in the annotations.
A particular issue here is the instantiation rule inst, which requires us to ‘revise’
whatever assignment of y we may have defined until that point. Thankfully, our
earlier convention on substitution-freeness and uniqueness of bound variables in
D facilitates the convergence of this process to a canonical such assignment:

Definition 25 (Assignment). We define δH :
⋃

i<ω

xi → |M×| by δH(x) :=

ρ(t) if x is instantiated by t in H; otherwise δH(x) is some arbitrary d ∈ |M×|.
Note that δH is indeed well-defined, thanks to the convention that each quan-

tifier in S binds a distinct variable. In particular we have that each variable x is
instantiated at most once along a hypertrace. Henceforth we shall simply write
ρ, δH |= A(x) instead of ρ |= A(δH(x)). Working with such an assignment ensures
that false formulas along H always have a false immediate ancestor:

Lemma 26 (Falsity through H). If ρ×, δH �|= F for some F ∈ Γi, then F
has an immediate ancestor F ′ ∈ Γi+1 with ρ×, δH �|= F ′.

In particular, regarding the inst rule of Fig. 1, note that if F ∈ Γ (y) then we
can choose F ′ = F [t/y] which, by definition of δH, has the same truth value. By
repeatedly applying this Lemma we obtain:

Proposition 27 (False trace). There exists an infinite trace τ× = (Fi)i<ω

through H such that, for all i, it holds that M×, ρ×, δH �|= Fi.

We are now ready to prove our main soundness result.

Proof (of Theorem 23, sketch). Fix the infinite trace τ× = (Fi)i<ω through H
obtained by Proposition 27. Since τ× is infinite, by definition of HTC proofs, it
5 To be clear, we here choose an arbitrary such minimal ‘Ā-path’.

Cyclic Proofs, Hypersequents, and Transitive Closure Logic 521

needs to be progressing, i.e., it is infinitely often TC -principal and there is some
k ∈ N s.t. for i > k we have that Fi = TC (A)(si, ti) for some terms si, ti.

To each Fi, for i > k, we associate the natural number ni measuring the
‘Ā-distance between si and ti’. Formally, ni ∈ N is least such that there
are d0, . . . , dni

∈ |M×| with ρ×(s) = d0, ρ
×(t) = dni

and, for all i < ni,
ρ×, δH |= Ā(di, di+1). Our aim is to show that (ni)i>k has no minimal element,
contradicting wellfoundness of N. For this, we establish the following two local
properties:

Fig. 3. Rules of LPD+.

1. (ni)i>k is monotone decreasing, i.e., for all i > k, we have ni+1 ≤ ni;
2. Whenever Fi is principal, we have ni+1 < ni.

So (ni)i>k is monotone decreasing, by 1, but cannot converge, by 2 and the
definition of progressing trace. Thus (ni)k<i has no minimal element, yielding
the required contradiction.

6 HTC is Complete for PDL+, Over Standard Translation

In this section we give our next main result:

Theorem 28 (Completeness for PDL+). For a PDL+ formula A, if |= A
then HTC �cyc ST(A)(c).

The proof is by a direct simulation of a cut-free cyclic system for PDL+ that is
complete. We shall briefly sketch this system below.

6.1 Circular System for PDL+

The system LPD+, given in Fig. 3, is the natural extension of the usual sequent
calculus for basic multimodal logic K by rules for programs. In Fig. 3, 〈a〉Γ is
shorthand for {〈a〉B : B ∈ Γ}. (Regular) preproofs for this system are defined
just like for HTC or TCG. The notion of ‘immediate ancestor’ is induced by the
indicated colouring: a formula C in a premiss is an immediate ancestor of a
formula C ′ in the conclusion if they have the same colour; if C,C ′ ∈ Γ then we
furthermore require C = C ′.

522 A. Das and M. Girlando

Definition 29 (Non-wellfounded proofs). Fix a preproof D of a sequent Γ .
A thread is a maximal path in its graph of immediate ancestry. We say a thread
is progressing if it has a smallest infinitely often principal formula of the form
[α+]A. D is a proof if every infinite branch has a progressing thread. If D is
regular, we call it a cyclic proof and we may write LPD+ �cyc Γ .

