
 
 

University of Birmingham

Climate-induced changes in river flow regimes will
alter future bird distributions
Royan, Alexander; Prudhomme, Christel; Hannah, David; Reynolds, Silas; Noble, David G.;
Sadler, Jonathan
DOI:
10.1890/ES14-00245.1

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Royan, A, Prudhomme, C, Hannah, D, Reynolds, S, Noble, DG & Sadler, J 2015, 'Climate-induced changes in
river flow regimes will alter future bird distributions', Ecosphere, vol. 6, no. 4, pp. 1-10.
https://doi.org/10.1890/ES14-00245.1

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 23. Apr. 2024

https://doi.org/10.1890/ES14-00245.1
https://doi.org/10.1890/ES14-00245.1
https://birmingham.elsevierpure.com/en/publications/11c319d6-a827-4bef-974f-5d3760b76383


Climate-induced changes in river flow regimes
will alter future bird distributions

ALEXANDER ROYAN,1 CHRISTEL PRUDHOMME,2 DAVID M. HANNAH,1 S. JAMES REYNOLDS,3

DAVID G. NOBLE,4 AND JONATHAN P. SADLER
1,�

1School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham B15 2TT United Kingdom
2Centre for Ecology and Hydrology, Wallingford OX10 8BB United Kingdom

3School of Biosciences, University of Birmingham, Birmingham B15 2TT United Kingdom
4The British Trust for Ornithology, Thetford IP24 2PU United Kingdom

Citation: Royan, A., C. Prudhomme, D. M. Hannah, S. J. Reynolds, D. G. Noble, and J. P. Sadler. 2015. Climate-induced

changes in river flow regimes will alter future bird distributions. Ecosphere 6(4):50. http://dx.doi.org/10.1890/

ES14-00245.1

Abstract. Anthropogenic forcing of the climate is causing an intensification of the global water cycle,

leading to an increase in the frequency and magnitude of floods and droughts. River flow shapes the

ecology of riverine ecosystems and climate-driven changes in river flows are predicted to have severe

consequences for riverine species, across all levels of trophic organization. However, understanding

species’ responses to variation in flow is limited through a lack of quantitative modelling of

hydroecological interactions. Here, we construct a Bioclimatic Envelope Model (BEM) ensemble based

on a suite of plausible future flow scenarios to show how predicted alterations in flow regimes may alter

the distribution of a predatory riverine species, the White-throated Dipper (Cinclus cinclus). Models

predicted a gradual diminution of dipper probability of occurrence between present day and 2098. This

decline was most rapid in western areas of Great Britain and was principally driven by a projected decrease

in flow magnitude and variability around low flows. Climate-induced changes in river flow may, therefore,

represent a previously unidentified mechanism by which climate change may mediate range shifts in birds

and other riverine biota.
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analysis.

Received 30 July 2014; accepted 12 November 2014; final version received 5 January 2015; published 13 April 2015.

Corresponding Editor: V. L. Lopes.

Copyright: � 2015 Royan et al. This is an open-access article distributed under the terms of the Creative Commons

Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited. http://creativecommons.org/licenses/by/3.0/

� E-mail: j.p.sadler@bham.ac.uk

INTRODUCTION

Climate warming and associated changes in

precipitation patterns are predicted to modify

river flows (Pall et al. 2011, Prudhomme et al.

2013a). Because patterns of flow regimes, includ-

ing extreme high and low flows, structure the

morphology and regulate the physico-chemical

and biotic properties of rivers, variability in river

flows are a major driver of community dynamics

in riverine-floodplain ecosystems (Bunn and

Arthington 2002). Flow variability drives pro-

ductivity and species’ demographics and altered

flows can have severe consequences for species’

populations and assemblages across all levels of

trophic organization (Ledger et al. 2012). There-

fore, climate-driven shifts in river flows are likely

to result in major changes in the structuring of

riverine ecological communities.

River birds are vulnerable to spatial and

v www.esajournals.org 1 April 2015 v Volume 6(4) v Article 50



phenological mismatches with prey caused by
shifting flows, as both species distribution
(Royan et al. 2013) and abundance (Royan et al.
2014) are closely linked to variability around
high (flood) and low (drought) flow conditions.
High flows reduce river bird prey abundance
and biomass, such as aquatic macroinvertebrates
(Chiu et al. 2013), impacting, in turn, on the
timing and location of avian foraging (Cumming
et al. 2012), territory occupancy (Reiley et al.
2013), and survival and breeding success (Stra-
sevicius et al. 2013). Despite this, the impacts of
climate-driven flow alterations on river birds
remain unexplored.

Here, we use predictions of climate-driven
changes in the flow regimes of British rivers
(Prudhomme et al. 2013b) to model shifts in the
probability of occurrence (P(x)) of the White-
throated Dipper (Cinclus cinclus) (hereafter
termed the ‘Dipper’). The Dipper has highly
specific habitat requirements, concentrating for-
aging on rivers with a high degree of flow
variability where riffles and pools of deep water
are found (Tyler and Ormerod 1994). Foraging
frequency decreases at high flow rates (O’Hallor-
an et al. 1990) and birds become less selective
when foraging during periods of high flows
(Taylor and O’Halloran 2001). The creation of
key Dipper habitats is, therefore, conditional
upon variability in river flows. Such behaviors
also mean the Dipper occupies a unique niche
among passerine birds in Great Britain and these
behaviors are likely to reduce its adaptive
capacity to climate change.

The modelling procedure was a two-part
process: (1) develop a correlative model to relate
Dipper distribution to variables of river flow, and
(2) construction of a Bioclimatic Envelope Model
(BEM) ensemble using future flow predictor
variables. The models were constructed using
an extensive bird survey dataset from the British
Trust for Ornithology’s (BTO’s) Waterways
Breeding Bird Survey (WBBS) and river flow
archive data. By using flow parameters to
describe climate-driven changes in species’ hab-
itat our BEMs have the potential to provide more
biologically realistic scenarios than those built on
climatic predictors alone and provide new
perspectives on how climate change may impact
on riverine species.

METHODS

Data and model structure
We defined the structure of the BEMs by

initially relating the presence of the Dipper at 103
river locations to indices of hydrological vari-
ability using river flow archives and the BTO’s
WBBS data between 1998 and 2010 inclusive.
However, data from year 2001 were excluded
from analyses as a very small proportion of
locations were surveyed due to the foot-and-
mouth outbreak. Our response variable was
defined as the presence or absence of birds at a
survey location across the entirety of the time
series. We reduced the likelihood of incorporat-
ing false zeros into the data set by only using
WBBS survey locations surveyed at least three
times, as multiple site visits provides more
realistic estimates of species’ occupancy by
reducing bias associated with species’ detection
probability (Royle and Nichols 2003).

A large number of hydrological indices exist in
the literature and there are concerns that a high
degree of multicollinearity exists among them
(Olden and Poff 2003). Therefore, we identified a
priori model parameters that characterize key
facets of the hydrological regime on rivers in
Great Britain (e.g., variation in flow magnitude,
frequency, and duration). In Royan et al. 2013,
the importance of river flow predictor variables
in describing Dipper distribution was tested
using a model averaging approach, comparing
the performance of 31 plausible model structures.
Here we constructed our models using the four
hydrological variables (Table 1) that best charac-
terized Dipper distribution in Royan et al. 2013.
These variables capture variability around flow
magnitude, frequency, and duration around both
high and low flows, which are predicted to be
significantly altered as a result of climate change
(Prudhomme et al. 2012b). No further model
selection procedure was utilized. The option to
use all four predictor variables is preferable to
building a more ‘parsimonious’model as the use
of a wider range of predictor variables ensures
better transferability of model outputs across
time (Rapacciuolo et al. 2012).