Soundness of cyclic-LPD+ is established by a standard infinite descent argu-
ment, but is also implied by the soundness of cyclic-HTC (Theorem 23) and the
simulation we are about to give (Theorem 28), though this is somewhat overkill.
Completeness may be established by the game theoretic approach of Niwinsḱı
and Walukiewicz [23], as done by Lange [20] for PDL (with identity), or by purely
proof theoretic techniques of Studer [25]. Either way, both results follow from
a standard embedding of PDL+ into the μ-calculus and its known complete-
ness results [23,25], by way of a standard ‘proof reflection’ argument: μ-calculus
proofs of the embedding are ‘just’ step-wise embeddings of LPD+ proofs:

Theorem 30 (Soundness and completeness, [20]). Let A be a PDL+ for-
mula. |= A iff LPD+ �cyc A.

6.2 A ‘Local’ Simulation of LPD+ by HTC

In this subsection we show that LPD+-preproofs can be stepwise transformed
into HTC-proofs, with respect to the standard translation. In order to produce
this local simulation, we need a more refined version of the standard translation
that incorporates the structural elements of hypersequents.

Fix a PDL+ formula A = [α1] . . . [αn]〈β1〉 . . . 〈βm〉B, for n,m ≥ 0. The hyper-
sequent translation of A, written HT(A)(c), is defined as:

{ST(α1)(c, d1)}∅, {ST(α2)(d1, d2)}∅, . . . , {ST(αn)(dn−1, dn)}∅,

{ST(β1)(dn, y1),ST(β2)(y2, y3), . . . ,ST(βm)(ym−1, ym),ST(B)(ym)}y1,...,ym

For Γ = A1, . . . , Ak, we write HT(Γ)(c) := HT(A1)(c), . . . ,HT(Ak)(c).

Definition 31 (HT-translation). Let D be a PDL+ preproof. We shall define
a HTC preproof HT(D)(c) of the hypersequent HT(A)(c) by a local translation
of inference steps. We give only a few of the important cases here, but a full
definition can be found in [13].

– A step
B1, . . . , Bk, A

ka 〈a〉B1, . . . , 〈a〉Bk, [a]A
is translated to:

HT(B1)(c), . . . ,HT(Bk)(c),HT(A)(c)
[d/c]

HT(B1)(d), . . . ,HT(Bk)(d),HT(A)(d)
∨,∀ {CT(B1)(d)}xB1 , . . . , {CT(Bk)(d)}xBk ,HT(A)(d)

wk

{CT(B1)(d)}xB1 , . . . , {CT(Bk)(d)}xBk , {ST(a)(c, d)}∅,HT(A)(d)
∪

{CT(B1)(d)}xB1 , . . . , {ST(a)(c, d),CT(Bk)(d)}xBk , {ST(a)(c, d)}∅,HT(A)(d)
inst

{ST(a)(c, y),CT(B1)(y)}xB1 ,y, . . . , {ST(a)(c, y),CT(Bk)(y)}xBk
,y, {ST(a)(c, d)}∅,HT(A)(d)

= ..
HT(〈a〉B1)(c), . . . ,HT(〈a〉Bk)(c),HT([a]A)(c)

Cyclic Proofs, Hypersequents, and Transitive Closure Logic 523

where (omitted) left-premisses of ∪ steps are simply proved by wk, id, init. In this
and the following cases, we use the notation CT(A)(c) and xA for the appropriate
sets of formulas and variables forced by the definition of HT (again, see [13] for
further details).

– A 〈∪〉i step (for i = 0, 1), as typeset in Fig. 3, is translated to:

HT(Γ)(c),HT(〈αi〉A)(c)
= ..

HT(Γ)(c), {ST(αi)(c, y),CT(A)(y)}xB,y

∨
HT(Γ)(c), {ST(α0)(c, y) ∨ ST(α1)(c, y),CT(A)(y)}xA,y

= ...
HT(Γ)(c),HT(〈α0 ∪ α1〉A)(c)

– A 〈; 〉 step, as typeset in Fig. 3, is translated to:

HT(Γ)(c),HT(〈α〉〈β〉A)(c)
= ...

HT(Γ)(c), {ST(α)(c, z), ST(α)(z, y),CT(A)(y)}xA,y,z

∧
HT(Γ)(c), {ST(α)(c, z) ∧ ST(α)(z, y),CT(A)(y)}xA,y,z

∃
HT(Γ)(c), {∃z(ST(α)(c, z) ∧ ST(α)(z, y)),CT(A)(y)}xA,y

= ..
HT(Γ)(c),HT(〈α; β〉A)(c)

– A [+] step, as typeset in Fig. 3, is translated to:

E
E′

HT(Γ)(c),HT([α][α+]A)(c)
= ..

HT(Γ)(c), {ST(α)(c, f)}∅, {TC (ST(α))(f, d)}∅,HT(A)(d)
∪
HT(Γ)(c), {ST(α)(c, f)}∅, {ST(α)(c, d),TC (ST(α))(f, d)}∅,HT(A)(d)

∪
HT(Γ)(c), {ST(α)(c, d), ST(α)(c, f)}∅, {ST(α)(c, d),TC (ST(α))(f, d)}∅,HT(A)(d)

TC

HT(Γ)(c), {TC (ST(α))(c, d)}∅,HT(A)(d)
= ..

HT(Γ)(c),HT([α+]A)(c)

where E and E ′ derive HT(Γ)(c) and HT([α]A)(c), resp., using wk-steps.

Note that, formally speaking, the well-definedness of HT(D)(c) in the defi-
nition above is guaranteed by coinduction: each rule of D is translated into a
(nonempty) derivation.

Remark 32 (Deeper inference). Observe that HTC can also simulate ‘deeper’

program rules than are available in LPD+. E.g. a rule
Γ, 〈α〉〈βi〉A

Γ, 〈α〉〈β0 ∪ β1〉A may be

simulated too (similarly for []). E.g. 〈a+〉〈b〉p ⊃ 〈a+〉〈b ∪ c〉p admits a finite
proof in HTC (under ST), rather than a necessarily infinite (but cyclic) one in
LPD+.

6.3 Justifying Regularity and Progress

Proposition 33. If D is regular, then so is HT(D)(c).

Proof. Notice that each rule in D is translated to a finite derivation in HT(D)(c).
Thus, if D has only finitely many distinct subproofs, then also HT(D)(c) has only
finitely many distinct subproofs.

524 A. Das and M. Girlando

Proposition 34. If D is progressing, then so is HT(D)(c).

Proof (sketch). We need to show that every infinite branch of HT(D)(c) has
a progressing hypertrace. Since the HT translation is defined stepwise on the
individual steps of D, we can associate to each infinite branch B of HT(D)(c)
a unique infinite branch B′ of D. Since D is progressing, let τ = (Fi)i<ω be a
progressing thread along B′. By inspecting the rules of LPD+ (and by defini-
tion of progressing thread), for some k ∈ N, each Fi for i > k has the form:
[αi,1] · · · [αi,ni

][α+]A, for some ni ≥ 0. So, for i > k, HT(Fi)(di) has the form:

{ST(αi,1)(c, di,1)}∅, . . . , {ST(αi,ni
)(di,ni−1, di,ni

)}∅, {TC (ST(α))(di,ni
, di)}∅,HT(A)(di)

By inspection of the HT-translation (Definition 31) whenever Fi+1 is
an immediate ancestor of Fi in B′, there is a path from the cedent
{TC (ST(α))(di+1,ni+1 , di+1)}∅ to the cedent {TC (ST(α))(di,ni

, di)}∅ in the
graph of immediate ancestry along B. Thus, since τ = (Fi)i<ω is a
trace along B′, we have a (infinite) hypertrace of the form Hτ :=
({Δi,TC (ST(α))(di,ni

, di)}∅)i>k′ along B. By construction Δi = ∅ for infinitely
many i > k′, and so Hτ has just one infinite trace. Moreover, by inspection of
the [+] step in Definition 31, this trace progresses in B every time τ does in B′,
and so progresses infinitely often. Thus, H is a progressing hypertrace. Since the
choice of the branch B of D was arbitrary, we are done.

6.4 Putting it all Together

We can now finally conclude our main simulation theorem:

Proof (of Theorem 28, sketch). Let A be a PDL+ formula s.t. |= A. By the
completeness result for LPD+, Theorem 30, we have that LPD+ �cyc A, say by
a cyclic proof D. From here we construct the HTC preproof HT(D)(c) which, by
Propositions 33 and 34, is in fact a cyclic proof of HT(A)(c). Finally, we apply
some basic ∨,∧,∃,∀ steps to obtain a cyclic HTC proof of ST(A)(c).