We found strong evidence of non-linear rela-
tionships so the bivariate relationship and func-
tional form between hydrological predictors and
Dipper distribution were modelled using Gener-
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alized Additive Models (GAMs) and Generalized
Linear Models (GLMs) with quadratic terms.
Both regression methods have high accuracy and
transferability across time periods and perform
well under small sample sizes when using
presence/absence data (Guisan and Thuiller
2005). Models were defined with a quasi-bino-
mial error structure and logarithmic link func-
tion. Models were also weighted by the inverse of
the total survey effort within each BTO region so
that locations with lower survey effort receive
greater weight in their contribution to the
calculation of model coefficients. This accounts
for spatial variation in the coverage of WBBS
squares and prevents the results being biased
towards well-surveyed locations (Renwick et al.
2012). GAMs were defined with cubic smoothing
splines, as automatic selection criteria such as
Generalized Cross Validation have the potential
to over fit short times series, with a fixed two
degrees of freedom (Wood 2006). This sufficient-
ly captured trends in the data whilst limiting the
penalized least squares criterion (Fewster et al.
2000). GAMs were constructed using version 1.7–
11 of the mgcv package in the statistical package
R, version 2.13.2 (Wood 2006)

Model predictive power was assessed using
Cohen’s Kappa (K ) as it is more robust to
threshold selection than other commonly used
methods (e.g., TSS, ROC) (Nenzén and Araújo
2011). K assesses model performance by compar-
ing it to the performance expected by chance
(Cohen 1960). It is a widely used measure for
assessing the accuracy of presence-absence pre-
dictions, in part because of its tolerance of zero
values. Additionally, the critical threshold P(x)
(Ps) at which K is maximized was optimized by

testing Ps values from 0.0 to 1.0 in 100 steps and
selecting the Ps value that maximizes model
prediction accuracy (Huntley et al. 2012). When
Dipper P(x) is projected to drop below Ps, it can
be interpreted that the probability of species’
absence is greater than species’ presence.

Bioclimatic Envelope Model (BEM) ensemble
The BEM ensemble was constructed using

future flow predictor variables obtained by
applying change factors to observed local flow
statistics (Prudhomme et al. 2010). The changes
were derived from the Future Flow Hydrology
(FFH) dataset. This comprised an ensemble of
transient daily river flow simulations up to the
end of year 2098 calculated by driving the semi-
distributed conceptual hydrological CERF model
(Young 2006) with the Future Flows Climate
(Prudhomme et al. 2012a). The ensemble of flow
factors include uncertainty in future climate
signal and can be associated with large variations
in the projections of species’ P(x)s (Prudhomme
et al. 2010). The climatic ensemble was based on
the UK Met Office Regional Climate Model
(RCM) 11-member perturbed physics ensemble
HadRM3-PPE (Murphy et al. 2007) simulations
of the 20th and 21st century for historical and
medium anthropogenic forcing (SRESA1B emis-
sions scenario (IPCC 2000)). Such ensemble
forecasting frameworks are necessary to capture
uncertainty in regional climate model projections
(Murphy et al. 2007). Due to the spatial coverage
of these data and the ability to pair with bird
data, our BEMs were restricted to 38 river
locations. The spatial spread of these locations
successfully captured the full range of variability
in river flows across the environmental and

Table 1. Description of river flow predictor variables.

Hydrological index Description

Flow magnitude A measure of the magnitude of daily flows. Calculated as the mean daily discharge divided by
the median daily discharge (m3/sec).

Low flow variability A measure of low flow variability and deviation of low flows from the median. Low values
imply greater variability in the magnitude of low flows while high values imply greater
stability. Calculated as the average annual 3-day minimum divided by the median annual
discharge (m3/sec).

High flow variability A measure of high flow variability and the deviation of high flows from the median. High values
imply greater variability in the magnitude of high flows while low values imply greater
stability. Calculated as average annual 3-day maximum divided by the median annual
discharge (m3/sec).

High flow frequency A measure of the number of extreme high flow days on a river. Calculated as the total number
of high flow days during time series above three times the median.

v www.esajournals.org 3 April 2015 v Volume 6(4) v Article 50

ROYAN ET AL.



geographical range of the Dipper in Great
Britain, thus preventing predictions of presence
in uninhabitable locations (Chefaoui and Lobo
2008).

For consistency with the length of Dipper
survey data, FFH time series were analyzed for
12-year separate time periods to describe short-,
medium- and long-term implications of climatic
change, with the 1997–2010 period defining the
baseline (Appendix B). Regionalized curves were
derived by averaging P(x)s across all survey
locations within the hydrological region for each
of the 11-member climate scenarios. Hydrologi-
cal regions were classified using a previously
described method (Bower et al. 2004) based on
long-term spatial and temporal trends in flow
magnitude and the timing of flow peaks.
Riverine catchments that exhibit similar inter-
annual hydroclimatic responses are identified,
allowing the hydrological sensitivity of each
region to be separately evaluated. This involves
a two-stage clustering procedure (hierarchical
cluster analysis using Ward’s method followed

by non-hierarchical k means clustering) followed
by discriminant function analysis.

RESULTS

Both the GAM (K ¼ 0.843) and GLM (K ¼
0.684) approaches successfully captured species’
current distribution (Fig. 1).There was consider-
able overlap in predicted trends between GAM
and GLM models, indicating strong convergence
of findings (Fig. 2). Dipper P(x) was primarily
driven by changes in low flow variability,
although flow magnitude and high flow frequen-
cy were also important predictors in the GAM
model (Tables 2 and 3). The largest changes in
P(x) averaged across the 11 climate scenarios are
estimated for the west of Great Britain, particu-
larly Wales and western Scotland where P(x)
between the baseline period and 2088–2098 are
projected to decline by 52–91% and 31–47%,
respectively (Fig. 2). Changes in the east of Great
Britain were considerably smaller than in west-
ern regions, with P(x)s estimated to show a

Fig. 1. Maps showing (A) the survey records of Dipper presence/absence for 38 locations, (B) the Generalized

Additive Model (GAM) predicted values (Cohen’s Kappa¼ 0.843), and (C) the Generalized Linear Model (GLM)

predicted values (Cohen’s Kappa ¼ 0.684).
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change between the baseline period and last time

period of between þ12% and �27%, although

models were in less agreement.

Both models estimated average P(x) to drop

below Ps within the total timeframe for all

regions, except western Scotland and west-

central England (Fig. 2), presumably because

such regions form the core of this species’ range

Fig. 2. GAM (blue line) and GLM (red line) predicted trends in the regionalized average P(x) of Dipper (y axes),

between a baseline period through seven future periods (x axes), with shaded regions illustrating the range

between 5th and 95th percentiles as an indication of the uncertainty in climate predictions across the 11 plausible

scenarios. Dashed lines represent Ps for both the GAM and GLM models, whereby values above and below the

lines represent a likelihood of occurrence and absence, respectively.
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in Great Britain and, thus, population densities
are higher. Average P(x) dropped below Ps

between 2062 and 2075 in Wales, around 2062
in southwest England, and between 2023 and
2088 in southeast England. This means that
across time the model predictions tended more
towards a probability of absence rather than a
probability of presence in western and northern
parts of Great Britain. Changes in P(x) were
principally driven by a projected decrease in flow
magnitude and variability around low flows
(Appendix C).

A geographic shift in species’ occurrences
between the baseline period and 2088–2098 was
tested using paired t-tests (for the future time
period, modelled predictions were averaged
across the 11-ensemble members). Locations of
Dipper occurrences were predicted to shift
significantly eastwards within the timeframe
(GAM: t ¼ �2.390, P ¼ 0.03, þ0.9848 6 0.3578;
GLM: t ¼ �2.511, P ¼ 0.02, þ0.7988 6 0.2578).
There was no significant shift in the latitude of
modelled occurrences (GAM: t ¼ 0.293, P ¼ 0.77;
GLM: t ¼ 0.300, P ¼ 0.77).