7 Extension by Equality and Simulating Full PDL

We now briefly explain how our main results are extended to the ‘reflexive’
version of TCL. The language of HTC= allows further atomic formulas of the
form s = t and s �= t. The calculus HTC= extends HTC by the rules:

S, {Γ}x

=

S, {t = t, Γ}x

S, {Γ (s), Δ(s)}x

�=
S, {Γ (s), s �= t}x, {Δ(t)}x

The notion of immediate ancestry is colour-coded as in Definition 15, and
the resulting notions of (pre)proof, (hyper)trace and progress are as in Def-
inition 17. The simulation of Cohen and Rowe’s system TCG extends to

Cyclic Proofs, Hypersequents, and Transitive Closure Logic 525

their reflexive system, RTCG, by defining their operator RTC (λx, y.A)(s, t) :=
TC (λx, y.(x = y ∨ A))(s, t). Note that, while it is semantically correct to set
RTC (A)(s, t) to be s = t∨TC (A)(s, t), this encoding does not lift to the Cohen-
Rowe rules for RTC . Understanding that structures interpret = as true equality,
a modular adaptation of the soundness argument for HTC, cf. Sect. 5, yields:

Theorem 35 (Soundness of HTC=). If HTC= �nwf S then |= S.

Turning to the modal setting, PDL may be defined as the extension of PDL+

by including a program A? for each formula A. Semantically, we have (A?)M =
{(v, v) : M, v |= A}. From here we may define ε := �? and α∗ := (ε∪α)+; again,
while it is semantically correct to set α∗ = ε ∪ α+, this encoding does not lift
to the standard sequent rules for ∗. The system LPD is obtained from LPD+ by
including the rules:

Γ ,A Γ ,B
〈?〉

Γ , 〈A?〉B
Γ, Ā,B

[?]
Γ , [A?]B

Again, the notion of immediate ancestry is colour-coded as for LPD+; the result-
ing notions of (pre)proof, thread and progress are as in Definition 29. Just like
for LPD+, a standard encoding of LPD into the μ-calculus yields its soundness
and completeness, thanks to known sequent systems for the latter, cf. [23,25],
but has also been established independently [20]. Again, a modular adaptation
of the simulation of LPD+ by HTC, cf. Sect. 6, yields:

Theorem 36 (Completeness for PDL). Let A be a PDL formula. If |= A
then HTC= �cyc ST(A)(c).

8 Conclusions

In this work we proposed a novel cyclic system HTC for Transitive Closure
Logic (TCL) based on a form of hypersequents. We showed a soundness theorem
for standard semantics, requiring an argument bespoke to our hypersequents.
Our system is cut-free, rendering it suitable for automated reasoning via proof
search. We showcased its expressivity by demonstrating completeness for PDL,
over the standard translation. In particular, we demonstrated formally that such
expressivity is not available in the previously proposed system TCG of Cohen and
Rowe (Theorem 12). Our system HTC locally simulates TCG too (Theorem 19).

As far as we know, HTC is the first cyclic system employing a form of deep
inference resembling alternation in automata theory, e.g. wrt. proof checking,
cf. Proposition 18. It would be interesting to investigate the structural proof the-
ory that emerges from our notion of hypersequent. As hinted at in Examples 20
and 21, our hypersequential system exhibits more liberal rule permutations than
usual sequents, so we expect their focussing and cut-elimination behaviours to
similarly be richer, cf. [21,22]. Note however that such investigations are rather
pertinent for pure predicate logic (without TC): focussing and cut-elimination
arguments do not typically preserve regularity of non-wellfounded proofs, cf. [2].

526 A. Das and M. Girlando

Finally, our work bridges the cyclic proof theories of (identity-free) PDL and
(reflexive) TCL. With increasing interest in both modal and predicate cyclic
proof theory, it would be interesting to further develop such correspondences.

Acknowledgements. The authors would like to thank Sonia Marin, Jan Rooduijn
and Reuben Rowe for helpful discussions on matters surrounding this work.