DISCUSSION

The models indicate how a riverine-specialist
consumer in Great Britain is potentially vulner-
able to future climate-driven changes in river
flows. Changes in climate may mediate shifts in
the abundance (Huntley et al. 2012) or range
(Huntley et al. 2007) of birds; however, shifts in
distribution from climate-driven alterations to
river flows may be a widespread, yet previously
unidentified, potential mechanism by which
climate change may impact birds dependent on
riverine habitats.

BEMs are based upon a number of statistical
and theoretical assumptions and, thus, must be

discussed with caveats. BEMs were built on
relationships fixed in space and time which are
assumed to be transferable to environmental
domains outside of those upon which the models
were built. Nonetheless, validation has shown
BEMs to have considerable predictive power
(Araújo et al. 2005) and can be useful in guiding
conservation action (Guisan et al. 2013). Our
BEMs produce predictions of changes in suitable
flow habitat conditions and thus can be used to
show how Dipper P(x) might change in the
future due to changes in flow across hydrological
regions. This informs about possible changes in
species’ distributions based on the suitability of
Dipper habitat.

Most avian-focused models, including those
for Dipper, that assess the impact of climate
change on species’ distributions have been
constructed using climatic predictors alone and
predict poleward shifts in species’ ranges (e.g.,
Huntley et al. 2007). This limits the biological
relevance of BEMs as non-climatic impacts tend
to dominate local, short-term biological changes
(Araújo and Rozenfeld 2013). In fact, dynamic
studies which model how species’ distributions
may change as a direct result of climate change-
induced perturbations in habitat suitability are
rare. This is in part a consequence of climatic
variables often being only available at regional-
scale resolution (Domisch et al. 2013). However,
by coupling the WBBS and FFH datasets we were
able to measure how species’ presence at
localized spatial scales changes in response to
climate-induced alterations in habitat suitability.

The model ensemble predicted a significant
eastward shift in species’ occurrences but no
significant shift in latitude. This was likely
caused by the modelled prediction that flow
conditions on rivers in the east of Great Britain
would become more variable and, therefore,
increase habitat suitability for Dipper through

Table 2. Generalized Additive Model (GAM) coeffi-

cients for smoothed hydrological indices; ‘edf’ refers

to equivalent degrees of freedom.

Smoothed hydrological indices edf F P

Flow magnitude 2 7.056 0.001
High flow frequency 2 6.137 0.003
Low flow variability 2 9.849 ,0.001
High flow frequency 2 1.513 0.226

Notes: Coefficients for parametric terms: intercept coeffi-
cient ¼�0.099; SE ¼ 0.324; T¼�0.304; P ¼ 0.762.

Table 3. Generalized Linear Model (GLM) coefficients

for hydrological indices.

Hydrological index Coefficient SE T P

Flow magnitude �0.072 7.056 �0.057 0.9545
High flow frequency �0.036 6.137 �1.033 0.3043
Low flow variability �12.91 9.849 �4.400 ,0.001
High flow frequency �2.127e�05 1.513 �0.931 0.3539

Notes: Coefficients for intercept: coefficient ¼ 3.520; SE ¼
0.933; T ¼ 3.772; P , 0.001.
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the creation of critical foraging habitats. Average
P(x) was also projected to drop below Ps within
the total timeframe for all regions, except western
Scotland and west-central England, suggesting
the viability of some Dipper populations could
be threatened by climate-induced changes in
river flow suitability. River flow is the dominant
driver of morphological structure in riverine
habitats (Poff et al. 1997) and determines the
availability and prevalence of key Dipper forag-
ing and breeding habitats (O’Halloran et al. 1990,
Taylor and O’Halloran 2001). Shifts in Dipper
P(x) over time are, therefore, driven by changes
in habitat suitability, which is altered as a direct
consequence of the climate change signal and
climate variability.

By incorporating measures of river flow into
the modelling framework, the BEMs have sug-
gested a climate impact on future habitat
suitability due to regional variation in future
river flows. A focus solely on climatic predictors
may well under-estimate the full impact of
climate change on species’ distributions. Incor-
porating predictor variables into climate impact
models that assess the suitability of areas using
non-climatic (e.g., habitat) factors will prevent
the over- or under-estimation of climate change
impacts whilst simultaneously expanding the
range of environmental conditions under which
models are calibrated, thereby improving predic-
tive performance (Thuiller et al. 2004). This
would also have the additional benefit of adding
more biological ‘realism’ to, often coarse, large-
scale climate models, which is especially impor-
tant for species that respond primarily to
multiple local scale factors, as aquatic-riparian
species do to habitat structure, water quality and
abiotic or biotic processes (Ormerod et al. 2010).
This is especially pertinent for the Dipper since it
occupies highly dynamic, disturbance-prone sys-
tems.

Our results suggest that subtle shifts in future
flows may result in considerable changes in the
occurrence of a riverine specialist consumer.
Changes in flow may thus present a previously
unidentified threat to species in riverine environ-
ments wholly or largely dependent on aquatic
food resources. These findings have important
implications for how we interpret current pre-
dictions of species’ ranges under climate change
scenarios as climate-driven alterations to habitat

may lead to multi-directional shifts in range. It
also highlights the importance of incorporating
local non-climatic factors into climate impacts
models.
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SUPPLEMENTAL MATERIAL

APPENDIX A

Supplementary methods
Waterways Breeding Bird Survey (WBBS)

locations consisted of a single stretch of river
averaging 3 km in length (range: 0.5–5 km) that
overlapped a focal randomly selected 2 3 2 km
tetrad. Each location was surveyed at least three
times during the survey time series. Bird survey
data were paired with flow data collected at
gauging stations within 10 km of each WBBS
sample location. However, paired data were not
analyzed where a major tributary inflow oc-
curred between the gauging station and survey
location. This was to ensure flow metrics
calculated at gauging station sites were repre-
sentative of flow at survey locations and to avoid
inconsistencies caused by flow influxes at large
tributaries. Furthermore, for gauging stations
with ,10% missing values for any one year, we
interpolated data gaps using long-term mean
daily flows; however, gauging stations with
�10% missing values were excluded from the
analyses (Monk et al. 2007). Flow data were
extracted from the UK National River Flow
Archive (NRFA).

The choice of threshold selection method in
building binary models is a key step because this
can have large impacts on modelled predictions
and, consequently, may result in considerable
differences in projected alterations to species’
ranges (Nenzén and Araújo 2011). Therefore, we

decided to adopt a statistic, K, which is more

robust to threshold selection than other com-

monly used methods (e.g., TSS, ROC) (Nenzén

and Araújo 2011). K assesses model performance

by comparing it to the performance expected by

chance (Cohen 1960). It is a widely used measure

for assessing the accuracy of presence-absence

predictions, in part because of its tolerance of

zero values. K values , 0.40 indicate poor model

performance, 0.40–0.75 good performance, and

.0.75 excellent performance (Landis and Koch

1977). Furthermore, rather than use a simple

arbitrary Ps value of 0.5, we optimized the

predictive power of the models by testing Ps

values from 0.0 to 1.0 in 100 steps and selecting

the Ps value that maximizes model prediction

accuracy (Huntley et al. 2012).

APPENDIX B

Table B1. Description of dates used to create seven 12-

year time slices (including a baseline period) and

one 10-year time slice.

Period Time slice

Baseline 1 October 1997 to 30 September 2010
1 1 October 2010 to 30 September 2023
2 1 October 2023 to 30 September 2036
3 1 October 2036 to 30 September 2049
4 1 October 2049 to 30 September 2062
5 1 October 2062 to 30 September 2075
6 1 October 2075 to 30 September 2088
7 1 October 2088 to 31 December 2098
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APPENDIX C

Fig. C1. Plots showing the predicted trends in the four model predictor variables: (A) low flow variability, (B)

flow magnitude, (C) high flow variability, and (D) high flow frequency. The standard error bars represent

variation in the 11 model scenarios, between a baseline period through seven future periods. Changes in Dipper

occurrence were primarily driven by variation in low flow variability and a long-term decline in flow magnitude.
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