References

1. Avron, A.: Transitive closure and the mechanization of mathematics. In: Kamared-
dine, F.D. (eds) Thirty Five Years of Automating Mathematics. Applied Logic
Series, vol. 28, pp. 149–171. Springer, Dordrecht (2003). https://doi.org/10.1007/
978-94-017-0253-9 7

2. Baelde, D., Doumane, A., Saurin, A.: Infinitary proof theory: the multiplicative
additive case. In: Talbot, J., Regnier, L. (eds.) 25th EACSL Annual Conference
on Computer Science Logic, CSL 2016, 29 August–1 September 2016, Marseille,
France. LIPIcs, vol. 62, pp. 42:1–42:17. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2016). https://doi.org/10.4230/LIPIcs.CSL.2016.42

3. Berardi, S., Tatsuta, M.: Classical system of martin-lof’s inductive definitions is
not equivalent to cyclic proofs. CoRR abs/1712.09603 (2017). http://arxiv.org/
abs/1712.09603

4. Blackburn, P., van Benthem, J.: Modal logic: a semantic perspective. In: Blackburn,
P., van Benthem, J.F.A.K., Wolter, F. (eds.) Handbook of Modal Logic, Studies
in Logic and Practical Reasoning, vol. 3, pp. 1–84. North-Holland (2007). https://
doi.org/10.1016/s1570-2464(07)80004-8

5. Blackburn, P., De Rijke, M., Venema, Y.: Modal Logic, vol. 53. Cambridge Uni-
versity Press (2002)

6. Brotherston, J., Distefano, D., Petersen, R.L.: Automated cyclic entailment proofs
in separation logic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS (LNAI), vol. 6803, pp. 131–146. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-22438-6 12

7. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover.
In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 350–367.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35182-2 25

8. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. J.
Log. Comput. 21(6), 1177–1216 (2011)

9. Cohen, L., Rowe, R.N.S.: Uniform inductive reasoning in transitive closure logic via
infinite descent. In: Ghica, D.R., Jung, A. (eds.) 27th EACSL Annual Conference
on Computer Science Logic, CSL 2018, 4–7 September 2018, Birmingham, UK.
LIPIcs, vol. 119, pp. 17:1–17:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2018). https://doi.org/10.4230/LIPIcs.CSL.2018.17

10. Cohen, L., Rowe, R.N.S.: Integrating induction and coinduction via closure opera-
tors and proof cycles. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020.
LNCS (LNAI), vol. 12166, pp. 375–394. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-51074-9 21

11. Cohen, L., Rowe, R.N.: Non-well-founded proof theory of transitive closure logic.
ACM Trans. Comput. Log. 21(4), 1–31 (2020)

12. Das, A.: On the logical complexity of cyclic arithmetic. Log. Methods Comput.
Sci. 16(1) (2020). https://doi.org/10.23638/LMCS-16(1:1)2020

https://doi.org/10.1007/978-94-017-0253-9_7
https://doi.org/10.1007/978-94-017-0253-9_7
https://doi.org/10.4230/LIPIcs.CSL.2016.42
http://arxiv.org/abs/1712.09603
http://arxiv.org/abs/1712.09603
https://doi.org/10.1016/s1570-2464(07)80004-8
https://doi.org/10.1016/s1570-2464(07)80004-8
https://doi.org/10.1007/978-3-642-22438-6_12
https://doi.org/10.1007/978-3-642-22438-6_12
https://doi.org/10.1007/978-3-642-35182-2_25
https://doi.org/10.4230/LIPIcs.CSL.2018.17
https://doi.org/10.1007/978-3-030-51074-9_21
https://doi.org/10.1007/978-3-030-51074-9_21
https://doi.org/10.23638/LMCS-16(1:1)2020

Cyclic Proofs, Hypersequents, and Transitive Closure Logic 527

13. Das, A., Girlando, M.: Cyclic proofs, hypersequents, and transitive closure logic
(2022). https://doi.org/10.48550/ARXIV.2205.08616

14. Das, A., Pous, D.: A cut-free cyclic proof system for Kleene algebra. In: Schmidt,
R.A., Nalon, C. (eds.) TABLEAUX 2017. LNCS (LNAI), vol. 10501, pp. 261–277.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66902-1 16

15. Grädel, E.: On transitive closure logic. In: Börger, E., Jäger, G., Kleine Büning, H.,
Richter, M.M. (eds.) CSL 1991. LNCS, vol. 626, pp. 149–163. Springer, Heidelberg
(1992). https://doi.org/10.1007/BFb0023764

16. Gurevich, Y.: Logic and the Challenge of Computer Science, pp. 1–57. Computer
Science Press (1988). https://www.microsoft.com/en-us/research/publication/
logic-challenge-computer-science/

17. Immerman, N.: Languages that capture complexity classes. SIAM J. Comput.
16(4), 760–778 (1987). https://doi.org/10.1137/0216051

18. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. In: Proceedings of the Sixth Annual Symposium on Logic in Computer
Science (LICS 1991), Amsterdam, The Netherlands, 15–18 July 1991, pp. 214–
225. IEEE Computer Society (1991). https://doi.org/10.1109/LICS.1991.151646

19. Krob, D.: Complete systems of b-rational identities. Theor. Comput. Sci. 89(2),
207–343 (1991). https://doi.org/10.1016/0304-3975(91)90395-I

20. Lange, M.: Games for modal and temporal logics. Ph.D. thesis (2003)
21. Marin, S., Miller, D., Volpe, M.: A focused framework for emulating modal proof

systems. In: Beklemishev, L.D., Demri, S., Maté, A. (eds.) Advances in Modal
Logic 11, Proceedings of the 11th Conference on “Advances in Modal Logic,” held
in Budapest, Hungary, 30 August–2 September 2016, pp. 469–488. College Publi-
cations (2016). http://www.aiml.net/volumes/volume11/Marin-Miller-Volpe.pdf

22. Miller, D., Volpe, M.: Focused labeled proof systems for modal logic. In: Davis, M.,
Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 266–
280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-7 19

23. Niwiński, D., Walukiewicz, I.: Games for the mu-calculus. Theor. Comput. Sci.
163(1), 99–116 (1996). https://doi.org/10.1016/0304-3975(95)00136-0

24. Rowe, R.N.S., Brotherston, J.: Automatic cyclic termination proofs for recursive
procedures in separation logic. In: Bertot, Y., Vafeiadis, V. (eds.) Proceedings of
the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2017,
Paris, France, 16–17 January 2017, pp. 53–65. ACM (2017). https://doi.org/10.
1145/3018610.3018623

25. Studer, T.: On the proof theory of the modal mu-calculus. Stud. Logica. 89(3),
343–363 (2008)

26. Tellez, G., Brotherston, J.: Automatically verifying temporal properties of pointer
programs with cyclic proof. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI),
vol. 10395, pp. 491–508. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63046-5 30

27. Tellez, G., Brotherston, J.: Automatically verifying temporal properties of pointer
programs with cyclic proof. J. Autom. Reason. 64(3), 555–578 (2020). https://doi.
org/10.1007/s10817-019-09532-0

https://doi.org/10.48550/ARXIV.2205.08616
https://doi.org/10.1007/978-3-319-66902-1_16
https://doi.org/10.1007/BFb0023764
https://www.microsoft.com/en-us/research/publication/logic-challenge-computer-science/
https://www.microsoft.com/en-us/research/publication/logic-challenge-computer-science/
https://doi.org/10.1137/0216051
https://doi.org/10.1109/LICS.1991.151646
https://doi.org/10.1016/0304-3975(91)90395-I
http://www.aiml.net/volumes/volume11/Marin-Miller-Volpe.pdf
https://doi.org/10.1007/978-3-662-48899-7_19
https://doi.org/10.1016/0304-3975(95)00136-0
https://doi.org/10.1145/3018610.3018623
https://doi.org/10.1145/3018610.3018623
https://doi.org/10.1007/978-3-319-63046-5_30
https://doi.org/10.1007/978-3-319-63046-5_30
https://doi.org/10.1007/s10817-019-09532-0
https://doi.org/10.1007/s10817-019-09532-0

528 A. Das and M. Girlando

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Cyclic Proofs, Hypersequents, and Transitive Closure Logic
	1 Introduction
	2 Preliminaries
	2.1 Transitive Closure Logic
	2.2 Cohen-Rowe Cyclic System for TCL

	3 Interlude: Motivation from PDL and Kleene Algebra
	3.1 Identity-Free PDL
	3.2 The Standard Translation
	3.3 Cohen-Rowe System is not Complete for PDL+

	4 Hypersequent Calculus for TCL
	4.1 A System for Predicate Logic via Annotated Hypersequents
	4.2 Non-wellfounded Hypersequent Proofs
	4.3 Some Examples

	5 Soundness of HTC
	6 HTC is Complete for PDL+, Over Standard Translation
	6.1 Circular System for PDL+
	6.2 A `Local' Simulation of LPD+ by HTC
	6.3 Justifying Regularity and Progress
	6.4 Putting it all Together

	7 Extension by Equality and Simulating Full PDL
	8 Conclusions
	References

